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Abstract. We investigate a reaction-diffusion-chemotaxis system that describes the immune response during an5
inflammatory attack. The model is a modification of the system proposed in Penner et al. [SIAM6
Journal on Applied Dynamical Systems, 11, 2 (2012), pp. 629-660]. We introduce a logistic term7
in the immune cell dynamics to reproduce the macrophages’ activation, allowing us to describe the8
disease evolution from the early stages to the acute phase. We focus on the appearance of pattern9
solutions and their stability. We discover steady-state (Turing) and Hopf instabilities and classify the10
bifurcations deriving the corresponding amplitude equations. We study stationary radially symmetric11
solutions and show that they reproduce various inflammatory aggregates observed in the clinical12
practice. Moreover, the model supports oscillating-in-time spatial patterns, thus giving a theoretical13
explanation of the periodic appearance of inflammatory eruptions typical of Recurrent Erythema14
Multiforme. A detailed numerical bifurcation analysis indicates that the inclusion of the logistic15
growth term is crucial for the occurrence of a sequence of bifurcations leading to spatio-temporal16
chaos. In the parameter space, there are large regions where the model system displays critical17
behavior.18
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1. Introduction. In this paper, we shall introduce a reaction-diffusion-chemotaxis model22
that describes the initial stages of inflammatory disease. Using the normal form analysis23
we shall construct solutions representing coherent aggregates of inflammation and oscillatory24
patterns. To the best of our knowledge, the model is the first to reproduce the formation and25
the dynamics of localized patches of skin rashes, typically observed in the clinical practice.26

1.1. The physiological basis of inflammation. Inflammation is the body response to out-27
side threats like stress, infection, pathogens, or damaged cells. It is a highly complex process,28
where pro- and anti-inflammatory agents work synergistically to ensure a quick restoration29
of tissue health [85]. A dis-regulation of the inflammatory response can give rise to chronic30
inflammation [46] and lead to a wide range of diseases, such as cancer [67], atherosclerosis [22],31
asthma [32] and autoimmune diseases [23].32

There is a consensus that the macrophages are the immune system cells that play a pivotal33
role in all stages of the inflammation [9, 20]. In the presence of a threat, macrophages enter an34
activated state that may display two different phenotypes [53]: in the early stages of inflam-35
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mation, they mainly present the M1(classically activated) phenotype [15], characterized by36
pro-inflammatory activity: they release toxicants for eliminating the threat and produce pro-37
inflammatory mediators (cytokines) that significantly contribute to the recruitment and the38
activation of more immune cells [42, 44] . Subsequently, macrophages change their polarization39
into the M2 [52, 81] (alternatively activated) state, aimed at suppressing the inflammatory ac-40
tivity by releasing pro-resolution mediators (such as IL-10), which inhibit the production of41
pro-inflammatory cytokines [82].42

The cytokines IFN-γ, IFN-α, TNF-α are involved in the activation of macrophages [9, 82].43
On the opposite side, IL-10 and IL-11, among others, have a strong anti-inflammatory effect44
and reduce the production of pro-inflammatory mediators from activated macrophages [1].45
Finally, the so-called chemokines stimulate chemotaxis [42, 82], namely the directed movement46
of cells along a concentration gradient of a chemical.47

In the present paper, following [66], we shall denote by chemokines the pro-inflammatory48
mediators, also responsible for chemotaxis, and by cytokines the anti-inflammatory molecules.49

1.2. Modeling and mathematical aspects of reaction-diffusion-chemotaxis systems.50
In the last years, to explain the evolution of the inflammatory process, several mathemat-51
ical modeling approaches have emerged, The models, mainly based on ordinary differential52
equations systems, have played an essential role in understanding the dynamical relationship53
between the many pathological mechanisms involved in inflammation [20, 62, 69, 87, 89, 90].54
However, due to the extreme complexity of the inflammatory signaling pathways, only a few55
of them have taken into account the species’ spatial distribution. The first study on rash56
formation based on reaction-diffusion systems is in [38], where the authors selected simple57
toy model equations (Segel and Levin model and Keener and Tyson model) to represent the58
primary mechanisms for the autogenic formation of Type I (stationary) and Type II (moving59
waves) patterns. In the same spirit, and seeking to understand the genesis of self-supporting60
inflammatory traveling waves in the absence of specific pathogenic stimuli, a three-species61
reaction-diffusion-chemotaxis system was proposed and studied in [66]. It describes the in-62
teraction between a fixed population of immune cells, a pro-inflammatory chemokine, and an63
anti-inflammatory cytokine. The reaction term does not consider the cell kinetics; this implies64
that during the evolution of the inflammatory response, the number of activated macrophages65
remains constant. Under these assumptions, the authors analyzed stationary and traveling-66
wave solutions; they showed that the inclusion of inhibition of chemoattractant production by67
the anti-inflammatory chemical determines oscillatory instabilities corresponding to propagat-68
ing patterns.69

In this paper, to describe macrophages recruitment during the inflammatory response,70
we generalize the model presented in [66] introducing a logistic term in the macrophages71
equation. There is, in fact, experimental evidence that, after the tissue-resident macrophages72
have initiated the inflammatory cascade, activation of the immune cells persists with the73
goal to amplify the inflammatory response [42]. After initial recognition of the microbial74
challenge, resident macrophages, also favored by the pro-inflammatory activity performed by75
the chemokines [53], drive the influx of monocyte-derived macrophages as a source of further76
inflammation [17].77

Therefore, including in the model the activation term allows us to describe the early78
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stages of the inflammatory response, namely, the cascade of both pro-inflammatory and anti-79
inflammatory species following the initial insult and their corresponding spatial dynamics.80
Moreover, it yields the possibility of investigating the effect of varying the strength of the81
activation rate on the system dynamics: since identification and regulation of the activation82
status of macrophages is believed to be a useful diagnostic and therapeutic tool for various83
diseases [72], such analysis can provide valuable information about the effects of aberrant or84
impaired activation on inflammation and the effect of different therapeutic strategies.85

The cells’ movement is modeled through a linear diffusive term, which accounts for ran-86
dom motion, and through a nonlinear chemotactic term, which describes cell motility along87
the chemical gradient. The chemotactic term is of the widely used Keller-Segel-type that in-88
corporates a signal-dependent sensitivity function [34]: it reproduces the fact that, at high89
concentrations of the chemical, the cell receptors are all occupied so that the macrophages do90
not sense the gradient.91

Loss of regularity is a well known and intensively studied phenomenon displayed by the92
solutions of the classical Keller-Segel system with linear sensitivity function; for example, on93
2-dimensional spatial domains, the explosion in a finite time may occur if the initial mass is94
above a critical threshold [36, 96]. Instead, the inclusion of a limited-growth chemotactic term95
[2, 19, 91] or of a logistic-type reaction term [34, 61, 62, 95] has blow-up-inhibiting effects.96
Therefore, the saturating functional form of the chemoattractant’s sensing, other than being97
a biologically meaningful hypothesis, is sufficient to avoid blow-up of the solutions. Moreover,98
the presence of the quadratic absorption term in the logistic source, accounting for competition-99
induced mechanisms that are generally present in most situations of biological importance, also100
prevents the non-physical unboundedness of solutions. The realistic combination of limited101
chemotaxis and growth yields a class of well-posed models of increased complexity whose102
solutions display a rich structure of asymptotic profiles and dynamics [21, 41, 50, 51, 64].103

In what follows we shall keep the mathematical description of a yet complicated phe-104
nomenon simple: the focus of this work is to show that a simplified model, which includes the105
basic mechanisms of activation and chemotactic movement, can reproduce some pathologically106
relevant clinical features and, possibly, account for the evolution of idiopathic diseases.107

1.3. Results. We shall first investigate the conditions on the system parameters that108
determine the excitation of Turing and wave instabilities. We stress that in the set-up of the109
model, we shall consider only mechanisms whose role is acknowledged in the medical literature110
and whose corresponding functional forms have been experimentally verified. Therefore all111
numerical values of the parameters used in this paper will be taken from the experimental112
literature, except for the macrophages activation rate whose value has been estimated in [70].113
We shall show that if the chemotactic coefficient is small, namely below the thresholds for114
both the Turing and wave instabilities to set in, then the aggregation strength is not sufficient115
to induce the formation of highly localized zones of inflammation. In this case, the model116
reproduces a diffused inflammatory state of the type observed in many cutaneous rashes.117

On the other hand, high values of the chemotaxis can induce two different instabilities,118
depending on the value of the parameter that regulates the anti-inflammatory time-scale: if119
the anti-inflammatory response is fast, a large chemotactic term can excite a Turing instability120
with the consequent formation of stationary patterns. In this case, the investigation of the121
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system dynamics on 2D spatial domains will show that the model provides the key mechanism122
for the formation of the skin rashes observed in Erythema Annulare Centrifugum (EAC), a123
very aggressive form of cutaneous rash [16, 78], characterized by symmetrically distributed124
target lesions with typical ring-shaped patterns [39].125

For large values of both the anti-inflammatory time scale and the chemotaxis coefficient,126
the linear analysis predicts the presence of large regions in the parameters space where wave127
instability occurs. The corresponding numerical simulations show the formation of oscillating-128
in-time spatial patterns, that qualitatively reproduce the time-periodic appearance of localized129
skin eruptions characteristic of the Recurrent Erythema Multiforme (REM) [48, 75, 93]. There-130
fore the present model proposes a possible mechanism for explaining the insurgence of recurrent131
inflammations, whose etiology is still unknown.132

A significant consequence of the introduction of cellular growth is the occurrence of spatio-133
temporal irregular solutions, that one cannot observe in the absence of the cell kinetic term.134
We shall show that when macrophages’ activation rate is absent, the Turing patterns are135
metastable: on a logarithmic time scale, they display coarsening dynamics, whereas the cre-136
ation of new structures is ruled out. Instead, increasing the macrophages activation rate,137
we shall observe the occurrence of a sequence of successive bifurcations, leading to chaotic138
spatio-temporal dynamics characterized by irregularly merging and emerging structures. The139
presence of aperiodic merging-emerging phenomena has also been detected in Keller-Segel-type140
models with logistic growth term [21, 50, 64].141

As a final remark, we mention the derivation in Subsection 3.1 of the necessary and suffi-142
cient conditions for the onset of instability in a three-component reaction-diffusion-chemotaxis143
system. When the diffusion matrix is diagonal and semidefinite positive, one can find sev-144
eral theorems stating the conditions for the linear instability of a multi-component system145
[3, 14, 33, 73]. Less attention has been paid to instability in chemotaxis models: in these146
cases, commonly, one invokes the Routh-Hurwitz or the Gershgorin Circle Theorem, both as-147
serting only sufficient conditions to localize the corresponding linearized problem’s eigenvalues.148
In the present paper, we shall address the root’s localization problem through the Sylvester149
criterion, namely studying the positive definiteness of the Bezoutiant matrix [68], obtaining150
necessary and sufficient conditions for the onset of instability. We believe that this approach151
can be useful in the analysis of analogous models.152

1.4. Plan of the paper. In Section 2, we shall illustrate the main assumptions underlying153
the construction of the model and present the ranges of numerical values of the parameters154
used in the simulations. In Section 3, we shall perform the linear stability analysis to determine155
the conditions on the system parameters for the occurrence of Turing and wave instability. In156
Section 4, through a weakly nonlinear analysis, we shall derive the amplitude equation of the157
stationary patterns to characterize supercritical and subcritical transitions at the onset. In158
Section 5, we shall investigate the role of different activation rates on the system dynamics: we159
shall show that the inclusion of the growth term induces a sequence of successive oscillatory160
bifurcations leading to chaotic dynamics. In Section 6, we shall investigate radially symmetric161
solutions and prove that the proposed model can reproduce the formation of qualitatively162
different ring-shaped skin eruptions observed in EAC. In Section 7, we support the analysis163
of Section 6 through extensive numerical simulations performed on fully 2D domains. Finally,164
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for the reader’s convenience, we have added some supplementary material where we report the165
proofs of the Theorems and some technical details.166

2. A mathematical model of inflammation. In this Section we shall present a chemotaxis-167
reaction-diffusion model that describes the interaction between a population of macrophages168
m(x, t), a pro-inflammatory chemokine c(x, t), and an anti-inflammatory cytokine a(x, t). All169
the quantities are intended as concentrations in space.170

The proposed model generalizes the system introduced by [66] in the sense that it takes171
into account cell kinetics.172

2.1. Activated macrophages. We assume that the following equation rules the evolution173
of the immune cells population:174

(2.1)
∂m

∂t
= ∇x · (Dm∇xm)︸ ︷︷ ︸

Diffusion

−∇x ·
(
ψ

m

(1 + αc)2
∇xc

)
︸ ︷︷ ︸

Chemotaxis

+ rmc
(

1− m

m̄

)
︸ ︷︷ ︸

Activation

,175

The first term in Equation (2.1) describes the diffusion of the cells due to random motion; Dm is176
the diffusivity coefficient. The second term models the chemoattraction of macrophages along177
the gradient of the chemical signal. The sensitivity function χ̄(c) = ψ

(1+αc)2
that describes the178

rate of attraction, has been derived in the so-called receptor-binding model [34] and displays179
saturation for increasing values of c. The parameter ψ represents the maximal chemotactic180
rate; α modulates the saturation of the chemokine receptors. The third term in (2.1) is the181
novelty of the present model with respect to the dynamics presented in [66], where the number182
of activated immune cells, imposed by the initial condition, was held fixed after activation.183
Here we want to consider the effects of macrophages activation driven by inflammation, which184
might concur to the settling of a recurrent or persistent inflammatory state. In fact, it is well185
known that, due to the presence of pro-inflammatory chemical species, macrophages release186
toxicants agents, such as oxygen-free radicals [85]. Such toxicants, if on the one hand, can kill187
bacteria and destroy foreign bodies; on the other hand, they can also damage hosting tissue,188
inducing more inflammation [40] with the consequent recruitment of more immune cells. Hence,189
cytokines and macrophages act to amplify the inflammatory signal, promoting the activation190
of more immune cells [53]. Therefore, we introduce an activation term with mass-action type191
kinetics, proportional to the product of the macrophage and chemokine densities, and that192
saturates for the increasing concentration of the macrophages to mimic cell depletion. The193
same functional form was adopted in [43]. Here r and m̄ represent the growth rate coefficient194
and the carrying capacity of the activated macrophages, respectively. The carrying capacity m̄195
has the meaning of the average density of the resting macrophages; the resting macrophages196
act as a cellular pool for the activated macrophages, so that, when m = m̄, all the resting197
immune cells have turned into their active state. As in [66], the initial insult that triggers the198
immune system is described by the initial conditions, assuming that the pathogen has already199
been eliminated, as typical in runaway inflammations.200

2.2. Pro- and Anti-Inflammatory Molecules. We assume that the pro- and anti-inflammatory201
cytokines have the same evolution, namely:202
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(2.2)

∂c

∂t
= ∇x · (Dc∇xc)︸ ︷︷ ︸

Diffusion

+ νc
m

1 + βaρ︸ ︷︷ ︸
Production

− µcc︸︷︷︸
Decay

,

∂a

∂t
= ∇x · (Da∇xa)︸ ︷︷ ︸

Diffusion

+ νa
m

1 + βaρ︸ ︷︷ ︸
Production

− µaa︸︷︷︸
Decay

.

203

The first term on the right-hand side of both equations represents the diffusion of molecules204
with diffusivity coefficientsDc andDa, respectively. The second term in (2.2) describes the pro-205
duction of the chemical species by macrophages, the denominator representing the inhibitory206
effect of the anti-inflammatory cytokines on the activity of previously activated macrophages207
[1]. The parameters νc and νa are the production rates per macrophage, while β and ρ control208
the inhibitory effects of the cytokines. Finally, the last terms in (2.2) represent the natural209
decay of both molecules, with decay rates µc and µa, respectively.210

Since the production of anti-inflammatory mediators is relatively late compared to the211
production of pro-inflammatory chemicals, following [66], we shall set Da = Dc/τ, νa = νc/τ212
and µa = µc/τ , where τ is a small parameter which regulates the slower time scale of the213
anti-inflammatory molecules.214

2.3. The non-dimensional form of the model. We introduce the following set of non-215
dimensional variables and parameters216

(2.3)
m∗ =

m

m̄
, c∗ =

µc
νcm̄

c, a∗ =
µa
νam̄

a, D∗ =
Dm

Dc
, t∗ = µct,

x∗ =

√
µc
Dc

x, r∗ =
m̄νc
µ2
c

r, χ =
ψνcm̄

µcDc
, α∗ =

νcm̄

µc
α, β∗ =

νam̄

µa
β.

217

With this non-dimensionalization, we have chosen chemokines’ average lifetime as the reference218
time scale and the average distance traveled by a pro-inflammatory molecule during its average219
lifetime as the reference spatial-scale.220

Using (2.3), the model can be written in the following non-dimensional form, where we221
have dropped the asterisks:222

(2.4)

∂m

∂t
= D∆m−∇ ·

(
χ

m

(1 + αc)2
∇c
)

+ rmc(1−m),

∂c

∂t
= ∆c+

m

1 + βaρ
− c,

∂a

∂t
=

∆a

τ
+

1

τ

(
m

1 + βaρ
− a
)
.

223

When r = 0, system (2.4) reduces to the model reported in [66].224
If our system evolves on the spatial domain Ω, at the boundary we impose homogeneous225

no-flux Neumann boundary conditions that reduce to:226

(2.5) ∇m = ∇c = ∇a = 0, on ∂Ω.227
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2.4. Parameter estimation. In this section, we give an estimation of the parameters ap-228
pearing in the system (2.1)-(2.2). The assessment of precise numerical values to the different229
constants is highly arduous, not only because of the experimental difficulties associated with230
the measurements but also because such values significantly depend on the tissue where inflam-231
mation occurs. For these reasons, we have usually given a range of values for the parameters,232
taking into account both available experimental data and estimates derived in mathematical233
models of inflammation already presented in the literature.234

We shall use the following units: min for the time, µm for the length, nM for the chemical235
concentration and µm−3 for the density of cells.236

The diffusion coefficients, both for macrophages and signaling molecules, are easily found237
in the literature. The chemokine diffusion rate, is usually estimated using the molecular weight238

[31], and we adopt the value given by [49], that is Dc = 900 µm2

min . Concerning the macrophage239
diffusion rate, there is no general consensus on its value because there is a strong dependence240
on the tissue and on other biological factors involved, among which there is also chemokine241
concentration. In the paper [49], the range of values [240; 4200] µm2/min is reported. Notice242
also that, since chemokines are smaller than immune cells, they can move relatively faster and,243
in the huge range of variability reported in [49] (the range given in [30] is even wider), it is244
reasonable to assume that the macrophage diffusion rate is lower than the signaling molecules’245
diffusivity, i.e., Dm < Dc. Therefore, we fix the value of Dm in the lower end of the range246

reported in [49], and we pick Dm = 800 µm2

min ; we leave to future work an exploration of the247
effect of varying the parameter Dm, also taking into account a possible dependence on c.248

The functional dependence of the chemotactic function χ̄(c) = ψ
(1+αc)2

was experimentally
verified by [24], where nevertheless no estimate of the coefficient ψ was given. We have therefore
estimated a range of values for this parameter using the experimental data presented by [84],
where the following expression of the chemotactic function was used:

χ0NT0Kd f S

(Kd + c)2
.

In the above expression, the experimentally measured value of χ0NT0 is 0.2 cm, Kd is the249
receptor equilibrium dissociation constant and the values of f and S have been measured for250
values of the chemoattractant concentration ranging from 0 to 3×10−7 M: namely, the authors251
reported the values of S ∈ [4.3; 30]µm/min, and f ∈ [0.2, 1].252

In their experiments, the authors used a chemoattractant (the FNLLP) whose value of the253
equilibrium dissociation constant Kd (2 × 10−8 M) lies within the interval measured for the254
the dissociation constants of the chemokines involved in the inflammatory processes [5, 77].255

Recalling that nM = 10−9 Mwt pg µm−3, where Mwt is the molecular weight of the256
cytokines expressed in kDa (we used the value of 17 kDa for the molecular weight of IL−1β),257

we have obtained α = 3 × 106 µm3

pg . From ψ = χ0NT0f S/Kd, we have finally estimated258

ψ ∈ [5× 109; 176× 109] µm5

min pg .259

We have adopted the numerical value of r given by [70], r = 1.7 × 105 µm3

pg min ; this value260
also falls within the range reported in [94].261

The numerical values of the density of resting macrophages m̄ can vary significantly from262
tissue to tissue. Moreover the experimental estimate of m̄ is made more difficult from the fact263
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that it is problematic to distinguish between different macrophage subpopulations (resident,264
classically and alternatively activated), see [12]. The values reported in the medical literature265
go between 10−6cells/µm3 [59] and 10−4cells/µm3 [45]. In dermis, from the reference [92],266
one can estimate that m̄ = 5 · 10−5cells/µm3; in [83], the range [10−5; 6 · 10−5]cells/µm3 is267
reported. In this paper we fix m̄ = 3 · 10−5]cells/µm3.268

The chemokine production rate per macrophage, νc, was experimentally measured in vitro269
by [47, 57] and, based on these results, we have adopted the interval (5.7 × 10−6 − 1.96 ×270
10−5) pg min−1 cells−1.271

To estimate the inhibitor rate β and the parameter ρ introduced in the chemokine produc-272
tion term, we followed [87], where the inhibitory effect of the anti-inflammatory chemical was273
reproduced by the functional form Ka

Ka+a , where Ka is the dissociation constant of the cytokine274
a, from which β = 1/Ka and ρ=1.275

The range for chemokine decay µc ∈ [0.001; 0.03] min−1 is taken from [57].276
Finally, recalling that τ controls the slow time scale of the cytokine dynamics and that the277

anti-inflammatory mediators are detected in the site of inflammation within few minutes to278
five days after the injury [18], we set τ ∈ [1; 7200].279

In Table 1 we report the ranges of values for every parameter appearing in eqs.(2.1)-(2.2),280
and in Table 2 we report the corresponding ranges of the dimensionless parameter values used281
in the numerical simulations.282

Table 1: Values of the parameters appearing in equations (2.1)-(2.2) and used in the
present paper. For a discussion see the text.

Parameter Description Value Source

Dm Macrophages 800 µm2

min [84]
random motility

Dc Chemokine 900 µm2

min [49]
random motility

ψ Chemoattraction [5× 109; 176× 109] µm5

min pg [84]

α Receptor-binding 3× 106 µm3

pg [84]
constant

r Macrophages 1.7× 105 µm3

pg min [70]
activation rate

m̄ Average resident 3× 10−5 cells
µm3 [83, 92]

macrophages density
νc Chemokine [5.7× 10−6; 1.96× 10−5] pg

min cells [47, 57],
production rate

β Inhibition rate 3× 106 µm3

pg Estimated
ρ Inhibition rate 1 [87]
µc Chemokine decay rate [0.001; 0.03] min−1 [57]

283
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Table 2: Values of the dimensionless parameters appearing in equations (2.4) and used in
this paper.

Parameter Description Value
D Macrophages random motility 0.9
χ Chemoattraction [3.17× 10−2; 115]
α Receptor-binding constant [0.017; 1.76]
β Inhibition rate [0.017; 1.76]
ρ Inhibition exponent 1
r Macrophages activation rate [0.03; 100]
τ slow time scale [1; 7200]

284

3. Linear Analysis. The non-dimensional model has a unique nontrivial homogeneous285

steady state P ∗ = (m∗, c∗, a∗) = (1, a0, a0), where a0 = −1+
√

1+4β
2β > 0 for all β > 0. It286

corresponds to a biological state of spatially uniform inflammation where all the resident287
macrophages are activated and the immune response is sustained by a non-zero value of the288
pro-inflammatory and anti-inflammatory chemicals.289

The linearization of system (2.4) in the neighborhood of the equilibrium point P ∗ gives:290

∂

∂t

mc
a

 =

D − χ
(1+αa0)2

0

0 1 0
0 0 1

τ

∆

mc
a

+

 −ra0 0 0
1

1+βa0
−1 − β

(1+βa0)2

1
(1+βa0)τ 0 −

(
β

(1+βa0)2τ
+ 1

τ

)
291

≡ D∆[m, c, a]T +K(3.1)292293

where D is the linearized diffusion matrix and K is the linearized kinetics.294
We now suppose that the spatial domain Ω = [0, 2π], and look for solutions of the form295

(m, c, a) = (m̂, ĉ, â)eλtΦk(x), where Φk(x) = cos(kx) are the eigenfunctions of ∆ operator with296
Neumann boundary conditions. We obtain the following eigenvalue problem:297

λ

m̂ĉ
â

 = A(k)

m̂ĉ
â

 ,298

with299

(3.2) A(k) =


−k2D − ra0

k2χ
(1+αa0)2

0
1

1+βa0
−1− k2 − β

(1+βa0)2

1
(1+βa0)τ 0 −k2

τ −
(

β
(1+βa0)2τ

+ 1
τ

)
 = −k2D +K.300

According to the classical Turing analysis, if Re(λ) < 0 for all eigenvalues λ of A(k) and301
for all ks, then the homogeneous steady state P ∗ is stable. Otherwise, if for a given k there302
exists an eigenvalue λ(k) of A(k) such that Re(λ) > 0, then spatially periodic perturbations303
of the homogeneous state with wavelength 2π/k may grow exponentially in time, making the304
equilibrium unstable. In particular, if the imaginary part of the unstable eigenvalue λ is zero,305
then Turing instability occurs; alternatively, if Im{λ} 6= 0, a wave instability takes place.306
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In the absence of spatial effects, for k = 0, all the eigenvalues are negative: this implies307
that, in the absence of diffusion and chemotaxis, the homogeneous steady state P ∗ is linearly308
stable. We want to determine whether the inclusion of the linear diffusion or chemotaxis309
can destabilize the homogeneous equilibrium P ∗, thus generating stationary or oscillatory310
instability. In the following theorem we prove that the linear diffusion terms, without the311
chemotaxis, are not able to destabilize P ∗.312

Theorem 3.1. If χ = 0, then P ∗, the homogeneous equilibrium of system (2.4), is linearly313
stable.314

Proof. K is a stable matrix, i.e., by definition, the real part of all the eigenvalues of K is315
negative. Moreover, it can be easily seen that all the signed principal minors (see Definition316
2. in [14]) of K are nonnegative; this implies, by Theorem 4. in [14], that K is a strongly317
stable matrix, i.e., by definition, that for all D = diag(d1, d2, d3) real, diagonal and positive318
semidefinite matrix, the matrix K −D is stable. If χ = 0 the matrix D defined by (3.1) is a319
real, diagonal and positive semidefinite matrix; then for all k, the matrix K − k2D is stable,320
which concludes the proof.321

From the previous result, it follows that for system (2.4) the chemotaxis is the only poten-322
tially destabilizing mechanism so that, hereafter, we shall assume χ 6= 0. In what follows, we323
shall state the conditions leading to instability for k 6= 0.324

3.1. Turing and wave instability. In this subsection we shall state some theorems giving325
the necessary and sufficient conditions for the occurrence of Turing and wave instability for326
system (2.4). We set K := k2.327

Let P(λ) = λ3 + N(K)λ2 + P (K)λ + Q(K) be the characteristic polynomial of (3.2),328
where N(K), P (K) and Q(K) are polynomials in K, whose explicit expressions are reported329
in section SM1, eqs. (SM1.1)-(SM1.3).330

The Routh-Hurwitz criterion states that the all the roots of P have negative real part if331
and only if the following conditions hold:332

1)N(K) > 0, 2)Q(K) > 0 and 3)R(K) := N(K)P (K)−Q(K) > 0.333

The first condition is always satisfied. In fact, N(K) = −tr(A), and one immediately334
recognizes that the polynomial N(K) is positive for all choices of the parameters and for all335
Ks.336

Given that the first condition is satisfied, the second condition’s violation corresponds to337
the emergence of a real positive root, which generates Turing instability. From the analysis of338
the polynomial Q it is possible to obtain a critical value χT such that for χ > χT , Q(K) < 0339
in some range [K1,K2], with K1 > 0. This is the content of Theorem 3.2 below, whose proof340
is in section SM1.341

Theorem 3.2 (Conditions for Turing instability). There exist a critical value χT > 0 such342
that, at χ = χT , system (2.4) undergoes a Turing bifurcation.343

The third condition’s violation is not sufficient to ensure the emergence of wave instability.344
Indeed, the conditions N > 0, Q > 0 and R < 0 ensure the existence of a couple of roots with345
positive real parts, but we do not know whether they are complex. To have a wave instability, a346
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Figure 1: Instability regions for system (2.4): the red solid line χT (τ) represents the bifurcation
curve above which a Turing instability can be excited. The shaded areas represent the regions
where a wave instability can occur. Parameters are fixed as follows: D = 0.9, α = 0.01, β = 0.1.
(a)-(b): (τ, χ)-plane for r = 2.4 and r = 100, respectively. (c): (r, χ)-plane for τ = 100.

further condition involving the Bezoutiant matrix is necessary. This is the content of Theorem347
3.3 below. The proofs, together with the definition of the Bezoutiant matrix is given in348
section SM1.349

Theorem 3.3 (Conditions for wave instability). The system (2.4) admits a wave instability350
if and only if there exists K > 0, compatible with the boundary conditions, such that:351

(3.3) (i)Q(K) > 0, (ii) det(B(K)) < 0, (iii)R(K) < 0,352

where B(K) is the Bezoutiant matrix associated to the characteristic polynomial P(λ).353

We shall study the occurrence of Turing and wave instabilities in system (2.4) mainly354
focusing on the variation of three parameters, namely the activation rate of macrophages r,355
the chemotactic coefficient χ and the time scale of the cytokine’s dynamics τ , while keeping356
all the other parameters fixed. Concerning the other parameters, see Table 2, we shall fix357
the D = 0.9, ρ = 1, while the receptor-binding constant α and the inhibition rate β will be358
chosen to assume intermediate values among those reported in the medical literature. Using359
Theorems 3.2 and 3.3 one can determine the regions of the parameters space (r, τ, χ) in which360
either one of Turing or wave instability occurs.361

In Figures 1a and 1b, we have fixed the value of r (equal to r = 2.4 and r = 100,362
respectively) and plotted in the (τ, χ)-plane Turing bifurcation curve χT (τ), represented by363
the solid red line above which system (2.4) displays a Turing instability, and wave instability364
regions, represented by the grey regions; in Figure 1c the instability regions are plotted in365
the (r, χ)-plane for a fixed value of τ = 100. Therefore, the points of the parameter space366
chosen within the grey regions lying above the Turing bifurcation curve χT (τ) correspond to367
a parameters’ choice for which both Turing and wave instability can occur, the linear analysis368
being unable to predict which instability will prevail in the outcoming solution.369

This manuscript is for review purposes only.



12 V. GIUNTA, M.C. LOMBARDO, AND M. SAMMARTINO

From Figures 1a and 1b, we notice that the threshold value of the chemotactic coefficient370
for the occurrence of Turing patterns, χT (τ), is indeed independent on τ : biologically, this371
implies that if the chemotaxis is sufficiently strong, stationary aggregates corresponding to372
persistent foci of inflammatory activity may form independently from the time-scale of the373
anti-inflammatory response. Conversely, wave instability, which corresponds to the insurgence374
of structures whose local density oscillates in time, is significantly affected by the value of τ :375
oscillations are favored by moderate and high values of τ , while they do not occur for τ small,376
see Figures 1a and 1b. Therefore, in the case of a wave instability, if the anti-inflammatory377
mechanism sets in with a delay sufficient to permit the development of a fully inflamma-378
tory response, then a temporary resolution of the inflammation is possible. This scenario is379
consistent with the reported periodic-in-time appearance of localized skin eruptions, known380
as Recurrent Erythema Multiforme (REM) [75, 93, 48], an acute, self-limited, inflammatory381
disease of unknown etiological attribution.382

Moreover, from the comparison of Figures 1a and 1b, we can discern the effect of varying the383
parameter r on the instabilities. A higher value of the activation rate r implies that both Turing384
bifurcation threshold χT (τ) and wave instability regions are shifted upwards. This agrees with385
the expectation that an increased activation rate favors the stability of the homogeneous state,386
consequently requiring a higher chemotactic strength for aggregation. The influence of r on387
the formation of stationary and oscillatory localized inflammation can be easily evinced also388
from Figure 1c: we see that, for a fixed value of χ, the homogeneous steady state P ∗ is stable389
when r is large and that it loses stability as r decreases.390

The three Figures 1a to 1c also highlight which one of the two competing instabilities first391
sets in as χ is increased, showing that the prior occurrence of a Turing or of a wave instability392
depends on both τ and r. In fact, from Figures 1a and 1b one sees that very small values of393
τ favor stationary structures, while high values of τ favor the excitation of a wave instability;394
the threshold value of τ depends on the value of r.395

In Figure 1c, where τ has been fixed, one can observe that increasing the value of r, Turing396
bifurcation is privileged with respect to wave instability.397

To conclude this section, in Figures 2a to 2c, we present some numerical simulations398
corresponding to the different scenarios supported by the model; in all cases, the assigned399
initial condition is a random perturbation of the homogeneous equilibrium on the spatial400
interval [0, 2π

√
5] (corresponding to a physical domain of about 1.5cm-length). Figure 2a shows401

the spatio-temporal distribution of macrophages corresponding to Turing patterns; Figure 2b402
displays the macrophages density for a parameter set corresponding to a wave instability.403
In Figure 2b, we notice that the frequency of the temporal oscillations is compatible with404
the medical observations, reporting that REM is characterized by the recurrent appearance405
of distinctive target lesions with a 6.2 mean number of episodes per year. The close-up of406
Figure 2b, plotted in Figure 2c, in fact, shows the absence of localized inflammatory activity407
in the time interval elapsing between two consecutive attacks. Hence, the proposed model408
provides a mechanism that can explain the still unexplained origin of recurrent inflammations.409

In all the simulations presented in this paper, we have adopted a second-order Runge-410
Kutta time-stepping scheme and, for space discretization, a Fourier spectral scheme. We411
have enforced the no-flux boundary conditions through the use of a cosine-Fourier transform.412
For the 1D simulations, 256 modes have given enough spatial resolution to obtain numerical413
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(a) (b) (c)

Figure 2: (a): Spatio-temporal evolution of m. The parameters are as in Figure 1 and
(r, τ, χ) = (2.4, 30, 6.9), corresponding to a Turing instability. (b): Spatio-temporal evolu-
tion of m. The parameters are as in Figure 1 and (r, τ, χ) = (2.4, 200, 6.75), corresponding to
a wave instability. (c): Close-up of (b)

convergence.414

4. Weakly nonlinear analysis. In this section, we shall develop a weakly nonlinear analysis415
close to the uniform steady-state P ∗ based on the method of multiple scales [97, 26, 27, 29,416
13, 65] to predict the amplitude and the shape of Turing pattern.417

Upon defining w = (m − 1, c − a0, a − a0)T and separating the linear and the nonlinear418
part, we rewrite system (2.4) in the following form:419

(4.1)
∂tw =Lχw +∇ · QχD(w,∇w) +

1

2
QK(w,w) +∇ · CχD(w,w,∇w)

+ CK(w,w,w) +∇ · T χD (w,w,w,∇w) + TK(w,w,w,w)

+∇ · PχD(w,w,w,w,∇w) + PK(w,w,w,w,w);

420

where in the operators Lχ, QχD, C
χ
D, T

χ
D and PχD we have stressed the dependency on the421

bifurcation parameter χ. The linear operator Lχ is defined as Lχ = Dχ∆ + K where Dχ and422
K are defined in (3.1). The action of the multilinear operators is given in subsection SM2.1.423

We define the small control parameter ε2 = (χ−χc)/χc and expand the solution of system424
(4.1) and the bifurcation parameter χ in ε:425

w = εw1 + ε2w2 + ε3w3,(4.2)426

χ = χc + ε2χ(2) +O(ε4).(4.3)427428

Performing a weakly nonlinear analysis up to O(ε3), we obtain the following Stuart-Landau429
equation for the amplitude A(T ):430

(4.4)
dA

dT
= σA− LA3.431
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The details of the derivation of (4.4) are given in subsection SM2.2, while σ and L are given432
in (SM2.10). The coefficient σ, in the region of Turing instability, is always positive. On the433
other hand, L can have either sign. Therefore the dynamics of the Stuart-Landau equation434
(4.4) can be classified into two qualitatively different cases: the supercritical case, when L is435
positive, and the subcritical case, for L negative.436

In the supercritical case, there exists a stable equilibrium solution of the Stuart-Landau437
equation (4.4), namely A∞ =

√
σ/L, that represents the asymptotic value of the amplitude of438

the pattern. According to the weakly nonlinear theory, the asymptotic behavior of the solution439
is given by:440

(4.5) w = εη

√
σ

L
cos(kcx) + ε2 σ

L
(w20 + w22 cos(2kcx)) +O(ε3),441

where kc is the critical wavenumber.442

0 1.5
0.95

1

1.05

(a)

2
0

0.5

1

1.5

(b)

Figure 3: Comparison between the weakly nonlinear solution (dotted line) and the numerical
solution of system (2.4) (solid line). (a): Supercritical case: the parameters are D = 0.9, r = 5,
α = 0.01, β = 0.1, τ = 30 on the spatial interval [0, 2π

√
1.3] (corresponding to a physical

domain of about 1.14cm-length). With this choice of the parameters, one has χc = 6.779,
kc = 2.99, ε = 0.05. (b): Subcritical case: the parameters are D = 0.9, r = 0.1, α = 1,
β = 0.4, τ = 30 on the spatial interval [0, 6π] (corresponding to a physical domain of about
2cm-length). With this choice of the parameters one has χc = 1.606, kc = 0.95, ε = 0.01

In Figure 3a we show a comparison between the stationary solution (4.5) predicted by443
the weakly nonlinear analysis and the Turing pattern, computed using a numerical spectral444
scheme and reached starting from a random perturbation of the uniform steady state. The two445
solutions display an excellent agreement, the L2-norm of the distance between the numerical446
solution and the weakly nonlinear solution being consistent with the O(ε3) approximation.447

In the subcritical case the Landau coefficient L is negative, so that the equation (4.4) is not448
able to predict the amplitude of the pattern. We therefore have to push the weakly nonlinear449
expansion to the fifth order to obtain the following quintic Stuart-Landau equation for the450
amplitude A(T ):451

(4.6)
dA

dT
= σ̄A− L̄A3 + Q̄A5,452
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The details of the analysis are given in subsection SM2.3. In the subcritical case, namely453
when σ̄ > 0, L̄ < 0, and Q̄ < 0, Equation (4.6) admits two real stable equilibria, A∞,± =454 √

L̄−
√
L̄2−4σ̄Q̄

2Q̄
, which represent the asymptotic values of the amplitude A of Turing pattern.455

In this case, the amplitude A is O(ε−1) and, consequently, the emerging pattern is an O(1)456
perturbation of the equilibrium. Therefore, the solution obtained through the weakly nonlin-457
ear analysis may fail to capture the quantitative features of the emerging structures. For this458
reason, in general we cannot expect a good agreement between the asymptotic and the numer-459
ical solutions, as it happens in the supercritical case. Nevertheless, the simulation reported460
in Figure 3b shows that, close to the critical threshold, the asymptotic solution still closely461
reproduces the expected pattern.462

5. Complex behavior: coarsening dynamics, oscillations and chaos. In this section,463
we shall carry a detailed numerical investigation of system (2.4), aimed at showing that the464
presence of the cell kinetic term is able to induce complex dynamics. Therefore, in the present465
section, the main interest is probing the activation term’s effect on the solutions rather than466
reproducing observed phenomena.467

The emergence of oscillatory patterns and spatio-temporal chaotic solutions for chemotaxis468
systems of Keller-Segel-type with cell-growth terms had already been observed in [63, 64,469
91]. We shall see that the presence in system (2.4) of the cell-growth term is crucial for the470
appearance, as the parameter χ is varied, of a sequence of successive bifurcations leading to471
time-periodic patterns and spatio-temporal chaos.472

To follow the sequence of bifurcations, we fix all the parameters except χ, and track the473
emergence of different solutions, as χ is varied, adopting the same procedure used in [64],474
namely:475

1. We initialize the procedure selecting a value of χ < χT , (where χT is the critical value476
for Turing instability), and assign a random perturbation of the homogeneous steady477
state P ∗ as initial condition;478

2. system (2.4) is solved numerically until the time T = Tend, at which the system has479
reached a stable configuration, i.e., up to the time when the final state can be classified480
(either as an equilibrium, or as a periodic solution, or a chaotic state);481

3. we slightly increase the value of χ and perform a new simulation, starting from an482
initial condition that is a small random perturbation of the solution attained at the483
previous step. We then return to step 2.484

To track distinct branches originating at bifurcation points, we repeat step 3 for the same485
value of χ, starting from different random perturbations of the solution obtained for the pre-486
vious value of χ at t = Tend.487

5.1. Coarsening dynamics: the r = 0 case. We shall begin the bifurcation analysis by488
first considering the case r = 0. Namely, in this Subsection, we shall exclude from the reaction489
kinetics the macrophage activation term: we shall see that the system supports metastable490
stationary patterns, and we shall provide the mathematical justification for the observed coars-491
ening dynamics. We recall that, in the case r = 0, the equilibrium value of the macrophages492
is fixed by the initial conditions so that the corresponding homogeneous steady state is always493
marginally stable.494
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In Figure 4, we report the results of our first simulation. For the chosen parameter set,495
the linear stability analysis predicts that for χ > χT = 1.617, any arbitrarily small positive496
wavenumber’s growth rate is greater than zero. At χT,1/2 = 1.868, the first wavenumber497
admitted by the boundary conditions, namely k = 1/2, is destabilized. The simulation, in fact,498
reveals that for values of the bifurcation parameter higher than χT,1/2, the cells population499
aggregates in a unique stable peak, whose amplitude grows, concentrating on one end of the500
domain, as the chemotactic response increases.501

0
0

20

40

60

0
0

100

0.66 0.66

(a) χ = 1 (b) χ = 1.87 (c) χ = 2

(d) χ = 2.2 (e) χ = 3 (f) χ = 4

Figure 4: Numerical bifurcation analysis of system (2.4), revealing a stable branch of equilibria.
The spatial interval is [0, 2π] (corresponding to a physical domain of about 0.66cm-length),
while the parameters values are r = 0, D = 0.45, α = 0.5, β = 0.4, τ = 10,m0 = 10. The
critical value for χ is χT = 1.617, while χT,1/2 = 1.868, where χT,1/2 is the bifurcation value of
the mode k = 1/2, the first admitted by the boundary conditions. In each subfigure we plot
the profile (left) and the space-time (right) density of the macrophage species. In absence of
a cell activation term we observe aggregating dynamics leading to the formation of a stable
stationary structure.

In Figure 5, we report a numerical simulation where we have chosen a larger spatial domain502
which can admit, therefore, as stable solutions patterns with many peaks. In this case, one503
can observe the phenomenon of merging dynamics [74, 63, 64], also referred to as coarsening504
dynamics: the system, starting from a perturbation of the homogeneous equilibrium, evolves505
towards a multi-peak solution that appears stationary in time; nevertheless, on a longer time506
scale, one observes further aggregation of the structures, due to the strong chemotactic attrac-507
tion between adjacent peaks. Therefore, merging of the structures corresponds to transient508
dynamics along metastable multipeaked solutions. A detailed mathematical investigation of509
the asymptotic dynamics expected in Figure 5 is beyond this paper’s scope. However, in the510
next subsection, we shall mathematically justify the observed transitions between metastable511
states. We notice that the absence of the activation term prevents the formation of new ag-512
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Figure 5: Spatio-temporal evolution of the species m of system (2.4) with zero growth (r = 0),
showing merging dynamics. The numerical values of the parameters are r = 0, χ = 1.75, D =
0.45, α = 0.5, β = 0.4, τ = 30,m0 = 10, so that χT = 1.617 and χT, 1

2
= 1.6326, where χT, 1

2
is

the bifurcation value of the first mode admitted by the boundary conditions.

glomerates, precluding the insurgence of the emerging phase that is observed when r 6= 0, see513
subsection 5.2.514

Finally, we have tested other parameter sets and, as long as r = 0, spatio-temporal irregu-515
larity of the solutions has not been detected: therefore, our simulations strongly suggest that,516
in the absence of a cell activation term, complex dynamics are excluded.517

5.1.1. Eckhaus instability. The wavenumber adjustments observed in Figure 5 are due to518
a secondary instability, known as Eckhaus instability. We shall see that our system shows the519
typical bifurcations sequence one encounters in the Eckhaus scenario, reported in Figure 6, and520
that can be described as follows. Increasing χ beyond χT,1/2, in addition to the first destabi-521
lized mode, other pure-mode patterns, characterized by different wavenumbers, progressively522
bifurcate from the homogeneous equilibrium through primary bifurcations. Each branch of523
patterned solutions, except the first one, is unstable at the primary bifurcation and undergoes524
a sequence of secondary bifurcations; the last one, occurring at the Eckhaus threshold, sta-525
bilizes the branch. Moreover, at each secondary bifurcation, a pair of unstable mixed-modes526
states bifurcates subcritically. Therefore, for values of χ sufficiently bigger than χT,1/2, several527
pure- and mixed-mode solutions with different stability properties may coexist. Perturbations528
along the pattern’s longitudinal direction can then induce a wavelength-changing process, in-529
serting or removing stripes in the emerging solution. The above-described scenario has been530
studied in great detail in [86].531

To justify the above described scenario, in what follows we shall study the eM135810RRf4bM135810RRf4bxistence532
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Figure 6: Bifurcation diagram of stationary solutions of (2.4) illustrating the Eckhaus insta-
bility. The amplitude A of the stationary solutions to (2.4) is plotted versus the bifurcation
parameter χ. Solid (dashed) lines correspond to stable (unstable) branches of solutions. Pure-
mode branches with different wavenumbers bifurcate supercritically from the homogeneous
steady state: all branches except the first are unstable at onset. Each pure-mode branch
undergoes a sequence of bifurcations, the last of which, occurring at the Eckhaus threshold,
stabilizes the branch.

and stability properties of the striped patterns and determine the corresponding bifurcation533
thresholds. This analysis will allow us to discern, for a fixed value of the control parameter,534
which modes are stable and, consequently, to rule out from the asymptotic solutions of (2.4)535
the unstable modes that may grow in the initial and intermediate stages of the dynamics.536

We fix the small control parameter ε2 = (χ−χc)/χc and, using the same method adopted537
in section 4, perform a multiple-scale analysis. By defining the slowly varying variables: X =538
εx, T = ε2t, we obtain the following Ginzburg-Landau equation for the amplitudeA = A(X,T )539
of the pattern:540

(5.1)
∂A
∂T

= σA− γ|A|2A+ ν2 ∂
2A
∂X2

,541

where the coeffients σ, γ, ν are written in terms of the parameters of the original system (2.4).542
The solution to (4.1) then reads:543

(5.2) w = 2εRe[A(X,T )eikT x] +O(ε2).544

Upon rescaling all the variables, (5.1) can be rewritten in the following form:545

(5.3)
∂A

∂t̃
= µA− |A|2A+

∂2A

∂x̃2
,546

where x̃ ∈ [0, π]. Hence, the rescaled solution of (4.1) writes as:547
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(5.4) w̃ = 2εRe[A(x̃, t̃)eiQT x̃] +O(ε2),548

where QT is the rescaled critical Turing mode, and the base Turing pattern is recovered when549
A(x̃, t̃) =

√
µ (for more details, see [8]). We now look for nontrivial (beside A = 0 or A =

√
µ)550

solutions to (5.3), of the form CeiQx, where C is a constant, and we have omitted the tilde for551
notational simplicity. One finds that, for µ > Q2, there exist the following steady solutions to552
(5.3):553

(5.5) A =
√
µ−Q2eiQx,554

that bifurcate supercritically from A = 0 at µ = Q2. The fact that (5.4) must satisfy the555
boundary conditions imposes that are admissible only those values of Q such that QT +Q is556
an integer or semi-integer. To determine the linear stability of the solutions (5.5), we add a557
perturbation of the form558

(5.6) a(x, t) = eΛteiQx(αeikx + βe−ikx),559

with α and β real and k 6= 0. A standard linearization procedure, whose details can be found560
in [86], gives the eigenvalues561

(5.7) Λ±(Q, k, µ) = −(µ−Q2 + k2)±
√

(µ−Q2)2 + (2kQ)2,562

and the stability conditions563

(5.8) µ > µE(Q) = 3Q2 − 1

2
,564

yielding, for each branch with wavenumber QT +Q, the Eckhaus bifurcation value.565
Based on the above analysis, we now consider the dynamical transitions showed in Figure 5.566

We assign an integer or a semi-integer s to the pattern with s spatial oscillations (stripes), and567
denote its amplitude with As =

√
µ−Q2

s e
iQsx. For each s-pattern, we compute the primary568

bifurcation point µs = Q2
s and the Eckhaus bifurcation threshold µEs = 3Q2

s − 1
2 . As µ is569

a function of the control parameter χ, we derive the corresponding thresholds χs and χEs,570
expressing the primary bifurcation and the Eckhaus bifurcation values of χ, respectively; for571
each s-pattern with s = 0.5, 1, . . . , 9, the numerical values are listed in Table 3. In Table 3,572
we have also reported the corresponding eigenvalue Λ+s, computed at χ = 1.75, which is the573
value of the chemotactic coefficient chosen in the simulation reported in Figure 5.574

From Table 3, one sees that the value χ = 1.75 selected in the simulations of Figure 5 is575
greater than the primary bifurcation threshold for all the s-pure mode solutions reported in576
the Table. Therefore, at χ = 1.75, all the pure mode branches with 0.5 ≤ s ≤ 9 have already577
bifurcated from the homogeneous state and are active modes, namely, they are stationary578
solutions of (2.4). However, the pure mode solutions with 6.5 ≤ s ≤ 9 have an Eckhaus stability579
threshold χEs higher than 1.75 and are consequently unstable, a fact also confirmed by the580
positive value of their corresponding eigenvalue Λ+s. Conversely, the pure solution branches581
with 0.5 ≤ s ≤ 6 have Eckhaus stability threshold χEs below 1.75 and negative eigenvalue Λ+s582
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s χs χEs Λ+s ∗ 10−7 s χs χEs Λ+s ∗ 10−7

0.5 1.6326 − −3.4758 5 1.6603 1.7428 −1.1151

1 1.6329 1.6335 −3.4539 5.5 1.6605 1.7459 −0.91076

1.5 1.6340 1.6368 −3.3875 6 1.6609 1.7490 −0.7555

2 1.6359 1.6423 −3.2741 6.5 1.6693 1.7742 2.2119

2.5 1.6384 1.6500 −3.1089 7 1.6747 1.8189 4.2891

3 1.6418 1.6599 −2.8852 7.5 1.6883 1.8311 7.4459

3.5 1.6458 1.6721 −2.5924 8 1.7047 1.8807 12.730

4 1.6506 1.6864 −2.2159 8.5 1.7101 1.8968 23.085

4.5 1.6561 1.7030 −1.7340 9 1.7222 1.9329 49.641

Table 3: Existence and Eckhaus stability thresholds of s-patterns of system (2.4) with param-
eter values given in Figure 5. χs is the primary bifurcation point above which the pattern with
s stripes bifurcates from the homogeneous steady state. The secondary bifurcation value χsE
yields the threshold beyond which the s-stripes solution becomes Eckhaus-stable. For each
s-pure mode, the eigenvalue Λ+s is computed at the value χ = 1.75 used in the simulations of
Figure 5.

and, accordingly, are linearly stable patterns. Therefore, given that the initial condition is a583
small random perturbation of the homogeneous equilibrium, after that the rapidly decaying584
inactive modes with s > 9 have subsided, system (2.4) evolves through a sequence of long-lived585
transient states whose spectrum is a superposition of the active modes. In the first metastable586
configuration, the spectrum’s predominant component is the active mode with the smallest587
amplitude (corresponding to s = 9) that also has the smallest half-life. In the successive588
metastable configurations, pure-mode solutions of increasing amplitude and half-life prevail in589
the spectrum, resulting in the observed process of progressively longer transients, characterized590
by an increasingly smaller number of stripes in the solution profile. The dynamics ultimately591
converges towards the absorbing manifold generated by the Eckhaus-stable modes, as can be592
seen in the final state of Figure 5, whose spectrum is a superposition of the pure-mode solutions593
with s ≤ 6. A forecast of the asymptotic solution would require a nonlinear analysis that takes594
into account the competition between the different Eckhaus-stable modes (see, for example,595
[25]), which will not be performed here.596

5.2. Oscillations and chaos: the r > 0 case. We now consider the case r > 0: we show597
that the inclusion of a logistic-type kinetics term produces a wide variety of oscillatory and598
chaotic dynamics. In reaction-diffusion systems, these behaviors typically arise because of599
wave instability or interaction between Turing and Hopf instabilities; on the other hand, in600
the cases that we shall see below, oscillations occur in a parameter space’s region where the601
linear stability analysis predicts neither Hopf nor wave instabilities, but only a pure Turing602
instability. We show two numerical experiments in which we investigate the behavior of the603
solution in both a supercritical, see Figure 7, and a subcritical Turing regime, see Figure 9.604

In the first simulation, we have chosen the set of parameters indicated in Figure 7, for605
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which the linear stability analysis predicts that the homogeneous solution P ∗ becomes Turing606
unstable for χ > χT = 16.55, with most unstable wavenumber kT = 4. Figure 7 describes the607
sequence of bifurcations by which the homogeneous solution (shown in Figure 7a) loses stability608
as χ > χT : the stationary pattern predicted by the linear analysis that develops for χ & χT609
(Figure 7b) persists, with the peaks becoming sharper, as χ is further increased (Figure 7c).610
Between χ = 17.6 and χ = 17.65, the Turing pattern becomes unstable, bifurcating to a time-611
periodic spatial pattern: the numerical simulation shown in Figure 7d reveals, at χ = 17.7,612
the presence of an oscillating solution. Increasing the value of χ, the oscillation amplitude613
becomes larger further, see Figure 7e. Between χ = 18.2 and χ = 18.25, the periodic solution614
undergoes a period-doubling bifurcation, described by the doubling in the loop structure of the615
trajectories calculated at x = π, see Figure 7f; this is also confirmed by a Fourier analysis of616
the temporal behavior of the solutions that we do not report here. This new class of solutions617
remains stable up to χ = 18; at χ = 18.1, a small increment of the chemotactic term results in618
the periodic pattern to lose its stability with the appearance of an irregular spatio-temporal619
solution (Figure 7g). The chaotic solution is still present for an increased value of χ although,620
at χ = 18.5, a time-periodic pattern with a different wavenumber (k = 3.5) appears, as shown621
in Figure 7h. This type of solution remains stable until χ = 18.6, successively undergoing a622
torus bifurcation at χ = 18.625, see Figure 7i. A further increase of χ induces the occurrence623
of spatio-temporal chaotic dynamics, see Figure 7j and Figure 7k; at χ = 18.8, a stationary624
patter reappears, see Figure 7l.625

As shown in Figure 8a, the dispersion relation (at χ = 17.7, very close to the onset of626
oscillations) reveals that the critical mode kT = 4 is linearly unstable, as it has a real positive627
eigenvalue, while its 1/2-subharmonic is stable, having complex eigenvalues with negative628
real part. Therefore, according to the linearized dynamics, only stationary structures should629
establish. However, as suggested by the analysis of the spectrum of the numerically computed630
solution (see Figure 8b), the oscillations in Figure 7d are to be ascribed to a resonance between631
the Turing mode, kT = 4, and its 1/2 subharmonic: with increasing χ, in fact, there exists632
a critical value of the control parameter beyond which the instability triggers a nonlinear633
transfer of energy from the critical mode to the 1/2- mode, which begins to oscillate. As a634
result, at each spatial location the system oscillates with one frequency, but the presence of635
two unstable modes, kT and kT /2, shifts the maxima of the pattern one wavelength every half636
period of oscillation (see Figure 8c). In Figure 8d we report the anti-phase oscillations at two637
neighboring extrema.638

In Figure 9 we present another numerical experiment: for the chosen parameter set,639
the linear stability analysis predicts that the homogeneous solution P ∗ becomes unstable for640
χ > χT = 0.514 with kT = 4.5 most unstable wavenumber. Figure 9 describes a sequence in641
which the homogeneous solution (in Figure 9a) loses stability as χ > χT to a stationary pattern642
(Figure 9b). This branch remains stable until χ = 0.565, after which one observes the appear-643
ance of an irregular solution, characterized by a sequence of merging and emerging structures644
whose wavenumber oscillates between 4 and 5 (see Figure 9c). Increasing the chemotactic645
sensitivity, the system settles in a stationary-in-time pattern with a smaller wavenumber, as646
shown in Figure 9d. This transition is again found if we further increase χ: in Figure 9e an647
irregular solution is reported which is stabilized as χ = 0.67 (Figure 9f) where a stationary648
pattern with a different wavenumber appears.649
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Figure 7: Numerical bifurcation analysis of system (2.4) showing transition to irregular spatio-
temporal solutions on the spatial interval [0, 2π

√
5] (corresponding to a physical domain of

about 1.5cm-length). The parameters are r = 9, D = 0.9, α = 0.01.β = 0.1, τ = 30. In each
frame Figure 7a-Figure 7l, we plot the phase-space trajectories at the spatial location x = L/2
(L = 1.5 cm) (left), and the space-time snapshot of the macrophage density for t > Tend (right)

In both the numerical experiments showed in Figures 7 and 9, as the chemotactic parameter650
is increased, we can observe: first, a transition of striped patterns towards chaotic solutions;651
second, the stabilization to stationary patterns with different wavenumbers. The increase652
of χ causes two different phenomena: first, the stationary solution undergoes destabilizing653
bifurcations, such as the subharmonic resonance reported in Figures 7d to 7k. Second, away654
from the bifurcation threshold, additional stationary solutions with different wavenumbers arise655
from the homogeneous state through a primary instability at χn and then stabilize through656
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Figure 8: Out-of-phase oscillatory Turing pattern. The parameter values are chosen as in
Figure 7d. Figure 8a: dispersion relation at the onset of oscillations showing the real and
imaginary part of the eigenvalues, represented by solid and dashed lines respectively. The third
eigenvalue is not represented here since it is always negative. Figure 8b: Fourier spectrum of
the solution at the onset of oscillations showing excitation of the mode kc/2 = 2. Figure 8c:
the solid and dashed curves are two anti-phase patterns separated in time by T/2 ' 0.8.
Figure 8d: the solid and dashed curves are two-phase oscillations at locations separated in
space by L/2, where L = 1.5 is the length of the spatial domain.

an Eckhaus bifurcation at χEn.657
For the parameter set of Figure 7, with a procedure analogous to the one adopted in658

subsection 5.1.1, we have computed the bifurcation thresholds of the striped patterns involved659
in the numerical simulations in Figure 7. The results are listed in Table 4 and show that660
chaotic solutions stabilize when a stationary pattern becomes Eckhaus stable.661
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(a) χ = 0.51 (b) χ = 0.52 (c) χ = 0.57

(d) χ = 0.58 (e) χ = 0.66 (f) χ = 0.67

Figure 9: Numerical bifurcation analysis of system (2.4) on the spatial interval [0, 2π
√

30]
(corresponding to a physical domain of about 3.5cm-length). The parameters are r = 0.1, D =
0.9, α = 0.1, β = 0.1, τ = 30. For each subfigure Figure 9a-Figure 9f, we plot the phase-space
trajectories at the spatial location x = π (left), and the space-time snapshot of the macrophage
density (right)

n χn χEn
3 17.4124 18.7466

3.5 16.8342 17.3119

Table 4: Existence and Eckhaus stability thresholds of striped pattern of system (2.4) with
parameter values given in Figure 7. χn is the primary bifurcation point above which the
pattern with n stripes bifurcates from the homogenous state. The secondary bifurcation value
χnE represents the threshold beyond which the n-stripes solution becomes Eckhaus stable.

To conclude this section, we observe that the simulations of Figures 7 and 9 illustrate how662
the model (2.4) exhibits critical dynamics of the macrophages. In the jargon of statistical663
physics, a system is said to be at criticality when it operates in the proximity of a phase664
transition: a critical point in the phase space corresponds to a state at the edge between two665
different phases, each of whom is attained as a control parameter is varied below or above666
the transition value. When phase transitions separate a well-ordered state from a disordered667
one, the corresponding critical points are said to be at the edge of chaos. Since the ′90s,668
the hypothesis of operating at criticality has been formulated for many living systems [54,669
56], which would benefit from residing in this highly variable and adaptive dynamical regime670
and, therefore, would be evolutionarily selected for being tuned at the corresponding value671
of the control parameter. Auto-tuning at criticality of biological systems is known as self-672
oganized criticality, a concept that has been introduced in [4]. Hallmarks of criticality have673
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been recognized in enzyme kinetics [55], growth of bacterial populations [58], foraging in ant674
colonies [6], neuronal networks [7], auditory system [37]; whereas deviation from criticality675
could be the symptom or the cause of malfunctioning and pathology [35, 76, 79, 80].676

Some recent works support the hypothesis of macrophage criticality, according to which677
operating in the proximity of a critical regime would be beneficial to optimize the functioning678
of the cells, namely, it would guarantee diversity of immune response yet maintaining homeo-679
static stability. On a subcellular length scale, [10, 88] detect the presence of phase transitions680
in biological membranes that directly imply a wide phenomenology of spontaneous lipid or-681
ganization. Particularly, in [10] the authors give experimental evidence to the fact that the682
macrophage plasma membrane operates close to a critical point: in response to pro- and anti-683
inflammatory cytokine stimulation, the lipidic morphology of the membrane undergoes phase684
transitions that affect the membrane’s receptors regulating macrophage activation. Besides,685
the authors show that changes in the macrophages concentration are also able to affect the686
membrane physical properties. Since the membrane operates close to criticality, by tuning687
the macrophage density, the immune system would realize a mechanism for efficient cell ac-688
tivity regulation. In [60] the investigation of critical behavior is performed on a mesoscopic689
scale that neglects the details of intracellular processes. The authors analyze several biological690
datasets of stimulated macrophage populations and estimate the corresponding information-691
based order parameters indicating differential gene expression. Their experiments show that,692
in response to pathogen-associated molecular patterns, macrophages exhibit dynamics in the693
critical regime at the boundary between order and chaos.694

The simulations reported in Figures 7 and 9, show that the model (2.4) predicts the695
existence of regions in the parameter space where ordered states are immersed within spatio-696
temporal irregular solutions: a small variation of the control parameter induces a sequence of697
bifurcations through which the system alternately transits from well-ordered to less ordered698
configurations. For realistic values of the parameters, our model, therefore, reproduces critical699
behavior of the immune cells in extended areas of the parameter space. Large regions of700
criticality in the macrophage dynamics can also be figured out from inspection of Figure 1:701
in Figures 1a and 1b, there exist wide ranges of values of τ for which a small variation of the702
chemotactic coefficient χ determines the occurrence of sequentially alternating Turing/wave703
bifurcations, corresponding to alternate transitions from stationary to traveling agglomerates.704
A similar scenario is also depicted in Figure 1c, when one considers variations either in χ or705
in the macrophage activation rate r. From the modeling viewpoint, the presence of the cell706
activation term turns out to be essential to reproduce the presence of regions where complex707
dynamics is immersed in stable steady states, while absence of the reaction kinetics in the708
macrophage dynamics, as in the model presented in [66], results in a system characterized by709
too much stability, i.e. incapable of transitions to a disordered state.710

6. 2D stationary radially symmetric solutions. In the present and the following section,711
we shall investigate the self-organization properties of system (2.4) on 2D domains. In this712
section, we shall perform a theoretical bifurcation analysis through which we shall classify713
different axisymmetric stationary patterns supported by the model. In the following section,714
we shall numerically simulate the full 2D system and show that the proposed model can715
successfully reproduce the formation of various inflammation patterns, as observed in several716
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cutaneous rashes.717
To investigate the existence and stability of stationary radially symmetric solutions for718

system (2.4), we rewrite the model using polar coordinates (%, θ) and impose no dependency719
of the solution on θ, to obtain:720

(6.1)

∂m

∂t
= D

1

%

∂

∂%

[
%
∂m

∂%

]
− χ1

%

∂

∂%

[
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m

(1 + αc)2

∂c
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]
+ rmc(1−m),
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∂
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[
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]
+
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1 + βa
− a
}
.

721

We enforce no-flux boundary conditions on the disk % ∈ [0, R], with R = β1,n, where β1,n722
is the n-th zero of the Bessel function J1(%), and perform a weakly nonlinear analysis near723
the bifurcation value, following the same technique used in Section 4. Due to the loss of724
translation symmetry, we now expect a transcritical instead of a pitchfork bifurcation to occur725
at criticality. We set ε = (χ − χc)/χc, define the characteristic time T = εt, and write the726
solution of (6.1) close to the homogeneous steady state P ∗ as the following expansion:727

(6.2) w =

m−m0

c− c0

a− a0

 = εw1 + ε2w2 + ε3w3 +O(ε4).728

Collecting the terms at each order in ε, we obtain a sequence of equations for the wis. At729
O(ε) we get the following linear problem:730

(6.3) Lχcw1 = 0,731

where Lχc = Dχc 1
%
∂
∂%

[
% ∂
∂%

]
+K and the expressions of D and K are given in (3.1). The solution732

of Eq. (6.3) satisfying the boundary conditions is:733

(6.4) w1 = A(T )η J0(kcx), with η ∈ Ker(K − k2
cDχc),734

where A(T ) is the amplitude of the pattern, unknown at this level, and the vector η is given735
by (SM2.2). At O(ε2), we obtain the following linear equation:736

(6.5) Lχcw2 = F.737

The explicit expression of F is given in section SM3. Imposing the solvability condition for738
equation (6.5), we obtain the following evolution equation for the leading order amplitude739
A(T ):740

(6.6)
dA

dT
= σA− LA2,741

where the explicit expressions of coefficients σ and L (the Landau constant) in terms of the742
parameters of the full system are computed in section SM3.743
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Figure 10: Bifurcation diagram of the transcritical transition of the steady states of (6.6). Solid
red (dashed black) lines represent stable (unstable) branches of equilibria. Two qualitatively
different plots are possible, depending on being L < 0 (shown in (a)), or L > 0 (shown in (b))

9 10 11 12 13 14 15
0

0.5

1

1.5

2

L

M

m(0)

χ

P

(a)

9.48 9.5 9.52 9.54 9.56 9.58
0.02

0.04

0.06

0.08 M

m(0)

χ

(b)

Figure 11: (a): Numerically computed bifurcation diagram of system (6.1) as χ is varied.
All the other parameters are fixed as D = 0.9, α = 1, β = 0.1, r = 1, τ = 30. Solid red
(dashed black) lines represent stable (unstable) branches of equilibria. (b): Enlargement of
the box in (a), showing a subcritical stable branch of ring solutions. The stationary solutions
corresponding to the points labeled by L and M are shown in Figure 12.

The steady state solutions of Equation (6.6) are A∗1 = 0 and A∗2 = σ/L. The sign of744
the nontrivial state A∗2 determines qualitatively different solutions: when A∗2 is positive, the745
solution exhibits a bump at the origin, that we shall call a bump solution. Instead, A∗2 negative746
corresponds to a solution that has a local minimum at r = 0 and a ring at the outer edge of747
the domain: we shall name it a ring solution. The stability of both types of solutions depends748
on the sign of L, that determines a transcritical transition of the equilibria of Equation (6.6)749
at the bifurcation value: for L < 0, the steady-state bump solution exists only for negative σ750
where it is unstable, while the steady-state ring solution exists and is stable for positive values751
of σ; the converse happens for L > 0, see Figure 10.752
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Figure 12: Stationary solutions of (6.1) corresponding to the points labeled by L and M in
Figure 11. The parameters are the same as in Figure 11. (a)-(b): Spatial distribution of the
cytokine and of the macrophage density at the point L showing a bull’s eye pattern. (c)-(d):
Spatial distribution of the cytokine and of the macrophage density at the point M showing a
ring solution with a clearer core

We now show some numerical simulations. In all the numerical experiments reported in753
the present and the next section, we shall fix the values of all the parameters but α and r. We754
observe that, for r fixed, the Landau constant L is a decreasing function of α, so that negative755
values of L are easily obtained considering high values of the receptor-binding constant α.756
Fixing the parameter values as in Figure 11 on the domain [0, β1,3], where β1,3 is the 3rd root757
of the Bessel function J1, one gets a positive value of the coefficient L in (6.6). Therefore, based758
on the weakly nonlinear analysis, and close to the transition point, we expect an unstable ring759
solution below the critical value of χ, (here χc = 15.2), and a stable bump solution above the760
threshold. This result is confirmed by the numerical bifurcation diagram of the full system761
(6.1), computed through the software AUTO and showed in Figure 11: close to the bifurcation762
point, the behavior is in fact as predicted by the weakly nonlinear approximation. However,763
the numerical analysis far from threshold, reveals the existence of two subcritical branches of764
steady solutions, bistable with the spatially homogeneous state, and corresponding to a bump765
and a ring solution, respectively. The spatial distribution of the macrophages and cytokine766
densities at the points labeled by L and M in the bifurcation diagram Figure 11 are shown in767
Figure 12.768

Fixing now the parameters values as in Figure 13 on the spatial domain [0, β1,15], the769
weakly nonlinear analysis prescribes a negative value of the coefficient L in (6.6). Therefore770
we expect an unstable bump solution below the critical value of χ (here χc = 1.53) and a ring771
solution above the threshold. This is in agreement with the numerical bifurcation diagram772
of (6.1) reported in Figure 13, that, close to the primary bifurcation point, shows a stable773
branch of ring solutions bifurcating supercritically from the uniform steady state. Far from774
the primary transition, the numerical analysis detects several bifurcation points (of saddle-775
node type), from which stable branches of multirings and bull’s eye solutions emerge that776
coexist for large intervals of the chemotaxis coefficient. The spatial distribution of the species777
densities corresponding to the labeled points in Figure 13 are shown in Figure 14. We notice778
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Figure 13: (a): Numerically computed bifurcation diagram of system (6.1) as χ is varied. The
parameters are fixed as D = 0.9, α = 0.1, β = 0.1, r = 0.01, τ = 30. Solid red (dashed black)
lines represent stable (unstable) branches of equilibria. (b): Enlargement of the box in (a),
showing a far-from-equilibrium stable branch of stationary bump solutions arising out of a
saddle-node bifurcation. The stationary solutions corresponding to the points labeled by G,
H, I and J are shown in Figure 14.

that the points G and J correspond to branches of solutions having a bump at the origin,779
while H and I correspond to solutions with a local minimum density at ρ = 0.780

The comparison of the inflammatory patterns showed in Figures 12-14 with the images781
taken from patients suffering EAC and reported in Figure 15, proves that the proposed model782
is able to reproduce qualitatively different inflammatory rashes, ranging from one-ring to bull’s783
eye and multi-rings.784

7. Numerical simulations in 2D. In the previous section we have mathematically classified785
stationary solutions of the model (6.1) with circular symmetry. In this section we shall perform786
a numerical investigation of the full system (2.1)-(2.2) on a 2D square domain. Our goal is787
two-fold: on the one hand, we want to simulate the evolution in time of the inflammation and788
compare it with the available medical data, also exploring the effect of varying the numerical789
values of the parameters. We do not intend to explore all biologically significant regions of790
the parameter space but show that the system can reproduce phenomena observed in clinical791
practice. We shall see that the model supports the appearance of localized inflammatory792
structures having the form of hotspots, bull’s eye, and rings, typical of some classes of skin793
erythemas, such as the EAC. On the other hand, we want to provide a numerical justification794
to the study performed in the previous Section, showing that an initially highly localized795
stimulus initiates the formation of inflammatory structures that exhibit radial symmetry.796

The numerical solution is computed as described in Section 5. We shall assume that797
the inflammation is triggered by a highly localized concentration of activated macrophages,798
deriving from an initial insult. Therefore, as the initial condition, we shall set a bump in the799
macrophages spatial distribution and zero initial density for both the cytokine species. We800
enforce Neumann boundary conditions on the square domain [0, 6] cm× [0, 6] cm.801

Figure 16 shows the spatio-temporal evolution of the macrophages in a case when the802
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Figure 14: Stationary solutions of (6.1) corresponding to the labeled points in Figure 13.
The parameters are the same as in Figure 13. Spatial distribution of the cytokine and of the
macrophage density (a)-(b): at the point G. (c)-(d): at the point J . (e)-(f): at the point H.
(g)-(h): at the point I

(a) (b)

Figure 15: Clinical images of Erythema Annulare Centrifugum. (a): Coexistence of one-ring
and bull’s eye inflammatory patterns. (b): A polycyclic lesion
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(a) (b)

(c) (d)

Figure 16: Temporal evolution of the macrophage species for system (2.4). The parameters
are D = 0.9, α = 0.1, β = 0.1, r = 0.1, τ = 30, χ = 3 so that χc = 4.92.

chosen value of the parameter χ is below the Turing threshold, so that we expect the formation803
of a uniformly distributed inflammatory activity. The numerical solution in fact appears as804
a small red spot (Figure 16b), which subsequently enlarges (Figure 16c, Figure 16d). The805
proposed model therefore supports the formation of a homogeneous rash.806

Figure 17 shows the simulation obtained by increasing the value of χ and keeping the807
other parameters fixed as before. In this case, initially, the solution appears as a small red808
spot (Figure 17b), which subsequently enlarges while the central area is clearing (Figures 17c809
and 17d). The resulting pattern is a ring, which adequately reproduces the evolutive phases810
of EAC reported in Figure 18. From the numerical simulations, we have also been able to811
measure the rash growth rate: it is higher in the first days, due to the low density of the anti-812
inflammatory cytokine, subsequently slowing down until it reaches vanishingly small values.813
The estimated average growth rate of the diameter turns out to be about 3 mm/day, that is814
perfectly in agreement with the clinical data [71].815

Figure 19 shows a temporal sequence of the numerical solution obtained still increasing816
the value of χ, while maintaining the others constant. As before, the rash appears on the skin817
as a little spot (Figure 19b), its diameter increases while the density of macrophages in the818
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(a) (b)

(c) (d)

Figure 17: Temporal evolution of the macrophage species for system (2.4). The parameters
are the same as in Figure 16, except for χ = 4.5.

(a)

Figure 18: Progression of Erythema Annulare Centrifugum in the same patient: it is possible
to observe the evolution of the rash, which first appears as a small red-spot, which enlarges as
the central area clears. Images are provided by courtesy of RegionalDerm.com
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(a) (b)

(c) (d)

Figure 19: Temporal evolution of the macrophage species for system (2.4). The parameters
are as in Figure 16 except for χ = 5

central area decreases (Figure 19c). As time progresses, the macrophage density raises again819
in the core, so that the resulting solution is a bull’s eye pattern (Figure 19d). The effect of820
increasing the chemotactic parameter with respect to the parameter set given in Figure 17 is821
that in this case, the erythema growth rate attains a smaller value, namely about 2 mm/day,822
a value that is still compatible with the medical measurements.823

We notice that the above-exposed results are in agreement with the nonlinear analysis824
performed on the corresponding radial system (6.1) presented in Section 6. In fact, fixing the825
parameters as in Figure 16, one gets χc = 4.92 and a positive value of the the coefficient L826
appearing in the amplitude equation (6.6). This implies the existence of a ring solution below827
the Turing threshold and of a bump solution above criticality. On the other hand, far below828
the Turing threshold, the analysis predicts a homogeneous pattern. Hence all the simulations829
represented in Figures 16-19 confirm the previsions.830

We conclude this section by considering the effect of increasing the activation rate r of831
macrophages. For the parameter set chosen in Figure 20 the theoretical predictions of the832
weakly nonlinear analysis prescribe χc = 9.1 and L < 0, so that a stable branch of stationary833
rings is expected above the threshold. The resulting simulation of the full system, in fact, shows834
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(a) (b)

(c) (d)

Figure 20: Temporal evolution of the macrophage species for system (2.4). The parameters
are: D = 0.9, α = 0.1, β = 0.1, r = 3, τ = 30, χ = 10.

the appearance of two rings around a cleared central area, as shown in Figure 20. Therefore a835
high value of r not only accelerates the formation of the rash on the skin, but also promotes836
the formation of more rings.837

8. Conclusions. In this paper, we have proposed and investigated a reaction-diffusion-838
chemotaxis model for acute inflammation. We have performed a theoretical and numerical839
investigation of the model using realistic values of the parameters, retrieving them in the840
experimental literature, see Table 1. We have shown that our model can reproduce typical841
patterns observed in the clinical practice, such as bull’s eye and rings, see Figures 15 and 18.842
Moreover, the model describes the recurrent inflammatory attacks reported by patients suf-843
fering from REM. This is the first time a mathematical model can reproduce these clinical844
patterns to the best of our knowledge. The solutions mentioned above are the result of a845
Turing or a wave bifurcation destabilizing a uniform equilibrium. We have constructed these846
solutions using the amplitude equation analysis and validated them by detailed numerical847
simulations of the complete system. Through a numerical bifurcation analysis far from the848
instability threshold, we have also found that the inclusion of a macrophage activation term849
is responsible for generating chaos. The presence in this model of sequences of bifurcations850
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leading to complex spatio-temporal dynamics can be considered a hallmark of self-organized851
criticality in macrophages dynamics [60]: the immune system might benefit from operating in852
the proximity of a critical boundary between organized and disorganized states, maintaining853
the right balance between stability and adaptability. We believe that the wide variety of pat-854
terns supported by the two systems presented in this paper and [66] gives evidence that this855
class of models captures the main mechanisms driving inflammatory rashes.856

We point out several open problems left unsolved by the present analysis and possible di-857
rections for future research. First, one should investigate the formation of localized structures,858
like those organized in a homoclinic snaking bifurcation scenario, that could account for the859
appearance of isolated foci of inflammation. Second, we believe that the investigation of the860
mechanisms underlying the appearance of spatio-temporal irregular solutions requires further861
study. In fact, the oscillations of the periodic structures reported in the numerical simulations862
of Figures 7 and 9 are unexpected based on the linear analysis since, in the considered parame-863
ter regime, the proposed system does not support any Hopf or wave instability. We conjecture864
that a spatial resonance of the fundamental Turing mode with its subharmonics originates865
the observed spatio-temporal periodic solutions, analogously to what is discussed in [28]. It866
would be interesting to derive the normal forms of the resonant interaction and investigate867
the phase instabilities which initiate the chaotic dynamics [11]. From the modeling point of868
view, we remark that this model does not describe phenomena occurring in later stages of869
the inflammatory process, like sepsis or spontaneous resolution. A refined model would be870
necessary to follow the inflammatory process in these phases. Finally, since a broad class871
of anti-inflammatory drugs acts on macrophages’ activation rate, we believe that the present872
system could be a useful tool to design optimized therapies.873
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