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On the seven non-isomorphic solutions

of the fifteen schoolgirl problem

Marco Pavone
Dipartimento di Ingegneria

Università degli Studi di Palermo
Palermo 90128 ITALIA

Abstract

In this paper we give a simple and effective tool to analyze a Kirkman
triple system of order 15 and determine which of the seven well-known
non-isomorphic KTS(15)s it is isomorphic to. Our technique refines and
improves the lacing of distinct parallel classes introduced by F. N. Cole,
by means of the notion of residual triple introduced by G. Falcone and
the present author in a previous paper.

Unlike Cole’s original lacing scheme, our algorithm allows one to dis-
tinguish two KTS(15)s also in the harder case where the two systems
have the same underlying Steiner triple system. In the special case where
the common STS is #19, an alternative method is given in terms of the
1-factorizations of the complete graph K8 associated to the two KTSs.

Moreover, we present a new visual solution to the schoolgirl problem.

AMS MSC: 05B07, 05B05, 01A55, 01A60.
Keywords: Schoolgirl problem, Kirkman triple system, KTS, Steiner triple
system, STS, non-isomorphic systems.
E-mail: marco.pavone@unipa.it

1 Introduction

The fifteen schoolgirl problem is one of the most important, celebrated and
fascinating problems in combinatorics and recreational mathematics. It was
proposed by T. P. Kirkman in 1850 [29, p. 48], and from the very beginning to
the present day it has always intrigued both professional and amateur mathe-
maticians, as well as puzzle lovers. The problem is to find a weekly schedule
for fifteen girls walking out daily in five rows of three, in such a way that no
two girls shall walk in the same row more than once (equivalently, any girl shall
walk at least once in the same row with each of the other girls).

The first published solution, due to Cayley, appeared in June 1850 [11],
immediately followed by Kirkman’s solution in August 1850 [30] (replicated in
[31, p. 260] and [32, p. 48]). The latter solution was implicit in the landmark and
pioneering paper [28], appeared three years earlier, where Kirkman ingeniously
combined a Fano plane with a Room square of side 7.

In order to rephrase the problem in the modern language of combinatorial
design theory, we need some preliminary definitions (see, e.g., [5, 13, 16, 47]). A
Steiner triple system of order v, denoted STS(v), is a pair (V,B), where V is a
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set of v elements (points), and B is a collection of unordered triples of elements
of V, with the property that each unordered pair of points occurs as a subset
of precisely one triple in B. A parallel class is a subcollection of v/3 mutually
disjoint triples in B that partitions the point-set V. When the entire collection of
triples can in turn be partitioned into parallel classes, such a partition is called
a resolution (or parallelism) of the STS, and the STS is said to be resolvable.
If (V,B) is an STS(v) and R is a resolution of it, then (V,B,R) is a Kirkman
triple system of order v, denoted KTS(v), and (V,B) is its underlying STS. In
this abstract setting, the schoolgirl problem amounts to asking whether there
exists a KTS of order 15 (note that a resolution consists of seven parallel classes,
each containing five triples).

An isomorphism from an STS (V1,B1) to an STS (V2,B2) is a one-to-one
map π from V1 onto V2 that preserves triples: more precisely, t = {x, y, z} ∈ B1
if and only if π(t) = {π(x), π(y), π(z)} ∈ B2. An isomorphism from a KTS
(V1,B1,R1) to a KTS (V2,B2,R2) is required, in addition, to preserve parallel
classes: for any parallel class C in R1, the set {π(t) | t ∈ C} is a parallel class in
R2. An automorphism is an isomorphism from an STS/KTS to itself.

The distinction between resolvable STSs and KTSs is that there can exist
non-isomorphic KTSs that share the same underlying STS. Of the eighty non-
isomorphic STS(15)s [51], exactly four are resolvable [17] (cf. [13, p. 66], [16,
p. 370]). Moreover, three of these four STSs underlie two non-isomorphic KTSs,
whereas the fourth STS underlies a unique KTS, which leads to an overall
number of seven non-isomorphic KTSs of order 15. The seven solutions are
given here in Table 1, using the numbering of the underlying STSs as in [13,
p. 67] (where the solutions that are numbered 15a and 15b should be instead
19a and 19b, respectively [14]. See also [46, Appendix, pp. 389-390]).

It must be said, in this respect, that a much more difficult problem than
finding a KTS(15) is determining whether two given KTSs of order 15 are iso-
morphic or not. In fact, Kirkman himself erroneously thought at first that his
solution was “the only possible one” [32], and Woolhouse, who was the first to
raise the isomorphism issue, initially thought that all solutions were necessarily
cyclic [52, 53]. In 1881 eleven solutions of the schoolgirl problem were published
[10], but it was only in 1917 [36] and 1922 [17] that it was proved that only
seven of them were non-isomorphic, precisely those given in 1862 and 1863 by
Woolhouse [53, 54] (an alternative proof, using graph theory, was given in [42]).

One wishes to find simple and effective tools to establish whether two given
KTS(15)s are isomorphic or not, and, possibly, determine which of the seven
types they belong to. The first possibility is that the two systems do not have the
same underlying STS. This can be established, for instance, by considering the
two KTSs just as Steiner triple systems and computing, for each of them, some
isomorphism-invariant STS parameter, such as the order of the automorphism
group, the number of parallel classes, the number of Pasch configurations, or
the number of 2-(7, 3, 1) subdesigns (see, e.g. [13, 1.29, p. 32]). Each of these
parameters identifies one of the four resolvable STS(15)s uniquely, with the only
exception of the last parameter, which is equal to 1 for both systems #19 and
#61.
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# Mon Tue Wed Thu Fri Sat Sun

1a

abc
djn
ehm
fio
gkl

ahi
beg
cmn
dko
fjl

ajk
bmo
cef
dhl
gin

ade
bln
cij
fkm
gho

afg
bhj
clo
dim
ekn

alm
bik
cdg
ejo
fhn

ano
bdf
chk
eil
gjm

1b

abc
djn
ehm
fio
gkl

ahi
beg
cmn
dko
fjl

ajk
bmo
cef
dhl
gin

ade
bik
clo
fhn
gjm

afg
bln
chk
dim
ejo

alm
bdf
cij
ekn
gho

ano
bhj
cdg
eil
fkm

7a

abc
djo
eim
fkl
ghn

ahi
bdf
clo
ekn
gjm

ajk
beg
cmn
dhl
fio

ade
bln
cij
fhm
gko

afg
bmo
chk
din
ejl

alm
bik
cdg
eho
fjn

ano
bhj
cef
dkm
gil

7b

abc
djo
eim
fkl
ghn

ahi
bdf
clo
ekn
gjm

ajk
beg
cmn
dhl
fio

ade
bmo
chk
fjn
gil

afg
bln
cij
dkm
eho

alm
bhj
cef
din
gko

ano
bik
cdg
ejl
fhm

19a

ade
bik
chl
fmn
gjo

afg
bhj
cin
dkm
elo

alm
bdf
cko
eij
ghn

ano
beg
cjm
dil
fhk

abc
dho
ekn
fjl
gim

ahi
bmo
cef
djn
gkl

ajk
bln
cdg
ehm
fio

19b

ade
bik
chl
fmn
gjo

afg
bhj
cin
dkm
elo

alm
bdf
cko
eij
ghn

ano
beg
cjm
dil
fhk

abc
djn
ehm
fio
gkl

ahi
bmo
cdg
ekn
fjl

ajk
bln
cef
dho
gim

61

abc
dik
ejn
flo
ghm

ade
bil
cjm
fhn
gko

afg
bhj
cio
dmn
ekl

ahi
beg
cln
djo
fkm

ajk
bmo
cef
dhl
gin

alm
bkn
cdg
eho
fij

ano
bdf
chk
eim
gjl

Table 1: The seven solutions of the Kirkman schoolgirl problem.

However, a simpler and more effective tool to distinguish two KTSs of order
15, with two distinct underlying STSs, is using the notion of lacing of parallel
classes, introduced by F. N. Cole in [17] (although already suggested in [53], in
the case of cyclic systems). We say that two distinct parallel classes of a KTS(15)
are laced in the mode (α) if there exist two triples in one class and two triples
in the other class, such that the four triples are mutually disjoint. Otherwise,
there exists only one other possible lacing, in which case we say that the two
parallel classes are laced in the mode (β). For instance, in the KTS numbered
1a (in Table 1) the triples abc, ehm, dko, fjl are mutually disjoint, hence the
parallel classes Monday and Tuesday are laced in the mode (α). We wish to
mention that there exists an alternative proof, by A. Rosa, that there exist only
two possible lacings: the block-intersection graph of two distinct parallel classes
in a KTS(15) is a bipartite cubic graph of order 10, and there exist exactly two
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such graphs, up to isomorphism [42].

As we mentioned above, the interlacing scheme of distinct parallel classes
allows one to identify the underlying STS of a given KTS(15) [17] and, therefore,
to distinguish two KTS(15)s with distinct underlying STSs. Indeed, in the
systems 1a and 1b any two distinct parallel classes have only the lacing (α). In
the systems 7a and 7b (in Table 1) the parallel class Monday is in lacing (α)
with all the other parallel classes, whereas each of the latter has two (α) lacings
and four (β) lacings. In the systems 19a and 19b (in Table 1) the parallel classes
Friday, Saturday, and Sunday have the lacing (α) with each other, whereas all
the other lacings are of type (β). Finally, in the system 61 the lacings of distinct
parallel classes are all of type (β).

In the case where two KTS(15)s have the same underlying STS (up to iso-
morphism), the interlacing scheme of distinct parallel classes is the same for
the two systems, hence it is no longer sufficient to distinguish them, nor can
the two systems be distinguished by their automorphism groups, which are also
the same. However, in some cases the automorphisms can nonetheless be used
to distinguish the two systems [17]. Indeed, the automorphisms of 1a (in Ta-
ble 1) are transitive on all points except on the point i, which is fixed under all
automorphisms, whereas the automorphisms of 1b are transitive in seven and
in eight points. The automorphisms of 7a are transitive in three and in twelve
points, whereas the automorphisms of 7b are transitive in three, in four and in
eight points. An interpretation of these facts will be seen in Remark 2.6(7), in
the light of our forthcoming results.

On the other hand, for both systems 19a and 19b the automorphisms are
precisely the same as for the underlying STS [17]: in particular, a single per-
mutation of the 15 points is a KTS-automorphism of 19a if and only if it is a
KTS-automorphism of 19b. Therefore the two KTSs cannot be distinguished
by considering the lacings of distinct parallel classes, nor by looking at the or-
bits of the automorphisms. To the best of our knowledge, no simple method to
distinguish the two systems is available in the literature.

In this paper, in Section 2, we give a simple and effective tool to establish,
in all possible cases, whether two given KTS(15)s are isomorphic or not, inde-
pendently of the underlying STSs, by determining for any KTS(15) the system
in Table 1 isomorphic to it. Because of the previous considerations, our method
is particularly significant in the special case where the underlying STS is #19
for both systems. Moreover, in the case where the underlying STS of a given
KTS(15) is either #1 or #7, our algorithm is even simpler, and allows one to
settle the isomorphism problem in a much faster and more effective way than
with the automorphism method described above. In the former case (#1), the
problem was solved in a paper by G. Falcone and the present author, which
provides a visual description of the two non-isomorphic arrangements of the
projective lines of PG(3, 2), by combining the fifteen simplicial elements of a
tetrahedron [24].

Our technique refines and improves Cole’s lacing of parallel classes, by means
of the notion of residual triple implicitly introduced in [24]. Unlike in Cole [17],
our algorithm allows one to use the lacing scheme to distinguish two KTS(15)s
also in the harder case where the two systems have the same underlying STS. In
the special case where the common STS is #19, we also present an alternative
method in terms of the 1-factorizations of the complete graph K8 that are
naturally associated to the two KTSs.
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In Section 3 we test the effectiveness and simplicity of our method, and
exhibit a remarkable solution to the schoolgirl problem for each of the seven
isomorphism classes. In fact, we go over the most significant solutions from
1850 to the present day, and we catalogue them by means of our algorithm.

The final Appendix, “Systems 1a and 1b revisited”, is devoted to some very
significant models of KTS(15)s, whose underlying STS is the point-line design
of the projective geometry PG(3, 2). In particular, we improve the well-known
solution by A. Frost [25], and we reinterpret, in the light of our lacing algorithm,
the solutions given by J. I. Hall [27] by identifying PG(3, 2) and the complete 3-
design on seven points, and the solution given by R. Ehrmann [23] by regarding
PG(3, 2) as the projective completion of AG(3, 2). Finally, we describe a new
algebraic model of the cyclic solutions 1a and 1b, and present a new visual
solution, based on the complete graph on six points.

2 The main results

In this section we describe how to determine, for a given Kirkman triple system
of order 15, which of the seven systems in Table 1 it is isomorphic to. In order
to do so, we extend Cole’s lacing scheme [17] by means of the notion of residual
triple, which was implicitly introduced in [24].

Definition 2.1 ([17]) Let C1 and C2 be two distinct parallel classes of a KTS(15).
We say that C1 and C2 are laced in the mode (α) if there exist two triples in C1
and two triples in C2 that are mutually disjoint. Otherwise, we say that C1 and
C2 are laced in the mode (β).

Definition 2.2 Let (V,B,R) be a Kirkman triple system of order 15, and let
C1 and C2 be two distinct parallel classes in R that are laced in the mode (α).
Let t1, t2 (respectively, t3, t4) be the two triples in C1 (respectively, in C2) such
that the four triples t1, t2, t3, t4 are mutually disjoint. We say that a triple t in
B is the residual triple of the lacing of C1 and C2 if the set {t1, t2, t3, t4, t} is a
partition of the point-set V.

Remarks 2.3 1) If t is the residual triple of the lacing of C1 and C2, as in
Definition 2.2, then there exists a parallel class C3 in R, different from C1 and
C2, such that t ∈ C3. Indeed, if t1, t2, t3, t4 are as in Definition 2.2, and if for
instance t were in C2, then the triples t1, t3, t4, t could not be mutually disjoint,
else t1 would intersect in two points one of the two triples in C2 different from
t3, t4, and t, thereby contradicting the definition of Steiner triple system.

For instance, in the KTS numbered 1a (in Table 1), Monday and Tuesday
are laced in the mode (α), and the corresponding residual triple is the triple
gin, in Wednesday.

2) The STS(15) numbered as #19 has a unique 2-(7, 3, 1) subdesign, that
is, it contains a unique Fano plane (see, e.g., [13, 1.29, p. 32]). If the 35 triples
of the system are given as in Table 1 above, then the seven triples of the Fano
plane are precisely abc, ade, afg,bdf,beg, cdg, cef. This Fano plane will play a
crucial role in the following theorem.

3) In [24], where only systems 1a and 1b are considered, the fact that the four
triples in Definitions 2.1 and 2.2 are pairwise disjoint is referred to as the four
skew triples property, and the residual triples are called unconsidered triples, in
that they do not belong to any set of four mutually disjoint triples in a lacing
of type (α).
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Theorem 2.4 Let (V,B,R) be a Kirkman triple system of order 15, with R =
{C1, C2, . . . , C7}. Then one, and only one, of the following four cases occurs.

1. (a) Any two distinct parallel classes in R are laced in the mode (α). In
this case, the KTS is isomorphic to either system 1a or system 1b.

(b) For any pair of distinct classes Ci, Cj in R, there exists a class Ck in
R, different from Ci and Cj, such that the lacing of any two parallel
classes in {Ci, Cj , Ck} has a residual triple in the third class.

(c) The set of all residual triples of the lacings of distinct parallel classes
consists of precisely seven triples. Moreover, this set consists of either
the seven triples containing P, for some point P in V, or the seven
triples of a Fano plane. In the former case the KTS is isomorphic to
system 1a, in the latter case it is isomorphic to system 1b.

2. (a) There exists a unique parallel class in R, say C1, that is laced in the
mode (α) with each of the other six classes in R. Each of the latter
has two (α) lacings and four (β) lacings. In this case, the KTS is
isomorphic to either system 7a or system 7b.

(b) Up to permutation, any two parallel classes in any of the three sets
{C1, C2, C3}, {C1, C4, C5}, {C1, C6, C7} are laced in the mode (α), with
a residual triple in the third class of the set.

(c) The set of all residual triples of the lacings of type (α) consists of
precisely seven triples. Moreover, this set consists of either seven
triples whose union is the point-set V, or the seven triples of a Fano
plane. In the former case the KTS is isomorphic to system 7a, in
the latter case it is isomorphic to system 7b.

Alternatively, if Ci and Cj are two given classes laced in the mode (β),
and if the two residual triples of the lacings of C1, Ci and C1, Cj are
disjoint (resp., intersect in one point), then the KTS is isomorphic
to system 7a (resp., to system 7b).

3. (a) There exist three distinct parallel classes in R, say C1, C2, C3, that are
laced in the mode (α) with each other. Any other pair of distinct
parallel classes in R is laced in the mode (β). In this case, the KTS
is isomorphic to either system 19a or system 19b.

(b) The lacing of any two parallel classes in {C1, C2, C3} has a residual
triple in the third class.

(c) There exists a (unique) Fano plane that is a subdesign of (V,B)
and whose seven triples include the three residual triples of the lac-
ings of type (α). Given a class Ci in {C1, C2, C3}, and a class Cj in
{C4, C5, C6, C7}, let ti and tj be the two triples in Ci and Cj , respec-
tively, belonging to the Fano plane, and let X,Y be the two points of
the Fano plane not belonging to ti∪ tj . Finally, let t̄i, t̃i (respectively,
t̄j , t̃j) be the two triples in Ci (respectively, in Cj) containing X and
Y. Then the intersection (t̄i ∪ t̃i) ∩ (t̄j ∪ t̃j) contains either four or
three elements. In the former case the KTS is isomorphic to system
19a, in the latter case it is isomorphic to system 19b.

4. Any two distinct parallel classes in R are laced in the mode (β). In this
case, the KTS is isomorphic to system 61.
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Proof. The statements 1(a), 2(a), 3(a), and 4 are in [17], whereas the state-
ments 1(b) and 1(c) are proved in [24] (a somewhat similar argument, although
not fully explicit, is given in [53, p. 86-87], where the word “collating” is used
instead of “lacing”) . Thus we are left with the proofs of 2(b), 2(c), 3(b), and
3(c).

Let us first consider the case where 2(a) holds. Then the KTS is isomorphic
to either system 7a or system 7b in Table 1. The lacings of type (α) in system
7a and in system 7b, respectively, are precisely those listed in the two following
tables.

7a Parallel classes Four mutually disjoint triples Residual triple
Mon Tue
Mon Wed
Tue Wed
Mon Thu
Mon Fri
Thu Fri
Mon Sat
Mon Sun
Sat Sun

eim ghn bdf clo
djo fkl beg cmn
ekn gjm dhl fio
fkl ghn ade cij
djo eim afg chk
fhm gko din ejl
djo ghn alm bik
eim fkl ano bhj
eho fjn dkm gil

ajk (in Wed)
ahi (in Tue)
abc (in Mon)
bmo (in Fri)
bln (in Thu)
abc (in Mon)
cef (in Sun)
cdg (in Sat)
abc (in Mon)

7b Parallel classes Four mutually disjoint triples Residual triple
Mon Tue
Mon Wed
Tue Wed
Mon Thu
Mon Fri
Thu Fri
Mon Sat
Mon Sun
Sat Sun

eim ghn bdf clo
djo fkl beg cmn
ekn gjm dhl fio
fkl ghn ade bmo
djo eim afg bln
fjn gil dkm eho
djo ghn alm cef
eim fkl ano cdg
din gko ejl fhm

ajk (in Wed)
ahi (in Tue)
abc (in Mon)
cij (in Fri)
chk (in Thu)
abc (in Mon)
bik (in Sun)
bhj (in Sat)
abc (in Mon)

Hence statement 2(b) holds. Moreover, in either case there is an overall
number of seven residual triples. In the former case, the union of the residual
triples is the point-set V = {a,b, c,d, e, f, g,h, i, j, k, l,m,n, o}, whereas in the
latter case the set {abc, ahi, ajk,bhj,bik, chk, cij} of the residual triples is the
block-set of a Fano plane. Also, any two residual triples without a common
point in {a, b, c} are mutually disjoint in the former case, whereas they intersect
in one point in the latter case. Therefore statement 2(c) holds.

Let us finally consider the case where 3(a) holds. Then the KTS is isomor-
phic to either system 19a or system 19b in Table 1. The lacings of type (α) in
system 19a and in system 19b, respectively, are precisely those listed in the two
following tables.

19a Parallel classes Four mutually disjoint triples Residual triple
Fri Sat
Fri Sun
Sat Sun

ekn fjl ahi bmo
dho gim ajk bln
djn gkl ehm fio

cdg (in Sun)
cef (in Sat)
abc (in Fri)

19b Parallel classes Four mutually disjoint triples Residual triple
Fri Sat
Fri Sun
Sat Sun

djn gkl ahi bmo
ehm fio ajk bln
ekn fjl dho gim

cef (in Sun)
cdg (in Sat)
abc (in Fri)
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Hence statement 3(b) holds. In either case, the three residual triples abc, cdg,
cef belong to the set {abc, ade, afg,bdf,beg, cdg, cef}, which is the block-set of
the unique 2-(7, 3, 1) subdesign of the underlying STS (see, e.g., [13, 1.29, p. 32]).

Let us consider the parallel classes Friday and Monday in system 19a (respec-
tively, 19b). The two triples in these two classes belonging to the Fano plane are
abc and ade in either case, and the two points in the Fano plane that are not in
either of the two triples are X = f and Y = g. The two triples in Friday contain-
ing X and Y are fjl and gim (resp., fio and gkl), and the two triples in Monday
containingX and Y are fmn and gjo in either case. Finally, (fjl∪gim)∩(fmn∪gjo)
(resp., (fio∪gkl)∩(fmn∪gjo)) contains precisely four (resp., three) elements. The
same is true for any other pair of parallel classes in {Friday,Saturday,Sunday}×
{Monday,Tuesday,Wednesday,Thursday}. Therefore statement 3(c) holds.

This completes the proof of the theorem. �

The next result gives an alternative method to distinguish two KTS(15)s
in the harder case where their common underlying STS is #19. It’s worth
mentioning that the following characterization is interesting in its own right
from a theoretical point of view and, moreover, its formulation appears to be
simpler and more elegant than that in Theorem 2.4. However, as we will explain
in Remark 2.6(5), for practical purposes the following method proves to be less
effective than the algorithm given in Theorem 2.4.

Let (V,B,R) be a KTS(15) isomorphic to either system 19a or system 19b,
and let P (⊆ V) be the point-set of the unique Fano plane contained in the
underlying STS (see, e.g., [13, 1.29, p. 32]). Let us also regard the eight points
in V \ P as the vertices of the complete graph K8. One can construct a 1-
factorization of the graph in a very simple and natural way. Each parallel
class of the KTS determines a 1-factor, which is obtained by removing from the
parallel class the (unique) triple in the Fano plane and by removing the (unique)
point in P from each of the remaining four triples. The seven resulting 1-factors
form a 1-factorization of the graph, which is invariant, up to isomorphism, under
the automorphisms of the KTS.

Our characterization will follow from the complete invariant for the 1-fac-
torizations of K8 that is known as the “division invariant”. Let us recall that
three 1-factors of a 1-factorization are called a 3-division if the union of all three
is not connected, whereas two 1-factors are called a maximal 2-division if their
union is not connected and any additional 1-factor connects the graph. It turns
out that this is a complete invariant for the 1-factorizations of K8. There are
six 1-factorizations for K8 and each has a different division structure [50, 8.1].

We now present the following result.

Proposition 2.5 Let (V,B,R) be a Kirkman triple system of order 15 isomor-
phic to either system 19a or system 19b, let F be the corresponding 1-factoriza-
tion of the complete graph K8, and let d3 be the number of 3-divisions contained
in F . Then (V,B,R) is isomorphic to system 19a (resp., 19b) if and only if
d3 > 1 (resp., d3 = 1).

Proof. If the blocks of the KTS are denoted as in Table 1 in the Introduction
(see systems 19a and 19b), then {abc, ade, afg,bdf,beg, cdg, cef} is the block-set
of the unique Fano plane contained in the underlying STS. Hence, for system
19a, the corresponding 1-factorization F is that given in the following table.

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A hl ik jo mn
B hj in km lo
C hn ij ko lm
D hk il jm no
E ho im jl kn
F hi jn kl mo
G hm io jk ln

Then, by definition, ABE and ACG are two distinct 3-divisions of F (for the
sake of completeness, ADF, BCF, BDG, CDE, and EFG are also 3-divisions,
hence F is isomorphic to the 1-factorization of K8 that is usually denoted by
F1 [50, p. 93]).

Similarly one finds, for system 19b, that F contains a unique 3-division (there
exist also six maximal 2-divisions, hence F is isomorphic to the 1-factorization
of K8 that is usually denoted by F4).

This completes the proof of the proposition. �

Remarks 2.6 1) It follows from Theorem 2.4 that in both systems 1a and 1b
the seven parallel classes can be seen as the points of a Fano plane, whose blocks
are precisely the sets {Ci, Cj , Ck} in property 1(b) of the theorem.

If we refer to Table 1, then the blocks of the Fano plane are precisely M-TU-
W, M-TH-SU, M-F-SA, TU-TH-SA, TU-F-SU, W-TH-F, W-SA-SU for system
1a, and M-TU-W, M-TH-F, M-SA-SU, TU-TH-SA, TU-F-SU, W-TH-SU, W-
F-SA for system 1b.

Moreover, in the latter case the seven residual triples afg, ahi, ano, fhn, fio,
gho, gin form the blocks of a Fano plane as well, and, interestingly enough, the
map that sends a parallel class to the residual triple belonging to that class is
an isomorphism of the Fano plane of parallel classes with the dual design of the
Fano plane of residual triples. For instance, M 7→ fio, TU 7→ ahi, W 7→ gin,
whence M-TU-W 7→ i.

2) As a consequence of the previous remark, it follows immediately that given
a KTS(15) whose underlying STS is #1, it suffices to apply the lacing scheme
to only three pairs of distinct parallel classes in order to determine whether the
system is isomorphic to system 1a or system 1b.

Indeed, if the residual triple of the lacing of two given parallel classes X,Y
is in the class Z, then, given a fourth class U, the residual triple of the lacing of
X and U is necessarily in a fifth class V. We may assume that the residual triple
in Z is αβγ and the residual triple in V is αδε. Now the third residual triple
containing α, in system 1b, is precisely the residual triple of the lacing of Z and
V. Therefore, in addition to the lacings of X,Y and of X,U, we consider the
lacing of Z,U (or the lacing of V, Y ): if the residual triple of the latter lacing
contains α, then the KTS is isomorphic to system 1a, else it is isomorphic to
system 1b.

3) For a KTS(15) whose underlying STS is #7, and for which the distin-
guished parallel class C1 is known, it suffices to apply the lacing scheme to only
two pairs of distinct parallel classes in order to determine whether the system
is isomorphic to system 7a or system 7b. Indeed, given i 6= 1, consider first
the lacing of C1 and Ci, with residual triple, say, in Ck. Let j be different from
1, i, k. If the two residual triples of the lacings of C1, Ci and C1, Cj are disjoint
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(resp., intersect in one point), then the KTS is isomorphic to system 7a (resp.,
to system 7b) by property 2(c) in the theorem.

4) More generally, given an explicit KTS(15), it is natural to ask how many
applications of the lacing scheme are necessary in order to determine the iso-
morphism class of the system. One can show that, if no preliminary information
on the KTS is known, then the number of applications that are needed is at
most 3 (resp., 6, 9, 10) if the underlying STS is #1 (resp., #7, #61, #19).

Moreover, if the underlying STS is #61 or #19, then it can take up to 9
applications only to determine the underlying STS, besides the further difficulty
of distinguishing systems 19a and 19b (this depends on the fact that in the latter
systems there are only three lacings of type (α) out of 21).

On the other hand, if the first lacing comes out to be of type (α), then
only four further applications are needed, at most, to settle the isomorphism
problem, no matter whether the underlying STS is #1, #7, or #19.

Indeed, let us denote the seven parallel classes of the system by the days of
the week: M, TU, W, TH, F, SA, SU. Whenever a lacing is of type (α), with
residual triple in the class denoted by the day X, we denote such triple by tX .
The idea is to begin the investigation by first considering the lacings M-TU,
W-TH, F-SA, and M-SU, in this order. If these lacings are all of type (β), then
the underlying STS is either #19 or #61, and one continues with the lacings
TU-SU, W-F, W-SA, TH-F and TH-SA, in any order. If at least one of these
five lacings is of type (α), say X-Y, with residual triple tZ , then the STS is #19,
and the residual triple tY of X-Z, together with tZ , allows one to determine the
unique Fano plane contained in the system, and hence the isomorphism class of
the system, by means of property 3(c) in the theorem.

If, instead, all the nine lacings are of type (β), then the KTS is necessarily
isomorphic to system 61, because the lacings have been chosen in such a way
that each triple of mutually distinct parallel classes contains at least one pair
of classes corresponding to one of the nine lacings (note that this cannot be
accomplished with less than nine lacings). This proves, as claimed, that if the
underlying STS is #61 (resp., #19), then at most nine (resp., ten) lacings are
necessary to determine the isomorphism class of the KTS.

Let us now consider the case where the first lacing, M-TU, is of type (α),
with residual triple, say, tW . In this case, we consider the lacing M-TH. If this
lacing is of type (α), with residual triple, say, tF , then the system is isomorphic
to 7a if tW ∩tF = ∅, else it is isomorphic to either 1a, 1b or 7b. In the latter case,
we consider W-TH: if this lacing is of type (β), then the system is isomorphic
to 7b; if it is of type (α), with residual triple tX , then the system is isomorphic
to 1a (resp., 1b) if tW ∩ tF ∩ tX is nonempty (resp., empty).

If, instead, the lacing M-TH is of type (β), then we consider the lacing W-
TH. If this lacing is of type (α), with residual triple, say, tF , and if tTU is
the residual triple of M-W, then the KTS is isomorphic to system 7a (resp., to
system 7b) if tF ∩ tTU is empty (resp., nonempty). If, instead, W-TH is of type
(β), then we consider the lacing TU-TH: if this is of type (α), with residual
triple, say, tF , then the KTS is isomorphic to system 7a (resp., to system 7b) if
tF ∩tW is empty (resp., nonempty); if TU-TH is of type (β), then the underlying
STS is #19, and it takes one further lacing M-W, together with property 3(c)
in the theorem, to determine whether the system is isomorphic to 19a or 19b.
This shows that if M-TU is of type (α), then at most four more lacings are
needed to settle the isomorphism problem, as claimed.
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If M-TU is of type (β), then the underlying STS is either #7, #19, or #61.
In this case, one considers the lacings W-TH, F-SA, and M-SU, in this order. If
they are all of type (β), then the STS is either #19 or #61, else it is either #7 or
#19. In the latter case, and if the STS is #7, one can show, by arguing as above,
that the highest number of lacings required to determine the isomorphism class
of the system is six, and that this upper bound is attained precisely in the case
where M-TU and W-TH are both of type (β), whereas F-SA is of type (α). If
tX is the corresponding residual triple, and if Y is any class not in {F,SA,X},
then one further considers the lacings Y-X, Y-F and Y-SA, in this order. The
upper bound six is attained precisely in the case where Y-X and Y-F are of type
(β) and Y-SA is of type (α).

5) As we pointed out earlier, Proposition 2.5 is an interesting and elegant
result from a theoretical point of view, but for practical purposes it is more
convenient to resort to the algorithm in Theorem 2.4. Indeed, given an arbitrary
KTS(15), one can apply Proposition 2.5 only if one already knows that the
underlying STS is #19. On the other hand, as we explained in the previous
Remark (4), in order to get this information one must apply the lacing scheme
in Theorem 2.4 as many as nine times, and once it is ascertained that the
underlying STS is #19, it suffices to consider just one extra lacing to determine
whether the system is 19a or 19b, with no need of constructing and examining
the 1-factorization of K8.

6) One may think of extending Proposition 2.5 to the more general case
where the underlying STS is either #19 or #61. Indeed, in either case the STS
contains a unique Fano plane (see, e.g., [13, 1.29, p. 32]), hence the 1-factor-
ization F of K8 associated with the KTS is uniquely determined. However,
it turns out that F is isomorphic to F1 for both systems 19a and 61, hence
the 1-factorization is not a complete invariant for these isomorphism classes of
KTS(15)s.

7) We mentioned in the Introduction that the automorphisms of 1a (in Ta-
ble 1) are transitive on all points except on the point i, which is fixed under all
automorphisms, whereas the automorphisms of 1b are transitive in seven and
in eight points. Needless to say, the point i is the common point of the seven
residual triples in system 1a, whereas the seven points in the latter case are
precisely the points of the Fano plane of the residual triples in system 1b.

The automorphisms of 7a are transitive in three and in twelve points, whereas
the automorphisms of 7b are transitive in three, in four and in eight points. If
we refer again to Table 1, then in either case the three points are a,b, c (see
the first two tables in the proof of Theorem 2.4), whereas the four points are
h, i, j, k, which, together with a,b, c, form the Fano plane determined by the
residual triples of system 7b.

As to systems 19a and 19b, the three residual triples provide a simple method
to find the points of the unique Fano plane contained in the underlying STS.

3 Examples

In this section we test the effectiveness and simplicity of our method by de-
termining, for some given KTS(15)s, which of the systems in Table 1 they are
isomorphic to. By doing so, we will exhibit one KTS(15) for each of the seven
types.
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It is worth noting that almost all the solutions of the schoolgirl problem in
the literature are isomorphic to either system 1b or system 1a, that is, the first
two published solutions [11, 30]. In this case, the underlying STS is the point-
line design of the projective geometry PG(3, 2), a fact which, together with the
cyclic nature of the two solutions, perhaps made the solutions 1a and 1b arise
in a more “natural” way (see, in this regard, the final appendix below).

1) (System 1b) The first published solution to the fifteen schoolgirl problem
was given by Cayley in 1850 [11]. Here we will actually describe Cayley’s more
revealing construction in [12] (cf. [16, p. 6]).

a b c d e f g
abc 35 17 82 64
ade 62 84 15 37
afg 13 57 86 42
bdf 47 16 38 25
bge 58 23 14 67
cdg 12 78 56 34
cef 36 45 27 18

The bottom-right 7x7 “minor” of the previous table is a Room square of side
7, whereas the seven triples in the first column are the blocks of a Fano plane.
The schoolgirls are the fifteen symbols a, b, c, d, e, f, g, 1, 2, 3, 4, 5, 6, 7, 8.
Each of the seven bottom rows of the array gives a parallel class, by taking the
triple in the first column together with the triples obtained by adjoining each
pair of numbers to the letter that appears in the same column (in passing, any
KTS(15) can be constructed in this way). Hence the solution is the following.

Mon Tue Wed Thu Fri Sat Sun
abc
d35
e17
f82
g64

ade
b62
c84
f15
g37

afg
b13
c57
d86
e42

bdf
a47
c16
e38
g25

bge
a58
c23
d14
f67

cdg
a12
b78
e56
f34

cef
a36
b45
d27
g18

Now Monday and Tuesday are laced in the mode (α), with residual triple
afg in Wednesday. Also, Monday and Thursday are laced in the mode (α), with
residual triple bge in Friday. Finally, Wednesday and Thursday are laced in the
mode (α), with residual triple cef in Sunday. It follows from Theorem 2.4 that
the KTS is isomorphic to either system 1a or system 1b. As the three triples afg,
bge, and cef do not have any point in common, we may finally conclude, again
by Theorem 2.4 (see also Remark 2.6(2)), that Cayley’s KTS is isomorphic to
system 1b. Also, it can be immediately checked that the seven residual triples
are precisely the blocks of the Fano plane that generates the solution together
with the Room square of side 7.

Other “classical” examples of a KTS(15) isomorphic to system 1b are the
solutions by W. Spottiswoode [45], J. Horner [39], and W. Burnside [8], the first
solution by A. C. Dixon [20], T. H. Gill’s solution [43, p. 103], the first solution
by E. J. F. Primrose [40], the solution by E. Brown and K. E. Mellinger [7, Table
2], and the second cyclic solution by B. Peirce [37, §31, p. 172] (also reported in
[21, p. 18]), whose visual representation is given by means of a two-step rotating
circle in [44, Figure iii, p. 200] (see also [26, Figure 51, p. 126], from Scientific
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American, May 1980), and where one of the two orbits of length 7 consists
precisely of the points of the seven residual triples. All this can be checked by
the same method used above for Cayley’s solution.

Another interesting visual example of a KTS(15) isomorphic to system 1b
is the system denoted by (	, 	) in [24], where the schoolgirls are represented
as the fifteen simplicial elements of a tetrahedron, that is, the four vertices, the
six edges, the four faces, and the whole tetrahedron.

2) (System 1a) Our second example is the 1850 system published by Kirkman
[30] (replicated in [31, p. 260] and [32, p. 48]), who described it as “the neatest
method of writing the solution of the problem”. He also thought that this was
the only possible solution up to permutation [32]. The fifteen schoolgirls are

a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3.

As a first parallel class we take

a1a2a3, b1b2b3, c1c2c3, d1d2d3, e1e2e3.

Each of the other six classes contains three triples of the form a1xiyi, a2xjyj ,
a3ukvk, where {{x, y}, {u, v}} ranges over the six partitions of {b, c, d, e}, and
{i, j, k} = {1,2,3}. In view of the choice of the first class, the other two triples
are necessarily uivjzk and viujwk, with {z, w} = {x, y}. Therefore each of the
six classes has the form

a1xiyi, a2xjyj , a3ukvk, uivjzk, viujwk.

Up to the choice of z and w, the six classes are uniquely determined by
three choices of i, j, x, and y. Indeed, any such choice produces another class by
just permuting x ↔ u and y ↔ v. To get a KTS(15) it now suffices to make
the following (cyclic) choice for the ordered quintuple (i, j, x, y, u): (1, 2, b, c, d),
(2, 3, c, d, b), (3, 1, d, b, c). This will also determine z and w uniquely in each class,
by taking, precisely, z = x and w = y. This way we get precisely Kirkman’s
solution of the schoolgirl problem [30, p. 169].

Mon a1a2a3 b1b2b3 c1c2c3 d1d2d3 e1e2e3
Tue a1b1c1 a2b2c2 a3d3e3 d1e2b3 e1d2c3
Wed a1d1e1 a2d2e2 a3b3c3 b1c2d3 c1b2e3
Thu a1c3d3 a2c1d1 a3b2e2 b3e1c2 e3b1d2
Fri a1b3e3 a2b1e1 a3c2d2 c3d1b2 d3c1e2
Sat a1d2b2 a2d3b3 a3c1e1 c2e3d1 e2c3b1
Sun a1c2e2 a2c3e3 a3d1b1 d2b3c1 b2d3e1

By construction, the permutation (b1c3d2)(c1d3b2)(d1b3c2)(e3e2e1) of the fif-
teen symbols is an automorphism of order 3 of the KTS, which induces the
permutation (Tue Thu Sat)(Wed Fri Sun) of the parallel classes.

Now Monday and Tuesday are laced in the mode (α), with residual triple
a3b3c3 in Wednesday. Also, Monday and Thursday are laced in the mode (α),
with residual triple a3c2d2 in Friday. Finally, Wednesday and Thursday are
laced in the mode (α), with residual triple a3d1b1 in Sunday. It follows from
Theorem 2.4 that the KTS is isomorphic to either system 1a or system 1b. As
the three triples a3b3c3, a3c2d2, and a3d1b1 have the point a3 in common, we
may finally conclude, by Remark 2.6(2), that the KTS is isomorphic to system
1a.

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Further examples of a KTS(15) isomorphic to system 1a are R. R. Anstice’s
first solution [3, p. 280], the third cyclic solution by B. Peirce [37, §31, p. 172], the
solutions by A. Frost [25] (also reported in [34, p. 184]), A. F. H. Mertelsmann
[35], and H. E. Dudeney [22], the second solution by E. J. F. Primrose [40], the
regular 14-gon model in [5, Figure 5.2, p. 28], the solution by B. Polster [38,
Figure 8], and the system denoted by (	, �) in [24]. Whenever system 1a is
constructed as a cyclic solution, the common point of the seven residual triples
is precisely the fixed point of the order-7 automorphism.

Interestingly enough, the joint solution by four authors in [32, p. 48], imme-
diately after Kirkman’s solution, is also isomorphic to system 1a. In a recent
paper [6, §6.2], S. Bonvicini et al. constructed a model of system 1a which was
designed to show that the KTS is 3-pyramidal, i.e., admitting an automorphism
group acting sharply transitively on all but three points.

3) (Systems 7a and 7b) In 2012 Kristýna Stodolová wrote a thesis on “Classic
problems in combinatorics” [48], where she described the visual solutions of the
schoolgirl problem given in [19] and [24] and, in addition, proposed a third visual
solution, with no references. To this end, she arranged fifteen balls in the usual
triangular pool-table configuration as follows.
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The seven parallel classes are defined as follows, with the obvious interpre-
tation of the symbols. For instance, the five triples in Monday are {1, 2, 3},
{4, 5, 6}, {7, 8, 15}, {9, 10, 11}, and {12, 13, 14}.
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Sunday

Note how the three configurations in each row are obtained from one another
by means of 120-degree rotations of the triangle around its center, and that
the final parallel class (Sunday) is invariant under the same rotations. An
alternative choice (not reported in [48]) for Wednesday, Saturday, and Sunday
is the following.
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In either case, the resulting KTS(15) has the property that the only lacings
in the mode (α) are those between any two parallel classes in any of the three
sets {Mon,Thu,Sun}, {Tue,Fri,Sun}, {Wed,Sat,Sun}. It follows from Theorem
2.4 that the KTS is isomorphic to either system 7a or system 7b.

In the former case, the residual triples of the lacings in the mode (α) are
{1, 11, 15}, {1, 2, 3}, {1, 5, 13}, {11, 6, 8}, {11, 7, 12}, {15, 4, 9}, and {15, 10, 14},
whose union is the point-set {1, 2, . . . , 15}, whence the KTS is isomorphic to
system 7a by Theorem 2.4.

In the latter case, when we make the alternative choice for Wednesday, Satur-
day, and Sunday, the residual triples of the lacings in the mode (α) are {1, 4, 10},
{1, 9, 14}, {1, 11, 15}, {4, 9, 15}, {4, 11, 14}, {9, 10, 11}, and {10, 14, 15}, which
form the blocks of a Fano plane. Hence, by Theorem 2.4, the KTS is isomorphic
to system 7b.

Another KTS(15) isomorphic to system 7b is the second solution by A. C.
Dixon [20]. Note that the visual model in the present example is somehow the
only possible one to represent system 7a, since this system admits an order-3
automorphism with five orbits of length 3 (see [17]). In any case, we are not
aware of any other visual models of systems 7a and 7b.

4) (Systems 19a and 19b) In 1897 E. W. Davis gave a visual solution to
the schoolgirl problem [19], where the fifteen girls were represented as the eight
vertices, the six faces, and the whole of a cube.

Let us denote the eight vertices by the numbers 1, 2, . . . , 8, as in Figure 1.
Each face is denoted by a quadruple of the form abcd, where a, b, c, d are the
four vertices belonging to that face. For instance, 5678 is the face at the base
of the cube in Figure 1. Also, the letter C denotes the whole of the cube.
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Figure 1: Davis’s cube.

The first four parallel classes are defined as follows. Each class contains a
triple of the type {C, v, w}, where v is a vertex in the set {2, 4, 5, 7} and w is
the opposite vertex, a triple consisting of the three faces containing the vertex
v, and three triples of the type {f, x, y}, where f is one of the three remaining
faces, and x, y are two adjacent vertices belonging to f and different from w.
There are two possible ways of taking the four classes. If we choose {1256, 1, 2}
to be one of the triples, then the four classes are determined uniquely as follows.

Mon C, 7, 1 2367, 3478, 5678 1234, 2, 3 1256, 5, 6 1458, 4, 8
Tue C, 2, 8 1234, 1256, 2367 1458, 1, 5 3478, 3, 4 5678, 6, 7
Wed C, 5, 3 1256, 1458, 5678 1234, 1, 4 2367, 2, 6 3478, 7, 8
Thu C, 4, 6 1234, 1458, 3478 1256, 1, 2 2367, 3, 7 5678, 5, 8

The remaining three classes are defined as follows. Each class contains
a triple consisting of C and two opposite faces, and four triples of the type
{f, x, y}, where f is one of the remaining four faces, and x, y are two non-
adjacent vertices belonging to the face opposite to f. There are two possible
ways of taking the three classes, which are shown in the two following tables.

Fri C, 1234, 5678 1256, 4, 7 1458, 3, 6 2367, 1, 8 3478, 2, 5
Sat C, 1256, 3478 1234, 6, 8 1458, 2, 7 2367, 4, 5 5678, 1, 3
Sun C, 1458, 2367 1234, 5, 7 1256, 3, 8 3478, 1, 6 5678, 2, 4

Fri C, 1234, 5678 1256, 3, 8 1458, 2, 7 2367, 4, 5 3478, 1, 6
Sat C, 1256, 3478 1234, 5, 7 1458, 3, 6 2367, 1, 8 5678, 2, 4
Sun C, 1458, 2367 1234, 6, 8 1256, 4, 7 3478, 2, 5 5678, 1, 3

In either case, the resulting KTS(15) has the property that the classes Friday,
Saturday, and Sunday are laced in the mode (α) with each other, whereas all
the other lacings are in the mode (β). It follows from Theorem 2.4 that the
KTS is isomorphic to either system 19a or system 19b.

Also, in either case, the residual triples of the three lacings of type (α)
are {C, 1234, 5678}, {C, 1256, 3478}, and {C, 1458, 2367}, which belong to the
block-set of the Fano plane whose points are C and the six faces of the cube.
Moreover, the two triples in Thursday and Friday belonging to the Fano plane
are {1234, 1458, 3478} and {C, 1234, 5678}, respectively, and the two points in
the Fano plane that are not in either of the two triples are X = 1256 and
Y = 2367. Also, the two triples in Thursday containing X and Y are {1256, 1, 2}
and {2367, 3, 7}.

In the former (respectively, latter) case, that is, when we take the classes
Friday, Saturday, and Sunday in the first (resp., second) table, the two triples in
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Friday containing X and Y are {1256, 4, 7} and {2367, 1, 8} (resp., {1256, 3, 8}
and {2367, 4, 5}). Finally, ({1256, 1, 2}∪{2367, 3, 7})∩({1256, 4, 7}∪{2367, 1, 8})
(resp., ({1256, 1, 2}∪{2367, 3, 7})∩({1256, 3, 8}∪{2367, 4, 5})) contains precisely
four (resp., three) elements. Therefore it follows from Theorem 2.4 that the KTS
is isomorphic to system 19a (resp., 19b).

Note that, in addition to the points, the triples, and the parallel classes, this
geometric model allows one to visualize all the automorphisms of the two sys-
tems as well. Indeed, in either case the automorphism group of the system is the
(order-12) tetrahedral group [17], and it is easy to check that, by construction,
the three order-2 rotations around the midpoints of two opposite faces, and the
eight order-3 rotations around the diagonals through two opposite vertices are
all, together with the identity, automorphisms of the two systems.

We are not aware of any other solution isomorphic to either 19a or 19b in
the literature (with the exception, of course, of those provided by those authors
who gave all seven solutions [53, 54, 36, 17, 42]).

5) (System 61) In this final example we describe a visual solution to the
schoolgirl problem, which was inspired by the two-step rotating circle in [44,
Figure ii, p. 200], which, in turn, was derived from Anstice’s cyclic solution in
[3, p. 285].

In 1852 Anstice published the first cyclic solutions of the schoolgirl problem,
that is, KTS(15)s having an automorphism of order 7, with two orbits of length
7 and one fixed point. One can easily check, by applying our algorithm, that
Anstice’s first solution [3, p. 280] is isomorphic to system 1a, whereas the second
solution [3, p. 285] is isomorphic to system 61. In the postscript of his paper [3,
p. 291], Anstice shows that there exist “three distinct species of combinations
of triads” of 15 symbols, but does not exhibit the arrangement 1b explicitly.

Kirkman considered Anstice’s solutions the “first properly mathematical so-
lutions”, which revealed “the theory of the solution” of his puzzle [33], and
which were not limited to the mere exploitation of the empirical efficiency of
some suitable tables.

In the present visual solution, unlike in [44], the fifteen schoolgirls are rep-
resented by labelling the vertices of an outer regular 7-gon by P0, . . . ,P6, the
vertices of an inner regular 7-gon by Q0, . . . ,Q6, and the central point by the
symbol ∞. In the following picture, on the right, we describe only the “base”
parallel class, representing each triple by three marks of the same kind. The re-
maining six parallel classes are obtained by the non-trivial rotations around the
central point that leave the set of vertices invariant. Equivalently, the parallel
classes are the orbits of the base parallel class under the automorphism defined
by Pn 7→ Pn+1, Qn 7→ Qn+1 (mod 7), and ∞ 7→ ∞.
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More precisely, the resulting KTS(15) is given in the following table (which
is essentially the same as in [2, Example 1.1]).

Mon P0Q0∞ Q1Q2Q4 P1Q3P5 P2P3Q6 P4Q5P6

Tue P1Q1∞ Q2Q3Q5 P2Q4P6 P3P4Q0 P5Q6P0

Wed P2Q2∞ Q3Q4Q6 P3Q5P0 P4P5Q1 P6Q0P1

Thu P3Q3∞ Q4Q5Q0 P4Q6P1 P5P6Q2 P0Q1P2

Fri P4Q4∞ Q5Q6Q1 P5Q0P2 P6P0Q3 P1Q2P3

Sat P5Q5∞ Q6Q0Q2 P6Q1P3 P0P1Q4 P2Q3P4

Sun P6Q6∞ Q0Q1Q3 P0Q2P4 P1P2Q5 P3Q4P5

As Monday and Tuesday are laced in the mode (β), the KTS is not isomor-
phic to system 1a nor to system 1b by Theorem 2.4. On the other hand, systems
7a, 7b, 19a, and 19b do not have an automorphism of order 7 (see, for instance,
[17] and [46, Appendix]), whence the KTS is isomorphic to system 61.

Alternatively, a direct proof can be given, in view of Remark 2.6(4) in Section
2, by showing that there exist nine suitable lacings of distinct parallel classes of
type (β).

Note that the labelling and the arrangement of the fifteen points help us
not only to highlight the cyclicity of the solution, but also to get a more im-
mediate understanding of some other properties of the system. For instance,
the vertices of the inner 7-gon are precisely the points of the unique Fano
plane contained in the underlying STS (see, e.g., [13, 1.29, p. 32]). Also, the
full order-21 automorphism group of the system is generated by the permuta-
tion (P0P1P2P3P4P5P6)(Q0Q1Q2Q3Q4Q5Q6) (that is, the clockwise rotation
of the 7-gons that generates the parallel classes) and the order-3 permutation
(P1P4P2)(Q1Q4Q2)(P3P5P6)(Q3Q5Q6) (see [17]).

It is worth mentioning that, by applying to the special case q = 7 the
well-known construction by Ray-Chaudhuri and Wilson of a KTS(2q + 1), for
a prime power q ≡ 1 (mod 6), one obtains a KTS(15) with point-set (F7 ×
{1, 2}) ∪ {∞}, whose seven parallel classes are derived by developing modulo 7
the base parallel class {(0, 1),(0, 2),∞}, {(1, 1),(3, 1),(2, 2)}, {(2, 1),(6, 1),(4, 2)},
{(4, 1),(5, 1),(1, 2)}, {(6, 2),(5, 2),(3, 2)} ([41]; see also [15, 14.5.21, p. 592] and
[16, Theorem 19.10]). Arguing as above, one immediately finds that the KTS is
isomorphic to system 61 (alternatively, one can easily find an explicit isomor-
phism with the KTS described in the previous table).

Note that, for a prime p ≡ 1 (mod 6), the construction of a (2-rotational)
KTS(2p+ 1) had been given by Anstice himself [3, 4], making use of primitive
roots and difference families for the first time in the history of block designs,
and constructing infinitely many cyclic Room squares (see also [1]).

4 Appendix: systems 1a and 1b revisited

1) In 1871 A. Frost [25] published an interesting solution to the schoolgirl
problem, based on the observation that if the 15 schoolgirls are denoted by
p, a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2, g1, g2, and if the seven letters a, b, . . . , g
are the points of a Fano plane, then the seven parallel classes can be constructed
as follows. Each letter x in {a, b, . . . , g} determines a parallel class containing
the triple px1x2 and four triples of the form uivjwk, where uvw ranges over the
four blocks of the Fano plane not containing x.
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After this elegant and promising premise, however, the various arrangements
of the subscripts i, j, k are found after an excessively long and involved search,
which takes two full pages of the article. Moreover, in the final solution the
ordered triple (i, j, k) takes up all the eight possible values, with no symmetry
nor apparent logic. The same thing happens in the account given in [21, p. 15].

Here we describe a faster and more effective way to obtain a solution which
is consistent with Frost’s requirements and, moreover, is particularly symmetric,
cyclic and simple (and where the ordered triple (i, j, k) takes up only four distinct
values). Our construction is inspired by one of Anstice’s cyclic solutions [3,
p. 280], and is based on the fact that one of the orbits of the automorphism of
order 7 consists of the seven points of a Fano plane.

Let us denote the 15 schoolgirls by p, a1, a2, . . . , g1, g2 as above, and let us
choose abc, bdf, cfe, dcg, ead, fga, geb as the blocks of a Fano plane (which Frost
calls the “fundamental triads”). If we take

pa1a2 b1d1f1 d2c1g2 c2f2e1 g1e2b2

as the base parallel class, then the other six parallel classes will be produced by
the action of the cyclic group of order 7 generated by the permutation

(a b d c f g e).

The resulting KTS will be the following system.

Mon pa1a2 b1d1f1 d2c1g2 c2f2e1 g1e2b2
Tue pb1b2 d1c1g1 c2f1e2 f2g2a1 e1a2d2
Wed pd1d2 c1f1e1 f2g1a2 g2e2b1 a1b2c2
Thu pc1c2 f1g1a1 g2e1b2 e2a2d1 b1d2f2
Fri pf1f2 g1e1b1 e2a1d2 a2b2c1 d1c2g2
Sat pg1g2 e1a1d1 a2b1c2 b2d2f1 c1f2e2
Sun pe1e2 a1b1c1 b2d1f2 d2c2g1 f1g2a2

Note that each of the fundamental triads appears four times, with subscripts
111, 212, 221, 122. An equivalent and perhaps more illuminating way of describ-
ing the system is the following, where the seven parallel classes are given by the
seven rightmost columns, and where each cell of the grid represents the ordered
subscripts to be given to the fundamental triad in the same row.

pa1a2 pb1b2 pd1d2 pc1c2 pf1f2 pg1g2 pe1e2
bdf 111 122 221 212
dcg 212 111 122 221
cfe 221 212 111 122
fga 221 212 111 122
geb 122 221 212 111
ead 122 221 212 111
abc 122 221 212 111

By applying Theorem 2.4, it can be readily seen that the KTS is isomorphic
to system 1a (just like Frost’s original solution), and that the residual triples are
the seven triples of the form px1x2. By replacing 122, 212, 221 in the previous
table by 212, 221, 122, respectively, the KTS becomes isomorphic to system
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1b, and the residual triples are the triples u1v1w1, where uvw ranges over the
fundamental triads of the Fano plane.

2) We now consider the fascinating model of PG(3, 2) by A. M. Gleason [49]
(whose resolutions were characterized by J. I. Hall [27]), and we revisit it in the
light of the algorithm in Theorem 2.4. It is probably the model of PG(3, 2) that
displays in the simplest and most direct way the duality of the projective space.

Let X = {1, 2, 3, 4, 5, 6, 7}. There exist precisely 30 distinct Fano planes
with point-set X (this had already been noted by Woolhouse [54] in 1863). The
action of the alternating group A7 on X induces a natural action on the 30
Fano planes, with two orbits of 15 planes each. Let us denote the two orbits by
P (“points”) and H (“planes”), where P (resp., H) is the orbit containing, for
instance, the cyclic Fano plane whose blocks are obtained by developing (mod
7) the base block (1, 2, 4) (resp., (1, 3, 4)). Finally, let us call “lines” the 35
unordered triples of elements of X.

One can define an incidence structure on P ∪
(
X
3

)
∪H as follows. If l ∈

(
X
3

)
and F ∈ P ∪ H, then l and F are incident if and only if the triple l is a block
of the Fano plane F. If F1 ∈ P and F2 ∈ H, then F1 and F2 are incident if
and only if the intersection F1 ∩F2 of the two Fano planes contains at least one
“line” from

(
X
3

)
.

The incidence structure on P ∪
(
X
3

)
∪H is isomorphic to the incidence struc-

ture of points, lines and planes of the projective geometry PG(3, 2). Also, one
can show that two given “lines” l1, l2 in

(
X
3

)
satisfy |l1 ∩ l2| = 1 if and only if

they are incident to a unique common “point” and to a unique common “plane”.
If this is not the case, then l1 and l2 are incident to no common “point” and to
no common “plane”. Therefore, in this model, the five “lines” of a parallel class
of PG(3, 2) correspond to five triples of

(
X
3

)
with pairwise intersections never of

cardinality 1.

J. I. Hall [27] showed that a parallel class of PG(3, 2) either consists of the
five triples in

(
X
3

)
containing a given (unordered) pair (i, j) in

(
X
2

)
, or consists

of a given triple (a, b, c) in
(
X
3

)
, together with the four triples in

(
X
3

)
that are

disjoint from it. In the former case the parallel class is denoted by the symbol
〈∞, i, j〉, whereas in the latter case it is denoted by the symbol 〈a, b, c〉.

Furthermore, Hall proved that seven parallel classes form a resolution of
PG(3, 2) if and only if their symbols form the blocks of a Fano plane whose
point-set is a 7-subset of the set {∞}∪X = {∞, 1, 2, 3, 4, 5, 6, 7}. In particular,
this yields an elementary and immediate proof of the fact that PG(3, 2) has
56 distinct parallel classes and 240 distinct resolutions (this was already known
to Woolhouse [52, 53], and was later proved by Conwell [18] by using Galois
geometry).

Among these resolutions, 30 have all their seven symbols in
(
X
3

)
, whereas the

remaining 210 have three parallel classes with symbols of the type 〈∞, i, j〉, and
four parallel classes with symbols of the type 〈a, b, c〉. In the former case, there is
a one-to-one correspondence between the 30 resolutions and the 30 Fano planes
in P ∪ H. In either case, we will apply Theorem 2.4 to determine whether a
given resolution is isomorphic to system 1a or 1b, in terms of its seven symbols.

Let us start by enumerating the fifteen “points” in P, by writing explicitly
their corresponding Fano planes.
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P1 = {(1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 7), (2, 5, 6), (3, 4, 6), (3, 5, 7)}
P2 = {(1, 2, 3), (1, 4, 6), (1, 5, 7), (2, 4, 5), (2, 6, 7), (3, 4, 7), (3, 5, 6)}
P3 = {(1, 2, 3), (1, 4, 7), (1, 5, 6), (2, 4, 6), (2, 5, 7), (3, 4, 5), (3, 6, 7)}
P4 = {(1, 2, 4), (1, 3, 5), (1, 6, 7), (2, 3, 6), (2, 5, 7), (3, 4, 7), (4, 5, 6)}
P5 = {(1, 2, 4), (1, 3, 6), (1, 5, 7), (2, 3, 7), (2, 5, 6), (3, 4, 5), (4, 6, 7)}
P6 = {(1, 2, 4), (1, 3, 7), (1, 5, 6), (2, 3, 5), (2, 6, 7), (3, 4, 6), (4, 5, 7)}
P7 = {(1, 2, 5), (1, 3, 4), (1, 6, 7), (2, 3, 7), (2, 4, 6), (3, 5, 6), (4, 5, 7)}
P8 = {(1, 2, 5), (1, 3, 6), (1, 4, 7), (2, 3, 4), (2, 6, 7), (3, 5, 7), (4, 5, 6)}
P9 = {(1, 2, 5), (1, 3, 7), (1, 4, 6), (2, 3, 6), (2, 4, 7), (3, 4, 5), (5, 6, 7)}
P10 = {(1, 2, 6), (1, 3, 4), (1, 5, 7), (2, 3, 5), (2, 4, 7), (3, 6, 7), (4, 5, 6)}
P11 = {(1, 2, 6), (1, 3, 5), (1, 4, 7), (2, 3, 7), (2, 4, 5), (3, 4, 6), (5, 6, 7)}
P12 = {(1, 2, 6), (1, 3, 7), (1, 4, 5), (2, 3, 4), (2, 5, 7), (3, 5, 6), (4, 6, 7)}
P13 = {(1, 2, 7), (1, 3, 4), (1, 5, 6), (2, 3, 6), (2, 4, 5), (3, 5, 7), (4, 6, 7)}
P14 = {(1, 2, 7), (1, 3, 5), (1, 4, 6), (2, 3, 4), (2, 5, 6), (3, 6, 7), (4, 5, 7)}
P15 = {(1, 2, 7), (1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6), (3, 4, 7), (5, 6, 7)}.

Let us first describe explicitly a resolution of PG(3, 2) whose seven symbols
are in

(
X
3

)
. Let us consider, for instance, the case where the resolution is asso-

ciated with the “point” P1 ∈ P above. We will represent each projective “line”
as a triple in

(
X
3

)
and also as the corresponding triple of “points” in P that are

incident with it.

Mon (1,2,3) (4,5,6) (4,5,7) (4,6,7) (5,6,7)
〈1, 2, 3〉 P1P2P3 P4P8P10 P6P7P14 P5P12P13 P9P11P15

Tue (1,4,5) (2,3,6) (2,3,7) (2,6,7) (3,6,7)
〈1, 4, 5〉 P1P12P15 P4P9P13 P5P7P11 P2P6P8 P3P10P14

Wed (1,6,7) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
〈1, 6, 7〉 P1P4P7 P8P12P14 P6P10P15 P2P11P13 P3P5P9

Thu (2,4,7) (1,3,5) (1,3,6) (1,5,6) (3,5,6)
〈2, 4, 7〉 P1P9P10 P4P11P14 P5P8P15 P3P6P13 P2P7P12

Fri (2,5,6) (1,3,4) (1,3,7) (1,4,7) (3,4,7)
〈2, 5, 6〉 P1P5P14 P7P10P13 P6P9P12 P3P8P11 P2P4P15

Sat (3,4,6) (1,2,5) (1,2,7) (1,5,7) (2,5,7)
〈3, 4, 6〉 P1P6P11 P7P8P9 P13P14P15 P2P5P10 P3P4P12

Sun (3,5,7) (1,2,4) (1,2,6) (1,4,6) (2,4,6)
〈3, 5, 7〉 P1P8P13 P4P5P6 P10P11P12 P2P9P14 P3P7P15

It is immediate that the lacing of two parallel classes is of type (α) if there
exist two “lines” in one class and two “lines” in the other class (as triples in(
X
3

)
), such that the four triples contain a common pair of elements of X, and

that the corresponding residual triple is the fifth triple in
(
X
3

)
containing that

common pair. For instance, the residual triple of the lacing of Monday and
Tuesday is the triple (1, 6, 7) in Wednesday. The complete set of residual triples
coincides precisely with the block-set of the Fano plane P1, that is, with all the
“lines” that are incident with the “point” P1 ∈ P. The second column of the
previous table contains all the residual triples and shows clearly that these are
precisely the triples of “points” containing the common “point” P1. Hence the
resolution is isomorphic to system 1a.

Similarly, for a resolution of PG(3, 2) whose seven symbols are the blocks of
a Fano plane F in H, the seven residual triples are again the seven triples in F,
which represent the seven “lines” of a “plane” in PG(3, 2).

21

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



By applying Theorem 2.4, we can conclude that a resolution of PG(3, 2),
whose seven symbols are in

(
X
3

)
, is isomorphic to system 1a (resp., 1b) if the

seven symbols are the blocks of a Fano plane in P (resp., in H).

Moreover, the map 〈a, b, c〉 7→ (a, b, c) can be easily interpreted in the light of
the previous Remark 2.6(1). Also, the automorphisms of a resolution of this kind
are of the type (a, b, c) 7→ (ϕ(a), ϕ(b), ϕ(c)) and 〈a, b, c〉 7→ 〈ϕ(a), ϕ(b), ϕ(c)〉,
where ϕ is an automorphism of the underlying Fano plane in P ∪H. In passing,
this gives a direct combinatorial proof of the fact that the group of automor-
phisms of both systems 1a and 1b is isomorphic to the group of automorphisms
of the Fano plane.

In particular, an automorphism of the KTS is cyclic if and only if the auto-
morphism of the underlying Fano plane is cyclic. For instance, for the resolution
given in the previous table, associated with the “point” P1 ∈ P, the cyclic per-
mutation (1 2 4 3 7 6 5) is an automorphism of the Fano plane P1 that induces
a cyclic automorphism of the whole KTS, whose parallel classes are the orbit of
〈1, 2, 3〉 under the permutation.

Finally, in the case of a resolution of PG(3, 2), whose seven symbols are the
blocks of a Fano plane whose point-set contains ∞, let F be the Fano plane in
P ∪ H obtained by replacing ∞ with the element of X that does not appear
in the seven symbols. Arguing as above, one can easily show that the seven
residual triples form the blocks of a Fano plane in P (resp., in H) if F is in H
(resp., in P). Therefore, the resolution is isomorphic to system 1a if F is in H,
and is isomorphic to system 1b if F is in P.

3) We already pointed out in Section 3, and in the previous example, that
there exist cyclic solutions to the schoolgirl problem that are isomorphic to
systems 1a and 1b. Their visual representations can be easily obtained by
applying the same construction with two concentric regular 7-gons as in Example
5 in Section 3, with just different choices of the base parallel class (see also [44,
Figure iii, p. 200], [26, Figure 51, p. 126] and [5, Figure 5.2, p. 28]).

An alternative algebraic description of the cyclic solutions 1a and 1b can be
given as follows, where we essentially regard PG(3, 2) as the derived design at
(0, 0, 0, 0) of the point-plane design of the affine geometry AG(4, 2).

In the classical model of PG(3, 2), the points are the fifteen nonzero elements
of the 4-dimensional vector space GF(2)4, and the projective lines are all the
unordered triples of points summing up to zero in (the additive group of) the
vector space (from this point of view, the point-line design of PG(3, 2) is an
example of additive block design [9]). We may also represent the fifteen points,
up to isomorphism, as the nonzero elements of the 2-dimensional vector space
GF(4)2, where GF(4) = {0, 1, α, α2} is the (unique) field with four elements and
characteristic 2, with operations 1 + α = α2, 1 + α2 = α, α+ α2 = 1, αα2 = 1.

We may now choose as the base parallel class the set of the five triples of
points in GF(4)2, obtained by removing (0, 0) from the five lines through the
origin in the affine plane AG(2, 4).

(1, 1) (1, 0) (0, 1) (1, α) (α, 1)
(α, α) (α, 0) (0, α) (α, α2) (α2, α)
(α2, α2) (α2, 0) (0, α2) (α2, 1) (1, α2).

Next, we rewrite the base parallel class by representing again the fifteen
points in GF(2)4, via the natural identification 0 7→ (0, 0), 1 7→ (1, 0), α 7→
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(0, 1), α2 7→ (1, 1). Finally, we consider the orbit of the base parallel class un-
der the action of the order-7 linear transformation on GF(2)4 defined on the
canonical basis by (1, 0, 0, 0) 7→ (1, 1, 1, 1), (0, 1, 0, 0) 7→ (1, 0, 0, 1), (0, 0, 1, 0) 7→
(0, 1, 0, 0), (0, 0, 0, 1) 7→ (0, 1, 1, 1). What one gets is the following (cyclic) reso-
lution of PG(3, 2), where for simplicity we write every element of GF(2)4 in the
form abcd.

Mon
1010
0101
1111

1000
0100
1100

0010
0001
0011

1001
0111
1110

0110
1101
1011

Tue
1011
1110
0101

1111
1001
0110

0100
0111
0011

1000
1010
0010

1101
0001
1100

Wed
1100
0010
1110

0101
1000
1101

1001
1010
0011

1111
1011
0100

0001
0111
0110

Thu
0110
0100
0010

1110
1111
0001

1000
1011
0011

0101
1100
1001

0111
1010
1101

Fri
1101
1001
0100

0010
0101
0111

1111
1100
0011

1110
0110
1000

1010
1011
0001

Sat
0001
1000
1001

0100
1110
1010

0101
0110
0011

0010
1101
1111

1011
1100
0111

Sun
0111
1111
1000

1001
0010
1011

1110
1101
0011

0100
0001
0101

1100
0110
1010

By arguing as in the Example 1 in Section 3, one can immediately show
that the KTS is isomorphic to system 1b. Also, the seven residual triples are
precisely the seven rightmost triples in the previous table.

Similarly, if one considers the orbit of the same base parallel class under the
action of the order-7 linear transformation on GF(2)4, defined on the canonical
basis by (1, 0, 0, 0) 7→ (0, 0, 0, 1), (0, 1, 0, 0) 7→ (1, 0, 0, 0), (0, 0, 1, 0) 7→ (0, 1, 0, 0),
(0, 0, 0, 1) 7→ (1, 0, 1, 1), then one gets a (cyclic) resolution of PG(3, 2) isomorphic
to system 1a, whose seven residual triples are all the projective lines containing
the point (0, 1, 1, 1), which is also the fixed point of the cyclic automorphism.

4) We now describe the visual solution to the schoolgirl problem (essen-
tially contained in [23]) that probably best reflects the projective nature of the
underlying STS PG(3, 2), in order to interpret it in the light of Theorem 2.4.

Let the fifteen schoolgirls be denoted by 0, x, y, z, xy, xz, yz, xyz,X, Y, Z,XY,
XZ, Y Z,XY Z, and let the first eight of them label the vertices of a cube, as
illustrated in the following picture.

r
r r
r
r
r
r
r

�
��

�
��

�
��

�
��

z xz

xyzyz

0 x

xyy
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The 35 triples of the STS are defined as follows (note the similarity with
Cayley’s Example 1 in Section 3). The first 28 triples are precisely those of the
type {0, a, A}, {0, ab, AB}, {0, abc, ABC}, {a, b, AB}, {a, ab,B}, {a, bc, ABC},
{a, abc,BC}, {ab, ac,BC}, and {ab, abc, C}, whereas the remaining seven triples
are those of the type {A,B,AB}, {AB,AC,BC}, and {A,ABC,BC}. Note that
the seven triples of the latter type determine a Fano plane.

In order to construct the seven parallel classes, we partition the (unordered)
pairs of distinct vertices of the cube into three classes. A pair {v, w} is of type
(A) if v and w are adjacent vertices, that is, if they are the extreme points of
an edge of the cube. A pair {v, w} is of type (D) if v and w lie on the same face
of the cube but are not adjacent, that is, if they are the extreme points of one
of the two diagonals of a face of the cube. A pair {v, w} is of type (O) if v and
w are opposite vertices of the cube.

The solution to the schoolgirl problem is completely determined by the choice
of just two pairs of distinct vertices, which are essentially unique. This initial
choice partitions the 28 pairs of distinct vertices of the cube into seven classes
consisting of four pairs each, where each class is in turn a partition of the eight
vertices of the cube.

Let {v, w} and {t, u} be any two disjoint pairs of type (D), under the only
condition that they do not lie on the same face of the cube, nor on two opposite
faces. Up to rotations, we may assume that {v, w} = {xz, yz}, and either
{t, u} = {x, z} or {t, u} = {y, z}. We complete these two pairs with the only
two possible pairs of type (A), such that the four pairs partition the vertices of
the cube.

The second partition of the vertices of the cube is constructed as follows.
The first two pairs are the two pairs of type (D) that lie on the faces opposite
to those of {v, w} and {t, u}, but are not parallel to {v, w} and {t, u}. In view
of the initial assumption, the first pair is {0, xy} and the second pair is either
{y, xyz} or {x, xyz}, respectively. We complete the partition by adding, in a
unique possible way, a pair of type (O) and a pair of type (A).

The next four partitions are obtained from the first two by applying, to
each of them, the two order-3 rotations of the cube around the axis through the
vertices 0 and xyz. Finally, the seventh partition contains the remaining four
pairs of vertices that were not already considered in the previous six partitions.

The following picture illustrate the first, second and seventh partition, cor-
responding to the initial choice {v, w} = {xz, yz} and {t, u} = {x, z}.
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Figure 2: The three basic partitions of the eight vertices.

We now construct the seven parallel classes of the KTS as follows. For each
of the seven partitions of the eight vertices of the cube, we replace each of its
four pairs by the unique triple of the STS containing that pair, and we complete
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the four triples thus obtained by adding the unique triple that is needed to get
a partition of the fifteen schoolgirls.

Hence we obtain the following parallel classes, where Monday (resp., Thurs-
day) is obtained from the first (resp., second) partition in Figure 2, whereas
Tuesday and Wednesday (resp., Friday and Saturday) are obtained from the
partitions constructed by rotation of the first (resp., second) partition. Finally,
Sunday is obtained from the third partition in Figure 2.

Mon 0, y, Y x, z, XZ xz, yz, XY xy, xyz, Z X, YZ, XYZ
Tue 0, z, Z x, y, XY xy, xz, YZ yz, xyz, X Y, XZ, XYZ
Wed 0, x, X y, z, YZ xy, yz, XZ xz, xyz, Y Z, XY, XYZ
Thu 0, xy, XY z, xz, X y, xyz, XZ x, yz, XYZ Y, Z, YZ
Fri 0, yz, YZ x, xy, Y z, xyz, XY y, xz, XYZ X, Z, XZ
Sat 0, xz, XZ y, yz, Z x, xyz, YZ z, xy, XYZ X, Y, XY
Sun 0, xyz, XYZ x, xz, Z y, xy, X z, yz, Y XY, XZ, YZ

By arguing as in the previous Example 1 in Section 3, one immediately finds
that the resulting KTS is isomorphic to system 1b. Also, the seven residual
triples are precisely those in the rightmost column of the previous table, that is,
are the blocks of the Fano plane whose points are all written in capital letters.
Moreover, the system admits by construction an order-3 automorphism induced
by the permutations (x y z) and (X Y Z). The same conclusions hold in the
case of the alternative initial choice {v, w} = {xz, yz} and {t, u} = {y, z}.

Rephrased in different terms, the initial eight-point structure, whose points
are the vertices of the cube, can be interpreted as a 3-dimensional affine space
over GF(2), and the points X,Y, Z,XY,XZ, Y Z,XY Z are the points at infinity
for the parallel classes of the affine space (for instance, X is the point at infinity
for the parallel class {0, x}, {y, xy}, {z, xz}, {yz, xyz}). By completing each of
the 28 affine lines with the corresponding point at infinity, one finally gets a
3-dimensional projective space over GF(2) with three points per line, whose
remaining 7 lines are those of a projective plane over GF(2) at infinity.

This proves again that the underlying STS(15) in this geometric construction
is the point-line design of PG(3, 2), and shows that the seven residual triples of
the KTS(15) are precisely the seven projective lines at infinity. Also, the seven
partitions of the vertices of the cube form a 1-factorization of the complete graph
K8 (isomorphic to that which is usually denoted by F1). Our construction was
inspired by a similar construction in [23], where the KTS(15) is also isomorphic
to system 1b, although the seven residual triples are not the seven projective
lines at infinity.

To get a KTS(15) isomorphic to system 1a it suffices to replace the first par-
tition in Figure 2 by the partition obtained by replacing each vertex of the cube
with the opposite vertex, that is, by taking {0, z}, {x, y}, {xy, yz}, {xz, xyz}.
The second and third partition in Figure 2 are left unchanged. The resulting
KTS(15) is isomorphic to system 1a, and the seven residual triples are precisely
the seven projective lines containing the point at infinity XY Z.

5) We conclude this paper by proposing a new visual solution to the fifteen
schoolgirl problem, which is based on the observation that, being 15 =

(
6
2

)
, the

fifteen schoolgirls can be seen as the edges of the complete graph K6 on six
points, which, in turn, can be represented as the line segments between pairs
of distinct vertices of a regular hexagon. As in all the previous examples, the
solution has two different versions, isomorphic to systems 1a and 1b.
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By arguing as in the Example 1 in Section 3, it can be readily seen that
the resulting KTS is isomorphic to system 1b. Also, the seven residual triples
are precisely the leftmost triples in the above picture. If the hexagons are
rotated counterclockwise (respectively, clockwise) by 60 degrees in Monday and
Tuesday (respectively, Wednesday and Thursday), and are left unchanged in
Friday, Saturday, and Sunday, then the resulting KTS is isomorphic to system
1a.

An interesting property of this solution is the fact that, unlike all the other
solutions that we are aware of, this arrangement allows us to visualize an au-
tomorphism of order 4. Indeed, if we label the upper left vertex of the hexagon
by 1, and then we label consecutively the other vertices clockwise by 2, 3, 4, 5,
6, then the permutation (1 2 5 4) of the vertices induces on the pairs of vertices
an order-4 automorphism of the KTS, which in turn induces the permutation
(MON TUE WED THU)(FRI SAT) of the parallel classes.
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As a final remark, we note that also the two tetrahedron-based solutions 1a
and 1b in [24] can be seen in relation with the equality 15 =

(
6
2

)
, as the fifteen

simplicial elements of the tetrahedron are in a natural one-to-one correspondence
with the 2-subsets of the set {V, F, 1, 2, 3, 4}. Indeed, if we label the four vertices
of the tetrahedron by 1, 2, 3, 4 as in [24, Figure 5], then, for any i and for any
j 6= k in {1, 2, 3, 4}, the pairs V i, F i, and jk represent the vertex i, the face
opposite to the vertex i, and the edge with endpoints j and k, respectively,
whereas VF represents the whole tetrahedron.

Funding: Università di Palermo (FFR).
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