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A B S T R A C T  14 

Landslides are among the most dangerous natural processes. Debris avalanches and debris flows in 15 

particular have often caused casualties and severe damage to infrastructures in a wide range of 16 

environments. The assessment of susceptibility to these phenomena may help policy makers in 17 

mitigating the associated risk and thus it has attracted special attention in the last decades.  18 

In this experiment, we assessed susceptibility to debris-avalanche and -flow landslides by using a 19 

stochastic approach. Two different modeling techniques were employed: i) Multivariate Adaptive 20 

Regression Splines (MARS) and ii) Logistic Regression (LR). Both MARS and LR allow for 21 

calculating the probability of landslide occurrence by building statistical relationships between a set 22 

of environmental variables and the target variable, i.e. presence/absence of the landslide event. The 23 
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target variable was extracted from an inventory of debris-avalanche and - flow landslides which 24 

were triggered by the tropical storm that hit the area of Mocoa (Colombia) on 1 April 2017. As 25 

predictor variables, we employed nine terrain attributes derived from a 5-m resolution DEM (i.e. 26 

elevation, slope angle, northness, eastness, upslope slope angle, convergence index, topographic 27 

position index, valley depth and topographic wetness index), in addition to lithology, distance from 28 

faults and presence/absence of soil creep processes. In our experiment, we used three different 29 

landslide datasets which contain i) the highest point of each recognized landslide crown-lines 30 

(dataset LIP), ii) the highest 10% of cells of each landslide area (dataset SOURCE), and iii) the 31 

entire landslide areas, which include initiation and accumulation zones (dataset MASS). In order to 32 

evaluate their predictive ability, LR and MARS models were submitted to k-fold spatial cross-33 

validation strategy, which consists in extracting random training and test subsets from k spatially 34 

disjoint sub-areas. The results of model validation, expressed in terms of Area Under the ROC 35 

Curve (AUC), demonstrate better predictive performance of MARS models with respect to LR 36 

models, for all the three landslide datasets. The mean AUC values calculated for the datasets LIP, 37 

SOURCE and MASS of the MARS models are 0.776,  0.788 and 0.768, respectively, whereas AUC 38 

values of the LR models are 0.748, 0.751 and 0.703, respectively. Models validation also show that 39 

the predictive skill of the models is better when landslide data are sampled from the highest 40 

portions of the landslides (dataset SOURCE). Maps of susceptibility to debris-avalanche and -flow 41 

landslides for the Mocoa area were produced by using both LR and MARS and the three landslide 42 

datasets. The analysis of the distribution of events versus the susceptibility classes of the maps 43 

confirm that MARS and the dataset SOURCE provide the best ability to discriminate between event 44 

and non-event cells.   45 
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1. Introduction 52 

In the last decades, the population growth and the urbanization of hazardous areas have largely 53 

increased the damage and loss of lives due to natural disasters. In many developed and developing 54 

countries, landslides are among the most important causes of natural hazard (Guzzetti et al., 1999).  55 

Landslide hazard is particularly important in mountainous environments where, due to topography, 56 

these phenomena may achieve rapid propagation and high energy. Some of the most devastating 57 

landslide disasters are related to the occurrence of debris avalanches and debris flows triggered by 58 

heavy rainstorms or earthquakes (Hungr et al., 2014). When caused by intense and prolonged 59 

rainfalls, these landslides may occur simultaneously with hyperconcentrated flows and flash floods. 60 

A dramatic example of their destructive potential is given by the disaster of Vargas (Venezuela) 61 

which caused around 15,000 fatalities in December 1999 on a narrow coastal zone north of Caracas 62 

(Larsen and Wieczorek, 2006; Larsen, 2008). More recently, in January 2011, over 1,500 casualties 63 

were caused by the disaster occurred in the mountainous region of Rio de Janeiro (Brazil), where 64 

clusters of debris avalanches and debris flows were triggered by an extreme rainfall event during a 65 

period of 2 days (Avelar et al., 2013, Hungr et al., 2014). Other examples of natural disasters that 66 

occurred worldwide and related to debris avalanche/flow landslides are reported in the literature 67 

(e.g., Crosta  and Dal Negro, 2003;  Crozier, 2005; Aronica et al., 2012). 68 

Mitigation of landslide risk may be achieved by predicting where landslides are more likely to 69 

occur in the future. This information could indeed help policy-makers in implementing land-use 70 

strategies aimed at minimizing human casualties and property damage (Guzzetti et al., 1999). The 71 

likelihood of landslide occurrence in a given area is defined as landslide susceptibility (Brabb, 72 

1984; Carrara et al., 1995). A landslide susceptibility map depicts the spatial relative probability of 73 

landslide occurrence within a given area (Conoscenti et al., 2016). 74 

Landslide susceptibility mapping can be achieved by using different methods. Among them, the 75 

stochastic approach has become very popular over the last decades, due to the availability of high-76 

resolution terrain data and freeware statistical and Geographical Information Systems (GIS) 77 
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software. This approach is based on the assumption that “the past is the key to the future” (Carrara 78 

et al., 1995) and new slope failures are more likely to occur under the same conditions that caused 79 

landsliding in the past. Therefore, statistical methods require the location of past landslides and 80 

maps of environmental variables which directly or indirectly (as proxies) reflect the preparatory 81 

factors controlling landslide occurrence in the study area. Different statistical and data mining 82 

modeling techniques have been proved to provide reliable and accurate landslide susceptibility 83 

maps starting from event inventories and sets of predictor variables (Aleotti and Chowdhury, 1999; 84 

Guzzetti et al., 1999; Brenning, 2005; Reichenbach et al., 2018). 85 

Although widely adopted in recent years, statistical modeling of landslide susceptibility involves 86 

some critical issues which still remain unsolved. One of these is related to the selection of event and 87 

non-event data which are employed to calibrate and validate the landslide predictive models. This is 88 

recognized as a crucial step influencing the accuracy and reliability of the final landslide 89 

susceptibility models and maps.  90 

In case of grid-based landslide predictions, non-event locations are typically sampled from stable 91 

portions of slopes, i.e. cells outside the landslide areas. On the other hand, no agreement exists on 92 

the best approach to select landslide cells. These should identify landscape locations where levels of 93 

the landslide controlling factors exceeded the threshold of slope stability and, thus, triggered the 94 

slope failure. However, identifying the exact initiation points of a large number of landslides is very 95 

problematic (Regmi et al., 2014). In the case of debris avalanches or flows, even distinguishing 96 

between source and accumulation zones could be quite difficult. Furthermore, once initiated, a 97 

landslide can extend upslope, downslope and/or sidewise, making the identification of the initiation 98 

point a very challenging task.  99 

Various landslide data selection and sampling techniques have been proposed to minimize the 100 

uncertainty in identifying landslide initiation points. The most frequently adopted strategies are: i) 101 

single cells randomly selected from landslide areas or from depletion zones (e.g., Vorpahl et al., 102 

2012; Heckmann et al., 2014; Goetz et al., 2015); ii) centroid of landslide areas or of depletion 103 
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zones (e.g., Atkinson and Massari, 2011; Regmi et al., 2014); iii) multiple cells (all or a fraction) 104 

within landslide areas or depletion zones (e.g., Regmi et al., 2014; Conoscenti et al., 2016); iv) 105 

single cell or all the cells in the upper edge of the main scarp (e.g., Clerici et al., 2006; Costanzo et 106 

al., 2012; Cama et al., 2015; 2017). Moreover, when the available DEM is more recent than the 107 

landslide inventory, topographic triggering conditions are sampled from a buffer around the 108 

landslide polygons (e.g., Süzen and Doyuran, 2004; Nefeslioglu et al. 2008; Rotigliano et al., 2011) 109 

or from a reconstructed pre-failure topography within landslide areas (e.g., Van Den Eeckhaut et al. 110 

2006; Gorum et al. 2008; Conoscenti et al., 2015). 111 

Intense and prolonged rainfall events occur episodically in tropical Andes, triggering debris-112 

avalanche and -flow landslides, hyperconcentrated flows and flash floods. These natural hazards 113 

threaten many communities living on or near alluvial fans where they may cause fatal victims and 114 

extensive property damage. The assessment of susceptibility to debris-avalanche and -flow 115 

landslides in these environments is therefore crucial to plan risk mitigation strategies and prevent 116 

large disasters.  117 

On 1 April 2017, the area of Mocoa (Colombia) was hit by a sever tropical storm which discharged 118 

130 mm of rain in 3 h starting from 10:00 pm of March, 31st.  This heavy rainfall triggered more 119 

than one thousand debris-avalanche and -flow landslides, which evolved to hyperconcentrated 120 

flows in the main streams of the Mulato, Sangoyaco and Taruca rivers, three tributaries of the 121 

Mocoa river. The event caused 328 victims, 200 missing, more than 1000 injured and damage to 122 

more than 120 houses in 17 neighborhoods of the city. 123 

In this study we focused on the prediction of the rainfall-induced debris-avalanche and -flow 124 

landslides which occurred in the area of Mocoa. These processes initiated on the slopes and 125 

provided sediments to hyperconcentrated flows which moved rapidly down steep channels and 126 

caused debris flooding of large parts of the city located on the alluvial fans. Within the context of 127 

testing different methods of landslide data sampling for susceptibility modeling, we used and 128 

compared three criteria which differ in the way the event data were selected. The landslide datasets 129 
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employed in our experiment include (i) the highest point of each landslide area, (ii) the highest 10% 130 

of cells of the landslide areas or (iii) the entire landslide areas. To predict the spatial distribution of 131 

the Mocoa landslides, we used two different statistical modeling techniques, namely: (i) logistic 132 

regression (LR) and (ii) multivariate adaptive regression splines (MARS). LR has been widely 133 

adopted to assess landslide susceptibility and, in particular, debris avalanche/flow landslides. 134 

Conversely, MARS has been rarely used in the field of landslide susceptibility mapping and, as far 135 

as we know, has been employed to predict these types of slope failures only in one research study 136 

(Rotigliano et al., 2018). 137 

Therefore, the main objectives of this experiment were to: (i) test and compare three different 138 

criteria of landslide data sampling; (ii) evaluate and compare the ability of LR and MARS to predict 139 

the debris-avalanche and -flow landslides occurred in Mocoa. 140 

2. Study area 141 

The study area is located in the southeast portion of the Eastern Cordillera of the Colombian Andes 142 

and falls in the watershed of the Mocoa River (Fig. 1). It extends for 58.3 km2 and lies between 143 

latitudes 01° 08’ and 01° 13’ N and longitudes 76° 38’ and 76° 42’ W. The city of Mocoa, capital 144 

of the Departamento de Putumayo, is located in the southeast sector of the study area. Its urban area 145 

is bounded to the east by the Mocoa river and is crossed by three of its tributaries: Taruca, 146 

Sangoyaco and Mulato. Precipitation in the study area occurs all year long and shows a unimodal 147 

annual pattern with highest and lowest average monthly rainfall occurring in June and January, 148 

respectively. The average annual rainfall is approximately 3715 mm.  149 

The topography of the study area varies from flat to hilly to steep, with elevation ranging from 538 150 

to 1893 m asl (Figs. 2 and 3). The western portion is characterized by moderately dissected 151 

mountain chains with very steep slopes (up to 77°). These are followed to the east by a hilly sector 152 

where topography is mainly controlled by structure and the slope angle is in the range 10–25°. 153 

Gentle-sloping (<10°) surfaces, which are formed by coalescing debris fans, occur on the right 154 

Mocoa riverside. A structure-controlled relief, which is located to the north of the Mocoa urban 155 
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area, acts as a natural barrier to protect the city from flooding events. Moreover, flat surface (i.e. 156 

river terraces and alluvial plains) are located along the inter-mountainous sector of the Mocoa river. 157 

The study area is underlain by Jurassic igneous rocks and Cretaceous and Paleocene-Eocene 158 

sedimentary rocks, which are covered discordantly by Quaternary unconsolidated deposits. To 159 

explore the role of lithology as a predictor of landslide distribution, we prepared a map that includes 160 

the following lithological units: i) sedimentary rocks, mainly conglomerates; ii) sedimentary rocks, 161 

mainly calcareous limestones; iii) igneous rocks mainly granites and monzonites; iv) alluvial 162 

deposits; v) terraced alluvial deposits; vi) colluvial deposits; vii) debris-torrent deposits (Fig. 4). 163 

The igneous rocks, which are moderately to highly fractured, crop out in the western sector of the 164 

study area. The La Tebaida fault separates these rocks to the east from the Paleocene-Eocene 165 

conglomerates of the Pepino Fm., whereas the limestones of the Villeta Fm. outcrop in the eastern 166 

side of the Mocoa River. The quaternary deposits occupy the Mocoa river bed and form fluvial 167 

terraces along its main valley. Moreover debris fans occur along the Mocoa tributaries while 168 

colluvial deposits cover the foot of some slopes along the inter-mountain valleys. 169 

3. Materials and methods 170 

3.1. Landslide inventory 171 

The rainfall event considered in this study occurred between 10 pm of March, 31st and 1 am of 172 

April, 1st, 2017. The event was short but very intense with 130 mm of rain that fell in about 3 h. 173 

Such an amount of rain usually occurs in a ten days time-lapse. The rainfall event triggered a high 174 

number of debris avalanches and debris flows which propagated downslope as hyperconcentrated 175 

flows and debris floods. 176 

The landslides occurred in the slopes that fed the streams of the Taruca, Sangoyaco and Mulatos 177 

rivers with a large amount of debris and blocks (with diameter up to six meters). These sediments 178 

were transported downslope and covered an area of approximately 3.2 km2, with average thickness 179 

of 4 m and a total volume of around 12 millions of cubic meters. 180 
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In this work, we built a landslide inventory by 2D and 3D visual analysis of aerial photographs and 181 

of the satellite image dated April 10th, 2017, available on Google Earth. The inventory includes 182 

1347 landslides (Fig. 5). Based on Hungr et al. (2014), two main types of movements were 183 

recognized: i) debris avalanches, which occurred on steep slopes and without confinement in an 184 

established channel and ii) debris flows, in which the movement developed along established paths, 185 

usually first or second order streams. 186 

The mapped slope failures probably initiated as shallow slides or flows (Cruden and Varnes, 1996) 187 

and after moving a short distance transformed into debris avalanches or debris flows. However, 188 

considering that the objective of this experiment was to identify where slope failures potentially 189 

reaching the drainage axes and, eventually, the urbanized area of Mocoa, were more likely to occur, 190 

we decided not to differentiate between the two types of movements in the susceptibility mapping.  191 

3.2. Predictor variables 192 

In this experiment, selection of landslide predictors was performed according to quality and 193 

resolution of the available data. As spatial distribution of the rainfall event was not available, only 194 

variables representing landslide preparatory causes were employed.  195 

The landslide predictors were derived from a geological map of the area and a 5-m resolution raster 196 

Digital Elevation Model (DEM), which provided sufficient resolution to properly map susceptibility 197 

to landsliding in the Mocoa area. Conversely, the resolution of existing land cover and soil maps 198 

were too coarse and thus not suitable for the analysis. All the variables were prepared as raster GIS 199 

layers with 5-m cell size. The following predictors were derived from the DEM using SAGA-GIS 200 

software (Conrad et al., 2015): elevation (ELEV), slope angle (SLOPE), northness (NORTH), 201 

eastness (EAST), upslope slope angle (UPSLO), convergence index (CONV), topographic position 202 

index (TPI), valley depth (VDEP) and topographic wetness index (TWI). These attributes were 203 

selected as proxies for conditions and processes related to landslide occurrence (e.g., Wilson and 204 

Gallant, 2000; Ohlmacher, 2007; Vorpahl et al., 2012). ELEV reflects the values of the available 5-205 

m DEM and was selected because of its expected correlation with rainfall and vegetation spatial 206 
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distribution. SLOPE was calculated according to Zevenbergen and Thorne (1987). NORTH and 207 

EAST were computed by applying cosine and sine transformations of slope aspect, respectively 208 

(Brenning and Trombotto, 2006; Conoscenti et al., 2016; Cama et al., 2017). NORTH, EAST, as 209 

well as ELEV, may serve as proxies for seasonal wet/dry cycles of soils (Auslander et al., 2003). 210 

UPSLO reflects average slope angle upstream from each position in the landscape. CONV (Koethe 211 

and Lehmeier, 1996), which estimates to what extent neighboring cells point to the center cell, was 212 

calculated by setting a search radius of 50-m. To reduce detail and remove noise of the TWI (Beven 213 

and Kirkby, 1979), a gaussian smoothing filter with search radius of 25-m was applied. CONV and 214 

TWI were included to account for runoff convergence/divergence and potential soil saturation, 215 

respectively. TPI (Guisan et al., 1999) indicates the relative position of each cell and was calculated 216 

by using a 100-m search radius. TPI and CONV values are negative on valley bottoms and positive 217 

on ridges. VDEP reflects the maximum relative relief measured in cross-sections and thus is a 218 

measure of local relief energy (Lóczy et al., 2012). 219 

Moreover, we employed lithology (LITHO), distance form faults (FAULTD) and presence/absence 220 

of soil creep (CREEP) as predictor variables. LITHO was prepared by grouping the geological 221 

formations that outcrop in the study area into 7 geological units, according to their expected 222 

relationship with slope stability (Fig. 4). FAULTD was included to potentially reflect the degree of 223 

weakening of the bedrock due to tectonically active regional geological structures (Mathew et al., 224 

2009; Cama et al., 2017). CREEP includes 71 areas (extending between 1 and 285 ha) affected by 225 

soil creep (Fig. 5), which in the region is favored by deforestation for agriculture and pasture. 226 

CREEP was prepared by analyzing the same images employed to map the landslides. 227 

3.3. Statistical modeling 228 

Probability of debris-avalanche and -flow landslide occurrence at each 5-m grid cell in the study 229 

area was calculated by employing two statistical modeling techniques: logistic regression (LR; 230 

Hosmer and Lemeshow, 2000) and multivariate adaptive regression splines (MARS; Friedman, 231 

1991). The statistical analyses were performed using the R software (R Core Team, 2017) with the 232 
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packages “usdm” (Naimi, 2015), “sperrorest” (Brenning, 2012) and “earth” (Milborrow et al., 233 

2015). 234 

LR is among the most frequently used statistical technique for spatial modeling of landslide 235 

occurrence (Brenning, 2005) and it has been employed several times to predict specifically storm-236 

triggered landslides (e.g., Chevalier et al., 2013; Heckmann et al., 2014; Lombardo et al., 2014, 237 

2015; Cama et al., 2016; Trigila et al., 2015). On the other hand, MARS has been employed only 238 

rarely for assessing landslide susceptibility (e.g., Vorpahl et al., 2012; Felicísimo et al., 2013; 239 

Conoscenti et al., 2015, 2016; Pourghasemi and Rossi, 2016) and, as far as we know, this modeling 240 

technique was exploited for predicting landslides triggered by extreme rainfall events only in one 241 

recent research paper (Rotigliano et al., 2018). LR and MARS can use both continuous and 242 

categorical independent variables to estimate a response variable in the range 0 to 1, which can be 243 

interpreted as probability of an event occurrence. Both LR and MARS consist of an additive 244 

combination of terms. Each term of the LR model is given by a linear regression of an independent 245 

variable, which is fitted using the maximum likelihood method. In contrast to the assumption of LR 246 

that coefficients of the predictors are constant across their ranges, MARS splits the range of the 247 

independent variables into pieces, fitting to each of them a linear regression called “basis function” 248 

(Vorpahl et al., 2012; Gómez-Gutiérrez et al., 2015; Conoscenti et al., 2018; Garosi et al., 2018). 249 

MARS terms consist of a single basis function or a product of two or more of them. To reduce the 250 

complexity of the LR models and avoid problems of overfitting, we adopted a bilateral stepwise 251 

strategy that selects only the most significant predictors. Accordingly, MARS models were 252 

prepared by avoiding terms consisting of more than one basis function. 253 

As both LR and MARS require the absence of multicollinearity (i.e. predictors should not be 254 

correlated with each other), we calculated the variance inflation factor (VIF) to measure the degree 255 

of correlation among the selected predictors. The R package “usdm” was employed to this aim. 256 

Following the “rule of 10”, according to which a VIF > 10 reveals strong multicollinearity 257 
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(Heckmann et al., 2014; Jebur et al., 2014; Bui et al., 2015), we decided to include in the models all 258 

the above cited variables, as their VIF values are well below the threshold. 259 

3.4. Landslide data sampling 260 

In our experiment we used three different methods to select landslide data (Fig. 6). The three 261 

methods differ in the way event cells were selected. A single approach was instead employed to 262 

pick up non-event cells. These were randomly sampled from stable portions of the slopes, i.e. cells 263 

outside landslide areas (dataset STABLE). Landslide data samples were always prepared by 264 

maintaining a presence-absence ratio of 1:1. This choice was made in order to avoid prevalence in 265 

the samples (i.e. different proportion of event and non-event observations), which has been shown 266 

to affect the reliability of common accuracy statistics (Beguería, 2006). 267 

In the first approach we selected a single cell at the highest point of each of the recognized landslide 268 

crown-lines (hereafter named LIP; Lombardo et al., 2015; Cama et al., 2015, 2016), identifying a 269 

total of 1347 event cells (dataset LIP). As model performance and robustness can be affected by the 270 

size of calibration and validation datasets (Brenning, 2005; Vorpahl et al., 2012), the same number 271 

of event cells was selected also using the other two methods. In our second approach, event cells 272 

were randomly sampled from the upper portions of the mapped landslides, which should reflect the 273 

conditions of the main source areas. These portions include the highest 10% of cells of each 274 

landslide area (dataset SOURCE). In the third method, landslide cells were randomly picked up 275 

from the entire landslide areas, which include initiation and accumulation zones (dataset MASS). In 276 

the second and third approach, we sampled as event cells a relative small fraction of pixels within 277 

both upper portions (around 12% of 11,294 cells) and entire landslide areas (around 1.2% of 278 

109,149 cells). In this way, we limited the effects of spatial autocorrelation between sampled cells, 279 

which should be avoided when performing statistical prediction of landslide occurrence. 280 
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3.5. Models training and validation strategy 281 

In order to evaluate their predictive ability, LR and MARS models were submitted to a k-fold 282 

spatial cross-validation strategy, which consists in extracting random training and test subsets from 283 

k spatially disjoint sub-areas. These were identified by using the k-means clustering algorithm (Ruß 284 

and Brenning, 2010; Goetz et al., 2015). As classic k-fold cross validation, the adopted approach 285 

uses k - 1 combined subsets at time for calibration and the remaining one for validation. The 286 

process is then repeated k times.  287 

In our experiment we used k = 5 spatial cross-validation folds. To improve the robustness of the 288 

landslide predictions and mitigate the rare-events issue (Heckmann et al., 2014; Svoray et al., 2012; 289 

Van Den Eeckhaut et al., 2012), multiple learning samples were extracted for each fold. More in 290 

detail, our approach included the following steps, which were repeated for each of the five folds: i) 291 

sampling of ten balanced subsets from the four (i.e. k - 1) calibration sub-areas; ii) training a model 292 

on each of the ten calibration subsets; iii) sampling of a balanced subset from the validation sub-293 

area; iv) calculating a probability (P) of landslide occurrence in the validation subset by averaging 294 

the scores obtained from the ten model runs; v) estimation of the model performance by averaging 295 

the performance evaluated across each of the five folds. To assess the robustness of our approach, 296 

this validation process was repeated 100 times for both LR and MARS models.  297 

The prediction skill of the models was evaluated with the area under the receiver operating 298 

characteristics (ROC) curve (AUC). The ROC curve plots for all possible cut-off values the true 299 

positive rate TPR (sensitivity) versus the false positive rate FPR (1 – specificity). AUC values close 300 

to 1 indicate perfect discrimination ability between the target variable levels (0 or 1) whereas values 301 

close to 0.5 reflect no discrimination ability of the models. Intermediate AUC values were 302 

interpreted as acceptable, excellent or outstanding if higher than 0.7, 0.8 and 0.9, respectively 303 

(Hosmer and Lemeshow, 2000). The Wilcoxon signed-rank test was applied to detect significant 304 

differences in model performance. Differences at p-value < 0.01 were considered significant. 305 
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3.6. Debris-avalanche and -flow landslide susceptibility maps 306 

A total of six debris-avalanche and -flow landslide susceptibility maps were prepared for the area of 307 

Mocoa by using LR and MARS with samples extracted from the datasets LIP, SOURCE and 308 

MASS. The following procedure was applied for both the modeling techniques (i.e. LR and MARS) 309 

and the three datasets (i.e. LIP, SOURCE and MASS): i) sampling of 100 balanced subsets made of 310 

2694 cells; ii) calibration of a model for each of the 100 subsets of cells; iii) calculation of 311 

probability (P) of landslide occurrence for each cell of the study area by averaging the scores 312 

obtained from the 100 model runs. The range of debris avalanche/flow probability (0.00 – 1.00) was 313 

classified into four equal interval levels (interval width: 0.25). As both LR and MARS models were 314 

prepared using balanced datasets of event and non-event pixels, the score averaged from the 100 315 

model runs should be interpreted as relative probability of debris avalanche/flow occurrence (Goetz 316 

et al., 2015). 317 

4. Results 318 

4.1. Validation of the susceptibility models 319 

The predictive performance of LR and MARS evaluated for the three datasets is summarized in Fig. 320 

7 by using six box plots. Each box plot shows the variability of 100 AUC values which were 321 

computed by means of the validation procedure described in Section 3.5. The average AUC values 322 

of LR and MARS calculated for the three datasets are all in the range 0.7 – 0.8, demonstrating an 323 

acceptable (AUC > 0.7) overall accuracy of the debris-avalanche and -flow landslide predictive 324 

models in the area of Mocoa. However, significant differences are revealed if we compare the 325 

performance of the models by applying the Wilcoxon signed-rank test.  326 

The 100 MARS model runs validated on the dataset SOURCE (mean AUC = 0.788) demonstrated a 327 

significant (p-value < 2.2e-16) higher accuracy than those tested on the dataset LIP (mean AUC = 328 

0.776), which in turns performed better (p-value = 7.23e-07) than the MARS-MASS model runs 329 

(mean AUC = 0.768). On the other hand, no significant (p-value = 0.1355) difference of 330 
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performance was measured between LR predictions of LIP (mean AUC = 0.748) and SOURCE 331 

(mean AUC = 0.750) datasets whereas LR-MASS model runs clearly exhibited the poorest 332 

predictive performance (mean AUC = 0.703). In all three datasets, MARS runs outperformed LR 333 

model repetitions (p-value < 2.2e-16).  334 

As regards performance variation, which was evaluated by means of the standard deviation (SD), 335 

MARS- and LR-LIP models exhibited very similar robustness (SD: 0.0075 vs 0.0076), whereas 336 

MARS predictive skill was slightly more stable when validated on the SOURCE (SD: 0.0098 vs 337 

0.0117) and MASS datasets (SD: 0.0102 vs 0.0131). For any of the two modeling techniques, AUC 338 

values dispersion increases from LIP, through SOURCE to MASS datasets.  339 

4.2. MARS and LR susceptibility maps 340 

The six debris-avalanche and -flow landslide susceptibility maps prepared with MARS and LR 341 

using the three landslide datasets are plotted in Fig. 8. To help compare and evaluate the maps, Fig. 342 

9 shows the relative frequency distributions of the datasets ALL (all pixels in the study area), 343 

STABLE, LIP, SOURCE and MASS over the four relative probability classes, for each of the six 344 

maps.  345 

All the maps show smooth prediction patterns without abrupt changes where boundaries of 346 

categorical variables (i.e., lithology and soil creep presence/absence) occur. 347 

MARS provides for all landslide datasets a smoother distribution of the susceptibility classes over 348 

the entire maps (dataset ALL), with a gradually decreasing frequency from the lowest to the highest 349 

class of landslide probability (P). Conversely, except for the SOURCE map, LR produces roughly 350 

similar frequency of P classes between 0.00 and 0.75  whereas the highest class occurs more rarely.  351 

Non-event pixels (dataset STABLE) are better discriminated by the MARS-SOURCE map, where 352 

75% of the stable points has a low susceptibility level (i.e. P < 0.5) whereas only 67% has a P value 353 

below 0.5 in the LR-LIP map.  354 

Fig. 9 shows that, if we consider P = 0.5 as threshold to discriminate between pixels predicted as 355 

stable (P < 0.5) and unstable (P > 0.5), event cells of the datasets LIP, SOURCE and MASS are 356 
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predicted with excellent sensitivity (or true positive rate, TPR) by both MARS (TPR range: 0.77 – 357 

0.78) and LR (TPR range: 0.76 – 0.78) maps. However, if we focus on the distribution of event 358 

pixels with P > 0.5, Fig. 9 reveals that, except for LIP maps, they are roughly equally distributed 359 

between the two highest levels of susceptibility in the MARS maps, whereas event pixels are less 360 

frequent in the highest P class of LR maps.   361 

5. Discussion 362 

The spatial cross-validation revealed that the statistical predictive models provided an acceptable fit 363 

to the spatial distribution of the landslides occurred in the study area during the night between 364 

March 31 and April 1, 2017. Although MARS and LR models provided apparently comparable 365 

ability to discriminate between event and non-event pixels on the three landslide datasets (i.e. LIP, 366 

SOURCE, MASS), the Wilcoxon signed-rank test revealed significant differences of performance. 367 

MARS models, indeed, showed a better prediction skill in all landslide datasets, with a mean AUC 368 

difference of 0.044.  369 

The existence of non-linear relationships between selected predictors and slope failures in the study 370 

area can explain the better fit of MARS models to the landslide datasets. LR models are indeed 371 

based on linear relationships holding over the entire range of the explanatory variables whereas 372 

MARS is able to split the range of predictors into pieces and fit to each of them a different linear 373 

regression. In this way, MARS produces a smooth response curve which may better reproduce the 374 

relationships between predictors and landslide occurrence. 375 

The better performance of MARS in our study area is consistent with the findings of few other 376 

previous works that compared the ability of LR and MARS in predicting landslide occurrence. A 377 

similar difference of mean AUC values between LR and MARS (0.848 against 0.889) was found by 378 

Conoscenti et al. (2015) in a catchment of Sicily (Italy) affected by earth-flow landslides. Roughly 379 

the same difference of prediction skill was revealed by internal cross validation that was applied to 380 

an inventory of shallow translational landslides in the Andes of Southern Ecuador (Vorpahl et al., 381 

2012). A slightly better performance of MARS (AUC = 0.782) with respect to LR (AUC = 0.775) 382 
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was found by Pourghasemi and Rossi (2016), who compared the ability of four statistical 383 

techniques to predict landslides occurred in the Mazandarn Province (Iran). On the other hand, LR 384 

and MARS achieved the same accuracy (AUC = 0.76) in predicting the landslide spatial distribution 385 

in Guipúzcoa province (Spain; Felicísimo et al., 2013). Also, Vorpahl et al. (2012) found no 386 

significant difference of predictive performance when they applied an external cross validation to 387 

their data. 388 

The results of our experiment and those of the above cited papers suggest that the role of a physical 389 

factor in controlling a geomorphological process can be better represented by a series of local 390 

functions rather than a single linear regression. In other words, simple predictive models, which are 391 

typically employed to explain relationships between factors and geomorphological processes, are 392 

less accurate than complex models, such as those provided by MARS. 393 

As regards the different landslide datasets employed in this experiment, we found a significant 394 

lower accuracy when predictive models were calibrated and validated using event pixels sampled 395 

from the entire landslide areas (i.e. dataset MASS). The best fit to landslide data was found when 396 

we used MARS with event cells sampled from the highest 10% of cells of each landslide area 397 

(dataset SOURCE) whereas no significant difference of performance was detected when we trained 398 

and tested LR models with datasets LIP and SOURCE.  399 

The overall better discrimination ability of the LIP/SOURCE pixels can be explained considering 400 

that their terrain conditions are more specific than those of the MASS cells. The latter indeed may 401 

occur on the initiation, transport and deposition zones of debris-avalanches and -flows which can be 402 

characterized by heterogeneous conditions (e.g., altitude, slope, convergence index, TPI, TWI or 403 

valley depth) within each individual landslide area, whereas LIP/SOURCE pixels should likely 404 

have more homogeneous conditions. These results are consistent with those of Regmi et al. (2014), 405 

who found that accuracy of landslide predictive models was slightly better when developed on 406 

samples obtained from scarps of different types of landslides (i.e., debris flows, debris slides, rock 407 

slides and soil slides) occurred in western Colorado, USA. They explain their findings assuming 408 
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that landslides in their study area were mainly due to unfavorable condition at the slope heads and, 409 

thus, data sampling from scarps instead of landslide masses reduced uncertainties. On the other 410 

hand, Vorpahl et al. (2012) found better performance in predicting landslide deposition zones than 411 

initiation zones. As possible reason of this result, they assumed that deposition zones mainly occur 412 

close to bottom of small valleys which can be described by the selected terrain attributes better than 413 

the open slope where initiation zones tend to be located. In other words, also Vorpahl et al. (2012) 414 

assume that more specific terrain conditions of landslide data provide more accurate predictive skill 415 

of the models.  416 

Although apparently similar, the six debris-avalanche and -flow landslide susceptibility maps 417 

obtained from MARS and LR models have important differences, which are revealed by the 418 

histograms of Fig. 9. Based on the latter, we can infer that, also across the entire study area, MARS 419 

performed better than LR and both modeling techniques achieved better prediction skill when 420 

employed to discriminate between stable and unstable pixels of the dataset SOURCE. We consider 421 

MARS maps better than LR maps because of the following reasons. First, frequency of 422 

susceptibility levels of MARS maps gradually decreases from lowest to highest ones, which is a 423 

desirable quality for landslide susceptibility maps. Indeed, as landsliding is normally a rare-event 424 

and thus ratio of event to non-event cells can be very low, maps with high frequency of susceptible 425 

pixels can suffer from high false positive rates. Second, using P < 0.5 as threshold to identify non-426 

susceptible pixels, MARS maps are characterized by significantly higher specificity (or true 427 

negative rate) on all analyzed landslide datasets. Third, MARS maps have higher percentage of 428 

event pixels with P > 0.75. Similarly, it is reasonable to infer that dataset SOURCE yielded better 429 

MARS and LR maps because, although roughly the same true positive rate (P threshold = 0.5) was 430 

observed for all landslide datasets, the percentage of event pixels with P > 0.75 was definitely 431 

higher. Furthermore, a higher percentage of stable pixels with P < 0.5 occur in MARS- and LR-432 

SOURCE maps. 433 
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The results of this experiment demonstrated that a stochastic approach can be used by 434 

geomorphologists to achieve reliable prediction of landslides triggered by an extreme rainfall event 435 

in a mountainous environment. The approach described in this paper could be useful particularly in 436 

developing countries which have great difficulty in affording the high costs of structural measures 437 

to reduce landslide risk. This method allows for identifying areas prone to landsliding and thus 438 

could provide a valuable aid to a rational land use planning aimed at minimizing victims and 439 

economic damage. 440 

  441 

6. Concluding remarks 442 

In this experiment, we employed a stochastic approach to predict the spatial distribution of the 443 

debris-avalanches and -flows triggered by heavy rainfalls occurred in the area of Mocoa on April 444 

1st, 2017. Multivariate Adaptive Regression Splines (MARS) and Logistic Regression (LR) were 445 

exploited as modeling techniques. A set of nine terrain attributes, in addition to lithology, distance 446 

from faults and presence/absence of soil creep processes were used as predictor variables. 447 

Validation of the models was performed by using k-fold spatial cross-validation and by calculating 448 

AUC values of 100 MARS and LR model repetitions applied to balanced samples of event and non-449 

event pixels. The calibration and validation samples were extracted from three different landslide 450 

datasets which contain the highest point of each landslide crown-line (dataset LIP), the highest 10% 451 

of cells of each landslide area (dataset SOURCE) or the entire landslide area (dataset MASS). 452 

 453 

The following conclusions can be drawn for the Mocoa study area on the basis of the validation of 454 

the models and the analysis of six susceptibility maps which were obtained by using MARS and LR 455 

with the three landslide datasets. 456 

1. The overall accuracy of our models can be considered acceptable (AUC > 0.7); 457 

2. MARS models and maps exhibited a better ability to discriminate between event and non-event 458 

pixels; 459 
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3. Both MARS and LR demonstrated better accuracy when employed to predict landslide source 460 

areas; 461 

4. The relationships between predictors and debris-avalanche and -flow landslides are more 462 

accurately reproduced by piecewise linear regressions rather than individual linear functions 463 

holding over the entire predictor range.  464 

The approach employed in this experiment is relatively simple, rapid and can be reproduced by 465 

using free software and data usually available. It can be used to prepare debris-avalanche and -flow 466 

landslide susceptibility maps which can help policy makers and land managers of Colombia to 467 

establish preventive measures and mitigate risks. 468 
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