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Pattern formation and transition to chaos in a chemotaxis model of acute
inflammation *

Valeria Giunta®, Maria Carmela Lombardo}, and Marco Sammartino®

Abstract. We investigate a reaction-diffusion-chemotaxis system that describes the immune response during an
inflammatory attack. The model is a modification of the system proposed in Penner et al. [SIAM
Journal on Applied Dynamical Systems, 11, 2 (2012), pp. 629-660]. We introduce a logistic term
in the immune cell dynamics to reproduce the macrophages’ activation, allowing us to describe the
disease evolution from the early stages to the acute phase. We focus on the appearance of pattern
solutions and their stability. We discover steady-state (Turing) and Hopf instabilities and classify the
bifurcations deriving the corresponding amplitude equations. We study stationary radially symmetric
solutions and show that they reproduce various inflammatory aggregates observed in the clinical
practice. Moreover, the model supports oscillating-in-time spatial patterns, thus giving a theoretical
explanation of the periodic appearance of inflammatory eruptions typical of Recurrent Erythema
Multiforme. A detailed numerical bifurcation analysis indicates that the inclusion of the logistic
growth term is crucial for the occurrence of a sequence of bifurcations leading to spatio-temporal
chaos. In the parameter space, there are large regions where the model system displays critical
behavior.

Key words. Inflammation model, Chemotaxis, Pattern formation, Bifurcation analysis, Transition to chaos,
Criticality
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1. Introduction. In this paper, we shall introduce a reaction-diffusion-chemotaxis model
that describes the initial stages of inflammatory disease. Using the normal form analysis
we shall construct solutions representing coherent aggregates of inflammation and oscillatory
patterns. To the best of our knowledge, the model is the first to reproduce the formation and
the dynamics of localized patches of skin rashes, typically observed in the clinical practice.

1.1. The physiological basis of inflammation. Inflammation is the body response to out-
side threats like stress, infection, pathogens, or damaged cells. It is a highly complex process,
where pro- and anti-inflammatory agents work synergistically to ensure a quick restoration
of tissue health [85]. A dis-regulation of the inflammatory response can give rise to chronic
inflammation [46] and lead to a wide range of diseases, such as cancer [67], atherosclerosis [22],
asthma [32] and autoimmune diseases [23].

There is a consensus that the macrophages are the immune system cells that play a pivotal
role in all stages of the inflammation [9, 20]. In the presence of a threat, macrophages enter an
activated state that may display two different phenotypes [53]: in the early stages of inflam-
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mation, they mainly present the M1(classically activated) phenotype [15], characterized by
pro-inflammatory activity: they release toxicants for eliminating the threat and produce pro-
inflammatory mediators (cytokines) that significantly contribute to the recruitment and the
activation of more immune cells [42, 44] . Subsequently, macrophages change their polarization
into the M2 |52, 81| (alternatively activated) state, aimed at suppressing the inflammatory ac-
tivity by releasing pro-resolution mediators (such as IL-10), which inhibit the production of
pro-inflammatory cytokines [82].

The cytokines IFN-v, IFN-«, TNF-« are involved in the activation of macrophages |9, 82].
On the opposite side, IL-10 and IL-11, among others, have a strong anti-inflammatory effect
and reduce the production of pro-inflammatory mediators from activated macrophages [1].
Finally, the so-called chemokines stimulate chemotaxis [42, 82], namely the directed movement
of cells along a concentration gradient of a chemical.

In the present paper, following [66], we shall denote by chemokines the pro-inflammatory
mediators, also responsible for chemotaxis, and by cytokines the anti-inflammatory molecules.

1.2. Modeling and mathematical aspects of reaction-diffusion-chemotaxis systems.
In the last years, to explain the evolution of the inflammatory process, several mathemat-
ical modeling approaches have emerged, The models, mainly based on ordinary differential
equations systems, have played an essential role in understanding the dynamical relationship
between the many pathological mechanisms involved in inflammation |20, 62, 69, 87, 89, 90].
However, due to the extreme complexity of the inflammatory signaling pathways, only a few
of them have taken into account the species’ spatial distribution. The first study on rash
formation based on reaction-diffusion systems is in [38], where the authors selected simple
toy model equations (Segel and Levin model and Keener and Tyson model) to represent the
primary mechanisms for the autogenic formation of Type I (stationary) and Type II (moving
waves) patterns. In the same spirit, and seeking to understand the genesis of self-supporting
inflammatory traveling waves in the absence of specific pathogenic stimuli, a three-species
reaction-diffusion-chemotaxis system was proposed and studied in [66]. It describes the in-
teraction between a fixed population of immune cells, a pro-inflammatory chemokine, and an
anti-inflammatory cytokine. The reaction term does not consider the cell kinetics; this implies
that during the evolution of the inflammatory response, the number of activated macrophages
remains constant. Under these assumptions, the authors analyzed stationary and traveling-
wave solutions; they showed that the inclusion of inhibition of chemoattractant production by
the anti-inflammatory chemical determines oscillatory instabilities corresponding to propagat-
ing patterns.

In this paper, to describe macrophages recruitment during the inflammatory response,
we generalize the model presented in [66] introducing a logistic term in the macrophages
equation. There is, in fact, experimental evidence that, after the tissue-resident macrophages
have initiated the inflammatory cascade, activation of the immune cells persists with the
goal to amplify the inflammatory response [42]. After initial recognition of the microbial
challenge, resident macrophages, also favored by the pro-inflammatory activity performed by
the chemokines [53], drive the influx of monocyte-derived macrophages as a source of further
inflammation [17].

Therefore, including in the model the activation term allows us to describe the early
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A CHEMOTAXIS MODEL OF ACUTE INFLAMMATION 3

stages of the inflammatory response, namely, the cascade of both pro-inflammatory and anti-
inflammatory species following the initial insult and their corresponding spatial dynamics.
Moreover, it yields the possibility of investigating the effect of varying the strength of the
activation rate on the system dynamics: since identification and regulation of the activation
status of macrophages is believed to be a useful diagnostic and therapeutic tool for various
diseases [72], such analysis can provide valuable information about the effects of aberrant or
impaired activation on inflammation and the effect of different therapeutic strategies.

The cells’ movement is modeled through a linear diffusive term, which accounts for ran-
dom motion, and through a nonlinear chemotactic term, which describes cell motility along
the chemical gradient. The chemotactic term is of the widely used Keller-Segel-type that in-
corporates a signal-dependent sensitivity function [34]: it reproduces the fact that, at high
concentrations of the chemical, the cell receptors are all occupied so that the macrophages do
not sense the gradient.

Loss of regularity is a well known and intensively studied phenomenon displayed by the
solutions of the classical Keller-Segel system with linear sensitivity function; for example, on
2-dimensional spatial domains, the explosion in a finite time may occur if the initial mass is
above a critical threshold [36, 96]. Instead, the inclusion of a limited-growth chemotactic term
[2, 19, 91] or of a logistic-type reaction term [34, 61, 62, 95] has blow-up-inhibiting effects.
Therefore, the saturating functional form of the chemoattractant’s sensing, other than being
a biologically meaningful hypothesis, is sufficient to avoid blow-up of the solutions. Moreover,
the presence of the quadratic absorption term in the logistic source, accounting for competition-
induced mechanisms that are generally present in most situations of biological importance, also
prevents the non-physical unboundedness of solutions. The realistic combination of limited
chemotaxis and growth yields a class of well-posed models of increased complexity whose
solutions display a rich structure of asymptotic profiles and dynamics |21, 41, 50, 51, 64].

In what follows we shall keep the mathematical description of a yet complicated phe-
nomenon simple: the focus of this work is to show that a simplified model, which includes the
basic mechanisms of activation and chemotactic movement, can reproduce some pathologically
relevant clinical features and, possibly, account for the evolution of idiopathic diseases.

1.3. Results. We shall first investigate the conditions on the system parameters that
determine the excitation of Turing and wave instabilities. We stress that in the set-up of the
model, we shall consider only mechanisms whose role is acknowledged in the medical literature
and whose corresponding functional forms have been experimentally verified. Therefore all
numerical values of the parameters used in this paper will be taken from the experimental
literature, except for the macrophages activation rate whose value has been estimated in [70].
We shall show that if the chemotactic coefficient is small, namely below the thresholds for
both the Turing and wave instabilities to set in, then the aggregation strength is not sufficient
to induce the formation of highly localized zones of inflammation. In this case, the model
reproduces a diffused inflammatory state of the type observed in many cutaneous rashes.

On the other hand, high values of the chemotaxis can induce two different instabilities,
depending on the value of the parameter that regulates the anti-inflammatory time-scale: if
the anti-inflammatory response is fast, a large chemotactic term can excite a Turing instability
with the consequent formation of stationary patterns. In this case, the investigation of the
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4 V. GIUNTA, M.C. LOMBARDO, AND M. SAMMARTINO

system dynamics on 2D spatial domains will show that the model provides the key mechanism
for the formation of the skin rashes observed in Erythema Annulare Centrifugum (EAC), a
very aggressive form of cutaneous rash [16, 78|, characterized by symmetrically distributed
target lesions with typical ring-shaped patterns [39].

For large values of both the anti-inflammatory time scale and the chemotaxis coefficient,
the linear analysis predicts the presence of large regions in the parameters space where wave
instability occurs. The corresponding numerical simulations show the formation of oscillating-
in-time spatial patterns, that qualitatively reproduce the time-periodic appearance of localized
skin eruptions characteristic of the Recurrent Erythema Multiforme (REM) [48, 75, 93]. There-
fore the present model proposes a possible mechanism for explaining the insurgence of recurrent
inflammations, whose etiology is still unknown.

A significant consequence of the introduction of cellular growth is the occurrence of spatio-
temporal irregular solutions, that one cannot observe in the absence of the cell kinetic term.
We shall show that when macrophages’ activation rate is absent, the Turing patterns are
metastable: on a logarithmic time scale, they display coarsening dynamics, whereas the cre-
ation of new structures is ruled out. Instead, increasing the macrophages activation rate,
we shall observe the occurrence of a sequence of successive bifurcations, leading to chaotic
spatio-temporal dynamics characterized by irregularly merging and emerging structures. The
presence of aperiodic merging-emerging phenomena has also been detected in Keller-Segel-type
models with logistic growth term [21, 50, 64].

As a final remark, we mention the derivation in Subsection 3.1 of the necessary and suffi-
cient conditions for the onset of instability in a three-component reaction-diffusion-chemotaxis
system. When the diffusion matrix is diagonal and semidefinite positive, one can find sev-
eral theorems stating the conditions for the linear instability of a multi-component system
[3, 14, 33, 73]. Less attention has been paid to instability in chemotaxis models: in these
cases, commonly, one invokes the Routh-Hurwitz or the Gershgorin Circle Theorem, both as-
serting only sufficient conditions to localize the corresponding linearized problem’s eigenvalues.
In the present paper, we shall address the root’s localization problem through the Sylvester
criterion, namely studying the positive definiteness of the Bezoutiant matrix [68], obtaining
necessary and sufficient conditions for the onset of instability. We believe that this approach
can be useful in the analysis of analogous models.

1.4. Plan of the paper. In Section 2, we shall illustrate the main assumptions underlying
the construction of the model and present the ranges of numerical values of the parameters
used in the simulations. In Section 3, we shall perform the linear stability analysis to determine
the conditions on the system parameters for the occurrence of Turing and wave instability. In
Section 4, through a weakly nonlinear analysis, we shall derive the amplitude equation of the
stationary patterns to characterize supercritical and subcritical transitions at the onset. In
Section 5, we shall investigate the role of different activation rates on the system dynamics: we
shall show that the inclusion of the growth term induces a sequence of successive oscillatory
bifurcations leading to chaotic dynamics. In Section 6, we shall investigate radially symmetric
solutions and prove that the proposed model can reproduce the formation of qualitatively
different ring-shaped skin eruptions observed in EAC. In Section 7, we support the analysis
of Section 6 through extensive numerical simulations performed on fully 2D domains. Finally,
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A CHEMOTAXIS MODEL OF ACUTE INFLAMMATION 5

for the reader’s convenience, we have added some supplementary material where we report the
proofs of the Theorems and some technical details.

2. A mathematical model of inflammation. In this Section we shall present a chemotaxis-
reaction-diffusion model that describes the interaction between a population of macrophages
m(x,t), a pro-inflammatory chemokine ¢(x,t), and an anti-inflammatory cytokine a(x,t). All
the quantities are intended as concentrations in space.

The proposed model generalizes the system introduced by [66] in the sense that it takes
into account cell kinetics.

2.1. Activated macrophages. We assume that the following equation rules the evolution
of the immune cells population:

om m m
2.1 - =Vo (D Vem) =V (h—V, =)
2.1) i = Ve (DnTam) = Vo (0 Vae) e n)
Diffusion Activation

Chemotaxis

The first term in Equation (2.1) describes the diffusion of the cells due to random motion; Dy, is
the diffusivity coefficient. The second term models the chemoattraction of macrophages along
the gradient of the chemical signal. The sensitivity function x(c) = (H%)Q that describes the
rate of attraction, has been derived in the so-called receptor-binding model [34] and displays
saturation for increasing values of ¢. The parameter i represents the maximal chemotactic
rate; a modulates the saturation of the chemokine receptors. The third term in (2.1) is the
novelty of the present model with respect to the dynamics presented in [66], where the number
of activated immune cells, imposed by the initial condition, was held fixed after activation.
Here we want to consider the effects of macrophages activation driven by inflammation, which
might concur to the settling of a recurrent or persistent inflammatory state. In fact, it is well
known that, due to the presence of pro-inflammatory chemical species, macrophages release
toxicants agents, such as oxygen-free radicals [85]. Such toxicants, if on the one hand, can kill
bacteria and destroy foreign bodies; on the other hand, they can also damage hosting tissue,
inducing more inflammation [40] with the consequent recruitment of more immune cells. Hence,
cytokines and macrophages act to amplify the inflammatory signal, promoting the activation
of more immune cells [53]. Therefore, we introduce an activation term with mass-action type
kinetics, proportional to the product of the macrophage and chemokine densities, and that
saturates for the increasing concentration of the macrophages to mimic cell depletion. The
same functional form was adopted in [43]|. Here r and m represent the growth rate coefficient
and the carrying capacity of the activated macrophages, respectively. The carrying capacity m
has the meaning of the average density of the resting macrophages; the resting macrophages
act as a cellular pool for the activated macrophages, so that, when m = m, all the resting
immune cells have turned into their active state. As in [66], the initial insult that triggers the
immune system is described by the initial conditions, assuming that the pathogen has already
been eliminated, as typical in runaway inflammations.

2.2. Pro- and Anti-Inflammatory Molecules. We assume that the pro- and anti-inflammatorylj

cytokines have the same evolution, namely:
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Production

The first term on the right-hand side of both equations represents the diffusion of molecules
with diffusivity coefficients D, and Dy, respectively. The second term in (2.2) describes the pro-
duction of the chemical species by macrophages, the denominator representing the inhibitory
effect of the anti-inflammatory cytokines on the activity of previously activated macrophages
[1]. The parameters v. and v, are the production rates per macrophage, while 8 and p control
the inhibitory effects of the cytokines. Finally, the last terms in (2.2) represent the natural
decay of both molecules, with decay rates . and p,, respectively.

Since the production of anti-inflammatory mediators is relatively late compared to the
production of pro-inflammatory chemicals, following [66], we shall set Dy = D./T, vq = vc/T
and p, = pe/7, where 7 is a small parameter which regulates the slower time scale of the
anti-inflammatory molecules.

2.3. The non-dimensional form of the model. We introduce the following set of non-
dimensional variables and parameters

D
m*:@, ¢ = ,uc_ c,a* = Ma_ a, D* = = % = pet,
(2.3) m Vem VM D,
’ Lhe S 77 78 Yvem o, VUem «  Vam
x* = x? T - T? X = b = a? ﬁ == IB'
D, H% NCDC 2% Ha

With this non-dimensionalization, we have chosen chemokines’ average lifetime as the reference
time scale and the average distance traveled by a pro-inflammatory molecule during its average
lifetime as the reference spatial-scale.

Using (2.3), the model can be written in the following non-dimensional form, where we
have dropped the asterisks:

om m
e DAm —V - (X(l n ac)2Vc> + rme(1 —m),
oc m

24) oA T B ©

Oa _Aa 1[0 m
ot 1 1T\ 1+ Bar '
When r = 0, system (2.4) reduces to the model reported in [66].

If our system evolves on the spatial domain 2, at the boundary we impose homogeneous
no-flux Neumann boundary conditions that reduce to:

(2.5) Vm=Ve=Va=0, on 0.
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A CHEMOTAXIS MODEL OF ACUTE INFLAMMATION 7

2.4. Parameter estimation. In this section, we give an estimation of the parameters ap-
pearing in the system (2.1)-(2.2). The assessment of precise numerical values to the different
constants is highly arduous, not only because of the experimental difficulties associated with
the measurements but also because such values significantly depend on the tissue where inflam-
mation occurs. For these reasons, we have usually given a range of values for the parameters,
taking into account both available experimental data and estimates derived in mathematical
models of inflammation already presented in the literature.

We shall use the following units: min for the time, pm for the length, nM for the chemical
concentration and pm™3 for the density of cells.

The diffusion coefficients, both for macrophages and signaling molecules, are easily found
in the literature. The chemokine diffusion rate, is usually estimated using the molecular weight

[31], and we adopt the value given by [49], that is D, = 900 £ nllj Concerning the macrophage
diffusion rate, there is no general consensus on its value because there is a strong dependence
on the tissue and on other biological factors involved, among which there is also chemokine
concentration. In the paper [49], the range of values [240;4200] pm?/min is reported. Notice
also that, since chemokines are smaller than immune cells, they can move relatively faster and,
in the huge range of variability reported in [49] (the range given in [30] is even wider), it is
reasonable to assume that the macrophage diffusion rate is lower than the signaling molecules’
diffusivity, i.e., Dy, < D.. Therefore, we fix the value of D,, in the lower end of the range

reported in [49], and we pick D,, = 800 ’fnnli, we leave to future work an exploration of the
effect of varying the parameter D,,, also taking into account a possible dependence on c.
The functional dependence of the chemotactic function y(c) = ﬁ was experimentally
verified by [24], where nevertheless no estimate of the coefficient ¢ was given. We have therefore
estimated a range of values for this parameter using the experimental data presented by [84],

where the following expression of the chemotactic function was used:

XoN, Ka f S
(Ka+0)? ~

In the above expression, the experimentally measured value of xoNr, is 0.2 cm, Ky is the
receptor equilibrium dissociation constant and the values of f and S have been measured for
values of the chemoattractant concentration ranging from 0 to 3x 107 M: namely, the authors
reported the values of S € [4.3;30] pum/min, and f € [0.2,1].

In their experiments, the authors used a chemoattractant (the FNLLP) whose value of the
equilibrium dissociation constant Kz (2 x 1078 M) lies within the interval measured for the
the dissociation constants of the chemokines involved in the inflammatory processes [5, 77].

Recalling that nM = 107 Mwt pg pm ™3, where Mwt is the molecular weight of the
cytokines expressed in kDa (we used the value of 17 kDa for the molecular weight of IL—15),

we have obtained o = 3 X 106“p—n§. From ¢ = xoNg,f S/Kq4, we have finally estimated
¥ €[5 x 10% 176 x 109 -2

min pg’
We have adopted the numerical value of 7 given by [70], r = 1.7 x 10°
also falls within the range reported in [94].
The numerical values of the density of resting macrophages m can vary significantly from
tissue to tissue. Moreover the experimental estimate of m is made more difficult from the fact

3
pm® s
D min this value
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8 V. GIUNTA, M.C. LOMBARDO, AND M. SAMMARTINO

that it is problematic to distinguish between different macrophage subpopulations (resident,
classically and alternatively activated), see [12|. The values reported in the medical literature
go between 10 5cells/um? [59] and 10~ *cells/um? [45]. In dermis, from the reference [92],
one can estimate that m = 5 - 10~ 5cells/um3; in [83], the range [1075;6 - 10~5]cells/um? is
reported. In this paper we fix m = 3 - 10~%]cells/um3.

The chemokine production rate per macrophage, v., was experimentally measured in vitro
by [47, 57] and, based on these results, we have adopted the interval (5.7 x 1076 — 1.96 x
107°) pg min~! cells™!.

To estimate the inhibitor rate 8 and the parameter p introduced in the chemokine produc-
tion term, we followed [87], where the inhibitory effect of the anti-inflammatory chemical was
reproduced by the functional form Kfa{ia, where K, is the dissociation constant of the cytokine
a, from which 8 =1/K, and p=1.

The range for chemokine decay p. € [0.001; 0.03] min~! is taken from [57].

Finally, recalling that 7 controls the slow time scale of the cytokine dynamics and that the
anti-inflammatory mediators are detected in the site of inflammation within few minutes to
five days after the injury [18], we set 7 € [1;7200].

In Table 1 we report the ranges of values for every parameter appearing in eqs.(2.1)-(2.2),
and in Table 2 we report the corresponding ranges of the dimensionless parameter values used
in the numerical simulations.

Table 1: Values of the parameters appearing in equations (2.1)-(2.2) and used in the
present paper. For a discussion see the text.

Parameter  Description Value Source
2
Dy, Macrophages 800 L [84]
random motility
2
D, Chemokine 900 £ [49]
min
random motility
5
Chemoattraction [5 % 109; 176 x 109] -4 [84]
s pg
o Receptor-binding 3 x 108 B [84]
constant
3
5 _pm
r Macrophages 1.7 x10° S [70]
activation rate
m Average resident 3 x 1075 cells (83, 92]
pm
macrophages density
Ve Chemokine [5.7 x 1076; 1.96 x 107%] —PE_—  [47, 57],
min cells
production rate
3 Inhibition rate 3% 100 Lm> Estimated
p Inhibition rate 1 [87]
e Chemokine decay rate  [0.001; 0.03] min—! [57]
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A CHEMOTAXIS MODEL OF ACUTE INFLAMMATION 9

Table 2: Values of the dimensionless parameters appearing in equations (2.4) and used in
this paper.

Parameter  Description Value

D Macrophages random motility 0.9

X Chemoattraction [3.17 x 10™2; 115]
«a Receptor-binding constant [0.017; 1.76]

B Inhibition rate [0.017; 1.76]

p Inhibition exponent 1

r Macrophages activation rate [0.03; 100]

T slow time scale [1; 7200]

3. Linear Analysis. The non-dimensional model has a unique nontrivial homogeneous
steady state P* = (m*,c*,a*) = (1,a9,a9), where ap = —1+27\{8W > 0 for all 5 > 0. It
corresponds to a biological state of spatially uniform inflammation where all the resident
macrophages are activated and the immune response is sustained by a non-zero value of the
pro-inflammatory and anti-inflammatory chemicals.

The linearization of system (2.4) in the neighborhood of the equilibrium point P* gives:

g ™ D - (1+c>z<ao)2 0 m _ZGO 01 Oﬁ
ke 0 1 O|Alc|+ | TH8a0 — ~ (1+Bao)?
1 1 B 1
0 0 - a0 (o )
(3.1) = DA[m,c,a]’ + K

where D is the linearized diffusion matrix and K is the linearized kinetics.

We now suppose that the spatial domain Q = [0, 27], and look for solutions of the form
(m,c,a) = (1, ¢, a)eM® (), where @, (x) = cos(kz) are the eigenfunctions of A operator with
Neumann boundary conditions. We obtain the following eigenvalue problem:

m m
Alc| = A(k) ¢,
a a
with
2 k2
—k Dl— rag W Oﬁ
2
(3.2) A(k) = ¥ Bag -1-k ~ [T Ba0)? = —k’D+K.
1 k2 Jé] 1
(1+Bao)T 0 T ((1+,8a0)27' + ;)

According to the classical Turing analysis, if Re(A) < 0 for all eigenvalues A of A(k) and
for all ks, then the homogeneous steady state P* is stable. Otherwise, if for a given k there
exists an eigenvalue A(k) of A(k) such that Re(\) > 0, then spatially periodic perturbations
of the homogeneous state with wavelength 27/k may grow exponentially in time, making the
equilibrium unstable. In particular, if the imaginary part of the unstable eigenvalue A is zero,
then Turing instability occurs; alternatively, if Im{A} # 0, a wave instability takes place.
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In the absence of spatial effects, for k = 0, all the eigenvalues are negative: this implies
that, in the absence of diffusion and chemotaxis, the homogeneous steady state P* is linearly
stable. We want to determine whether the inclusion of the linear diffusion or chemotaxis
can destabilize the homogeneous equilibrium P*, thus generating stationary or oscillatory
instability. In the following theorem we prove that the linear diffusion terms, without the
chemotaxis, are not able to destabilize P*.

Theorem 3.1. If x = 0, then P*, the homogeneous equilibrium of system (2.4), is linearly
stable.

Proof. K is a stable matrix, i.e., by definition, the real part of all the eigenvalues of K is
negative. Moreover, it can be easily seen that all the signed principal minors (see Definition
2. in [14]) of K are nonnegative; this implies, by Theorem 4. in [14], that IC is a strongly
stable matrix, i.e., by definition, that for all D = diag(dy,dz,d3) real, diagonal and positive
semidefinite matrix, the matrix K — D is stable. If y = 0 the matrix D defined by (3.1) is a
real, diagonal and positive semidefinite matrix; then for all k, the matrix K — k2D is stable,
which concludes the proof. |

From the previous result, it follows that for system (2.4) the chemotaxis is the only poten-
tially destabilizing mechanism so that, hereafter, we shall assume y # 0. In what follows, we
shall state the conditions leading to instability for k # 0.

3.1. Turing and wave instability. In this subsection we shall state some theorems giving
the necessary and sufficient conditions for the occurrence of Turing and wave instability for
system (2.4). We set K := k2.

Let P(\) = A* + N(K)\? + P(K)\ + Q(K) be the characteristic polynomial of (3.2),
where N(K), P(K) and Q(K) are polynomials in K, whose explicit expressions are reported
in section SM1, egs. (SM1.1)-(SM1.3).

The Routh-Hurwitz criterion states that the all the roots of P have negative real part if
and only if the following conditions hold:

DN(K)>0, 2)Q(K)>0and  3)R(K):= N(K)P(K)— Q(K) > 0.

The first condition is always satisfied. In fact, N(K) = —tr(A), and one immediately
recognizes that the polynomial N(K) is positive for all choices of the parameters and for all
Ks.

Given that the first condition is satisfied, the second condition’s violation corresponds to
the emergence of a real positive root, which generates Turing instability. From the analysis of
the polynomial @ it is possible to obtain a critical value x7 such that for x > x7, Q(K) <0
in some range [K7, K3, with Ky > 0. This is the content of Theorem 3.2 below, whose proof
is in section SM1.

Theorem 3.2 (Conditions for Turing instability). There exist a critical value x7 > 0 such
that, at x = xr, system (2.4) undergoes a Turing bifurcation.

The third condition’s violation is not sufficient to ensure the emergence of wave instability.
Indeed, the conditions N > 0, > 0 and R < 0 ensure the existence of a couple of roots with
positive real parts, but we do not know whether they are complex. To have a wave instability, a
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Figure 1: Instability regions for system (2.4): the red solid line y7(7) represents the bifurcation
curve above which a Turing instability can be excited. The shaded areas represent the regions
where a wave instability can occur. Parameters are fixed as follows: D = 0.9, = 0.01, 8 = 0.1.
(a)-(b): (7, x)-plane for r = 2.4 and r = 100, respectively. (c): (r, x)-plane for 7 = 100.

further condition involving the Bezoutiant matrix is necessary. This is the content of Theorem
3.3 below. The proofs, together with the definition of the Bezoutiant matrix is given in
section SM1.

Theorem 3.3 (Conditions for wave instability). The system (2.4) admits a wave instability
if and only if there exists K > 0, compatible with the boundary conditions, such that:

(3.3) () Q(K) >0,  (id)det(B(K)) <0,  (iii) R(K) < 0,

where B(K) is the Bezoutiant matriz associated to the characteristic polynomial P(N).

We shall study the occurrence of Turing and wave instabilities in system (2.4) mainly
focusing on the variation of three parameters, namely the activation rate of macrophages r,
the chemotactic coefficient x and the time scale of the cytokine’s dynamics 7, while keeping
all the other parameters fixed. Concerning the other parameters, see Table 2, we shall fix
the D = 0.9, p = 1, while the receptor-binding constant « and the inhibition rate § will be
chosen to assume intermediate values among those reported in the medical literature. Using
Theorems 3.2 and 3.3 one can determine the regions of the parameters space (r, 7, x) in which
either one of Turing or wave instability occurs.

In Figures la and 1b, we have fixed the value of r (equal to r = 2.4 and r = 100,
respectively) and plotted in the (7, x)-plane Turing bifurcation curve yr(7), represented by
the solid red line above which system (2.4) displays a Turing instability, and wave instability
regions, represented by the grey regions; in Figure lc the instability regions are plotted in
the (r, x)-plane for a fixed value of 7 = 100. Therefore, the points of the parameter space
chosen within the grey regions lying above the Turing bifurcation curve y7(7) correspond to
a parameters’ choice for which both Turing and wave instability can occur, the linear analysis
being unable to predict which instability will prevail in the outcoming solution.
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From Figures 1a and 1b, we notice that the threshold value of the chemotactic coefficient
for the occurrence of Turing patterns, x7(7), is indeed independent on 7: biologically, this
implies that if the chemotaxis is sufficiently strong, stationary aggregates corresponding to
persistent foci of inflammatory activity may form independently from the time-scale of the
anti-inflammatory response. Conversely, wave instability, which corresponds to the insurgence
of structures whose local density oscillates in time, is significantly affected by the value of :
oscillations are favored by moderate and high values of 7, while they do not occur for 7 small,
see Figures la and 1b. Therefore, in the case of a wave instability, if the anti-inflammatory
mechanism sets in with a delay sufficient to permit the development of a fully inflamma-
tory response, then a temporary resolution of the inflammation is possible. This scenario is
consistent with the reported periodic-in-time appearance of localized skin eruptions, known
as Recurrent Erythema Multiforme (REM) [75, 93, 48|, an acute, self-limited, inflammatory
disease of unknown etiological attribution.

Moreover, from the comparison of Figures 1a and 1b, we can discern the effect of varying the
parameter r on the instabilities. A higher value of the activation rate r implies that both Turing
bifurcation threshold x7(7) and wave instability regions are shifted upwards. This agrees with
the expectation that an increased activation rate favors the stability of the homogeneous state,
consequently requiring a higher chemotactic strength for aggregation. The influence of r on
the formation of stationary and oscillatory localized inflammation can be easily evinced also
from Figure 1c: we see that, for a fixed value of x, the homogeneous steady state P* is stable
when r is large and that it loses stability as r decreases.

The three Figures la to 1c also highlight which one of the two competing instabilities first
sets in as y is increased, showing that the prior occurrence of a Turing or of a wave instability
depends on both 7 and 7. In fact, from Figures la and 1b one sees that very small values of
7 favor stationary structures, while high values of 7 favor the excitation of a wave instability;
the threshold value of 7 depends on the value of r.

In Figure 1c, where 7 has been fixed, one can observe that increasing the value of r, Turing
bifurcation is privileged with respect to wave instability.

To conclude this section, in Figures 2a to 2c, we present some numerical simulations
corresponding to the different scenarios supported by the model; in all cases, the assigned
initial condition is a random perturbation of the homogeneous equilibrium on the spatial
interval [0, 27+/5] (corresponding to a physical domain of about 1.5¢m-length). Figure 2a shows
the spatio-temporal distribution of macrophages corresponding to Turing patterns; Figure 2b
displays the macrophages density for a parameter set corresponding to a wave instability.
In Figure 2b, we notice that the frequency of the temporal oscillations is compatible with
the medical observations, reporting that REM is characterized by the recurrent appearance
of distinctive target lesions with a 6.2 mean number of episodes per year. The close-up of
Figure 2b, plotted in Figure 2c, in fact, shows the absence of localized inflammatory activity
in the time interval elapsing between two consecutive attacks. Hence, the proposed model
provides a mechanism that can explain the still unexplained origin of recurrent inflammations.

In all the simulations presented in this paper, we have adopted a second-order Runge-
Kutta time-stepping scheme and, for space discretization, a Fourier spectral scheme. We
have enforced the no-flux boundary conditions through the use of a cosine-Fourier transform.
For the 1D simulations, 256 modes have given enough spatial resolution to obtain numerical
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Figure 2: (a): Spatio-temporal evolution of m. The parameters are as in Figure 1 and
(r,7,x) = (2.4,30,6.9), corresponding to a Turing instability. (b): Spatio-temporal evolu-
tion of m. The parameters are as in Figure 1 and (r, 7, x) = (2.4,200,6.75), corresponding to
a wave instability. (c): Close-up of (b)
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convergence.

4. Weakly nonlinear analysis. In this section, we shall develop a weakly nonlinear analysis
close to the uniform steady-state P* based on the method of multiple scales [97, 26, 27, 29,
13, 65] to predict the amplitude and the shape of Turing pattern.

Upon defining w = (m — 1,¢ — ag,a — ag)” and separating the linear and the nonlinear
part, we rewrite system (2.4) in the following form:

1
ow =LXw + V- QF(w,Vw) + §QK(W,W) + V- C5(w,w,Vw)

(4.1) + Cr(w,w,w) + V- T (w,w,w, VW) + T (W, w, w, w)
+V- Pg(“’?Waw:Wa VW) +PK(W7W7W’W’W);

where in the operators £X, QY C}(), ’T[))‘ and P])f, we have stressed the dependency on the
bifurcation parameter y. The linear operator £X is defined as £X = DXA + K where DX and
KC are defined in (3.1). The action of the multilinear operators is given in subsection SM2.1.

We define the small control parameter €2 = (x — x.)/X. and expand the solution of system
(4.1) and the bifurcation parameter x in e:

4.2) W = ewy + £2wy + 5wy,
(4.3) X =xe+ X +0(e*).

Performing a weakly nonlinear analysis up to O(g3), we obtain the following Stuart-Landau
equation for the amplitude A(T):

dA s
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14 V. GIUNTA, M.C. LOMBARDO, AND M. SAMMARTINO

The details of the derivation of (4.4) are given in subsection SM2.2, while ¢ and L are given
in (SM2.10). The coefficient o, in the region of Turing instability, is always positive. On the
other hand, L can have either sign. Therefore the dynamics of the Stuart-Landau equation
(4.4) can be classified into two qualitatively different cases: the supercritical case, when L is
positive, and the subcritical case, for L negative.

In the supercritical case, there exists a stable equilibrium solution of the Stuart-Landau
equation (4.4), namely A, = y/0/L, that represents the asymptotic value of the amplitude of
the pattern. According to the weakly nonlinear theory, the asymptotic behavior of the solution
is given by:

(4.5) w = 5n\/§cos(kcx) + 82%(W20 + Wag cos(2k.z)) + O(e3),

where k. is the critical wavenumber.

e =10.05

1.05

0.95

0 z(cm) 15

(a) (b)

Figure 3: Comparison between the weakly nonlinear solution (dotted line) and the numerical
solution of system (2.4) (solid line). (a): Supercritical case: the parameters are D = 0.9, r = 5,
a = 0.01, = 0.1, 7 = 30 on the spatial interval [0,27/1.3] (corresponding to a physical
domain of about 1.14cm-length). With this choice of the parameters, one has y. = 6.779,
k. = 2.99, ¢ = 0.05. (b): Subcritical case: the parameters are D = 0.9, »r = 0.1, a = 1,
B = 0.4, 7 = 30 on the spatial interval [0, 67] (corresponding to a physical domain of about
2c¢m-length). With this choice of the parameters one has x. = 1.606, k. = 0.95, ¢ = 0.01

In Figure 3a we show a comparison between the stationary solution (4.5) predicted by
the weakly nonlinear analysis and the Turing pattern, computed using a numerical spectral
scheme and reached starting from a random perturbation of the uniform steady state. The two
solutions display an excellent agreement, the L?-norm of the distance between the numerical
solution and the weakly nonlinear solution being consistent with the O(¢3) approximation.

In the subcritical case the Landau coefficient L is negative, so that the equation (4.4) is not
able to predict the amplitude of the pattern. We therefore have to push the weakly nonlinear
expansion to the fifth order to obtain the following quintic Stuart-Landau equation for the
amplitude A(T):

dA

4, — =GA—LA3+QA®
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The details of the analysis are given in subsection SM2.3. In the subcritical case, namely
when ¢ > 0,L < 0, and @ < 0, Equation (4.6) admits two real stable equilibria, As + =

L—\/L2-45Q
2Q

In this case, the amplitude A is O(¢~!) and, consequently, the emerging pattern is an O(1)
perturbation of the equilibrium. Therefore, the solution obtained through the weakly nonlin-
ear analysis may fail to capture the quantitative features of the emerging structures. For this
reason, in general we cannot expect a good agreement between the asymptotic and the numer-
ical solutions, as it happens in the supercritical case. Nevertheless, the simulation reported
in Figure 3b shows that, close to the critical threshold, the asymptotic solution still closely
reproduces the expected pattern.

, which represent the asymptotic values of the amplitude A of Turing pattern.

5. Complex behavior: coarsening dynamics, oscillations and chaos. In this section,
we shall carry a detailed numerical investigation of system (2.4), aimed at showing that the
presence of the cell kinetic term is able to induce complex dynamics. Therefore, in the present
section, the main interest is probing the activation term’s effect on the solutions rather than
reproducing observed phenomena.

The emergence of oscillatory patterns and spatio-temporal chaotic solutions for chemotaxis
systems of Keller-Segel-type with cell-growth terms had already been observed in [63, 64,
91]. We shall see that the presence in system (2.4) of the cell-growth term is crucial for the
appearance, as the parameter x is varied, of a sequence of successive bifurcations leading to
time-periodic patterns and spatio-temporal chaos.

To follow the sequence of bifurcations, we fix all the parameters except x, and track the
emergence of different solutions, as x is varied, adopting the same procedure used in [64],
namely:

1. We initialize the procedure selecting a value of x < xr, (where x7 is the critical value
for Turing instability), and assign a random perturbation of the homogeneous steady
state P* as initial condition;

2. system (2.4) is solved numerically until the time T" = Ti,q, at which the system has
reached a stable configuration, i.e., up to the time when the final state can be classified
(either as an equilibrium, or as a periodic solution, or a chaotic state);

3. we slightly increase the value of x and perform a new simulation, starting from an
initial condition that is a small random perturbation of the solution attained at the
previous step. We then return to step 2.

To track distinct branches originating at bifurcation points, we repeat step 3 for the same
value of x, starting from different random perturbations of the solution obtained for the pre-
vious value of xy at t = Tepqg.

5.1. Coarsening dynamics: the r = 0 case. We shall begin the bifurcation analysis by
first considering the case r = 0. Namely, in this Subsection, we shall exclude from the reaction
kinetics the macrophage activation term: we shall see that the system supports metastable
stationary patterns, and we shall provide the mathematical justification for the observed coars-
ening dynamics. We recall that, in the case r = 0, the equilibrium value of the macrophages
is fixed by the initial conditions so that the corresponding homogeneous steady state is always
marginally stable.
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16 V. GIUNTA, M.C. LOMBARDO, AND M. SAMMARTINO

In Figure 4, we report the results of our first simulation. For the chosen parameter set,
the linear stability analysis predicts that for x > yr = 1.617, any arbitrarily small positive
wavenumber’s growth rate is greater than zero. At X7/ = 1.868, the first wavenumber
admitted by the boundary conditions, namely k = 1/2, is destabilized. The simulation, in fact,
reveals that for values of the bifurcation parameter higher than X7/, the cells population
aggregates in a unique stable peak, whose amplitude grows, concentrating on one end of the
domain, as the chemotactic response increases.

100
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40
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20
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100

t
\ 20\
o (cm) o088 O

2(cm x(cm) 066 o w(em) 086 % a(cm) 066

(b) x = 1.87 (c) x =2
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(d) x =22 (e) x=3 (f) x =4

Figure 4: Numerical bifurcation analysis of system (2.4), revealing a stable branch of equilibria.
The spatial interval is [0, 27] (corresponding to a physical domain of about 0.66¢m-length),
while the parameters values are r = 0,D = 0.45,a = 0.5,8 = 0.4,7 = 10,mg = 10. The
critical value for y is x7 = 1.617, while x71 /o = 1.868, where x7,1 /7 is the bifurcation value of
the mode k = 1/2, the first admitted by the boundary conditions. In each subfigure we plot
the profile (left) and the space-time (right) density of the macrophage species. In absence of
a cell activation term we observe aggregating dynamics leading to the formation of a stable
stationary structure.

In Figure 5, we report a numerical simulation where we have chosen a larger spatial domain
which can admit, therefore, as stable solutions patterns with many peaks. In this case, one
can observe the phenomenon of merging dynamics |74, 63, 64|, also referred to as coarsening
dynamics: the system, starting from a perturbation of the homogeneous equilibrium, evolves
towards a multi-peak solution that appears stationary in time; nevertheless, on a longer time
scale, one observes further aggregation of the structures, due to the strong chemotactic attrac-
tion between adjacent peaks. Therefore, merging of the structures corresponds to transient
dynamics along metastable multipeaked solutions. A detailed mathematical investigation of
the asymptotic dynamics expected in Figure 5 is beyond this paper’s scope. However, in the
next subsection, we shall mathematically justify the observed transitions between metastable
states. We notice that the absence of the activation term prevents the formation of new ag-
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Figure 5: Spatio-temporal evolution of the species m of system (2.4) with zero growth (r = 0),
showing merging dynamics. The numerical values of the parameters are r =0,y = 1.75, D =
0.45,ac = 0.5,8 = 0.4, 7 = 30, mg = 10, so that yp = 1.617 and X7,1 = 1.6326, where X1 is
the bifurcation value of the first mode admitted by the boundary conditions.

glomerates, precluding the insurgence of the emerging phase that is observed when r # 0, see
subsection 5.2.

Finally, we have tested other parameter sets and, as long as r = 0, spatio-temporal irregu-
larity of the solutions has not been detected: therefore, our simulations strongly suggest that,
in the absence of a cell activation term, complex dynamics are excluded.

5.1.1. Eckhaus instability. The wavenumber adjustments observed in Figure 5 are due to
a secondary instability, known as Eckhaus instability. We shall see that our system shows the
typical bifurcations sequence one encounters in the Eckhaus scenario, reported in Figure 6, and
that can be described as follows. Increasing x beyond x7,1 /2, in addition to the first destabi-
lized mode, other pure-mode patterns, characterized by different wavenumbers, progressively
bifurcate from the homogeneous equilibrium through primary bifurcations. Each branch of
patterned solutions, except the first one, is unstable at the primary bifurcation and undergoes
a sequence of secondary bifurcations; the last one, occurring at the Eckhaus threshold, sta-
bilizes the branch. Moreover, at each secondary bifurcation, a pair of unstable mixed-modes
states bifurcates subcritically. Therefore, for values of y sufficiently bigger than x7.; /2, several
pure- and mixed-mode solutions with different stability properties may coexist. Perturbations
along the pattern’s longitudinal direction can then induce a wavelength-changing process, in-
serting or removing stripes in the emerging solution. The above-described scenario has been
studied in great detail in [86].

To justify the above described scenario, in what follows we shall study the eM135810RRf4bM135810R Rf4bxisten:
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Figure 6: Bifurcation diagram of stationary solutions of (2.4) illustrating the Eckhaus insta-
bility. The amplitude A of the stationary solutions to (2.4) is plotted versus the bifurcation
parameter x. Solid (dashed) lines correspond to stable (unstable) branches of solutions. Pure-
mode branches with different wavenumbers bifurcate supercritically from the homogeneous
steady state: all branches except the first are unstable at onset. Each pure-mode branch
undergoes a sequence of bifurcations, the last of which, occurring at the Eckhaus threshold,
stabilizes the branch.

and stability properties of the striped patterns and determine the corresponding bifurcation
thresholds. This analysis will allow us to discern, for a fixed value of the control parameter,
which modes are stable and, consequently, to rule out from the asymptotic solutions of (2.4)
the unstable modes that may grow in the initial and intermediate stages of the dynamics.

We fix the small control parameter €2 = (x — x.)/X. and, using the same method adopted
in section 4, perform a multiple-scale analysis. By defining the slowly varying variables: X =
ex, T = £t, we obtain the following Ginzburg-Landau equation for the amplitude A = A(X,T)
of the pattern:

DA )
(5.1) o7 = oA APA LY

, 024
ax2’

where the coeffients o, v, v are written in terms of the parameters of the original system (2.4).
The solution to (4.1) then reads:

(5.2) w = 2¢ Re[A(X, T)e*7%] + O(£?).
Upon rescaling all the variables, (5.1) can be rewritten in the following form:

A
o0z’

HA
5.3 - = uA— |A]PA
(5.3) 5 M |A[FA +

where Z € [0, 7]. Hence, the rescaled solution of (4.1) writes as:
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(5.4) W = 2¢ Re[A(%,1)e'97%) + O(£?),

where @7 is the rescaled critical Turing mode, and the base Turing pattern is recovered when
A(Z,t) = \/p (for more details, see [8]). We now look for nontrivial (beside A =0 or A = ,/n)
solutions to (5.3), of the form Ce’@*, where C is a constant, and we have omitted the tilde for
notational simplicity. One finds that, for g > Q?, there exist the following steady solutions to
(5.3):

(5.5) A=y — Q29"

that bifurcate supercritically from A = 0 at g = Q2. The fact that (5.4) must satisfy the
boundary conditions imposes that are admissible only those values of ) such that Qp + @ is
an integer or semi-integer. To determine the linear stability of the solutions (5.5), we add a
perturbation of the form

(5.6) a(z, t) = eMel@% (qe™ 4 ge= k),

with « and f real and k # 0. A standard linearization procedure, whose details can be found
in [86], gives the eigenvalues

(5.7) AL(Q k) = —(p— Q° + k) £ /(1 — Q)2 + (2kQ)?,

and the stability conditions

(5.8) p> (@) = 3Q — .

yielding, for each branch with wavenumber Q7 + @, the Eckhaus bifurcation value.

Based on the above analysis, we now consider the dynamical transitions showed in Figure 5.
We assign an integer or a semi-integer s to the pattern with s spatial oscillations (stripes), and
denote its amplitude with Ay = \/pu — Q2 €'@?  For each s-pattern, we compute the primary
bifurcation point ps = Q% and the Eckhaus bifurcation threshold ups = 3Q? — % As u is
a function of the control parameter y, we derive the corresponding thresholds ys and xgs,
expressing the primary bifurcation and the Eckhaus bifurcation values of y, respectively; for
each s-pattern with s = 0.5,1,...,9, the numerical values are listed in Table 3. In Table 3,
we have also reported the corresponding eigenvalue A, ;, computed at x = 1.75, which is the
value of the chemotactic coefficient chosen in the simulation reported in Figure 5.

From Table 3, one sees that the value x = 1.75 selected in the simulations of Figure 5 is
greater than the primary bifurcation threshold for all the s-pure mode solutions reported in
the Table. Therefore, at xy = 1.75, all the pure mode branches with 0.5 < s < 9 have already
bifurcated from the homogeneous state and are active modes, namely, they are stationary
solutions of (2.4). However, the pure mode solutions with 6.5 < s < 9 have an Eckhaus stability
threshold xgs higher than 1.75 and are consequently unstable, a fact also confirmed by the
positive value of their corresponding eigenvalue A ;. Conversely, the pure solution branches
with 0.5 < s < 6 have Eckhaus stability threshold x gs below 1.75 and negative eigenvalue A4
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5 Xs XEs Ay %1077 s Xs XEs Apgx1077
0.5 1.6326 — —3.4758 5 1.6603 1.7428 —1.1151

1 1.6329 1.6335 —3.4539 5.5 1.6605 1.7459 —0.91076
1.5 1.6340 1.6368 —3.3875 6 1.6609 1.7490 —0.7555

2 1.6359 1.6423 —3.2741 6.5 1.6693 1.7742 2.2119

2.5 1.6384 1.6500 —3.1089 7 1.6747 1.8189 4.2891

3 1.6418 1.6599 —2.8852 7.5 1.6883 1.8311 7.4459

3.5 1.6458 1.6721 —2.5924 8 1.7047 1.8807 12.730

4 1.6506 1.6864 —2.2159 8.5 1.7101 1.8968 23.085

4.5 1.6561 1.7030 —1.7340 9 1.7222 1.9329 49.641

Table 3: Existence and Eckhaus stability thresholds of s-patterns of system (2.4) with param-
eter values given in Figure 5. x; is the primary bifurcation point above which the pattern with
s stripes bifurcates from the homogeneous steady state. The secondary bifurcation value xsg
yields the threshold beyond which the s-stripes solution becomes Eckhaus-stable. For each
s-pure mode, the eigenvalue A, is computed at the value x = 1.75 used in the simulations of
Figure 5.

and, accordingly, are linearly stable patterns. Therefore, given that the initial condition is a
small random perturbation of the homogeneous equilibrium, after that the rapidly decaying
inactive modes with s > 9 have subsided, system (2.4) evolves through a sequence of long-lived
transient states whose spectrum is a superposition of the active modes. In the first metastable
configuration, the spectrum’s predominant component is the active mode with the smallest
amplitude (corresponding to s = 9) that also has the smallest half-life. In the successive
metastable configurations, pure-mode solutions of increasing amplitude and half-life prevail in
the spectrum, resulting in the observed process of progressively longer transients, characterized
by an increasingly smaller number of stripes in the solution profile. The dynamics ultimately
converges towards the absorbing manifold generated by the Eckhaus-stable modes, as can be
seen in the final state of Figure 5, whose spectrum is a superposition of the pure-mode solutions
with s < 6. A forecast of the asymptotic solution would require a nonlinear analysis that takes
into account the competition between the different Eckhaus-stable modes (see, for example,
[25]), which will not be performed here.

5.2. Oscillations and chaos: the » > 0 case. We now consider the case r > 0: we show
that the inclusion of a logistic-type kinetics term produces a wide variety of oscillatory and
chaotic dynamics. In reaction-diffusion systems, these behaviors typically arise because of
wave instability or interaction between Turing and Hopf instabilities; on the other hand, in
the cases that we shall see below, oscillations occur in a parameter space’s region where the
linear stability analysis predicts neither Hopf nor wave instabilities, but only a pure Turing
instability. We show two numerical experiments in which we investigate the behavior of the
solution in both a supercritical, see Figure 7, and a subcritical Turing regime, see Figure 9.

In the first simulation, we have chosen the set of parameters indicated in Figure 7, for
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which the linear stability analysis predicts that the homogeneous solution P* becomes Turing
unstable for y > xy7 = 16.55, with most unstable wavenumber k7 = 4. Figure 7 describes the
sequence of bifurcations by which the homogeneous solution (shown in Figure 7a) loses stability
as x > xr: the stationary pattern predicted by the linear analysis that develops for x 2 xr
(Figure 7b) persists, with the peaks becoming sharper, as x is further increased (Figure 7c).
Between x = 17.6 and x = 17.65, the Turing pattern becomes unstable, bifurcating to a time-
periodic spatial pattern: the numerical simulation shown in Figure 7d reveals, at x = 17.7,
the presence of an oscillating solution. Increasing the value of x, the oscillation amplitude
becomes larger further, see Figure 7e. Between x = 18.2 and y = 18.25, the periodic solution
undergoes a period-doubling bifurcation, described by the doubling in the loop structure of the
trajectories calculated at x = m, see Figure 7f; this is also confirmed by a Fourier analysis of
the temporal behavior of the solutions that we do not report here. This new class of solutions
remains stable up to xy = 18; at x = 18.1, a small increment of the chemotactic term results in
the periodic pattern to lose its stability with the appearance of an irregular spatio-temporal
solution (Figure 7g). The chaotic solution is still present for an increased value of y although,
at x = 18.5, a time-periodic pattern with a different wavenumber (k = 3.5) appears, as shown
in Figure 7h. This type of solution remains stable until x = 18.6, successively undergoing a
torus bifurcation at xy = 18.625, see Figure 7i. A further increase of x induces the occurrence
of spatio-temporal chaotic dynamics, see Figure 7j and Figure 7k; at x = 18.8, a stationary
patter reappears, see Figure 7.

As shown in Figure 8a, the dispersion relation (at x = 17.7, very close to the onset of
oscillations) reveals that the critical mode kp = 4 is linearly unstable, as it has a real positive
eigenvalue, while its 1/2-subharmonic is stable, having complex eigenvalues with negative
real part. Therefore, according to the linearized dynamics, only stationary structures should
establish. However, as suggested by the analysis of the spectrum of the numerically computed
solution (see Figure 8b), the oscillations in Figure 7d are to be ascribed to a resonance between
the Turing mode, kr = 4, and its 1/2 subharmonic: with increasing x, in fact, there exists
a critical value of the control parameter beyond which the instability triggers a nonlinear
transfer of energy from the critical mode to the 1/2- mode, which begins to oscillate. As a
result, at each spatial location the system oscillates with one frequency, but the presence of
two unstable modes, kr and k7 /2, shifts the maxima of the pattern one wavelength every half
period of oscillation (see Figure 8c). In Figure 8d we report the anti-phase oscillations at two
neighboring extrema.

In Figure 9 we present another numerical experiment: for the chosen parameter set,
the linear stability analysis predicts that the homogeneous solution P* becomes unstable for
x > xt = 0.514 with kr = 4.5 most unstable wavenumber. Figure 9 describes a sequence in
which the homogeneous solution (in Figure 9a) loses stability as x > xr to a stationary pattern
(Figure 9b). This branch remains stable until x = 0.565, after which one observes the appear-
ance of an irregular solution, characterized by a sequence of merging and emerging structures
whose wavenumber oscillates between 4 and 5 (see Figure 9c¢). Increasing the chemotactic
sensitivity, the system settles in a stationary-in-time pattern with a smaller wavenumber, as
shown in Figure 9d. This transition is again found if we further increase y: in Figure 9e an
irregular solution is reported which is stabilized as x = 0.67 (Figure 9f) where a stationary
pattern with a different wavenumber appears.
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Figure 7: Numerical bifurcation analysis of system (2.4) showing transition to irregular spatio-
temporal solutions on the spatial interval [0, 2%\/5] (corresponding to a physical domain of
about 1.5¢m-length). The parameters are r = 9, D = 0.9, = 0.01.5 = 0.1,7 = 30. In each
frame Figure 7a-Figure 71, we plot the phase-space trajectories at the spatial location z = L/2
(L = 1.5 cm) (left), and the space-time snapshot of the macrophage density for t > T,q (right)

In both the numerical experiments showed in Figures 7 and 9, as the chemotactic parameter
is increased, we can observe: first, a transition of striped patterns towards chaotic solutions;
second, the stabilization to stationary patterns with different wavenumbers. The increase
of x causes two different phenomena: first, the stationary solution undergoes destabilizing
bifurcations, such as the subharmonic resonance reported in Figures 7d to 7k. Second, away
from the bifurcation threshold, additional stationary solutions with different wavenumbers arise
from the homogeneous state through a primary instability at x, and then stabilize through
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Figure 8: Out-of-phase oscillatory Turing pattern. The parameter values are chosen as in
Figure 7d. Figure 8a: dispersion relation at the onset of oscillations showing the real and
imaginary part of the eigenvalues, represented by solid and dashed lines respectively. The third
eigenvalue is not represented here since it is always negative. Figure 8b: Fourier spectrum of
the solution at the onset of oscillations showing excitation of the mode k./2 = 2. Figure 8c:
the solid and dashed curves are two anti-phase patterns separated in time by 7/2 ~ 0.8.
Figure 8d: the solid and dashed curves are two-phase oscillations at locations separated in
space by L/2, where L = 1.5 is the length of the spatial domain.

an Eckhaus bifurcation at xgy,.

For the parameter set of Figure 7, with a procedure analogous to the one adopted in
subsection 5.1.1, we have computed the bifurcation thresholds of the striped patterns involved
in the numerical simulations in Figure 7. The results are listed in Table 4 and show that
chaotic solutions stabilize when a stationary pattern becomes Eckhaus stable.
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Figure 9: Numerical bifurcation analysis of system (2.4) on the spatial interval [0,2m/30]
(corresponding to a physical domain of about 3.5¢m-length). The parameters are r = 0.1, D =
0.9, =0.1,3 = 0.1,7 = 30. For each subfigure Figure 9a-Figure 9f, we plot the phase-space
trajectories at the spatial location x = 7 (left), and the space-time snapshot of the macrophage
density (right)

n Xn XEn
3 17.4124 18.7466
3.5 16.8342 17.3119

Table 4: Existence and Eckhaus stability thresholds of striped pattern of system (2.4) with
parameter values given in Figure 7. 1y, is the primary bifurcation point above which the
pattern with n stripes bifurcates from the homogenous state. The secondary bifurcation value
XnE represents the threshold beyond which the n-stripes solution becomes Eckhaus stable.

To conclude this section, we observe that the simulations of Figures 7 and 9 illustrate how
the model (2.4) exhibits critical dynamics of the macrophages. In the jargon of statistical
physics, a system is said to be at criticality when it operates in the proximity of a phase
transition: a critical point in the phase space corresponds to a state at the edge between two
different phases, each of whom is attained as a control parameter is varied below or above
the transition value. When phase transitions separate a well-ordered state from a disordered
one, the corresponding critical points are said to be at the edge of chaos. Since the '90s,
the hypothesis of operating at criticality has been formulated for many living systems [54,
56], which would benefit from residing in this highly variable and adaptive dynamical regime
and, therefore, would be evolutionarily selected for being tuned at the corresponding value
of the control parameter. Auto-tuning at criticality of biological systems is known as self-
oganized criticality, a concept that has been introduced in [4]. Hallmarks of criticality have
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been recognized in enzyme kinetics [55], growth of bacterial populations [58], foraging in ant
colonies [6], neuronal networks [7], auditory system [37]; whereas deviation from criticality
could be the symptom or the cause of malfunctioning and pathology [35, 76, 79, 80].

Some recent works support the hypothesis of macrophage criticality, according to which
operating in the proximity of a critical regime would be beneficial to optimize the functioning
of the cells, namely, it would guarantee diversity of immune response yet maintaining homeo-
static stability. On a subcellular length scale, [10, 88| detect the presence of phase transitions
in biological membranes that directly imply a wide phenomenology of spontaneous lipid or-
ganization. Particularly, in [10] the authors give experimental evidence to the fact that the
macrophage plasma membrane operates close to a critical point: in response to pro- and anti-
inflammatory cytokine stimulation, the lipidic morphology of the membrane undergoes phase
transitions that affect the membrane’s receptors regulating macrophage activation. Besides,
the authors show that changes in the macrophages concentration are also able to affect the
membrane physical properties. Since the membrane operates close to criticality, by tuning
the macrophage density, the immune system would realize a mechanism for efficient cell ac-
tivity regulation. In [60] the investigation of critical behavior is performed on a mesoscopic
scale that neglects the details of intracellular processes. The authors analyze several biological
datasets of stimulated macrophage populations and estimate the corresponding information-
based order parameters indicating differential gene expression. Their experiments show that,
in response to pathogen-associated molecular patterns, macrophages exhibit dynamics in the
critical regime at the boundary between order and chaos.

The simulations reported in Figures 7 and 9, show that the model (2.4) predicts the
existence of regions in the parameter space where ordered states are immersed within spatio-
temporal irregular solutions: a small variation of the control parameter induces a sequence of
bifurcations through which the system alternately transits from well-ordered to less ordered
configurations. For realistic values of the parameters, our model, therefore, reproduces critical
behavior of the immune cells in extended areas of the parameter space. Large regions of
criticality in the macrophage dynamics can also be figured out from inspection of Figure 1:
in Figures 1a and 1b, there exist wide ranges of values of 7 for which a small variation of the
chemotactic coefficient x determines the occurrence of sequentially alternating Turing/wave
bifurcations, corresponding to alternate transitions from stationary to traveling agglomerates.
A similar scenario is also depicted in Figure 1c, when one considers variations either in x or
in the macrophage activation rate r. From the modeling viewpoint, the presence of the cell
activation term turns out to be essential to reproduce the presence of regions where complex
dynamics is immersed in stable steady states, while absence of the reaction kinetics in the
macrophage dynamics, as in the model presented in [66], results in a system characterized by
too much stability, i.e. incapable of transitions to a disordered state.

6. 2D stationary radially symmetric solutions. In the present and the following section,
we shall investigate the self-organization properties of system (2.4) on 2D domains. In this
section, we shall perform a theoretical bifurcation analysis through which we shall classify
different axisymmetric stationary patterns supported by the model. In the following section,
we shall numerically simulate the full 2D system and show that the proposed model can
successfully reproduce the formation of various inflammation patterns, as observed in several
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cutaneous rashes.

To investigate the existence and stability of stationary radially symmetric solutions for
system (2.4), we rewrite the model using polar coordinates (g, ) and impose no dependency
of the solution on 6, to obtain:

om _plofoml 1O, m 0c| (1 m)
ot 0o Qag XQBQ Q(1+ac)28g ’
oc

10 | Oc m

% 07 5] T O

Jda 1 (10 [ Oa m

afT{gag [Qa@] "1+ Ba ‘“}‘
We enforce no-flux boundary conditions on the disk ¢ € [0, R], with R = 1, where f;,
is the n-th zero of the Bessel function Ji(g), and perform a weakly nonlinear analysis near
the bifurcation value, following the same technique used in Section 4. Due to the loss of
translation symmetry, we now expect a transcritical instead of a pitchfork bifurcation to occur

at criticality. We set € = (x — X¢)/Xe, define the characteristic time T' = et, and write the
solution of (6.1) close to the homogeneous steady state P* as the following expansion:

m — mo
(6.2) w=| c—cy | =ews + 2wy + 3wy + 0(54).
a — agp

Collecting the terms at each order in €, we obtain a sequence of equations for the w;s. At
O(e) we get the following linear problem:

(6.3) LXew =0,

where LX¢ = Dxcéa% {ga%} + K and the expressions of D and K are given in (3.1). The solution

of Eq. (6.3) satisfying the boundary conditions is:
(6.4) wi = A(T)n Jo(kex),  withn € Ker(K — k2DXe),

where A(T) is the amplitude of the pattern, unknown at this level, and the vector n is given
by (SM2.2). At O(g?), we obtain the following linear equation:

(6.5) LXwy =F.

The explicit expression of F is given in section SM3. Imposing the solvability condition for
equation (6.5), we obtain the following evolution equation for the leading order amplitude
A(T):

dA
) —— —gA—LA?
(6.6) T =0 ,

where the explicit expressions of coefficients o and L (the Landau constant) in terms of the
parameters of the full system are computed in section SM3.
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Figure 10: Bifurcation diagram of the transcritical transition of the steady states of (6.6). Solid
red (dashed black) lines represent stable (unstable) branches of equilibria. Two qualitatively
different plots are possible, depending on being L < 0 (shown in (a)), or L > 0 (shown in (b))
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Figure 11: (a): Numerically computed bifurcation diagram of system (6.1) as y is varied.
All the other parameters are fixed as D = 0.9, = 1,8 = 0.1, = 1,7 = 30. Solid red
(dashed black) lines represent stable (unstable) branches of equilibria. (b): Enlargement of
the box in (a), showing a subcritical stable branch of ring solutions. The stationary solutions
corresponding to the points labeled by L and M are shown in Figure 12.

The steady state solutions of Equation (6.6) are A} = 0 and A5 = o/L. The sign of
the nontrivial state A5 determines qualitatively different solutions: when A3 is positive, the
solution exhibits a bump at the origin, that we shall call a bump solution. Instead, A3 negative
corresponds to a solution that has a local minimum at » = 0 and a ring at the outer edge of
the domain: we shall name it a ring solution. The stability of both types of solutions depends
on the sign of L, that determines a transcritical transition of the equilibria of Equation (6.6)
at the bifurcation value: for L < 0, the steady-state bump solution exists only for negative o
where it is unstable, while the steady-state ring solution exists and is stable for positive values
of o; the converse happens for L > 0, see Figure 10.
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Figure 12: Stationary solutions of (6.1) corresponding to the points labeled by L and M in
Figure 11. The parameters are the same as in Figure 11. (a)-(b): Spatial distribution of the
cytokine and of the macrophage density at the point L showing a bull’s eye pattern. (c)-(d):
Spatial distribution of the cytokine and of the macrophage density at the point M showing a
ring solution with a clearer core

We now show some numerical simulations. In all the numerical experiments reported in
the present and the next section, we shall fix the values of all the parameters but o and r. We
observe that, for r fixed, the Landau constant L is a decreasing function of «, so that negative
values of L are easily obtained considering high values of the receptor-binding constant a.
Fixing the parameter values as in Figure 11 on the domain [0, (3], where f; 3 is the 3rd root
of the Bessel function Ji, one gets a positive value of the coefficient L in (6.6). Therefore, based
on the weakly nonlinear analysis, and close to the transition point, we expect an unstable ring
solution below the critical value of x, (here x. = 15.2), and a stable bump solution above the
threshold. This result is confirmed by the numerical bifurcation diagram of the full system
(6.1), computed through the software AUTO and showed in Figure 11: close to the bifurcation
point, the behavior is in fact as predicted by the weakly nonlinear approximation. However,
the numerical analysis far from threshold, reveals the existence of two subcritical branches of
steady solutions, bistable with the spatially homogeneous state, and corresponding to a bump
and a ring solution, respectively. The spatial distribution of the macrophages and cytokine
densities at the points labeled by L and M in the bifurcation diagram Figure 11 are shown in
Figure 12.

Fixing now the parameters values as in Figure 13 on the spatial domain [0, (i 15], the
weakly nonlinear analysis prescribes a negative value of the coefficient L in (6.6). Therefore
we expect an unstable bump solution below the critical value of x (here x. = 1.53) and a ring
solution above the threshold. This is in agreement with the numerical bifurcation diagram
of (6.1) reported in Figure 13, that, close to the primary bifurcation point, shows a stable
branch of ring solutions bifurcating supercritically from the uniform steady state. Far from
the primary transition, the numerical analysis detects several bifurcation points (of saddle-
node type), from which stable branches of multirings and bull’s eye solutions emerge that
coexist for large intervals of the chemotaxis coefficient. The spatial distribution of the species
densities corresponding to the labeled points in Figure 13 are shown in Figure 14. We notice
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Figure 13: (a): Numerically computed bifurcation diagram of system (6.1) as x is varied. The
parameters are fixed as D = 0.9, = 0.1, = 0.1, = 0.01,7 = 30. Solid red (dashed black)
lines represent stable (unstable) branches of equilibria. (b): Enlargement of the box in (a),
showing a far-from-equilibrium stable branch of stationary bump solutions arising out of a
saddle-node bifurcation. The stationary solutions corresponding to the points labeled by G,
H, I and J are shown in Figure 14.

that the points G and J correspond to branches of solutions having a bump at the origin,
while H and I correspond to solutions with a local minimum density at p = 0.

The comparison of the inflammatory patterns showed in Figures 12-14 with the images
taken from patients suffering EAC and reported in Figure 15, proves that the proposed model
is able to reproduce qualitatively different inflammatory rashes, ranging from one-ring to bull’s
eye and multi-rings.

7. Numerical simulations in 2D. In the previous section we have mathematically classified
stationary solutions of the model (6.1) with circular symmetry. In this section we shall perform
a numerical investigation of the full system (2.1)-(2.2) on a 2D square domain. Our goal is
two-fold: on the one hand, we want to simulate the evolution in time of the inflammation and
compare it with the available medical data, also exploring the effect of varying the numerical
values of the parameters. We do not intend to explore all biologically significant regions of
the parameter space but show that the system can reproduce phenomena observed in clinical
practice. We shall see that the model supports the appearance of localized inflammatory
structures having the form of hotspots, bull’s eye, and rings, typical of some classes of skin
erythemas, such as the EAC. On the other hand, we want to provide a numerical justification
to the study performed in the previous Section, showing that an initially highly localized
stimulus initiates the formation of inflammatory structures that exhibit radial symmetry.

The numerical solution is computed as described in Section 5. We shall assume that
the inflammation is triggered by a highly localized concentration of activated macrophages,
deriving from an initial insult. Therefore, as the initial condition, we shall set a bump in the
macrophages spatial distribution and zero initial density for both the cytokine species. We
enforce Neumann boundary conditions on the square domain [0, 6] cm X [0, 6] cm.

Figure 16 shows the spatio-temporal evolution of the macrophages in a case when the
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Figure 14: Stationary solutions of (6.1) corresponding to the labeled points in Figure 13.
The parameters are the same as in Figure 13. Spatial distribution of the cytokine and of the
macrophage density (a)-(b): at the point G. (c)-(d): at the point J. (e)-(f): at the point H.
(g)-(h): at the point I

(a)

Figure 15: Clinical images of Erythema Annulare Centrifugum. (a): Coexistence of one-ring
and bull’s eye inflammatory patterns. (b): A polycyclic lesion
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Figure 16: Temporal evolution of the macrophage species for system (2.4). The parameters
are D =0.9,aa=0.1,6=0.1,» =0.1,7 = 30, x = 3 so that y. = 4.92.

chosen value of the parameter y is below the Turing threshold, so that we expect the formation
of a uniformly distributed inflammatory activity. The numerical solution in fact appears as
a small red spot (Figure 16b), which subsequently enlarges (Figure 16¢, Figure 16d). The
proposed model therefore supports the formation of a homogeneous rash.

Figure 17 shows the simulation obtained by increasing the value of x and keeping the
other parameters fixed as before. In this case, initially, the solution appears as a small red
spot (Figure 17b), which subsequently enlarges while the central area is clearing (Figures 17¢
and 17d). The resulting pattern is a ring, which adequately reproduces the evolutive phases
of EAC reported in Figure 18. From the numerical simulations, we have also been able to
measure the rash growth rate: it is higher in the first days, due to the low density of the anti-
inflammatory cytokine, subsequently slowing down until it reaches vanishingly small values.
The estimated average growth rate of the diameter turns out to be about 3 mm/day, that is
perfectly in agreement with the clinical data |71].

Figure 19 shows a temporal sequence of the numerical solution obtained still increasing
the value of y, while maintaining the others constant. As before, the rash appears on the skin
as a little spot (Figure 19b), its diameter increases while the density of macrophages in the
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Figure 17: Temporal evolution of the macrophage
are the same as in Figure 16, except for y = 4.5.
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Figure 18: Progression of Erythema Annulare Centrifugum in the same patient: it is possible

to observe the evolution of the rash, which first appears as a small red-spot, which enlarges as
the central area clears. Images are provided by courtesy of RegionalDerm.com
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Figure 19: Temporal evolution of the macrophage species for system (2.4). The parameters
are as in Figure 16 except for y =5

central area decreases (Figure 19¢). As time progresses, the macrophage density raises again
in the core, so that the resulting solution is a bull’s eye pattern (Figure 19d). The effect of
increasing the chemotactic parameter with respect to the parameter set given in Figure 17 is
that in this case, the erythema growth rate attains a smaller value, namely about 2 mm/day,
a value that is still compatible with the medical measurements.

We notice that the above-exposed results are in agreement with the nonlinear analysis
performed on the corresponding radial system (6.1) presented in Section 6. In fact, fixing the
parameters as in Figure 16, one gets x. = 4.92 and a positive value of the the coefficient L
appearing in the amplitude equation (6.6). This implies the existence of a ring solution below
the Turing threshold and of a bump solution above criticality. On the other hand, far below
the Turing threshold, the analysis predicts a homogeneous pattern. Hence all the simulations
represented in Figures 16-19 confirm the previsions.

We conclude this section by considering the effect of increasing the activation rate r of
macrophages. For the parameter set chosen in Figure 20 the theoretical predictions of the
weakly nonlinear analysis prescribe x. = 9.1 and L < 0, so that a stable branch of stationary
rings is expected above the threshold. The resulting simulation of the full system, in fact, shows
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Figure 20: Temporal evolution of the macrophage species for system (2.4). The parameters
are: D =0.9,a=0.1,6=0.1,r = 3,7 = 30, x = 10.

the appearance of two rings around a cleared central area, as shown in Figure 20. Therefore a
high value of r not only accelerates the formation of the rash on the skin, but also promotes
the formation of more rings.

8. Conclusions. In this paper, we have proposed and investigated a reaction-diffusion-
chemotaxis model for acute inflammation. We have performed a theoretical and numerical
investigation of the model using realistic values of the parameters, retrieving them in the
experimental literature, see Table 1. We have shown that our model can reproduce typical
patterns observed in the clinical practice, such as bull’s eye and rings, see Figures 15 and 18.
Moreover, the model describes the recurrent inflammatory attacks reported by patients suf-
fering from REM. This is the first time a mathematical model can reproduce these clinical
patterns to the best of our knowledge. The solutions mentioned above are the result of a
Turing or a wave bifurcation destabilizing a uniform equilibrium. We have constructed these
solutions using the amplitude equation analysis and validated them by detailed numerical
simulations of the complete system. Through a numerical bifurcation analysis far from the
instability threshold, we have also found that the inclusion of a macrophage activation term
is responsible for generating chaos. The presence in this model of sequences of bifurcations
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leading to complex spatio-temporal dynamics can be considered a hallmark of self-organized
criticality in macrophages dynamics [60]: the immune system might benefit from operating in
the proximity of a critical boundary between organized and disorganized states, maintaining
the right balance between stability and adaptability. We believe that the wide variety of pat-
terns supported by the two systems presented in this paper and [66] gives evidence that this
class of models captures the main mechanisms driving inflammatory rashes.

We point out several open problems left unsolved by the present analysis and possible di-
rections for future research. First, one should investigate the formation of localized structures,
like those organized in a homoclinic snaking bifurcation scenario, that could account for the
appearance of isolated foci of inflammation. Second, we believe that the investigation of the
mechanisms underlying the appearance of spatio-temporal irregular solutions requires further
study. In fact, the oscillations of the periodic structures reported in the numerical simulations
of Figures 7 and 9 are unexpected based on the linear analysis since, in the considered parame-
ter regime, the proposed system does not support any Hopf or wave instability. We conjecture
that a spatial resonance of the fundamental Turing mode with its subharmonics originates
the observed spatio-temporal periodic solutions, analogously to what is discussed in [28]. It
would be interesting to derive the normal forms of the resonant interaction and investigate
the phase instabilities which initiate the chaotic dynamics [11]. From the modeling point of
view, we remark that this model does not describe phenomena occurring in later stages of
the inflammatory process, like sepsis or spontaneous resolution. A refined model would be
necessary to follow the inflammatory process in these phases. Finally, since a broad class
of anti-inflammatory drugs acts on macrophages’ activation rate, we believe that the present
system could be a useful tool to design optimized therapies.
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