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EFFECTIVE CONE OF THE BLOWUP

OF THE SYMMETRIC PRODUCT OF A CURVE

ANTONIO LAFACE AND LUCA UGAGLIA

(Communicated by Rachel Pries)

Abstract. Let C be a smooth curve of genus g ≥ 1 and let C(2) be its second
symmetric product. In this note we prove that if C is very general, then the

blowup of C(2) at a very general point has nonpolyhedral pseudo-effective
cone. The strategy is to consider first the case of hyperelliptic curves and then
to show that having polyhedral pseudo-effective cone is a closed property for
families of surfaces.

Introduction

The study of the effective cone of the blow up S̃ of a projective surface S at
a smooth point x ∈ S is connected with the calculation of Seshadri constants.
Deciding when the (pseudo)effective cone of S̃ is polyhedral is an open problem
even when S is a toric surface. For instance, if the effective cone of the blowup
of the weighted projective plane P(a, b, c) at a general point is not closed, then

Nagata’s conjecture holds for abc points in P
2; see [4] and [8–11] for recent results

on blowups of weighted projective planes. In [2] it has been shown that there
exist toric surfaces whose blowup at a general point has nonpolyhedral pseudo-
effective cone. This result allows one to deduce that the pseudo-effective cone of
the Grothendieck–Knudsen moduli space M̄0,n is not polyhedral for n ≥ 10.

In this paper we focus on the second symmetric product C(2) of a positive genus
curve C. In general, it is not known if the effective cone of these surfaces is open.
This would be true if the Nagata conjecture holds, as shown in [3]. Our interest is

in the blowup C̃(2) at a very general point p⊕ q ∈ C(2).

Theorem 1. Let C be a very general curve of genus g ≥ 1. Then the blowup of the
symmetric product C(2) at a very general point has nonpolyhedral pseudo-effective
cone.

In order to prove the theorem we first show, in Proposition 1.3, that having
polyhedral pseudo-effective cone is a closed property for families of surfaces and
then we prove Theorem 2.
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Theorem 2. Let C be a genus g ≥ 1 hyperelliptic curve with hyperelliptic involution
σ, let p ∈ C and let C̃(2) be the blowup of C(2) at p⊕ σ(p). If the class of σ(p) − p

is nontorsion in Pic0(C) then Eff(C̃(2)) is nonpolyhedral.

When C is an elliptic curve, its symmetric product is the Atyiah surface. In
this case in [7] it has been proved that if q − p is nontorsion, then C̃(2) contains

infinitely many negative curves. Therefore the pseudo-effective cone of C̃(2) is not
polyhedral, and in [14] it is proved that the classes of the above mentioned curves
(together with other two classes) indeed generate the pseudo-effective cone. Our
main contribution here is a new description of the curves whose classes generate
the pseudo-effective cone, which turn out to be hyperelliptic, as can be deduced
from Theorem 4.8 and Proposition 4.9.

Our proof of Theorem 2 focuses on the quotient surface X̃ by the action of the
hyperelliptic involution on both factors. We show that there is an irreducible curve
B on X̃ having self intersection B2 = 0, whose class spans an extremal ray of the
pseudo-effective cone of X̃, so that the latter cannot be polyhedral by [2, Proposition

2.3]. We then apply Proposition 1.1 to the double cover C̃(2) → X̃ to conclude that

the pseudo-effective cone of C̃(2) is not polyhedral.
The paper is structured as follows. In Section 1 we recall some definitions and

we prove some preliminary results about the effective cone of projective surfaces. In
Section 2 we study the symmetric product C(2) of a curve, with particular emphasis
on the case C hyperelliptic. Section 3 is devoted to the proof of Theorem 1 and 2,
while in Section 4 we prove some results in case g(C) = 1.

1. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic. We recall some
definitions (see, for example, [12,13]). IfX is a normal projective irreducible variety
over k, let Cl(X) be the divisor class group and let Pic(X) be the Picard group
of X. As usual, we denote by ∼ the linear equivalence of divisors and by ≡ the
numerical equivalence. Recall that for Cartier divisors D1, D2, we have D1 ≡D2 if
and only if D1 ⋅C =D2 ⋅C, for any curve C ⊆X. We let

N1(X) ∶= Pic(X)/ ≡

be the Néron–Severi group, i.e., the group of numerical equivalence classes of Cartier
divisors onX. We denote by ρ(X) the rank of N1(X) and by N1(X)R = N1(X)⊗ZR,
N1(X)Q = N1(X) ⊗Z Q. We define the pseudo-effective cone

Eff(X) ⊆ N1(X)R,

as the closure of the effective cone Eff(X), i.e., the convex cone generated by nu-
merical classes of effective Cartier divisors [13, Definition 2.2.25]. We let Nef(X) ⊆
N1(X)R be the cone generated by the classes of nef divisors. Finally, given an
ample class H, we define the positive light cone Q of X as follows:

Q ∶= {D ∈ N1(X)R ∶ D2 ≥ 0 and D ⋅H ≥ 0}.

Proposition 1.1. Let f ∶X → Y be a finite surjective morphism of normal Q-
factorial projective varieties. If �(X) = �(Y ), then f∗∶N1(X)R → N1(Y )R is an
isomorphism such that f∗(Eff(X)) = Eff(Y ).
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Proof. Since Y is Q-factorial, the image of Pic(Y ) in the Néron–Severi group N1(Y )
has finite index. Over this subgroup the pullback is defined and the projection
formula gives f∗ ○ f∗ = n ⋅ id, where n = deg(f). This, together with the hypothesis
ρ(X) = ρ(Y ), imply that f∗∶N1(X)R → N1(Y )R is an isomorphism whose inverse
is 1

n
f∗. Then one concludes by the inclusions

f∗(Eff(X)) ⊆ Eff(Y ) and f∗(Eff(Y )) ⊆ Eff(X). �

Proposition 1.2. Let X be a normal Q-factorial algebraic surface with �(X) ≥ 3
and positive light cone Q ⊆ N1(X)R. Let C1, . . . , Cn be irreducible curves of X.
Then the following are equivalent:

(1) Q ⊆ Cone([C1], . . . , [Cn]);
(2) Eff(X) = Cone([C1], . . . , [Cn]).

Moreover, if Eff(X) is polyhedral then Eff(X) = Eff(X) holds and both cones are
generated by classes of negative curves.

Proof. We prove (1) ⇒ (2). Let C ∶= Cone([C1], . . . , [Cn]). Since �(X) ≥ 3, the
positive light cone Q is round, so that the extremal rays of C must lie outside it. In
other words, C is generated by classes of irreducible negative curves. Now let [D] be
a divisor class which generates an extremal ray of the pseudo-effective cone Eff(X).
By [5, Lemma 6.2]1 D2 ≤ 0. Moreover D2 can not be 0, since otherwise [D] ∈ Q
would not be an extremal ray of C and thus neither of Eff(X), a contradiction. Then
D2 < 0 so that the hyperplane D⊥ intersects Q along its interior. As a consequence,
at least one of the Ci satisfies D ⋅Ci < 0. Thus any effective multiple of D contains
Ci in its support, so that [D] = [Ci] up to multiples.

The implication (2) ⇒ (1) is obvious. �

Proposition 1.3. Let X → B be a flat projective morphism of Noetherian schemes,
whose very general fiber is a normal Q-factorial surface. Assume that specialization
induces an isometry within the Picard lattice of the general fiber and that of the
special fiber X0 over 0 ∈ B. If the general fiber has polyhedral pseudo-effective cone,
then the same holds for the special fiber.

Proof. If the Picard rank is ≤ 2, then the pseudo-effective cone is polyhedral and
there is nothing to prove. We then assume that the Picard rank is at least 3. By
Proposition 1.2 the pseudo-effective cone of the general fiber is generated by finitely
many classes of negative curves C1, . . . , Cn. By semicontinuity of cohomology di-
mension, each such curve Ci degenerates to a, possibly reducible, curve of X0. Let
Ci1, . . . , Ciri be the irreducible components of the degenerate curve. We claim that
in the Néron–Severi space of the special fiber X0 the following inclusions of cones
hold

Q ⊆ Cone([Ci] ∶ 1 ≤ i ≤ n) ⊆ Cone([Cij] ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ ri).
Indeed, by Proposition 1.2, the first inclusion holds true in the Néron–Severi space
of the general fiber and, by the assumption on the Picard lattice of the special fiber,
it holds as well on the Néron–Severi space of the special fiber. The second inclusion
follows by the definition of the curves Cij . Then, again by Proposition 1.2, one

concludes that Eff(X0) = Cone([Cij] ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ ri). �

1The proof in [5] is for smooth surfaces but the argument works verbatim in our case.
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2. Symmetric product of a curve

Given a genus g ≥ 1 curve C, we denote by C(2) its second symmetric product,
that is the quotient of C ×C by the involution τ , defined by (p, q) ↦ (q, p), and we

denote by p⊕ q ∈ C(2) the class of (p, q) ∈ C ×C.
From now on we assume that C is hyperelliptic, we fix a hyperelliptic involution

σ and we denote by p1, . . . , p2g+2 ∈ C its fixed points. Observe that σ induces two
commuting involutions σ1, σ2 on C ×C, each of which acts only on one coordinate.
The group G ∶= ⟨σ1, σ2, τ ⟩ is isomorphic to D4, with center generated by the com-
position σ1 ⋅ σ2, that we still denote by σ with abuse of notation. We have the
following diagram of degree two quotient morphisms

C ×C ��

��

S ��

��

P1 × P1

��
C(2)

φ
�� X

ψ
�� P2,

where each vertical map is the quotient by τ , the first orizontal map on each line
is the quotient by σ, and the second one is the quotient by σ1.

Remark 2.1. Let us consider the diagonal Δ+ ∶= {p⊕p ∣ p ∈ C} and the antidiagonal

Δ− ∶= {p⊕σ(p) ∣ p ∈ C} in C(2). We set C± ∶= φ(Δ±) ⊆X and Γ ∶= ψ(C+) = ψ(C−) ⊆
P
2. From the above diagram we see that Γ is the image of the diagonal of P1 ×P1

via the double cover defined by ([s0 ∶ s1], [t0 ∶ t1]) ↦ [s0t0 ∶ s1t1 ∶ s0t1 + s1t0], so
that it is the conic Γ = V (x2

3 − 4x1x2) ⊆ P
2.

Given a point p ∈ C, consider the two curves {p} ×C and C × {p} in C ×C. On

P
1 ×P1 they are mapped to two lines on the two different rulings, while on C(2)

they are mapped to the curve Cp ∶= {p ⊕ q ∣ q ∈ C}. We set Bp ∶= φ(Cp) ⊆ X and

Lp ∶= ψ(Bp) ⊆ P
2. Observe that Bp is isomorphic to C, while Lp is a line which

is tangent to Γ at the image of p ⊕ p (equivalently, at the image of σ(p) ⊕ p) in

P
2. We finally remark that given the curve Cσ(p) ∶= {σ(p) ⊕ q ∣ q ∈ C}, we have

φ(Cσ(p)) = φ(Cp) = Bp ⊆X.

Proposition 2.2. The surface X is a double cover of the plane, branched along the
union of 2g + 2 lines, tangent to the conic Γ. It has (2g+2

2
) singular points, namely,

the ordinary double points points φ(pi ⊕ pj), for 1 ≤ i < j ≤ 2g + 2. The equation of
X in the weighted projective space P(1, 1, 1, g + 1) is

x2
4 +

2g+2

∏
i=1

�i = 0,

where �1, . . . , �2g+2 ∈ C[x1, x2, x3] are defining polynomials for the 2g + 2 lines.

Proof. The ramification divisor of ψ ∶ X → P
2 consists of the images of points (p, q) ∈

C×C such that the orbit of (p, q) with respect to ⟨σ, τ ⟩ equals the orbit with respect
to the whole group G, that is (σ(p), q) ∈ {(p, q), (q, p), (σ(p), σ(q)), (σ(q), σ(p))}.
The latter condition holds if and only if either p or q is a fixed point for σ. Thus the
ramification is the union of the curves Bp1

, . . . ,Bp2g+2
, so that the branch divisor of

ψ is the union of the 2g + 2 lines Lp1
, . . . , Lp2g+2

which, by Remark 2.1, are tangent
to Γ at the images of pj ⊕ pj .

In order to get the equation given in the statement just observe that a double
cover of P

2 branched along a curve V (g(x1, x2, x3)) ⊆ P
2 of degree 2d can be
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described as the hypersurface V (x2
4+g(x1, x2, x3)) in the weighted projective space

P(1, 1, 1, d). �

Remark 2.3. Since X is a hypersurface of a weighted projective space, by [6, The-
orem 4.2.2] we have that q(X) = 0. In particular, X is a weak del Pezzo of degree
2 if g = 1, it is a singular K3 when g = 2, and it is of general type when g ≥ 3.

Proposition 2.4. Assume that C is a very general hyperelliptic curve of genus
g ≥ 1. Then both C(2) and X have Picard rank 2 and their effective cones are
generated by the classes of the images of the diagonal and the antidiagonal. The
intersection matrices of these curves in C(2) and of their images in X are

(4 − 4g 2g + 2
2g + 2 1 − g

) and (2 − 2g 2g + 2
2g + 2 2 − 2g

) ,

respectively.

Proof. By [1, Chapter VIII, §5], N1(C(2)) ≃ Z ⊕N1(JC), so that [16, Proposition

3.4] implies that the Picard rank of C(2) is 2. As a consequence, the Picard rank
of X is at most 2 and it is 2 because N1(X) contains two numerically independent
classes. The diagonal Δ+ and the antidiagonal Δ− are both mapped to the conic Γ
of P2, tangent to the 2g + 2 lines. Thus C+ + C− = φ(Δ+) + φ(Δ−) is the pullback
of Γ, so that (C+ +C−)2 = 8. Since these two curves are numerically equivalent and
intersect in 2g + 2 points, we obtain the second matrix. To get the first matrix it
is enough to observe that the double cover C(2) → X branches at C−, which is the
image of the antidiagonal. �

3. Proof of Theorems 2 and 1

Proof of Theorem 2. Let us fix a point p ∈ C, such that the class of σ(p) − p is

nontorsion, and let C̃(2) → C(2) be the blowup at the point p⊕ σ(p) ∈ Δ− ∩Cσ(p),
with exceptional divisor E. First of all, observe that the point p⊕σ(p) is invariant
for σ, so that the latter lifts to an involution on the blowup C̃(2) that, by abuse
of notation, we denote by the same symbol σ. Let φ̃∶ C̃(2) → X̃ ∶= C̃(2)/⟨σ⟩ be
the quotient morphism. The involution σ has two fixed points on the exceptional
divisor E: the intersection point with the strict transform of Δ−, and one isolated
point x, so that φ̃(x) is a singular point of X̃. We have a birational morphism

η∶ X̃ →X which is the contraction of φ̃(E), having self-intersection −1/2 in X̃. The
map η is a weighted blowup at the point φ(σ(p) ⊕ p) and can also be described as
follows.

Consider the blowup X1 →X at the point φ(p⊕ σ(p)), with exceptional divisor
E1, and then the blowup X2 → X1, at the intersection point of E1 with the strict
transform of Bp = φ(Cp) = φ(Cσ(p)) (see Remark 2.1). Finally, contract the strict
transform of E1, which is now a (−2)-curve (its image gives the singular point

φ̃(x) ∈ X̃). We can summarize the above discussion in the following commutative
diagrams:

C̃(2)
φ̃ ��

��

X̃

η

��

X2

��

�� X̃

η

��
C(2)

φ
�� X

ψ
�� P2 X1

�� X.
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We are going to show that the pseudo-effective cone of X̃ is not polyhedral. Observe
that the strict transform of Bp in X̃ is isomorphic to Bp and hence to Cσ(p) and
to C. Therefore, by abuse of notation, we denote this strict transform by C. Since
ψ(Bp) ⊆ P

2 is the line Lp, tangent to the conic Γ, we have that B2
p = 2. By the

description of η∶ X̃ →X, we are blowing up a point on Bp and then the same point
on its strict transform. Therefore C2 = 0, and we can write

(1) C ∼ (ψ ○ η)∗(Lp) − 2φ̃(E).

Let us compute now the restriction OC(C). Since Lp is a line in P
2, the restriction

of (ψ ○ η)∗(Lp) to C is the g12 , so that it is equivalent to σ(p) + p. On the other

hand, the restriction of φ̃(E) to C corresponds to the point we are blowing up in

η∶ X̃ → X, i.e., to the image of σ(p) ⊕ p in X. Via the isomorphism Cσ(p) → C,
the point σ(p)⊕ p corresponds to p ∈ C, so that we conclude that the restriction of

φ̃(E) to C is p. Summing up, we obtain

OC(C) ≃ OC(σ(p) + p − 2p) = OC(σ(p) − p).
Since we are assuming that σ(p)−p is nontorsion, we deduce that OC(C) is nontor-
sion, so that h0(OC(nC)) = 0 for any positive integer n. Moreover, h0(O(C)) = 1

implies h0(O(nC)) = 1 for any positive integer n. Since q(X̃) = 0, numerical and
linear equivalence coincide, up to finite multiple. Thus the previous argument im-
plies that the class of C spans an extremal ray of Eff(X̃). By [2, Proposition 2.3] we

conclude that Eff(X̃) is not polyhedral, and by Proposition 1.1 the cone Eff(C̃(2))
is not polyhedral either. �

Remark 3.1. In genus 2 the Abel–Jacobi map presents C(2) as the blowup of Pic2C
in the point Ω that corresponds to the canonical class KC of C, with exceptional
divisor Δ− ⊆ C(2). So in this case we blow up Pic2C twice infinitely near at Ω.
The map C → Pic2C given by x ↦ [x + σ(p)] embeds C as a theta-divisor passing
through Ω and with tangent direction p + σ(p). So after the blowup the proper
transform of C is a curve of self-intersection 0. The restriction of C to C will be
KC − 2p (because we blow up the same point p of C twice), so it is σ(p) − p as we
claim in the proof of the general statement.

Remark 3.2. Assume that σ(p) − p is not torsion, so that the pseudo-effective cone

Eff(X̃) is not polyhedral. If g = 1 we are going to show that on X̃ there are infinitely
many negative rays accumulating on C (see Proposition 4.9 and Figure 3). If g > 1,

consider the intersection matrix of the classes Δ+,Δ−,E1, C,E on X̃:

⎛
⎜⎜⎜⎜⎜
⎝

2 − 2g 2 + 2g 1 2 0
2 + 2g −2g 1 0 1

1 1 1
2

1 0
2 0 1 0 1
0 1 0 1 − 1

2

⎞
⎟⎟⎟⎟⎟
⎠

.

We already know that C generates an extremal ray of Eff(X̃), and the same holds
for the classes Δ+,Δ− and E, since they have negative self-intersection. In partic-
ular, Eff(X̃) (and hence also Eff(C̃(2))) has a polyhedral part (see Figure 1).

Question 3.3. When C is hyperelliptic of genus g > 1, does C̃(2) have infinitely
many negative curves?
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Figure 1. Eff(X̃), when g > 1

Proof of Theorem 1. Let π∶ X → B be a flat family whose general fiber is a general
genus g curve C and whose special fiber over 0 ∈ B is a general hyperelliptic curve
C0. Passing to the symmetric product one gets a new flat family with basis B.

Blowing up a section of the new family which cuts out p ⊕ σ(p) on C
(2)
0 , with

σ(p) − p nontorsion, one concludes, by Theorem 2 and Proposition 1.3, that the

pseudo-effective cone of the blowup C̃(2) is nonpolyhedral. �

We remark that when C and the point that we are blowing up are general, even
if we know that Eff(C̃(2)) is not polyhedral, we do not know any negative class.
Therefore it is natural to ask Question 3.4.

Question 3.4. When C is general, does C̃(2) have infinitely many negative curves?

4. The genus one case

In this section we make the assumption that C has genus 1. In particular, we first
show that in Theorem 1 the opposite implication also holds (see Theorem 4.8). Then

we describe the rays of the pseudo-effective cone of X̃, both when it is polyhedral
and when it is not (Proposition 4.9), and finally we give a planar model for the

resolution Z of X̃.

Remark 4.1. When g(C) = 1, the symmetric product C(2) is a ruled surface whose
fibers correspond to the g21 ’s of C. Observe that if we fix two points p ≠ q ∈ C, they
define a unique g21 , and hence a hyperelliptic involution σ. This implies that the
antidiagonal Δ− = {r ⊕ σ(r) ∣ r ∈ C} is indeed a fiber.

Let us recall Definition 4.2 from [2, §3].

Definition 4.2. An elliptic pair (C,X) consists of a projective rational surface
X with log terminal singularities and an irreducible curve C ⊆ X, with arithmetic
genus one, disjoint from the singular locus of X and such that C2 = 0.

The elliptic pair (C,X) is a minimal elliptic pair if it does not contain irreducible
curves E such that K ⋅E < 0 and C ⋅E = 0.
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Consider the blowing-up C̃(2) → C(2) at the point p ⊕ q ∈ Δ−, where p ≠ q, or
equivalently, at p⊕σ(p), where σ is the involution exchanging p and q. We denote

by E the exceptional divisor and by C̃p ⊆ C̃(2) the strict transform of the curve

Cp ∶= {p⊕r ∣ r ∈ C} ⊆ C(2). The involution σ induces an involution on C̃(2), that we

still denote by σ, whose ramification is the strict transform Δ̃− ⊆ C̃(2) of Δ−. We
denote by φ̃∶ C̃(2) → X̃ ∶= C̃(2)/⟨σ⟩ the quotient morphism. Since the curve φ̃(C̃p)
is isomorphic to Cp and hence to the curve C, by abuse of notation in what follows

we will simply set C ∶= φ̃(C̃p).

Lemma 4.3. The pair (C, X̃) is a minimal elliptic pair.

Proof. The rationality of X̃ follows from Remark 2.3. From Proposition 2.2 we have
that X has 6 ordinary double points, and none of them lies on Bp ∶= φ(Cp) = φ(Cq).
Therefore they give rise to 6 ordinary double points of X̃, disjoint from the curve
C. Moreover the involution on C̃(2) has 2 fixed points on E, but only one of them is
isolated. Its image is the seventh ordinary double point of X̃ (which does not lie on

C). This proves that (C, X̃) is an elliptic pair. By Proposition 4.7 we can compute

K2
X̃
= 0, so that by [2, Lemma 3.7] we conclude that (C, X̃) is minimal. �

Remark 4.4. Let us consider a minimal resolution π∶Z → X̃. Since C ⊆ X̃ does
not pass through the singular points, we have an isomorphic copy of C in Z, that
we still denote by C. Therefore (C,Z) is a smooth minimal elliptic pair and in
particular, by [2, Theorem 3.8], the Picard rank of Z is 10.

Notation 4.5. Before stating our next results about X̃ and Z we need to fix some
notation. First of all, we are going to denote by Li ⊆ P

2, 1 ≤ i ≤ 4 the lines whose
union is the branch locus ofX → P

2, and by Ei ⊆ X̃ and Ēi ⊆ Z the strict transforms
of Li on X̃ and Z, respectively. By abuse of notation we denote by E the image
ϕ̃(E) ⊆ X̃ and by Ē ⊆ Z its strict transform. Analogously we denote simply Δ−
the curve φ̃(Δ̃−) ⊆ X̃ and by Δ̄− its strict transform in Z. For any 1 ≤ i < j ≤ 4, we

denote by Ēij ⊆ Z the (−2)-curve over the singular point pij ∶= Li ∩Lj ∈ P2, while

the (−2)-curve over the isolated singular point φ̃(x) ∈ φ̃(E) ∈ X̃ is denoted by Ē′.

Finally, for any (i, j, k) in {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, we denote by L(ij)(k4) ⊆ P
2

the line through pij and pk4. Observe that over any of these L(ij)(k4) we have two
irreducible curves in X, say,

E(ij)(k4) and E′(ij)(k4).

We use the same notation for their strict transforms on X̃, while we denote by
Ē(ij)(k4) and Ē′(ij)(k4) their strict transforms on Z.

We now recall that Γ = V (x2
3−4x1x2) ⊆ P

2, so that Δ− = V (x4+2x1x3−2x2x3) (it
corresponds to one of the two irreducible components over Γ). Moreover, we can fix
the tangent lines L1, . . . , L4 to be V (x1), V (x2), V (x1+x2−x3) and V (x1+x2+x3)
respectively. Then, by Proposition 2.2,

X = V (x2
4 − x1x2(x1 + x2 − x3)(x1 + x2 + x3)) ⊆ P(1, 1, 1, 2),

and L(12)(34) = V (x1 + x2), L(13)(24) = V (x1 − x2 + x3), L(23)(14) = V (x1 − x2 − x3).
From these equations one can see that the 6 curves E(ij)(kl) and E′(ij)(kl) form a
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Ē12 Ē13

Ē24

Ē23Ē14

Ē34

Δ̄− Ē′

Ē1

Ē(13)(24)

Ē2

Ē(23)(14)

Ē4

Ē(12)(34)

Ē3

Ē

Figure 2. Intersection graph on Z

hexagon, and we can choose the labels in order to have

E(12)(34) = V (x1 + x2, x4 + x2x3),
E(13)(24) = V (x1 − x2 + x3, x4 + 2x2

2 − 2x2x3),
E(23)(14) = V (x1 − x2 − x3, x4 − 2x2

2 − 2x2x3).

It is now straightforward to check that these 3 curves are disjoint and do not meet
Δ−, so that the same holds for the strict transforms on X̃ and on Z (analogously,
E′(12)(34), E′(13)(24) and E′(23)(14) are disjoint and do not meet Δ+).

In Figure 2 we represent the intersection products of the negative curves de-
scribed before. The black dots are the (−2)-curves while the white dots are the
(−1)-curves. When two dots are connected, the two corresponding curves have
intersection product 1, otherwise their product is 0.

Remark 4.6. The lattice C⊥ in Pic(Z) is isomorphic to Ẽ8. Since the eight (−2)-
curves described above are all disjoint, their classes span the sublattice A8

1 ⊆ Ẽ8.

Proposition 4.7. On X̃ the following hold.

(1) Cl(X̃) ≃ Z3 ⊕ (Z/2Z)2.
(2) Cl(X̃)free is generated by E1, E(12)(34) and E, which have the following

intersection matrix

⎛
⎜
⎝

1/2 1/2 0
1/2 0 0
0 0 −1/2

⎞
⎟
⎠
.

(3) C ∼ −KX̃ ∼ 2E1 − 2E.
(4) Δ− ∼ 2E(12)(34) − 2E.
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Proof. We prove (1). First of all, observe that the Picard rank of X̃ is 3 because we
are contracting seven (−2)-curves of Z, which has Picard rank 10 (see Remark 4.4).
Moreover the torsion part is of the form (Z/2Z)s, for some 0 ≤ s ≤ 7, because

the singularities of X̃ are ordinary double points. A basis for the Picard group of
Z consists of the classes of the following curves: Ē12, Ē13, Ē14, Ē1, Ē2, Ē3, Ē4,
Ē(12)(34), Ē

′, Ē because the corresponding intersection matrix is unimodular of

rank 10. This implies that Cl(X̃) is generated by their images, i.e., E1, E2, E3, E4,
E(12)(34), E (recall Notation 4.5). Observe that for any i ≠ j, the class of Ei −Ej is

2-torsion because 2Ei is pullback of a line of P2. Since the class of E1+E2+E3+E4

is linearly equivalent to the pullback of a conic, it is divisible by 2, so that also the
class of

(E2 −E1) + (E2 −E3) + (E2 −E4) = 4E2 − (E1 +E2 +E3 +E4)
is divisible by 2, and in particular it is trivial. Therefore the class of E4 is not
needed to generate Cl(X̃) and thus s ≤ 2. On the other hand E1 −E2 ≠ E1 −E3 so
that s = 2.

We prove (2). Since E is disjoint from E1 and E(12)(34), we have E1 ⋅ E =
E(12)(34) ⋅E = 0. The self-intersection of E1 is 1/2 because 2E1 is the pullback of
a line. The self-intersection of E(12)(34) is 0 because its pullback in Z is 1/2E12 +
E(12)(34)+1/2E34, which has self-intersection 0. Similarly one shows that E2 = −1/2
and that E(12)(34) ⋅E1 = 1/2.

We prove (3). The equivalence C ∼ 2E1 − 2E follows from equation (1), since

Lp ⊆ P
2 is a line tangent to Γ. By the ramification formula,

KX = ψ∗KP2 +R = ψ∗(−3L) +ψ∗(2L) = −ψ∗(L) = −2η(E1).
Recall that the map η∶ X̃ →X is obtained by blowing up twice (one time on the ex-
ceptional divisor) and then contracting the (−2)-curve. The contraction is crepant
so that it does not affect the canonical class. From this we conclude that

KX̃ = η∗KX + 2E = −2E1 + 2E.

In order to prove (4) observe that on Z the divisors 2Ē(12)(34) + Ē34 + Ē12 and

Δ̄− + 2Ē + Ē′ have both self-intersection 0 and their intersection product is 0. By
the Hodge index theorem it follows that the classes of these divisors must be pro-
portional. Since both classes have intersection product 1 with some curve, they are
primitive in Pic(Z). It follows that the two classes are equal, and one concludes by

taking pushforward of these classes via π∶Z → X̃. �

Theorem 4.8. With the notation above, the following are equivalent:

(1) Eff(C̃(2)) is rational polyhedral;

(2) Eff(X̃) is rational polyhedral;
(3) Eff(Z) is rational polyhedral;

(4) the class of q − p has order m < ∞ in Pic0(C);
(5) dim ∣ −mKZ ∣ = 1 and dim ∣ − rKZ ∣ = 0, for 0 ≤ r <m.

Proof. By Proposition 2.4, ρ(X̃) = ρ(C̃2), so that the equivalence (1) ⇔ (2) follows

from Proposition 1.1. Since X̃ has Du Val singularities, the equivalence (2) ⇔ (3)
was proved in [2, Lemma 3.14]. We now prove the equivalence of (3) and (4). Since
(C,Z) is an elliptic pair, by [2, §3], the effective cone of Z is rational polyhedral if

and only if C⊥ is generated by the kernel of res∶C⊥ → Pic0(C). In Remark 4.4 we
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have already seen that there are eight disjoint (−2)-curves in ker(res). Thus C⊥ is
spanned by elements of ker(res) if and only if there exists an integer m > 1 such
that the multiple mC is in ker(res), that is if res(C) is of m-torsion. We conclude
by observing that res(C) = q − p (see the proof of Theorem 2).

Finally, from Proposition 4.7 C ∼ −KX̃ , and since the curve C is disjoint from the
singular points, also on Z we have C ∼ −KZ . The equivalence (4)⇔ (5) follows. �

We are now going to describe the extremal rays of Eff(X̃), both when it is
polyhedral and when it is not. We remark that by Proposition 1.1 we can identify
Eff(C̃(2)) with Eff(X̃).

Proposition 4.9. Let m > 1 be the order of q − p and let us consider the following
classes of Cl(X̃):

Dn ∶= 2n(n + 1)E1 − 2nE(12)(34) + (1 − 2n2)E, n ∈ Z≥0.

Then the following hold:

(1) If m = ∞, then Eff(X̃) = ⟨−KX̃ ,Δ−,D0,D1, . . . ,Dn, . . . ⟩.
(2) If m < ∞, then Eff(X̃) = ⟨−KX̃ ,Δ−,D0,D1, . . . ,D⌈m2 ⌉−1,Γm⟩, where

Γm ∶=mE1 −E(12)(34) + (1 −m)E.

(3) Each Dn in (1) and (2) is the class of an irreducible rational curve of X̃.

Proof. (1) If m = ∞, we already know that the effective cone of X̃ is not polyhedral.
A direct calculation shows that D2

n = −1/2 and Dn ⋅KX̃ = −1, for any n ≥ 0. The
divisors 2E1 and 2E(12)(34) are Cartier, while E is not Cartier. Since Ē′ is the only

(−2)-curve intersecting Ē and contracted by π∶Z → X̃, it follows that

Rn ∶= ⌊π∗Dn⌋ = π∗Dn −
1

2
Ē′

is a divisor with integer coefficients. Since R2
n = Rn ⋅KZ = −1, by Riemann–Roch

we conclude that Rn is linearly equivalent to an effective divisor. Moreover each
Rn has nonnegative intersection product with all the (−2)-curves since Rn ⋅ Ēij = 0,
Rn ⋅ Ē′ = 1 and Rn ⋅ Δ̄− = 2n+ 1. We claim that Rn is irreducible. Suppose that we
can write Rn = C1 +N , where C1 is an irreducible (−1)-curve and N is a sum of
(−2)-curves. The condition R2

n = −1 implies that either Rn ⋅ C1 < 0 or Rn ⋅N < 0,
but the latter would imply that Rn has negative intersection with at least one
(−2)-curve, a contradiction. Therefore (C1 +N) ⋅C1 < 0, so that N ⋅C1 = 0, which
implies that also N2 = 0. Since the intersection form is negative semidefinite on
the components of N , we deduce that N is indeed a multiple of −K. Therefore
Rn = C1 − tK, which gives R2

n > −1, again a contradiction. This proves the claim,
and since Dn = π∗(Rn), it is irreducible too.

Consider now the cone C, generated by −KX̃ , Δ− and Dn, for n ≥ 0. The
following matrices

(0 0
0 −2) , (−2 1

1 − 1
2

) , (−
1
2

1
2

1
2

− 1
2

)

give the intersection form on the edges ⟨−KX̃ ,Δ−⟩, ⟨Δ−,D0⟩ and ⟨Dn,Dn+1⟩ (for
any n ≥ 0) respectively. Since they are all negative semidefinite and the rays Dn

accumulate on −KX̃ , we conclude that C = Eff(X̃), which proves (1).
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Figure 3. Eff X̃ for m = ∞ and m = 6

Let us prove (2). Observe that ifm < ∞, then ∣−mKZ ∣ defines an elliptic fibration
which is extremal in the sense of Miranda–Persson [15]. According to [15, Theorem
4.1] the only extremal rational elliptic surface which contains eight disjoint (−2)-
curves is X11(j), which has exactly two singular fibers of type I∗0 . Thus, as soon
as −mKZ moves, two new (−2)-curves appear, each of which is the unique curve of

multiplicity two in the fiber I∗0 . On X̃ one of these curves is disjoint from Δ−, so that
its self-intersection is 0, while the other one intersects Δ− and has self-intersection
−1/2. The class of the latter is

Γm ∶= 1

2
(−mKX̃ −Δ−) =mE1 −E(12)(34) + (1 −m)E,

and by the intersection matrix given in Proposition 4.7 we have that Γm ⋅ Dn =
1/2(m − 1) − n, which is nonnegative if and only if n < ⌈m

2
⌉.

Let us prove (3). Since X̃ has only rational double points, it follows that the

resolution Z → X̃ is crepant. Thus we have −1 = KX̃ ⋅Dn = KZ ⋅ D̃n, where D̃n

is the strict transform of Dn on Z. Being Z an anticanonical rational surface it
follows that D̃n is the class of a (−1)-curve of Z. �

Remark 4.10. We remark that the irreducible negative curves on C̃(2), first found
in [7], are unexpected, meaning with this that the expected dimension of the linear

system is negative. The images of these curves in X̃ are the curves Dn of Proposi-
tion 4.9. They are still negative, of self-intersection −1

2
, but we have seen that the

round-down of the pullback Rn = ⌊π∗Dn⌋ on Z is a (−1)-curve, and, in particular,
it is expected.

Remark 4.11. Looking at Figure 2 we see that on Z there are 8 disjoint (−1)-curves,
namely Ē1, . . . , Ē4, Ē(12)(34), Ē(13)(24), Ē(23)(14), Ē. If we contract all of them, Ē′

becomes a (−1)-curve as well and if we contract also this one, we obtain a birational

map Z → P
2. We denote by qi, q(ij)(kl) and q the images of Ēi, Ē(ij)(kl) and Ē′

respectively. The image of Ē12 is a line l12, passing through q1, q2 and q(12)(34),

and anagolously l13 and l23. The image of Δ̄− is a conic passing through q1, . . . , q4
and q.

Summarizing, we can describe Z as the blowup of P2 at a 0-dimensional scheme of
length 9 that can be described as follows. We start from 4 general points q1, . . . , q4.
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q1

q2

q3

q4

q(12)(34)q(23)(14)

q(13)(24)

q

Figure 4. Points to blow up on P
2 to obtain the surface Z.

We add the 3 points q(ij)(kl), each of which is the intersection of the pair of lines
lij = ⟨qi, qj⟩ and lkl = ⟨qk, ql⟩. Finally we fix a conic through q1, . . . , q4 and we take
a point q on it, together with the tangent direction to the conic at q (see Figure 4).

Therefore, for any n > 0, the curve Dn appearing in Proposition 4.9 corresponds
to a plane curve. We can compute that its degree is 3n2 + n, intersecting Rn =
π∗Dn − 1

2
Ē′ (see the proof of Proposition 4.9) with the pullback of E12, i.e., the

class Ē12 + Ē1 + Ē2 + Ē(12)(34) in Z. In the same way we see that the multiplicity in

q1 is n2, by taking the intersection with the pullback of E1, namely Ē1 + 1/2(Ē12 +
Ē13 + Ē14), and the same holds for q2, q3, q4. Computing the intersection with
Ē(12)(34) + 1/2(Ē12 + Ē34) we have that the multiplicity in q(12)(34) is n2 + n, and

the same holds for q(13)(24) and q(23)(14). Finally, the curve has multiplicity n2 at

q, and multiplicity n2 − 1 at the point infinitely near to q, in the direction of the
conic.
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