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Abstract The influence of masonry infills on the in-plane behaviour of RC framed structures is a 

central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the 

literature use an equivalent strut member in order to represent the infill but, among the parameters 

influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is 

recognized but not quantified. Nevertheless a vertical load causes a non negligible variation in the 

in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in 

a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-

jointed strut model taking into account the stiffening effect of vertical loads on the infill in the 

initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element 

model of the frame-infill system and the cross-section of the strut equivalent to the infill was 

obtained for different levels of vertical loading by imposing the equivalence between the frame 

containing the infill and the frame containing the diagonal strut. In this way a law for identifying the 

equivalent strut width depending on the geometrical and mechanical characteristics of the infilled 

frame was generalized to consider the influence of vertical loads for use in the practical 
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applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory 

to the definition of complete non-linear cyclic laws for the equivalent strut. 

________________________________________ 
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1. Introduction  

Infills, although considered non-structural members, radically modify the in-plane RC frame 

response under in-plane lateral load. The fact is that the in-plane stiffness of the frame, due to the 

presence of the infill, can increase up to ten times while the frame strength can grow up to four 

times, as found by many authors (e.g. Stafford Smith 1968; Cavaleri et al. 2005). Moreover, the 

interaction between infill and frame may or may not be beneficial to the performance of the 

structure under a seismic load: while in some cases the global performance could improve, several 

debates (e.g. NCEER 1994) and experiences in recent earthquakes have demonstrated that an 

otherwise well-designed structure could collapse due to low seismic excitation if infills are not 

uniformly distributed, both horizontally and vertically. 

The in-plane stiffness and strength of an infilled frame are affected by several variables such as the 

geometrical and mechanical properties of the infill and frame members, details of frame members, 

frame-infill stiffness ratio, out-of-plane infill loading (here not considered), workmanship and 

construction techniques and vertical loads transferred from the frame to the infill. 

One of the approaches for simulating the in-plane-influence of infill consists in replacing the infill 

itself with one or more equivalent struts made of the same material as the infill (macro-modelling), 

see original works by Asteris (2003), Cavaleri and Papia (2003), Crisafulli and Carr (2007), Zhai et 

al. (2011), Chrysostomou and Asteris (2012) and review works by Moghaddam and Dowling 1987, 

Asteris et al. (2011). Macro-modelling may be advantageous for a number of reasons and especially 

for design purposes. Moreover, it avoids the computational effort required by the solid/plane finite 

element modelling of infills (micromodelling). 

The micro-modelling approach has been widely used in the literature (e.g. Koutromanos et al. 2011; 

Manos et al. 2011, 2012; Shing and Stavridis 2014; Asteris and Cotsovos 2012; Asteris et al. 2012, 

2013). It provides detailed information on the structural response, for example on local effects on 

frame members; however, especially in non-linear cases, it requires long computational time and 

calibration of many parameters. Hence the macromodel approach may be an advantage, but at the 

same time the importance of the micro model approach is not under discussion. 
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A complete definition of the equivalent strut model requires (a) fixing the initial axial elastic 

properties (Young modulus and cross-section), (b) a law for the variation of the mechanical 

properties during cyclic loading, (c) the axial strength envelope. The evaluation of the initial elastic 

properties has a key role for the definition of the cyclic law. For example, Klingner and Bertero 

(1978), after fixing the thickness and initial elastic modulus of the equivalent strut equal to those of 

the infill, evaluated the width w of the equivalent strut by means of the following expressions 

(Mainstone 1974):  
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In Eq. 1 Ei and Ef are respectively the elastic diagonal modulus of the infill and the elastic modulus 

of the concrete, Ic is the moment of inertia of the column cross-section; see Fig.1 for description of 

symbols.  

Similarly to those of Klingner and Bertero, the cyclic laws proposed by Doudoumis e Mitsopoulou 

(1986) and by Panagiatakos and Fardis (1996) depend on the definition of the initial stiffness of the 

equivalent strut (elastic loading curve of the strength envelope). The same approach was followed 

for the definition of the strut cyclic laws proposed by Cavaleri et al. (2005) (Fig. 2) and by Cavaleri 

and Di Trapani (2014) (Fig. 3). As shown in the works mentioned before, identification of the initial 

axial stiffness of the equivalent strut is the first step for the definition of a complete cyclic law for 

the strut itself under axial loading. 

The approach for the identification of the strut width used in Eq. 1 is not the only one. 

For example, Durrani and Luo (1994), on the basis of the experimental work of Mainstone (1974), 

proposed the following analytical relation: 
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and bI is the moment of inertia of the beam cross-section (see Fig. 1 for description of symbols). 

Flanagan and Bennet (1999, 2001) based on the results of a number of full-scale clay infilled steel 

frames tested under in-plane loading proposed to evaluate the width of the strut, w, as 

 =w
C cos

π
λ θ

 (4) 

 
C being an empirical constant varying with the in-plane drift displacement used as an indicator of 

the limit state of the infill. 

A further model for the identification of the width of the equivalent strut taking into account the 

Poisson’s ratio of the infill material was proposed by Papia et al. (2003) and is explained in the next 

section. 

Identification of the in-plane stiffness of an infilled frame is addressed by the actual codes; for 

example FEMA 356 (2000), in agreement with the strategy adopted by the authors mentioned 

above, suggests the formula proposed by Mainstone (Eq. 1). Eurocode 8 (2004) confirms the need 

to take the infill into account but does not suggest a specific model and refers the designer to 

specialised literature. 

As for the effect of vertical loads it is recognized that it modifies the behaviour of infilled frames 

under in-plane lateral loading. In micro-models the load influence is taken into account by 

modelling the frame-infill contact area: see Fig. 4. On the other hand in a macro-model the vertical 

load transferred from frame to infill can only be taken into account by calibrating the strut 

mechanical response for different levels of vertical loading. However, few authors have quantified 

this influence. 

In (1968) Stafford Smith investigated the influence of a uniformly distributed vertical load imposed 

on the upper beam of a single storey-single bay steel frame in-plane stiffness and observed a 
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considerable increase in the in-plane lateral stiffness and strength of the structure. More recently, 

Valiasis and Stylianides (1989), studying RC frames infilled with brick masonry walls, observed 

that the presence of a compressive axial load on the columns considerably improved the in-plane 

lateral strength of the system. Based on these results, Stafford Smith and Valiasis considered the 

vertical load effect to be conservative and did not take it into account among the variables affecting 

the evaluation of the cross-section of the equivalent strut. Similar experimental and numerical 

results were obtained by Manos et al. 

(2012), Stylianidis (2012), Valiasis and Stylianides (1989) and Valiasis et al. (1993). 

However, while the conclusion that the vertical load effect is conservative can be valid for a single 

frame, this may not be true for multi-bay, multi-storey frames with non-uniform load distribution 

since the different stiffness and strength of a single frame may cause torsional and soft-storey 

effects. 

In this paper, a correlation taking into account the vertical load influence on the initial stiffness of a 

strut equivalent to an infill is proposed. This work integrates the research described in two previous 

papers: in Papia et al. (2003) a family of curves for estimating the width of the equivalent strut in 

the absence of vertical loads is provided and in Papia et al. (2004) the mechanism governing the 

influence of vertical loads on the infilled frame response is analysed. In this paper a family of 

curves obtained for rectangular infills is presented together with the curves proposed by Amato et 

al. (2008, 2009) for square infills. 

In the next sections the procedure used to obtain the correlation between infill and equivalent strut 

is described. This procedure couples an analytical calculation of the frame-infill system components 

with a finite element micro-modelling of the infilled frame system as a whole. The FE model 

provides the response of a series of infilled frames under horizontal and vertical loads by using 

contact surface elements governed by the Coulomb friction law to model the transmission of the 

compressive stresses from the frame to the infill. 
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2. Strategy for the equivalent strut width identification 

The cross-section of the pin-jointed strut equivalent to an infill of a single storey-single bay infilled 

frame can be identified by imposing the initial stiffness of the system in Fig. 1a to be equal to the 

initial stiffness of the equivalent braced frame in Fig. 1b. It should be noted that these schemes do 

not exactly represent a generic frame of a framed structure: the lower beam is assumed to be rigid 

and thus the bottom ends of the columns in Fig. 1b are fully restrained. 

This assumption is in agreement with the conclusions of many authors (Mainstone 1971, 1974; 

Stafford Smith and Carter 1969) showing that the contribution of infill to the in-plane lateral 

stiffness of a frame can be obtained by studying the scheme in Fig. 2b as an alternative to the 

scheme in Fig. 2a. 

Denoting as .Di the stiffness of the actual system (Fig. 1a) solved by the Finite Element Method 

(micro-modelling approach) and as Di the stiffness corresponding to the simplified analytical model 

(Fig. 1b), their equivalence can be written as  

 ii DD =  (5) 

When this equivalence is imposed, assuming the thickness of the strut to be the same of the infill 

and the Young’s modulus to be equal to the diagonal elastic modulus of the infill, the width w  of 

the strut can be calculated. 

3. Stiffness of the frame-strut equivalent system 

The in-plane stiffness iD of the scheme in Fig. 1-b, equivalent to the scheme in Fig. 1-a, can be 

evaluated with good approximation as the sum of the horizontal forces andd fD D  to be applied to 

the schemes in Fig. 3-b and Fig. 3-c, (obtained as the decomposition of the scheme in Fig.1-a) to 

produce a displacement 1=δ  at the beam middle span: 

 i d fD D D= +  (6) 
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For the scheme in Fig. 3-b the in-plane stiffness dD  can be calculated as follows  
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In Eq. 8 dE  and fE  are the Young’s modulus of the infill along the diagonal direction and the 

Young’s modulus of the concrete used for the frame; t is the thickness of the infill; cA  and bA  are 

the column and beam cross-sectional areas; the angle θ  defines the diagonal direction of the strut 

and 'h  and 'l  are the height and length of the frame, see Fig. 1.  

In regard to the Young’s modulus of the infill along the diagonal direction it should be observed 

that since the masonry shows an orthotropic behaviour the mechanical characteristics of the 

equivalent strut can be estimated by combining the masonry elastic moduli along the horizontal and 

vertical directions as suggested in Jones 1975, or by using the simplified approach discussed by 

Cavaleri et al. 2014 on the basis of the experimental studies reported in Cavaleri et al. 2012.  

The in-plane stiffness of the frame fD in Fig. 3-c, in the case of columns having the same cross-

section, can be evaluated as follows 
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cI  and bI  being the moments of inertia of the column and beam sections respectively. In the case of 

columns with different cross-sections the mean value of the axial stiffness of the columns can be 

used.  
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4. Infilled frame stiffness by the refined FE model 

For the evaluation of the in-plane lateral stiffness by means of the micro-model approach, the 

ADINA software was used. Both the frame and the infill were modelled using plane stress solid 

elements having four nodes each. The nodes at the base of the columns were fully restrained while 

three degrees of freedom were assigned to all the other ones. The infill and the frame were modelled 

by means of elastic homogenous and isotropic materials having elastic modulus Ed and E f and 

Poisson’s ratio νd and ν f respectively. 

The frame-infill interaction was modelled by 2D contact surface elements (Bathe and Bouzinov 

1997). Each interface element is composed of two contact surfaces, a contactor and a target surface, 

which may come into contact during the loading process. No tensile strength is associated with the 

joint and this makes it possible to model the detachment between frame and infill. Because the 

interaction between frame and infill is strictly dependent on the length of the contact zone, which is 

influenced by the vertical load, this kind of finite element allows evaluation of the system in-plane 

lateral stiffness .Di in relation to the vertical load. 

With regard to the frame-infill contact surface, the value to assign to the Coulomb friction 

coefficient has been debated in the literature (Manos et al. 2011, 2012; Stylianidis 2012; Valiasis 

and Stylianides 1989; Valiasis et al. 1993). However, in some cases it is accepted that a variation in 

friction coefficient does not modify the overall response of an infilled frame (e.g. Asteris 2008; 

Fiore et al. 2012) while in other cases it is considered basic (e.g. 

Saneinejad andHobbs 1995). Certainly a variation in friction between frame and infill, whose 

realistic characterization is not simple, though it may leave the overall response unchanged, it can 

modify the local response, leading to a reduction in the stresses normal to the frame-infill contact 

surface. This also produces a reduction in the shear stresses on the members. 
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For the case analyzed here, considering that values of the Coulomb friction coefficient generally 

lower than 0.6 can be found in the literature for modelling the frame-infill interface, the value 0.45 

was set, being the average of the values most frequently encountered. 

The numerical analysis was carried out for different values of mechanical and geometrical 

properties of the system and for four vertical load levels. For each analysis the in-plane lateral 

stiffness .Di of the system was calculated as the ratio between the applied horizontal load and the 

average beam displacement. The horizontal and vertical forces acting on the frame were applied on 

the initial and final sections of the beam at middle depth, while the vertical load was concentrated 

on the top nodes of the beam-column joints, as shown in Fig. 7. 

5. Equivalent strut cross-section  

By substituting the value of iD  obtained from Eq. 6 in Eq. 5, one obtains 

 fdi DDD +=  (10) 

Further, by substituting Eq.7 in Eq.10 the ratio w / d  can be expressed as a function of the in-plane 

stiffness iD  of an infilled frame given by the refined FE model previously described and the bare 

frame stiffness fD  given in Eq. 9: 
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In Eq. 10 Df is the in-plane stiffness of a bare frame under the assumption of non-negligible axial 

deformation. With regard to iD different experimental and numerical investigations (see Cavaleri et 

al 2005, Cavaleri and Di Trapani 2014, Manos et al. 2011, Manos et al. 2012, Valiasis and 

Stylianides 1989) have shown that the infilled frame deflected shape is flexural. 

In agreement with the most widespread tendency in the literature the ratio between the strut width 

and the strut length is expressed as a function of a parameter *λ  which takes into account the elastic 
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and geometrical features of the system )( *λfdw = . This function must also take into account the 

influence of verticals load.  

6. Dimensionless infilled frame parameter *λ  

The definition of a parameter that defines the ratio dw/  to be adopted for the identification of a 

strut equivalent to an infill, can be obtained by imposing that the difference fi DD −  on the right 

hand of Eq. 11 is the infill in-plane stiffness.  

Once the Poisson ratiodν , the vertical load VF  and aspect ratio h/l  are fixed, the in-plane stiffness 

of an infill can be calculated using the total stiffness from the finite element simulation iD  as 

tEDDD dfid ψ=−=  (12) 

where ψ  depends on the unknown extension of the frame-infill contact regions influenced by the 

above quantities. On the other hand, setting 
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Eq. 11 can be written in the form 

 *12
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Eq.14 shows that, for assigned values of / hl , dν  and vF  (on which ψ  depends) a family of curves 

)(fd/w *λ=  can be defined. In order to obtain these curves a number of infilled frames 

characterized by different values of the quantities that define the parameter *λ  were analysed using 

the micro-modelling procedure previously described. In this study two different values of the aspect 

ratio / hl , namely 1 and 1.5, and two different values of the Poisson’s ratios, νd = 0.15 and 

νd = 0.25, were investigated. The analyses were repeated for four dimensionless vertical load levels: 

εv = 0, εv = 0.00016, εv = 0.00032, εv = 0.00080, εv being defined as  
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Ac being the cross section area of the column, Ec the Young modulus of the concrete constituting the 

frame and Fv the total vertical load acting on the frame. 

7. Results and design curves 

The analysis of the FE simulations shows that the frame-infill contact surface grows with the 

vertical load magnitude and that for high level of vertical load the mechanical behaviour of the infill 

switches from that of a strut element to that of a plate, see Fig. 8. As a consequence for a fixed λ* 

the frame in-plane stiffness and thus the strut dimensionless width w/d grows as a function of vF .  

In Figs. 9-12 the results of the numerical analyses in terms of ratio w/d versus the parameter *λ  are 

plotted for the different infill Poisson’s ratio and different levels of vertical load. These results 

confirm that the close dependence of the strut width on the parameter λ*, previously shown in Papia 

et al. (2003) holds in the presence of vertical load. 

In order to obtain a useful design tool, the w/d values were fitted by the analytical expression 

proposed in Cavaleri et al. (2005) 

 ( )*

w c
k

d β
λ

=  (16) 

 2
d dc 0.249 0.0116 0.567ν ν= − +  (17) 

 2
d d0.146 0.0073 0.126β ν ν= + +  (18) 

k being a coefficient that was not characterized in the above cited work and that takes the effect of 

vertical load into account. For k=1 (no vertical load acting) the function (16) assumes the form 

proposed in (Papia et al. 2003).  
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The numerical investigation carried out in this work showed quite a linear dependence of the 

coefficient k on vertical load and axial strains of the columns. This relationship can be 

approximated by the following expression 
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h
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In Figs. 9-12 the analytical curves provided by Eqs.(16-19) have been plotted.  The numerical vs 

model comparison shows a good agreement for both rectangular and square infills. For sake of 

completeness the comparison already discussed in Papia et al (2003), between the results of the FE 

analyses and the analytical curves provided by Eqs. (16-19) when no vertical load is transferred to 

the infills, is shown in Fig. 10.   

In Figs. 14 and 15 the families of analytical curves obtained for different Poisson’s ratio and aspect 

ratio are plotted together. As it can be observed the equivalent strut width w/d increases when the 

level of vertical load grows. Moreover the Poisson’s ratio has a stiffening effect on the in-plane 

response of the infilled frame. 

8. Conclusions 

In this paper the mechanical behaviour of infilled frames under in-plane loading has been discussed 

and an analytical law taking into account the influence of vertical load on the characteristics of the 

pin-jointed diagonal strut equivalent to an infill is proposed.  

A numerical investigation on infilled frames having different geometric and mechanical 

characteristics has been carried out and the results showed the stiffening effect of the vertical load 

transferred from the frame to the infill. The analyses, carried out using a FE model in which frame 

and infill are modelled as linear shell elements and the frame-infill interface with link elements 

working in compression only, have shown that the detachment of the contact surface between frame 
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and infill, produced by in-plane loading, decreases when vertical load are transferred to the infill. 

This produces a stiffening of the structural system. 

The study focuses on the initial undamaged stiffness of a frame-infill system, which is of key 

importance for the correct definition of the cyclic response under seismic loading. This slope 

influences the strength envelope, in particular the slope of the linear branches of the envelope.  

For given infill thickness and material, the characterization of the initial stiffness of the equivalent 

strut depends only on the identification of the strut width. The dimensionless width w/d, in this 

work is given as a function of a synthetic parameters (λ*), depending on the mechanical parameters 

of frame and infill. A family of w/d vs λ* curves, each one depending on the infill Poisson’s ratio 

and level of mean axial strain produced by the vertical load on the frame columns, has been 

obtained.  

It has also been shown that as the parameter λ* increases the corresponding values of w/d can be 

described by a power law depending on the level of vertical load transferred from the frame to the 

infill. 

These curves provide an effective tool for taking into account the contribution of infills to the global 

structural stiffness. They allow a quick evaluation of the contribution of the infill to the in-plane 

stiffness of the generic frame of a framed structure and can be used in any commercial structural 

analysis software when a simplified approach for the prediction of the response is preferred to a 

detailed micro-modelling.  

Obviously the identification of the initial characteristics of the equivalent strut also needs the 

identification of the further parameters able to define a complete non-linear law for the strut. In the 

case of the Pivot model described by Cavaleri and Di Trapani (2014) three further parameters - one 

for the degradation of stiffness and two for the strength envelope, are sufficient to characterize 

completely the equivalent strut for seismic analysis.   
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                        a)                               b) 

 

Fig.1 Infilled frame sketch under horizontal load: (a) actual system; (b) macro-model. 
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Fig.2 Strut cyclic law proposed in Cavaleri et al. 2005 
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Fig.3 Strut cyclic law proposed in Cavaleri and Di Trapani 2014 
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Fig.4. Variation of frame-infill interaction due to vertical load 
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                   a)                                    b) 

 

Fig.5 Infilled frame under horizontal load: (a) real scheme, (b) simplified scheme. 
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              a)                           b)                       c) 

 

 

Fig. 6 Decomposition of the macro-model in two schemes 
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Fig. 7 Finite element model of infilled frame  
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                   a)                                 b) 

 

Fig. 8 Variation of the infill-frame contact area for two different vertical load levels: (a) 

εv = 0.00016; (b) εv = 0.00032  
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Fig. 9 Results of the FEM analyses and comparison with the proposed analytical curves: square 

infills; νd=0.15 
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Fig. 10 Results of the FEM analyses and comparison with the proposed analytical curves: square 

infills; νd=0.25 
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Fig. 11 Results of the FEM analyses and comparison with the proposed analytical curves: 

rectangular infills 1.5
h

=l
; νd=0.15 

 

  

0 4 8 12
λ∗

0.00

0.10

0.20

0.30

0.40

0.50

w
/d

0 4 8 12
λ∗

0.00

0.10

0.20

0.30

0.40

0.50
w

/d

0 4 8 12
λ∗

0.00

0.10

0.20

0.30

0.40

0.50

w
/d

FEM analyses

Eqs. 12-15

νd=0.15

εv= 0.00016

εv= 0.00032

εv= 0.00080



29 

 

 

 

Fig. 12 Results of the FEM analyses and comparison with the proposed analytical curves: 

rectangular infills 1.5
h

=l
; νd=0.25 
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Fig. 13 Results of the FEM analyses and comparison with the proposed analytical curves: no 

vertical load on infills  
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a)                                 b) 

 

Fig. 14 Proposed analytical curves for different vertical load levels - square infills - (a) νd=0.15; (b) 

νd=0.25 
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a)                                 b) 

 

Fig. 15 Proposed analytical curves for different vertical load levels - rectangular infills - 

(a) νd=0.15; (b) νd=0.25 
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