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1. Introduction

The standard paradigm of a single power-law cosmic-ray (CR) spectrum up to the knee energy
(∼ PeV) seems to be not valid anymore, due to several results obtainedwith direct CRmeasurements.
A first deviation from the single power-law, the so-called “hardening", has been observed at some
hundreds of GeV/n from several experiments [1–7], in their measurements on hadronic spectra,
along with a spectral softening found in the DAMPE proton [8] and helium [9] spectra, at ∼ 15
TeV and ∼ 34 TeV respectively. More measurements on these unexpected features are crucial in
order to have a better understanding of CR acceleration and propagation mechanisms in our galaxy
[10]. The DAMPE experiment can give an important contribution to this scenario. DAMPE is
a satellite, collecting data in a Sun-synchronous orbit, at 500 km altitude, for more than 5 years.
Although it was mainly designed for precise measurements of electron and gamma-ray spectra,
and for dark matter searches, DAMPE can measure cosmic rays up to a few hundreds of TeV with
unprecedented energy resolution, thanks to its deep calorimeter [11]. Since proton and helium are
the most abundant component of CR, it is useful to measure their energy spectra both separately
and together. In particular, in this work, the measurement of CR proton (H) + helium (He) flux
with energy up to ∼ 150 TeV will be presented. Selecting H and He nuclei (light nuclei) together,
instead of H or He alone, has advantages of almost no background and very high purity. Using
looser analysis cuts allows collecting larger statistics thus extending the spectrum to higher energy,
providing a link on the H + He spectra between direct and indirect measurements. Furthermore, the
combined light nuclei spectrum can be used as a cross-check for the independent H and He analyses
eventually confirming the observed hardening and softening features.

2. The DAMPE detector

DAMPE is a high-energy particle detector, composed of several sub-detectors working together
to provide a complete identification of the incoming particles and nuclei. Starting from the top, the
first sub-detector is the plastic scintillator detector (PSD) composed of two interleaved planes of
plastic scintillators, each onemade by two layers of staggered bars, read-out by photomultiplier tubes
(PMTs) on both ends. The aim of the PSD is to provide a charge measurement of incoming nuclei,
thus identifying each different species from hydrogen (Z=1) to iron (Z=26). Another important
task of the PSD is to separate electrons from gamma-rays: these two particles will have the same
behavior in the calorimeter, but only electrons will leave a signal in the PSD. Moving downwards,
the next sub-detector is the silicon tungsten tracker (STK), used for precise tracking thanks to six
double layers of silicon microstrip detectors, and for gamma-rays pair production by mean of thin
tungsten layers. After the STK, there is the BGO calorimeter (BGO), made by 14 interleaved layers
of 22 BGO bars readout by PMTs on both ends, in which particles and nuclei produce showers,
allowing electron-proton separation and energymeasurement up to a few hundreds of TeV for nuclei,
and ∼ 10 TeV for electrons and positrons. Finally, at the bottom of the satellite, there is the neutron
detector (NUD), which provides an additional hadron rejection. More details can be found in [11].
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3. Data sample

This work is based on 60 months of data collected from the DAMPE satellite, from January
2016 (a few days after its launch) until December 2020, resulting in a total exposure time of 12.0 ×
107 s, after subtracting the dead time. Contributions to the dead time are DAMPE passing through
the South Atlantic Anomaly (SAA) region (∼ 4.5% of total time), the electronics response which
is ∼ 3 ms for each triggered event (∼ 18% of total time), daily on-orbit calibration and monthly
electronic-linearity calibration (∼ 1.8% of total time). In order to unfold the detector response and
hence compute the spectrum, we produced detailed Monte Carlo (MC) simulations of the DAMPE
detector and of proton and helium CR events between 10 GeV and 500 TeV. These samples were
simulated with the GEANT4 software, using the physics lists FTFP_BERT and EPOS-LHC (further
details on this topic can be found in [8] and [9]).

4. Selection of events

DAMPE collects ∼ 5 million events per day but only a part of these data will be useful for this
analysis. The preselection of good quality events first, and of proton and helium events afterwards
is performed through the following steps.

4.1 Preselection

The preselection is mainly based on BGO measurements. It consists of 1) selection of events
with energy deposited in the BGO calorimeter larger than 20 GeV, to avoid the effect of the
geomagnetic rigidity cutoff; 2) rejection of events entering the detector from the side, with the
request of energy deposition in a single bar of the BGO lower than 35% of the total particle energy;
3) rejection of events in which the maximum energy deposition is at the BGO edge; 4) the central
axis of the shower is required to be at a distance lower than 280 mm from the BGO center, to ensure
a good containment of the shower; 5) the track has to be fully contained inside the PSD; 6) exclusion
of SAA.

4.2 Track-selection and Trigger selection

The preselected events will still consist of many tracks, among which we have to choose the
best track. In particular, we require the match of the reconstructed tracks between BGO and STK,
and between PSD and STK. Furthermore, events must activate the High Energy Trigger (HET) of
DAMPE i.e. energy deposition in the top 4 BGO layers exceeding the threshold of ∼ 10 MIPs in
each hit BGO bar.

4.3 Charge Selection

All the previous cuts are important to ensure the quality of the selected events, but the final
identification of proton and helium is done by measuring their charge in the PSD. First of all a
correction for light attenuation and incident angle [12, 13] is performed on the signal in the PSD
bars, which makes it proportional to Z2 according to the Bethe-Bloch equation. Each PSD layer
gives an independent charge measurement, which is combined in one mean value (PSD global
energy) for this analysis. Being the energy range measured by DAMPE very large (from ∼20 GeV
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to ∼100 TeV), we need to consider that the energy released in the PSD will be different depending
on the primary energy. For this reason, the charge selection is performed in different bins of energy
deposited in the BGO calorimeter. In Fig.1a an example of energy released in the PSD by proton
(first peak) and helium nuclei (second peak), using 60 months of data, for energy released in the
BGO between 1.6 TeV and 2.5 TeV, fitted using a Landau function convoluted with a Gaussian
function (LanGaus). In Fig.1b the total charge selection range for the p+He analysis, defined by the
MPV and sigma values extrapolated with the LanGaus fits.
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Figure 1: (a) Energy released in the PSD by proton and helium nuclei, when the BGO energy deposition is
between 1.6 TeV and 2.5 TeV. The lines are the LanGaus fit functions used for proton (blue line) and helium
(magenta line). (b) Charge selection range for p+He, based on the energy released in the PSD. After fitting
the charge histograms the MPV is plotted with respect to the energy released in the BGO, for both proton
and helium. The continuous lines represent the polynomial functions used to fit the proton data (in blue),
and the helium data (in magenta). The green dashed lines mark the limits for the charge selection: proton
MPV function - 2 f and helium MPV function + 6 f.

5. Acceptance

The effective acceptance of the DAMPE detector is defined as follows:

Ai
acc = Ggen ×

N(Ei
T, sel)

N(Ei
T)

(1)

with Ggen geometrical acceptance used for generating MC data, N(Ei
T) number of MC generated

events in the i-th bin of primary energy (ET), and N(Ei
T, sel) number of those MC events surviving

all selection cuts described in section 4. In Fig.2 the acceptance for various selection cuts with
respect to the primary energy is presented.

6. Unfolding procedure

The depth of the DAMPE BGO calorimeter is of ∼ 32 radiation lengths and ∼ 1.6 nuclear
interaction length [8]. This implies that it can contain very well electromagnetic showers, while
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Figure 2: Effective acceptance as function of the primary energy. Each different color represents an
additional cut applied on MC data, up to the charge selection which is the last one, in blue

the energy of hadronic showers will be partially lost and must be reconstructed. In particular, for p
and He nuclei, ∼ 35 % - 40 % of the total energy will be deposited in the calorimeter volume. To
unfold the detector response and reconstruct the primary energy, we use a method based on Bayes’
theorem [14]: the detector response is estimated by using MC simulations of both hydrogen and
helium nuclei; all events are required to pass the selection cuts described above; finally the unfolding
method is applied, i.e. the true energy of incoming particles can be inferred from observations
using the following formula:

N
(
Ei

T

)
=

n∑
j=1

P
(
Ei

T | E
j
O

)
N

(
Ej

O

)
(2)

with N
(
Ei

T
)
number of events in the i-th bin of true energy, N

(
Ej

O

)
number of observed events in

the j-th bin of energy deposited in the calorimeter, and P
(
Ei

T | E
j
O

)
response matrix derived from

MC using the Bayes theorem (see Fig. 3).

7. Results: proton + helium flux

The flux for each energy bin can be written as:

Φi =
Ni

ΔT × Ai × ΔEi
(3)

with Ni number of events in the i-th energy bin after the unfolding, ΔT total live time (see section 3),
Ai acceptance in the i-th bin (see section 5), and ΔEi representing the i-th energy interval. In Fig. 4
the preliminary p+He flux is presented in the energy range 50GeV - 150 TeV,multiplied by E2.7, with
error bars representing the statistical error, and a continuous band for the systematic uncertainties
(see [15] for more details on the preliminary systematics estimation). The DAMPE proton and
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Figure 3: Response matrix derived from MC p and He events, passing the selection criteria
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Figure 4: Preliminary p+He spectrum measured with the DAMPE detector (blue circles), between 50
GeV and 150 TeV. For comparison also the DAMPE proton (magenta diamonds) and helium (red triangles)
spectra are shown. The error bars represent the statistical error, the dashed bands represent the systematic
uncertainties from the analysis, and the continuous bands the total systematic uncertainties, including the
one on the hadronic model.

helium spectra are also shown for comparison, with their respective systematic bands (for further
details see [8] and [9]). The p+He spectrum shows a spectral hardening at∼ 600GeV and a softening
at ∼ 25 TeV. The hardening feature confirms the result obtained by other experiments [1–7] and
the DAMPE results on proton [8] and helium [9] spectra, based on independent analyses from the
combined p+He analysis shown in this work. Moreover, DAMPE reveals a softening feature in both
proton and helium spectra, further confirmed by this result. The obtained values suggest rigidity-
dependent features, even though a mass dependence cannot be ruled out. In Fig.5, the DAMPE
result is compared with direct (a) and indirect (b) p+He measurements. The DAMPE spectrum
is in agreement with other direct-detection experiments, within the systematic uncertainties. The
comparison with indirect measurements shows a fair general consistency, although this picture
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will be definitely clarified with the extension of the DAMPE spectrum to higher energy, which is
currently in progress.
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Figure 5: Preliminary p+He spectrum measured with the DAMPE detector (blue circles), between 50 GeV
and 150 TeV, compared with (a) direct measurements of p+He made by ATIC-02 [16], Nucleon [17] and
CREAM [6] (b) indirect measurements from ARGO YBJ+WFCT [18], HAWC [19] and KASCADE [20].
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