
SESQUILINEAR FORMS ASSOCIATED
TO SEQUENCES ON HILBERT SPACES

Rosario Corso

Abstract. The possibility of defining sesquilinear forms starting from one
or two sequences of elements of a Hilbert space is investigated. One can
associate operators to these forms and in particular look for conditions to
apply representation theorems of sesquilinear forms, such as Kato’s theorems.
The associated operators correspond to classical frame operators or weakly-
defined multipliers in the bounded context. In general some properties of
them, such as the invertibility and the resolvent set, are related to properties
of the sesquilinear forms.
As an upshot of this approach new features of sequences (or pairs of sequences)
which are semi-frames (or reproducing pairs) are obtained.
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1. Introduction

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Given two
sequences ξ := {ξn} and η := {ηn} of elements of H, a sesquilinear form on a
suitable domain D1 ×D2 can be defined as

Ωξ,η(f, g) =
∞∑
n=1

〈f, ξn〉〈ηn, g〉, f ∈ D1, g ∈ D2.

Obviously, a particular case appears when both subspaces coincide with H.
Assuming that ξ = η, Ωξ,ξ is defined on H×H and it is bounded if and only
if ξ is a Bessel sequence. The case with different sequences includes the notion
of reproducing pair, that was introduced in [8, 9] and studied also in [4, 5]. In
the discrete formulation, two sequences ξ, η constitute a reproducing pair of
H if Ωξ,η is defined on H×H, is bounded and the operator Tξ,η associated to
Ωξ,η, i.e.,

Ωξ,η(f, g) = 〈Tξ,ηf, g〉, ∀f, g ∈ H,
is invertible with bounded inverse. This leads to the following formulas, in
weak sense, to express an element f ∈ H

f =

∞∑
n=1

〈f, T ∗ξ,η
−1ξn〉ηn =

∞∑
n=1

〈f, T−1ξ,η ηn〉ξn.
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In the case where ξ is a Bessel sequence and ξ = η, Tξ,ξ is given by Tξ,ξf =∑∞
n=1〈f, ξn〉ξn in strong sense. If moreover ξ is a frame, then Tξ,ξ is bijective

and is called, as known, the frame operator of ξ.
In addition to reproducing pairs, other generalizations of the notion of

frame have been introduced; for instance semi-frames [1, 2, 3, 12].
For two general sequences ξ, η the form Ωξ,η might be unbounded. Never-
theless, for unbounded sesquilinear forms Ω on a domain D1 × D2 several
representation theorems through operators T ,

Ω(f, g) = 〈Tf, g〉, ∀f ∈ D(T ) ⊆ D1, g ∈ D2,

have been formulated (see [16] where the notion of solvable form is developed).
Our aim is to apply these theorems in the context of the sesquilinear forms
associated to one or two sequences and study the associated operators. An
analogous approach for one sequence was applied in [7] in the framework of
generalized Riesz systems.
We will consider in particular the following type of forms: closed nonnegative
(studied by Kato [19]), λ-closed where λ ∈ C (studied by McIntosh [20]) and
solvable forms. The operators associated to these forms are closed, and also
densely defined provided that both D1 and D2 are dense. In the first case they
are self-adjoint and positive. In the second case their resolvent sets are always
not empty.

This paper is structured as follows. We recall some notions on sesquilinear
forms and on sequences in Section 2. Here we state the representation theorem
for solvable forms and, in particular, for λ-closed forms.

In Section 3 we start with defining the sesquilinear form Ωξ := Ωξ,ξ asso-
ciated to a sequence ξ on D(ξ) :=

{
f ∈ H :

∑∞
n=1 |〈f, ξn〉|2 <∞

}
, that is the

greatest possible domain. This form is nonnegative and closed. Therefore, if
it is densely defined, by Kato’s theorems, it is represented by a nonnegative
self-adjoint operator Tξ, that is exactly C∗ξCξ = |Cξ|2, where Cξ is the analysis
operator of ξ. Clearly, Tξ is an extension of the operator Sξf =

∑∞
n=1〈f, ξn〉ξn,

defined for f ∈ H such that the series converges in strong sense (called the
’frame-operator’ of ξ in some papers like [1]). Differently from the bounded
case (i.e., when ξ is a Bessel sequence), Tξ may be different from Sξ (see Ex-
ample 3.2). We also give some characterization of ξ in terms of Ωξ and Tξ in
Propositions 3.1 and 3.4, respectively.
Furthermore, we consider also another sesquilinear form for a sequence ξ. More
precisely, with Θξ({cn}, {dn}) =

∑
i,j∈N cidj〈ξi, ξj〉 one can define a nonnega-

tive form Θξ on D(Dξ) × D(Dξ), where Dξ denotes the synthesis operator of
ξ. In contrast with Ωξ, Θξ is always densely defined; moreover, Θξ is closable
if and only if D(ξ) is dense.

Section 4 deals with sesquilinear forms associated to two sequences. One
of the main problems is the domain on which Ωξ,η can be defined. If the
sequences are different then typically there does not exist the greatest domain.
First, we analyze the bounded case: the operator that represents the form acts
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as Tξ,ηf =
∑∞

n=1〈f, ξn〉ηn in weak sense for f ∈ H.
In the general case, we define the form Ωξ,η on D(ξ) × D(η). Under this
assumption we find in Theorem 4.4 that Ωξ,η is 0-closed if and only if ξ, η
are lower semi-frames and R(Cξ) u R(Cη)

⊥ = l2 (or equivalently R(Cη) u
R(Cξ)

⊥ = l2) holds, where u stands for the direct sum of subspaces. If D(η)
is dense, the operator associated to this form is C∗ηCξ, and it is invertible with
bounded inverse if and only if the form is 0-closed. As a consequence we recover
reconstruction formulas in weak sense. Finally, the possibility of choosing
different domains of Ωξ,η and existence of maximal domains is discussed.

In Section 5 we apply the obtained results in examples involving weighted
Riesz basis or weighted Bessel sequences. In the last section we write two
sequences ξ, η as ξn = V en and ηn = Zen for a fixed orthonormal basis {en}
and for some operators V,Z. We analyze the relations between V,Z and Ωξ,η.

2. Preliminaries

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote
by D(T ), N(T ), R(T ), ρ(T ) the domain, kernel, the range and the resolvent
set of an operator T from H1 into H2, respectively, where H1,H2 are Hilbert
spaces. We indicate by I the identity operator and by B(H) the set of bounded
operators, everywhere defined on H. An operator T is called semi-bounded if
there exists c > 0 such that ‖Tf‖ ≥ c‖f‖ for all f ∈ D(T ).
For a complex sequence α = {αn} we set α2 := {α2

n}. Moreover l2(α) stands
for the Hilbert space of complex sequences {cn} satisfying

∑∞
n=1 |αn||cn|2 <∞.

The norm of {cn} ∈ l2(α) is given by (
∑∞

n=1 |αn||cn|2)
1
2 . For simplicity, we use

the classic notation l2 for the space l2({1}).

2.1. Sesquilinear forms

Basic notions on sesquilinear forms can be found in [19, Ch. VI]. We recall
that if D1,D2 are subspaces of H and Ω is a sesquilinear form on D1 × D2

then, the adjoint Ω∗ of Ω is defined on D2 ×D1 as

Ω∗(φ, ψ) = Ω(ψ, φ), φ ∈ D2, ψ ∈ D1.

In the case where D := D1 = D2, Ω on D×D is called
• symmetric if Ω = Ω∗;
• semi-bounded with lower bound γ ∈ R if Ω(f, f) ≥ γ‖f‖2 for all f ∈ D.
• nonnegative if Ω(f, f) ≥ 0 for all f ∈ D (in this case we use the symbol

Ω ≥ 0).
A sesquilinear form Ω on D1 ×D2 is said to be
• densely defined if D1,D2 are dense (in H);
• bounded on H if for some C > 0, |Ω(φ, ψ)| ≤ C‖φ‖‖ψ‖ for all φ ∈ D1, ψ ∈
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D2. If D1 = D2 = H, then the norm of Ω is

‖Ω‖ := sup
f,g∈H\{0}

|Ω(f, g)|
‖f‖‖g‖

.

We denote by N(Ω) := {f ∈ D1 : Ω(f, g) = 0,∀g ∈ D2}. Then N(Ω∗) = {g ∈
D2 : Ω(f, g) = 0,∀f ∈ D1}. Moreover, we put ι(f, g) := 〈f, g〉 for all f, g ∈ H.

Let Ω be a sesquilinear form on D1 ×D2 with D2 dense. The well-defined
operator T on

D(T ) = {f ∈ D1 : ∃h ∈ H,Ω(f, g) = 〈h, g〉, ∀g ∈ D2} (2.1)

given by Tf = h, for all f ∈ D(T ) and h as in (2.1), is called the operator
associated to Ω. This operator is the greatest one satisfying D(T ) ⊆ D1 and
for which the representation Ω(f, g) = 〈Tf, g〉 with f ∈ D(T ), g ∈ D2 holds.
It is not densely defined nor closed, in general. However, under some further
conditions that we are going to introduce, these two properties are obtained.

Definition 2.1. A sesquilinear form Ω on D1 ×D2 is called q-closed if there
exist Hilbertian norms ‖ · ‖1 on D1 and ‖ · ‖2 on D2 such that
(i) the embeddings D1[‖ · ‖1]→ H and D2[‖ · ‖2]→ H are continuous;
(ii) there exists β > 0 such that |Ω(f, g)| ≤ β‖f‖1‖g‖2, for all f ∈ D1, g ∈

D2.

The next definition is based by [20], but here we do not assume that the
subspaces are dense.

Definition 2.2. Let λ ∈ C. A q-closed sesquilinear form Ω on D1 × D2 is
called λ-closed if
(i) if (Ω− λι)(f, g) = 0 for all g ∈ D2, then f = 0, i.e., N(Ω− λι) = {0};
(ii) for every anti-linear continuous functional Λ on D2[‖ · ‖2] there exists

f ∈ D1 such that Λ(g) = (Ω− λι)(f, g).

Definition 2.3. A q-closed sesquilinear form Ω on D1 ×D2 is called solvable
if there exists a bounded sesquilinear form Υ on H × H such that Ω + Υ is
0-closed.

Solvable (and in particular λ-closed) sesquilinear forms are generalizations
of Kato’s closed sectorial forms [19, Ch. VI]. In particular, a semi-bounded
form Ω with lower bound γ on D×D is closed if D is complete when endowed
with the inner product (Ω− γι)(f, g), f, g ∈ D.

The original definition of solvable forms goes back to [11, 16, 17] where
D1 = D2 (and dense) is always assumed. Note also that in Definition 2.3 we
have preferred to use the simple terminology ’solvable’ instead of ’solvable with
respect to an inner product’ as in [16, 17].
However, the next results can be easily adapted from [16, Theorems 4.6, 4.11]
and [17, Theorem 2.5] (see also [20, Proposition 2.1] and [16, Theorem 7.2]).
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Theorem 2.4. Let Ω be a solvable sesquilinear form on D1×D2 with D2 dense
in H and T its associated operator. The following statements hold.
(i) D(T ) is dense in D1[‖ · ‖1]. If D1 is dense in H, then also D(T ) is dense

in H.
(ii) Let Υ be a bounded sesquilinear form and B ∈ B(H) the bounded operator

associated to Υ. Then Ω + Υ is 0-closed if and only if 0 ∈ ρ(T +B). In
particular, Ω is λ-closed with λ ∈ C if and only if λ ∈ ρ(T ).

(iii) T is closed.
(iv) Ω∗ is solvable. More precisely, if Υ is a bounded sesquilinear form, then

Ω + Υ is 0-closed if and only if Ω∗ + Υ∗ is 0-closed.
(v) Assume that D1 is dense in H. The operator associated to Ω∗ is T ∗.
(vi) If D1 = D2, then Ω is symmetric if and only if T is self-adjoint.

In the next sections we will need the following criterion to establish if a
given q-closed form is also 0-closed. The proof is similar to the one of Lemma
5.1 of [16].

Lemma 2.5. Let Ω be a q-closed sesquilinear form on D1×D2. Let ‖ · ‖1 and
‖ ·‖2 be the norms on D1 and D2 according to Definition 2.1, respectively. The
following statements are equivalent.
(i) Ω is 0-closed;
(ii) N(Ω) = {0} and there exists c2 > 0 such that

c2‖g‖2 ≤ sup
‖f‖1=1

|Ω(f, g)| ∀g ∈ D2;

(iii) N(Ω∗) = {0} and there exists c1 > 0 such that

c1‖f‖1 ≤ sup
‖g‖2=1

|Ω(f, g)| ∀f ∈ D1;

(iv) there exist c1, c2 > 0 such that

c1‖f‖1 ≤ sup
‖g‖2=1

|Ω(f, g)| ∀f ∈ D1,

c2‖g‖2 ≤ sup
‖f‖1=1

|Ω(f, g)| ∀g ∈ D2.

2.2. Sequences

For a sequence ξ = {ξn} of H we denote by

D(ξ) :=

{
f ∈ H :

∞∑
n=1

|〈f, ξn〉|2 <∞

}
.

If an element h ∈ H is the strong limit of
∑k

n=1 ξn, then we write h =
∑∞

n=1 ξn;
while if it is the weak limit of

∑k
n=1 ξn, i.e., 〈h, g〉 =

∑∞
n=1〈ξn, g〉 for all g ∈ H,

we write h = (w)
∑∞

n=1 ξn.
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We will use the abbreviation ONB to mean orthonormal basis. For the
following notions we refer to [1, 3, 2, 14]. A sequence ξ is an Bessel sequence
of H with upper bound B > 0 if

∞∑
n=1

|〈f, ξn〉|2 ≤ B‖f‖2, ∀f ∈ H. (2.2)

In particular, if in (2.2) the left hand side is zero only for f = 0, then ξ is
called upper semi-frame.
A sequence ξ is a lower semi-frame of H with lower bound A > 0 if

A‖f‖2 ≤
∞∑
n=1

|〈f, ξn〉|2, ∀f ∈ H.

Note that the series on the right may diverge for some f ∈ H. More precisely
(see [1, Proposition 4.1]), the series is convergent for all f ∈ H if and only if ξ
is also a frame, i.e., there exists A,B > 0 such that

A‖f‖2 ≤
∞∑
n=1

|〈f, ξn〉|2 ≤ B‖f‖2, ∀f ∈ H.

A Riesz basis ξ is a sequence satisfying for some A,B > 0

A
∞∑
n=1

|cn|2 ≤

∥∥∥∥∥
∞∑
n=1

cnξn

∥∥∥∥∥
2

≤ B
∞∑
n=1

|cn|2, ∀{cn} ∈ l2.

Instead, a sequence ξ satisfying only the first inequality above, for {cn} ∈ l2
such that

∑∞
n=1 cnξn exists, is called Riesz-Fischer sequence.

Two sequences ξ = {ξn} and η = {ηn} are said to be biorthogonal if
〈ξn, ηm〉 = δn,m, where δn,m is the Kronecker symbol.

There are three operators that are classically associated to a sequence ξ.
The analysis operator Cξ : D(Cξ) ⊆ H → l2 is given by D(Cξ) = D(ξ) and
Cξf = {〈f, ξn〉}, for all f ∈ D(Cξ). The synthesis operator Dξ : D(Dξ) ⊆ l2 →
H is given by

D(Dξ) :=

{
{cn} ∈ l2 :

∞∑
n=1

cnξn exists in H

}

and Dξ{cn} =
∑∞

n=1 cnξn, for {cn} ∈ D(Dξ). Finally let Sξ be the operator
with

D(Sξ) :=

{
f ∈ H :

∞∑
n=1

〈f, ξn〉ξn exists in H

}
and Sξf =

∑∞
n=1〈f, ξn〉ξn, for f ∈ D(Sξ). The basic properties of these oper-

ators are listed below.
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Proposition 2.6 ([1, Prop. 3.3]). The following statements hold.
(i) Cξ = D∗ξ and Cξ is closed.
(ii) If Cξ is densely defined, then Dξ ⊆ C∗ξ and Dξ is closable.
(iii) Sξ = DξCξ.

If Cξ is densely defined then it may happen that Dξ = C∗ξ (for instance if ξ
is a frame) or Dξ 6= C∗ξ (like in the last example of [15]). More precisely, the
operator C∗ξ has domain

D(C∗ξ ) = {{cn} ∈ l2 : f → 〈Cξf, {cn}〉l2 is bounded on D(ξ)}

=

{
{cn} ∈ l2 : f →

∞∑
n=1

〈f, ξn〉cn is bounded on D(ξ)

}
.

3. Sesquilinear forms associated to a sequence

Now, consider the nonnegative sesquilinear form

Ωξ(f, g) =

∞∑
n=1

〈f, ξn〉〈ξn, g〉.

The largest domain D(Ωξ) on which Ωξ is defined is exactly D(ξ). Then,
clearly,

Ωξ(f, g) = 〈Cξf, Cξg〉2, ∀f, g ∈ D(ξ). (3.1)

Since Cξ is a closed operator, Ωξ is a closed nonnegative form. Basing on
Proposition 4.1 of [1] we can state also some characterizations of ξ in terms of
Ωξ.

Proposition 3.1. Let ξ be a sequence of H. The following statements hold.
(i) ξ is complete if and only if N(Ωξ) = {0}.
(ii) ξ is a Bessel sequence if and only if D(Ωξ) = H.
(iii) ξ is a Bessel sequence with upper bound B if and only if D(Ωξ) = H, Ωξ

is bounded and ‖Ωξ‖ ≤ B.
(iv) ξ is an upper semi-frame if and only if D(Ωξ) = H and N(Ωξ) = {0}.
(v) ξ is a lower semi-frame with lower bound A if and only if Ωξ is semi-

bounded with lower bound A.
(vi) ξ is a frame if and only if D(Ωξ) = H and Ωξ is semi-bounded with

positive lower bound.
(vii) ξ is a frame if and only if D(Ωξ) = H, N(Ωξ) = {0} and for every h ∈ H

there exists f ∈ H such that Ωξ(f, g) = 〈h, g〉 for all g ∈ H.
(viii) If ξ is a Riesz-Fischer sequence, then for every f ′, g′ ∈ H there exist

f, g ∈ D(Ωξ) such that Ωξ(f, g) = 〈f ′, g′〉.
(ix) If ξ is a Riesz basis, then D(Ωξ) = H and for every f ′, g′ ∈ H there exist

f, g ∈ H such that Ωξ(f, g) = 〈f ′, g′〉.
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Suppose that Ωξ is densely defined, i.e., D(ξ) is dense (a sufficient condition
for this property is given by [1, Lemma 3.1]). By Kato’s first representation
theorem [19, Theorem VI.2.1], the operator Tξ associated to Ωξ is positive and
self-adjoint. Moreover, by Kato’s second representation theorem [19, Theorem

VI.2.23] we have also that D(Ωξ) = D(T
1
2
ξ ) and

Ωξ(f, g) = 〈T
1
2
ξ f, T

1
2
ξ g〉, ∀f, g ∈ D(Ωξ).

By (3.1) one can easily see that Tξ = C∗ξCξ = |Cξ|2. Thus the domain of Tξ is

D(Tξ) =

{
f ∈ H : g 7→

∞∑
n=1

〈f, ξn〉〈ξn, g〉 is bounded on D(ξ)

}
= D(|Cξ|2).

Then Tξ is an extension of Sξ. It is a well-known fact that if ξ is a Bessel
sequence, then the operator associated to Ωξ is Sξ, i.e., Tξ = Sξ. The following
example shows however that, in the general case, Tξ does not always coincide
with Sξ.

Example 3.2. Let {en} be an ONB of H. For f ∈ H we denote by fn the
coefficient of f with respect to that basis.
Let us define ξ1 = e1 and ξn = n(en − en−1) for n ≥ 2. Then D(ξ) = {f ∈ H :∑∞

n=1 n
2|fn − fn−1|2 <∞}. For k > 1 and {cn} ∈ l2

k∑
n=1

cnξn =

k−1∑
n=1

(ncn − (n+ 1)cn+1)en + kckek.

Let f ∈ H be such that fn = 1
n , for n ≥ 1. Since

k∑
n=1

〈f, ξn〉ξn =

k−1∑
n=1

(n〈f, ξn〉 − (n+ 1)〈f, ξn+1〉)en + k〈f, ξk〉ek

= −
k−1∑
n=1

1

n(n− 1)
en −

k

k − 1
ek,

f 6∈ D(Sξ), but the functional g 7→
∑∞

n=1 cn〈ξn, g〉 is bounded for g ∈ D(ξ),
i.e., f ∈ D(Tξ).

Taking a sequence ξ, it is easy to define a new sequence ξ′ which is a lower
semi-frame. Indeed, one can take {ξ′n} = {e1, ξ1, . . . , en, ξn, . . . } where {en}
is a ONB. Clearly,

∑∞
n=1 |〈f, ξ′n〉|2 =

∑∞
n=1 |〈f, ξn〉|2 + ‖f‖2. Hence D(Cξ′) =

D(Cξ) and ‖Cξ′f‖ ≥ ‖f‖. Moreover, we have also D(Dξ′) = D(Dξ), D(Sξ) =
D(Sξ′) e D(Tξ) = D(Tξ′).

Example 3.3. The operator Tξ and Sξ may be different even if ξ is a lower
semi-frame. Indeed with the notation of the previous example, let ξ′ = {e1, ξ1,
. . . , en, ξn, . . . }. This sequence is then a lower semi-frame with D(ξ) dense, but
Tξ′ is a proper extension of Sξ′ .
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The equality Tξ = Sξ holds if Dξ is closed (indeed we have Dξ = C∗ξ in
that case). We give now another characterization of ξ which involves now the
operator Tξ.

Proposition 3.4. Let ξ be a sequence of H with D(ξ) dense. The following
statements hold.
(i) ξ is complete if and only if Tξ is injective.
(ii) ξ is a Bessel sequence if and only if D(Tξ) = H if and only if Tξ ∈ B(H).
(iii) ξ is a Bessel sequence with bound B if and only if Tξ ∈ B(H) and ‖Tξ‖ ≤

B.
(iv) ξ is an upper semi-frame if and only if Tξ ∈ B(H) and Tξ is injective.
(v) ξ is a lower semi-frame with bound A if and only if 0 ∈ ρ(Tξ) and
‖T−1ξ ‖ ≤ A.

(vi) ξ is a frame if and only if D(Tξ) = H and Tξ is bijective.
(vii) ξ is a frame if and only if D(Tξ) = H and Tξ is surjective.
(viii) ξ is a Riesz basis if and only if D(Tξ) = H, Tξ is injective and {T−1ξ ξn}

is biorthogonal to ξ.

Proof. Point (i) is clear. Points (ii), (iii), (iv), (vi), (vii) and (viii) follows by
[1, Prop. 4.3]. To prove (v), note that ξ is a lower semi-frame if and only if Ωξ

is semi-bounded with positive lower bound if and only if 0 ∈ ρ(Tξ). Moreover,

if A > 0, ‖T
1
2
ξ f‖

2 = Ωξ(f, f) ≥ A‖f‖2 if and only if ‖T−1ξ ‖ ≤ A.

Assume that ξ is a lower semi-frame with D(ξ) dense. Thus 0 ∈ ρ(Tξ). If
Sξ = Tξ then we obtain the following reconstruction formula in strong sense

f = TξT
−1
ξ f =

∞∑
n=1

〈f, T−1ξ ξn〉ξn, ∀f ∈ H.

If Sξ ( Tξ, then we have only a formula in strong sense on R(Sξ)

f =
∞∑
n=1

〈S−1ξ f, ξn〉ξn, ∀f ∈ R(Sξ).

In general, the reconstruction formula in weak sense (3.2) below holds. Let
h ∈ H. For all g ∈ D(ξ)

〈h, g〉 = 〈TξT−1ξ h, g〉 =

∞∑
n=1

〈T−1ξ h, ξn〉〈ξn, g〉 =

∞∑
n=1

〈h, T−1ξ ξn〉〈ξn, g〉. (3.2)

Note that {T−1ξ gn} is a Bessel sequence. Indeed, for every f ∈ H, T−1ξ f ∈ D(C)
and

∞∑
n=1

|〈f, T−1ξ gn〉|2 = ‖CξT−1ξ f‖22 = ‖U |Cξ|−1f‖2 ≤ ‖U |Cξ|−1‖2‖f‖2
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taking into account the polar decomposition of Cξ, Cξ = U |Cξ| with partial
isometry U and modulus |Cξ|. Thus, we obtain from (3.2) the following recon-
struction in strong sense

g =
∞∑
n=1

〈g, ξn〉T−1ξ ξn, ∀g ∈ D(ξ). (3.3)

Actually, a formula like (3.3) involving a lower semi-frame ξ and a Bessel se-
quence holds even if D(ξ) is not dense (see [12, Proposition 3.4]). However,
D(ξ) must be dense to define Tξ and, following the case with frames, we can
call {T−1ξ ξn} in (3.3) the canonical dual of the lower semi-frame ξ.

Another form that can be defined starting from a sequence ξ = {ξn} of H is

Θξ({cn}, {dn}) =
∑
i,j∈N

cidj〈ξi, ξj〉.

This form is well-defined on D(Dξ) × D(Dξ). More precisely, if {cn}, {dn} ∈
D(Dξ) then Θξ({cn}, {dn}) = 〈Dξ{cn}, Dξ{dn}〉. Basing on classic properties
of closed nonnegative forms and on [1, Prop. 4.2], we can formulate the next
results, where we consider Θξ always on the domain D(Θξ) := D(Dξ).

Proposition 3.5. Let ξ be a sequence of H. The following statements hold.
(i) Θξ is nonnegative and densely defined.
(ii) Θξ is closable if and only if D(ξ) is dense.
(iii) Θξ is closed if and only if Dξ is closed if and only if D(ξ) is dense and

Dξ = C∗ξ .
(iv) If D(ξ) is dense, then the closure Θξ of Θξ is the sesquilinear form on

D(Θξ) = D(C∗ξ ) given by

Θξ({cn}, {dn}) = 〈C∗ξ {cn}, C∗ξ {dn}〉, ∀{cn}, {dn} ∈ D(C∗ξ ),

and the operator associated to Θξ is CξC∗ξ =: |C∗ξ |2.
(v) ξ is a Bessel sequence if and only if D(Θξ) = l2.
(vi) ξ is a Riesz-Fischer sequence if and only if Θξ is semi-bounded with

positive lower bound.
(vii) ξ is a Riesz basis if and only if Θξ is bounded and semi-bounded with

positive lower bound.
(viii) If ξ is a frame then D(Θξ) = l2 and for every f ′, g′ ∈ H there exists

f, g ∈ D(Θξ) such that Θξ(f, g) = 〈f ′, g′〉.

3.1. Lower semi-frames as frames in a different Hilbert space

We conclude this section noting that lower semi-frames are frames in some
Hilbert space continuously embedded into H.
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Proposition 3.6. Let ξ be a sequence of H. The following statements are
equivalent.
(i) ξ is a lower semi-frame;
(ii) there exists a inner product 〈·, ·〉+ inducing a norm ‖ · ‖+ on D(ξ) such

that D(ξ)[‖ · ‖+] is complete and, for some α,A,B > 0,

α‖f‖ ≤ ‖f‖+ and

A‖f‖2+ ≤
∞∑
n=1

|〈f, ξn〉|2 ≤ B‖f‖2+, ∀f ∈ D(ξ);

(iii) for all inner product 〈·, ·〉+ inducing a norm ‖ · ‖+ on D(ξ) such that
D(ξ)[‖ · ‖+] is complete and α‖f‖ ≤ ‖f‖+ for some α > 0, there exist
A,B > 0, such that

A‖f‖2+ ≤
∞∑
n=1

|〈f, ξn〉|2 ≤ B‖f‖2+, ∀f ∈ D(ξ). (3.4)

Proof. (i)⇒(ii) It is sufficient to take ‖f‖+ = (
∑∞

n=1 |〈f, ξn〉|2)
1
2 for f ∈ D(ξ).

(ii)⇒(iii) By the closed graph theorem all norm which turn D(ξ) into a Hilbert
space continuously embedded into H are equivalent.
(iii)⇒(i) The assertion follows easily since a norm ‖ · ‖+ satisfying (3.4) is
equivalent to the norm f →

(∑∞
n=1 |〈f, ξn〉|2

) 1
2 .

Let ξ be a lower semi-frame and 〈·, ·〉+ be a inner product that makes D(ξ)
into a complete space (when we write D(ξ) here we mean that it is endowed
with this inner product). For every n ∈ N and f ∈ D(ξ), f 7→ 〈f, ξn〉 defines
a bounded functional on D(ξ). By Riesz’s Lemma there exists a sequence
ξ′ = {ξ′n} in D(ξ) such that

〈f, ξn〉 = 〈f, ξ′n〉+, (3.5)

for all f ∈ D. Hence, by Proposition 3.6, ξ′ is a frame of D(ξ).

Now, assume that φ is a frame of D(ξ). A natural question arises: does there
exist a lower semi-frame ξ of H such that φ is the frame constructed from ξ in
the described way? To answer this question, we note that 〈·, ·〉+ is a positive
closed sesquilinear form on D. By Kato’s representation theorems there exists
a positive self-adjoint operator R such that D(R) ⊆ D(ξ), D(R

1
2 ) = D(ξ),

0 ∈ ρ(R) and
〈f, g〉+ = 〈R

1
2 f,R

1
2 g〉, ∀f, g ∈ D(ξ),

〈f, g〉+ = 〈f,Rg〉, ∀f ∈ D(ξ), g ∈ D(R). (3.6)

By (3.5) we have ξn = Rξ′n for all n ∈ N. Then we can state the following.

Proposition 3.7. Let φ be a frame of D(ξ)[〈·, ·〉+].
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(i) There exists a lower semi-frame ξ = {ξn} on D(ξ) such that φ = ξ′ if,
and only if, φn ∈ D(R) for all n ∈ N.

(ii) If φ = ξ′ for some lower semi-frame ξ = {ξn} on D(ξ), then ξn = Rφn
for all n ∈ N.

As an application, we show two particular ways to construct lower semi-
frames.

Example 3.8. (i) Let S be a closed operator on H with dense domain D,
and let 〈f, g〉S = 〈f, g〉 + 〈Sf, Sg〉, f, g ∈ D. Then, D := D[〈·, ·〉S ] is a
Hilbert space continuously embedded in H. The operator associated to
〈·, ·〉S is I + S∗S; hence if {en} is an ONB of D, contained in D(|S|2),
then {(I + S∗S)en} is a lower semi-frame of H on D.

(ii) A slight different argument leads to another example. Assume also that
0 ∈ ρ(S) then {f |g}S = 〈Sf, Sg〉, f, g ∈ D, is a inner product inducing
the same topology of D. The associated operator to {·|·}S is S∗S, there-
fore if {en} is an ONB as above, then {(S∗S)en} is a lower semi-frame
of H on D.

4. Sesquilinear forms associated to two sequences

In this section we consider two sequences ξ = {ξn}, η = {ηn} of H. In addition
to the analysis and synthesis operators of both sequences one can also define
the operator Sξ,η on

D(Sξ,η) :=

{
f ∈ H :

∞∑
n=1

〈f, ξn〉ηn exists in H

}
as Sξ,ηf =

∑∞
n=1〈f, ξn〉ηn, for f ∈ D(Sξ,η). This operator is actually a multi-

plier in the sense of [10].
Clearly, DηCξ ⊆ Sξ,η. However, unlike the case when ξ = η, the following
example demonstrates that the equality DηCξ = Sξ,η does not always hold.

Example 4.1. Let H be {en} an ONB on H. Let

ξ := {e1, e1, e2, 2e2, . . . , en, nen, . . . }

and
η := {e1, 0, e2, 0, . . . , en, 0, . . . } .

In particular, ξ is a lower semi-frame and η is a frame. The operator DηCξ is
defined on D(DηCξ) = D(Cξ) 6= H and acts as DηCξf =

∑∞
n=1 fnen = f for

f ∈ D(DηCξ). However, Sξ,η is equal to the identity operator I on H.

If Sξ,η is invertible, then we have the following reconstruction formula in strong
sense

f = Sξ,ηS
−1
ξ,ηf =

∞∑
n=1

〈S−1ξ,ηf, ξn〉ηn, ∀f ∈ R(Sξ,η).
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Note also that when ξ, η are Bessel sequences then D(Sξ,η) = H and Sξ,η is
bounded. In addition if ξ, η are Bessel sequences and Sξ,η = I, then ξ, η are in
particular frames (see [13, Proposition 6.1]).

Now, we turn our attention to the sesquilinear form defined by two sequences,
i.e.,

Ωξ,η(f, g) =

∞∑
n=1

〈f, ξn〉〈ηn, g〉,

which need not be nonnegative nor symmetric. The series above is not neces-
sarily unconditionally convergent. In analogy to the case of one sequence, we
can consider also the sesquilinear form

Θξ,η({cn}, {dn}) =
∑
i,j∈N

cidj〈ξi, ηj〉.

However, we will only focus on Ωξ,η in this paper. Our task is to consider
this form on some domain D1 × D2 such that D2 is dense and make it a
0-closed form. In this way, by Theorem 2.4, the operator T associated to
Ωξ,η on D1 × D2 is closed, invertible with bounded inverse and with domain
D(T ) ⊆ D1. This leads to a reconstruction formula in weak sense, i.e., if h ∈ H
then for all g ∈ D2

〈h, g〉 = 〈T T −1h, g〉 = Ωξ,η(T −1h, g)

=

∞∑
n=1

〈T −1h, ξn〉〈ηn, g〉 =

∞∑
n=1

〈h, (T −1)∗ξn〉〈ηn, g〉 (4.1)

or, equivalently, g = (w)
∑∞

n=1〈g, ηn〉(T −1)∗ξn. If also D1 is dense, then D(T )
is dense, T ∗ is the operator associated to Ω∗ξ,η (i.e., Ωη,ξ on D2 × D1) and
(T −1)∗ = (T ∗)−1. Therefore, in a similar way, for f ∈ D1 and h ∈ H

〈h, f〉 =
∞∑
n=1

〈h, T −1ηn〉〈ξn, f〉,

i.e., f = (w)
∑∞

n=1〈f, ξn〉T −1ηn. The idea of looking at 0-closed forms is also
justified by the following consideration. Assume that (ξ, η) = ({ξn}, {ηn}) is a
reproducing pair on H in the sense of [4, 5, 8, 9]. It is easy to see that Ωξ,η is
0-closed. However, it is well-defined and bounded on H. Our approach then
gives a generalization of the notion of reproducing pairs in cases where Ωξ,η is
unbounded.

4.1. Bounded case

First of all, let us study the case when Ωξ,η is bounded. As proved below, this
is always the case when the form is defined on the whole space, in analogy to
the situation with one sequence.
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Proposition 4.2. Let ξ, η be sequences such that Ωξ,η is defined on H × H.
Then Ωξ,η is bounded.

Proof. Denote by Ωk
ξ,η(f, g) =

∑k
n=1〈f, ξn〉〈ηn, g〉, for all f, g ∈ H. Clearly,

there exists Tk ∈ B(H) such that Ωk
ξ,η(f, g) = 〈Tkf, g〉. The Banach–Steinhaus

theorem ensures that the operator Tξ,η associated to Ωξ,η has domain the
whole H. Applying the same theorem to the linear functional f 7→ 〈f, T ∗k g〉 =
Ωk
ξ,η(f, g) for g ∈ H, we get 〈Tξ,ηf, g〉 = lim

k→∞
〈Tkf, g〉 = lim

k→∞
〈f, T ∗k g〉 = 〈f, h〉

for some h ∈ H. Therefore D(T ∗ξ,η) = H, i.e., Tξ,η (and consequently Ωξ,η) is
bounded.

As a consequence we can say that (ξ, η) is a reproducing pair if and only if
Ωξ,η is defined on H×H and it is 0-closed.
We recall again that the operator associated to a (bounded) form Ωξ onH×H is
the operator Sξ. Nevertheless, as shown in the next example, when we turn to
two sequences ξ, η such that Ωξ,η is defined on H×H (and therefore bounded),
then the operator Tξ,η associated to Ωξ,η (which is an element of B(H)) need
not be Sξ,η. More precisely, it is defined as Tξ,ηf = (w)

∑∞
n=1〈f, ξn〉ηn for

f ∈ H.

Example 4.3. Let again {en} be an ONB of H. We set

ξ = {e1, e1,−e1, e2, e1,−e1, e3, e1,−e1, . . . },
η = {e1, e1, e1, e2, e2, e2, e3, e3, e3, . . . }.

It is easy to see that Ωξ,η is well defined on H × H and Ωξ,η(f, g) = 〈f, g〉
for f, g ∈ H. Thus the operator associated to Ωξ,η is the identity operator.
However, D(Sξ,η) = {f ∈ H : 〈f, e1〉 = 0}. Note also that D(Sη,ξ) = H and
Sη,ξ = I. Then it is the operator associated to Ωη,ξ (which is exactly Ωξ,η since
it is symmetric).

It is worth to mention that if ξ is a Bessel sequence with upper bound B and η
a sequence such that Ωξ,η = ι, then η is a lower semi-frame with lower bound
B−1 (the proof is analogous to the one of Lemma 2.5 of [3] in the discrete
version).

4.2. General case

Now we return to consider two sequences ξ, η generating a generic form Ωξ,η.
This form is clearly defined on D(ξ)×D(η) and

Ωξ,η(f, g) = 〈Cξf, Cηg〉2, ∀f ∈ D(ξ), g ∈ D(η).

With this domain Ωξ,η is a q-closed sesquilinear form. Indeed the definition is
satisfied considering the graph norms ‖f‖Cξ = (‖Cξf‖2 + ‖f‖2)

1
2 and ‖g‖Cη =

(‖Cηg‖2 + ‖g‖2)
1
2 on D(ξ) and D(η), respectively.
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Moreover, N(Ωξ,η) = {f ∈ D(ξ) : Cξf ∈ R(Cη)
⊥}. Other properties (in

particular equivalent conditions for Ωξ,η to be 0-closed) of this form are stated
in the next theorem. Note that if V,W are closed subspaces of a Hilbert space
then we denote by V uW the direct sum of V and W .

Theorem 4.4. Let us consider Ωξ,η on the domain D(ξ)×D(η). The following
statements are equivalent.
(a) Ωξ,η is 0-closed.
(b) ξ, η are lower semi-frames and R(Cξ) uR(Cη)

⊥ = l2.
(c) ξ, η are lower semi-frames and R(Cη) uR(Cξ)

⊥ = l2.
Assume that D(η) is dense. Then the operator associated to Ωξ,η is C∗ηCξ.

Proof. Firstly, note that if ξ, η are lower semi-frames, then ‖ · ‖Cξ and ‖ · ‖Cη
are equivalent to the norms given by ‖f‖ξ = ‖Cξf‖ and ‖g‖η = ‖Cηg‖ with
f ∈ D(ξ), g ∈ D(η), respectively.
Assume that 0-closed. By Lemma 2.5(iv)

c1‖f‖ ≤ c1‖f‖Cξ ≤ sup
‖g‖Cη=1

|Ωξ,η(f, g)| ≤ ‖Cξf‖, ∀f ∈ D(ξ).

This means that ξ (and in the same way η) is a lower semi-frame (see [1,
Proposition 4.1]). Taking into account the equivalence of norms above, we can
rewrite the inequality in Lemma 2.5(iv) as follows

c1‖f‖ξ ≤ sup
‖g‖η=1

|Ωξ,η(f, g)|, ∀f ∈ D(ξ), (4.2)

c2‖g‖η ≤ sup
‖f‖ξ=1

|Ωξ,η(f, g)|, ∀g ∈ D(η). (4.3)

where c1, c2 > 0. Moreover, denoting by PR(Cξ) and PR(Cη) the orthogonal
projections onto the closed ranges R(Cξ) and R(Cη), respectively, one has

sup
‖g‖η=1

|Ωξ,η(f, g)| = sup
‖g‖η=1

|〈Cξf, Cηg〉|

= sup
‖Cηg‖=1

|〈PR(Cη)Cξf, Cηg〉|

= ‖PR(Cη)Cξf‖. (4.4)

Then (4.2) and (4.3) carry to inf
‖Cξf‖=1

‖PR(Cη)Cξf‖ > 0. In a similar way

inf
‖Cηg‖=1

‖PR(Cξ)Cηg‖ > 0 holds. Theorem 2.3 of [21] implies that R(Cξ) u

R(Cη)
⊥ = l2 or equivalently that R(Cη) uR(Cξ)

⊥ = l2.
Conversely, let and ξ, η be lower semi-frames such that R(ξ)uR(Cη)

⊥ = l2
or R(η) uR(Cξ)

⊥ = l2. Again by Theorem 2.3 of [21], we have that

inf
‖Cξf‖=1

‖PR(Cη)Cξf‖ > 0 and inf
‖Cηg‖=1

‖PR(Cξ)Cηg‖ > 0.

Therefore, equality (4.4) implies that (4.2) and (4.3) hold and Ωξ,η is 0-closed.
Finally, the statement about the associated operator is easy to prove.
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Remark 4.5. 1. If Dη is closed, then the operator associated to a form
Ωξ,η on D(ξ)×D(η) with D(η) dense coincides with DηCξ.

2. If D(η) (resp., D(ξ)) is dense, then R(Cξ)uR(Cη)
⊥ = l2 (resp., R(Cη)u

R(Cξ)
⊥ = l2) is equivalent to R(Cξ) u N(C∗η) = l2 (resp., R(Cη) u

N(C∗ξ ) = l2).

By Theorem 2.4 we get the next characterization.

Corollary 4.6. Assume that D(η) is dense. Then 0 ∈ ρ(C∗ηCξ) if the following
equivalent statements are satisfied
(a) ξ, η are lower semi-frames and R(Cξ) uN(C∗η) = l2.
(b) ξ, η are lower semi-frames and R(Cη) uR(Cξ)

⊥ = l2.

If Ωξ,η is solvable (in particular, λ-closed) and D(η) is dense, then by Theorem
2.4 C∗ηCξ is closed and, moreover, densely defined if D(ξ) is dense. Otherwise,
C∗ηCξ need not be densely defined nor closed. Note also that if ξ = η we regain
that Ωξ is 0-closed if and only if ξ is a lower semi-frame (see Proposition 3.1).
A particular case of Theorem 4.4 occurs when the domains (or one of them)
coincide with the whole space.

Corollary 4.7. Let ξ, η be two sequences of H. The following statements hold.
(i) If D(ξ) = H and Ωξ,η is 0-closed, then ξ is a frame of H.
(ii) If D(ξ) = D(η) = H, then (ξ, η) is a reproducing pair if and only if ξ, η

are frames and R(Cξ) uN(Dη) = l2 (resp., R(Cη) uN(Dξ) = l2).

Under condition (b) (or (c)) of Theorem 4.4 and that D(η) is dense, formula
(4.1) holds with D1 = D(ξ), D2 = D(η) and T = C∗ηCξ. Moreover, (4.1) can
be improved as follows.

Corollary 4.8. Let ξ, η be two sequences of H with D(η) is dense and T =
C∗ηCξ. If conditions (b) or (c) of Theorem 4.4 are satisfied, then {(T −1)∗ξn}
is a Bessel sequence of H and

g =

∞∑
n=1

〈g, ηn〉(T −1)∗ξn, ∀g ∈ D(η).

Proof. By Corollary 4.6, 0 ∈ ρ(T ); hence Cξ is injective with closed range
R(Cξ) and R(C∗η) = H. Moreover, T = GCξ where G is the restriction of C∗η
on D(C∗η) ∩R(Cξ). Note that G is closed, invertible operator and R(G) = H,
i.e. G−1 ∈ B(H). Thus, for f ∈ H we have T −1f ∈ D(ξ) and

∞∑
n=1

|〈f, (T −1)∗ξn〉|2 = ‖CξT −1f‖22 = ‖G−1f‖2 ≤ ‖G−1‖2‖f‖2.

Hence {(T −1)∗ξn} is a Bessel sequence. Thus, for g ∈ D(η),
∑∞

n=1〈g, ηn〉(T −1)∗ξn
is convergent and, in particular, by (4.1) it is convergent to g.
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4.3. Maximality of domains

The domain D(ξ) × D(η) is not always a maximal domain on which Ωξ,η can
be defined. For instance, let us consider

ξ = {nen} and η = {n−1en}, where {en} is an ONB. (4.5)

Clearly, Ωξ,η can be defined on H×H, which is larger than D(ξ)×D(η).
We would stress that there exist more significant examples than the previous
one. In [9] for a Bessel Gabor sequence ξ the authors found a non Bessel
sequence η such that Ωξ,η is defined on L2(R)×L2(R), while D(ξ)×D(η) is a
proper subspace of L2(R)× L2(R).

This is the general situation for two sequences which are one the dual of
the other one. Recall that a sequence η is a dual of a sequence ξ if

f =
∞∑
n=1

〈f, ξn〉ηn =
∞∑
n=1

〈f, ηn〉ξn, ∀f ∈ H,

i.e., Sξ,η = Sη,ξ = I. The sesquilinear form Ωξ,η is clearly defined on H×H.
Other possible choices of the domain of Ωξ,η for two sequences ξ, η are

given easily as follows. Let {αn} be a sequence of nonzero complex numbers
and let ξ′ = {αnξn} and η′ = {αn−1ηn}. Then Ωξ,η is defined on D(ξ′)×D(η′).
Therefore, as in the case of example (4.5), with an opportune sequence {αn}
the form Ωξ,η may be defined on a domain larger than D(ξ)×D(η).

The next result will be useful in the sequel.

Lemma 4.9. Let W be a closed subspace of l2 with dimW⊥ <∞ and {an} be
a complex sequence such that

∞∑
n=1

anbn is convergent for all {bn} ∈W.

Then {an} ∈ l2.

Proof. As it is well-known [18, Example 34.2], the statement is true when
W = l2. Assume now that W is a proper subspace of l2. Let m = dimW⊥

and {d1, . . . , dm} be a basis of W⊥. We will prove that, for k = {kn} ∈ l2,∑∞
n=1 ankn is convergent.

Let p ≥ m be an index such that the vectors (di1, . . . , d
i
p), for i = 1, . . . ,m, are

independent. Such a integer exists because {d1, . . . , dm} are independent. Put
h = {h1, . . . , hp, kp+1, kp+2, . . . } where h1, . . . , hp are complex numbers. This
is an element of l2. Our purpose is to find complex numbers h1, . . . , hj such
that, in particular, h ∈ W . Since W is closed, it is enough to impose that
h ⊥ di for i = 1, . . . ,m. The conditions

0 = 〈h, di〉 =

p∑
n=1

hndin +
∞∑

n=p+1

kndin, ∀i = 1, . . . ,m,
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constitute a linear system in the variables h1, . . . , hp. This system admits so-
lutions since the m vectors (di1, . . . , d

i
p) are independent.

For such a solution, h ∈ W and therefore
∑∞

n=1 anhn is convergent by hy-
pothesis. But

∑∞
n=1 ankn =

∑p
n=1 an(kn − hn) +

∑∞
n=1 anhn. In conclu-

sion
∑∞

n=1 ankn is convergent for all k = {kn} ∈ l2 and this implies that
{an} ∈ l2.

Now we discuss about the maximality of the domain of Ωξ,η where ξ = {ξn}
and η = {ηn} are two sequences. Let Y be a subspace of H. Set

X (Y ) :=

{
f ∈ H :

∞∑
n=1

〈f, ξn〉〈ηn, g〉 exists in H for all g ∈ Y

}
.

An analog definition can be given by symmetry for a fixed first component.
Some properties of X are listed in the next proposition, whose easy proof is
omitted.

Proposition 4.10. The following statements hold.
(i) X (Y ) is the greatest subspace D1 of H for which Ωξ,η can be defined on

D1 × Y .
(ii) The map X is decreasing, i.e., if Y1 ⊆ Y2 are two subspaces of H, then
X (Y1) ⊇ X (Y2).

(iii) X (H) = {f ∈ H : (w)
∑∞

n=1〈f, ξn〉ηn exists in H}.
(iv) D(ξ) ⊆ X (D(η)). If dimR(Cη)

⊥ <∞ and R(Cη) is closed, then X (D(η)) =
D(ξ).

(v) X (D(Sη,ξ)) = X ({g ∈ H : (w)
∑∞

n=1〈g, ηn〉ξn exists in H}) = H.

Note that point (iv) is a consequence of Lemma 4.9 and occurs, for instance,
if η is a Riesz-Fischer sequence. A consequence of this proposition is: if
dimN(C∗ξ ),dimN(C∗η) < ∞ and R(Cξ), R(Cη) are closed, then D(η) ⊆ D2

and D(ξ) ⊆ D1 imply D1 = D(ξ) and D2 = D(η). That is, D(ξ)×D(η) is the
greatest domain in this case.

Suppose now that Y is dense inH. Denote by T (Y ) the operator associated
to Ωξ,η on X (Y ) × Y . In this way we can define an operator-valued map T
defined on the family of dense subspaces of H.

Proposition 4.11. The following statements hold.
(i) The map T is decreasing, i.e., if Y1 ⊆ Y2 are two dense subspaces of H,

then T (Y1) ⊇ T (Y2).
(ii) D(T (H)) = X (H) = {f ∈ H : (w)

∑∞
n=1〈f, ξn〉ηn exists in H} and

T (H)f = (w)
∑∞

n=1〈f, ξn〉ηn for all f ∈ D(T (H)).
(iii) If D(Sη,ξ) is dense, then T (D(Sη,ξ)) = S∗η,ξ.
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5. Examples

5.1. Weighted Riesz basis and canonical dual

Let φ := {φn} be a Riesz basis of H. Then there exists a bounded bijective
operator V ∈ B(H) such that φn = V en for all n ∈ N (see [15]). The anal-
ysis operator Cφ is defined for f ∈ H as Cφf = {〈V ∗f, en〉}. The canonical
dual of φ is the sequence ψ := {(V −1)∗en}. Therefore φ and ψ are biorthogonal.

Now let α = {αn} be a complex sequence and Ωα
φ,ψ the sesquilinear form

Ωα
φ,ψ(f, g) =

∞∑
n=1

αn〈f, φn〉〈ψn, g〉. (5.1)

We can define this form on domains of the type D(ξ)×D(η) where ξ = {βnφn},
η = {γnψn} and βnγn = αn for all n ∈ N. In other words, we can consider
Ωα
φ,ψ as a form Ωξ,η where ξ, η are sequences as above.

First of all, let us determine the (densely defined) analysis operator Cξ of
ξ = {βnφn} and its adjoint C∗ξ . The operator Cξ is defined on the dense domain
D(ξ) =

{
g ∈ H :

∑∞
n=1 |βn|2|〈V ∗g, en〉|2 <∞

}
as Cξg = {βn〈V ∗g, en〉}. The

adjoint C∗η has domain D(C∗η) = l2 ∩ l2(β2). Indeed, let {cn} ∈ l2. The linear
functional

g 7→
∞∑
n=1

cn〈g, ξn〉 =

∞∑
n=1

βncn〈V ∗g, en〉 (5.2)

is clearly bounded on D(Cξ) if {cn} ∈ l2(β2). Conversely assume that (5.2) is
bounded on D(Cξ) with bound M > 0. Since V ∗ is a bijection of H, for all
k ∈ N there exists h ∈ H such that V ∗h =

∑k
n=1 βncnen. Therefore for all

k ∈ N

k∑
n=1

|βncn|2 =

∣∣∣∣∣
∞∑
n=1

cn〈h, ξn〉

∣∣∣∣∣ ≤M‖h‖
≤M‖V ∗−1‖‖V ∗h‖

= M‖V ∗−1‖

(
k∑

n=1

|βncn|2
) 1

2

.

This means that {cn} ∈ l2(β2). Moreover, it is easy to see that Dξ = C∗ξ . If
η = {γnψn}, then in the same way D(C∗η) = D(Dη) = l2 ∩ l2(γ2).

Coming back to the study of (5.1), put ξ = {βnφn} and η = {γnψn} and
βnγn = αn for all n ∈ N. The operator associated to Ωξ,η is C∗ηCξ = DηCξ ⊆
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Sξ,η, which is defined by

DηCξf =
∞∑
n=1

αn〈f, φn〉ψn

on the domain

D(DηCξ) = {f ∈ D(Cξ) : Cξf ∈ D(Dη)}

=

{
f ∈ H :

∞∑
n=1

(|αn|2 + |βn|2)|〈f, φn〉|2 <∞

}
.

In general, DηCξ is densely defined and closable but it need not be closed. In
the following we adopt the choice ξ = {φn} and η = {αnψn}.

Proposition 5.1. Let us consider Ωξ,η on the domain D(ξ) × D(η) where
ξ = {φn} and η = {αnψn}. The following statements hold.
(i) The operator associated to Ωξ,η is Sξ,η. Moreover, Sξ,η is defined by

Sξ,ηf =
∞∑
n=1

αn〈f, φn〉ψn

on the domain

D(Sξ,η) :=

{
f ∈ H :

∞∑
n=1

|αn|2|〈f, φn〉|2 <∞

}
.

(ii) Ωξ,η is 0-closed if and only if infn |αn| > 0.
(iii) Ωξ,η is solvable. In particular, Ωξ,η is λ-closed if and only if λ /∈ {αn},

the closure of {αn}.

Proof. (i) Since D(Cξ) = H we have the equality DηCξ = Sξ,η. Moreover

D(Sξ,η) = D(DηCξ) =

{
f ∈ H :

∞∑
n=1

|αn|2|〈f, φn〉|2 <∞

}
.

(ii) By Theorem 4.4 if Ωξ,η is 0-closed, then η is a lower semi-frame, i.e.,
infn |αn| > 0. Conversely, the condition infn |αn| > 0 ensures that η is
a lower semi-frame and N(Dη) = {0}. Taking into account that Cξ is
bijective by [1, Proposition 4.1], one has R(Cξ) u N(Dη) = l2 and Ωξ,η

is 0-closed by Theorem 4.4.
(iii) Let

ξ′ = {ξ1, σ1ξ1, . . . , ξn, σnξn, . . . } and η′ = {η1, ψ1, . . . , ηn, ψn, . . . },

where σn = −αn + 1 if |αn| ≤ 1 and σn = 0 if |αn| > 1. Therefore
Ωξ′,η′(f, g) =

∑∞
n=1(αn + σn)〈f, φn〉〈ψn, g〉 and |αn + σn| ≥ 1 for all

n ∈ N. By the point (ii), Ωξ′,η′ is 0-closed. Since Ωξ′,η′ = Ωξ,η+Υ, where
Υ is the bounded form Υ(f, g) =

∑∞
n=1 σn〈f, φn〉〈ψn, g〉, Ωξ,η is solvable.

In particular, if λ ∈ C, taking σn = −λ for all n ∈ N we recover that
Ωξ,η is λ-closed if and only if λ /∈ {αn}.
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Following [6], we denote Sξ,η by Hα
ψ,φ. As a consequence of Theorem 2.4 we

get another proof of Proposition 2.1 of [6]. That is, Hα
ψ,φ is a densely defined

closed operator and (Hα
ψ,φ)∗ = Hα

φ,ψ. Furthermore, the resolvent set of Hα
ψ,φ is

the complement of {αn}, ρ(Hα
ψ,φ) = {αn}

c
.

Therefore, if infn∈N |αn| > 0 we get the reconstruction formulas for f ∈ H

f =

∞∑
n=1

αn〈f,Hα
φ,ψ
−1
φn〉ψn and f =

∞∑
n=1

αn〈f,Hα
ψ,φ
−1ψn〉φn.

5.2. Weighted Bessel sequences

Let φ = {φn}, ψ = {ψn} be Bessel sequences and α = {αn} be a complex
sequence. Define Ωα

φ,ψ the sesquilinear form

Ωα
φ,ψ(f, g) =

∞∑
n=1

αn〈f, φn〉〈ψn, g〉.

Putting ξ = {αnφn} and η = {ψn}, we can consider Ωα
φ,ψ as Ωξ,η on D(ξ) ×

D(η). We have D(η) = H, D(Dη) = H and Dη = C∗η . By Theorem 4.4, the
operator associated to Ωξ,η on D(ξ) × D(η) is DηCξ. As we previously said,
DηCξ ⊆ Sξ,η and Example 4.1 shows that the converse is not true.
Assume that dimN(Dη) = dimN(Dψ) < ∞. Then DηCξ = Sξ,η. Indeed, for
f ∈ D(Sξ,η) the series

∑∞
n=1 αn〈f, φn〉〈ψn, g〉 = 〈Sξ,ηf, g〉 is convergent. Since

dimR(Cη)
⊥ = dimN(Dη) <∞, by Lemma 4.9, {〈f, ξn〉} ∈ l2, i.e., f ∈ D(Cξ).

In conclusion f ∈ D(DηCξ).

6. Sequences as images of an ONB through operators

Let {en} be an ONB and V a densely defined operator of H such that en ∈
D(V ) for n ∈ N. One could consider the sequence ξ = {ξn} given by

ξn = V en, ∀n ∈ N. (6.1)

Actually the condition (6.1) occurs for every sequence ξ. Indeed, for a fixed
ONB {en} an operator V can defined on span({en}) such that V en = ξn. How-
ever, in general, the choice of the operator V may not be uniquely determined
for a fixed ONB {en}.
To establish further properties of a sequence defined by (6.1) we need to con-
sider the restriction V0 of V to span({en}).

Proposition 6.1. The following statements hold.
(i) The analysis operator Cξ has domain D(ξ) = D(V ∗0 ) and it is defined as

Cξf = {〈V ∗0 f, en〉} for f ∈ D(V ∗0 ).
(ii) The analysis operator Cξ is densely defined if and only if V0 is closable.
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(iii) The synthesis operator Dξ acts as Dξ{cn} =
∑∞

n=1 cnξn on the domain

D(Dξ) =

{
{cn} ∈ l2 : V0

(
k∑

n=1

cnen

)
is convergent in H

}
.

Assume that D(ξ) is dense, i.e., V0 is closable. The following statements hold.
(iii’) The synthesis operator Dξ acts as Dξ{cn} = V0(

∑∞
n=1 cnen) on the do-

main

D(Dξ) =

{
{cn} ∈ l2 :

k∑
n=1

cnen is convergent in D(V0)[‖ · ‖V0 ]

}
.

(iv) The adjoint C∗ξ of Cξ is defined as C∗ξ {cn} = V0(
∑∞

n=1 cnen) on the
domain

D(C∗ξ ) =

{
{cn} ∈ l2 :

∞∑
n=1

cnen ∈ D(V0)

}
.

(v) The operator Sξ is defined as Sξf = V0V
∗
0 f on

D(Sξ) =

{
f ∈ H :

k∑
n=1

〈f, ξn〉en is convergent in D(V0)[‖ · ‖V0 ]

}
.

(vi) The operator C∗ξCξ is V0V ∗0 = |V ∗0 |2.

Proof. (i) The proof is identical to that of [7, Proposition II.1].
(ii) It comes from point (i).

Points (iii) and (iii’) follow by the definition of Dξ.
(iv) Let {cn} ∈ l2. Then

〈{cn}, Cξf〉2 =

∞∑
n=1

cn〈ξn, f〉 = 〈
∞∑
n=1

cnen, V
∗
0 f〉.

Therefore, {cn} ∈ D(C∗ξ ) if and only if
∑∞

n=1 cnen ∈ D(V0). Moreover
C∗ξ {cn} = V0(

∑∞
n=1 cnen).

(v) It is a consequence of the relation Sξ = DξCξ.
(vi) Let f ∈ H. Then f ∈ D(C∗ξCξ) if and only if f ∈ D(V ∗0 ) and V ∗0 f =∑∞

n=1〈f, ξn〉en ∈ D(V0), i.e., f ∈ D(V0V
∗
0 ).

In [1] some characterizations of sequences are given based on the operator
V0. Now assume that {en} is an ONB, V,Z are operators such that en ∈
D(V ) ∩ D(Z) and let ξ = {ξn} = {V en} and η = {ηn} = {Zen}. In the next
theorem we study the sesquilinear form induced by these sequences. Again V0
and Z0 are the restrictions to span({en}) of V and Z, respectively.

Theorem 6.2. Let Ωξ,η be defined on D(ξ)×D(η). The following statements
hold.
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(i) Ωξ,η(f, g) = 〈V ∗0 f, Z∗0g〉 for all f ∈ D(ξ), g ∈ D(η).
(ii) Assume that D(η) is dense, i.e., Z0 is closable. The operator associated

to Ωξ,η is Z0V
∗
0 .

(iii) Ωξ,η is 0-closed if and only if V ∗0 , Z
∗
0 are semi-bounded and R(V ∗0 ) u

R(Z∗0 )⊥ = H (resp., R(Z∗0 ) uR(V ∗0 )⊥ = H).

Proof. (i) For all f ∈ D(ξ) = D(V ∗0 ), g ∈ D(η) = D(Z∗0 )

Ωξ,η(f, g) =

∞∑
n=1

〈f, ξn〉〈ηn, g〉 =

∞∑
n=1

〈V ∗0 f, en〉〈en, Z∗0g〉 = 〈V ∗0 f, Z∗0g〉.

(ii) It is an immediate consequence of the previous point.
(iii) Assume that ξ, η are lower semi-frames. Then R(Cξ) u R(Cη)

⊥ = l2 if
and only if R(V ∗0 ) uR(Z∗0 )⊥ = H. Indeed, R(V ∗0 ), R(Z∗0 ) are closed and
the assertion can be obtained by the following considerations
• {dn} ∈ R(Cξ) ∩ R(Cη)

⊥ if and only if
∑∞

n=1 dnen ∈ R(V ∗0 ) ∩
R(Z0

∗)⊥;
• {dn} ∈ R(Cξ) + R(Cη)

⊥ if and only if
∑∞

n=1 dnen ∈ R(V ∗0 ) +
R(Z0

∗)⊥.
The sesquilinear form Ωξ,η on D(ξ)×D(η) is 0-closed, by Theorem 4.4,
if and only if ξ, η are lower semi-frames and R(Cξ)uR(Cη)

⊥ = l2, if and
only if V ∗0 , Z∗0 are semi-bounded and R(V ∗0 ) uR(Z0

∗)⊥ = H. The proof
is completed noting that, by [21, Theorem 2.3], R(V ∗0 )uR(Z0

∗)⊥ = H is
equivalent to R(V ∗0 )uR(Z0

∗)⊥ = H when V ∗0 , Z∗0 are semi-bounded.

Corollary 6.3. Let ξ = {ξn} be a sequence of H with ξn = V en, where {en}
is an ONB, V is an operator of H and en ∈ D(V ) for all n ∈ N. Denoting by
V0 the restriction of V to span({en}), then
(i) Ωξ(f, g) = 〈V ∗0 f, V ∗0 g〉 for all f, g ∈ D(ξ).
(ii) Ωξ is densely defined if and only if V0 is closable. In this case the operator

associated to ξ is V0V ∗0 = |V ∗0 |2.
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