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Abstract

The following work will provide further insights into the influence of European Emission Allowance (EUA) 
prices on carbon dioxide trends and relevant variables of the economic-financial climate-environmental system 
considering a large set of time series. The methodological approach will employ Hierarchical Vector 
Autoregression by W. B. Nicholson et al. (2020) deal with a high-dimensional context. Results of the two 
specifications highlighted how CO2 appears to be more influenced by commodity prices, climate variables, 
along with past industrial performances. Furthermore, a shock of carbon prices could potentially exert 
significant turbulence on the carbon dioxide series, fading in intensity as time goes by. Overall, despite some 
instances (e.g., CO2), there appears to be a straightforward (negative) effect on the influence of carbon prices 
on the system. However, further analyses identified how the external contribution to the variance appears to 
be quite limited for the variable of interest (i.e., carbon price) and the others. As the cornerstone of the EU 
climate policy, this work sheds light on the influence the EU ETS exerts on a set of multidimensional variables, 
considering the possible sources of shocks and implementing adjustment mechanisms for EUA prices.

Keywords: EU ETS; emission trading; Hierarchical VAR; Impulse-Response 

JEL Code: Q52, Q58, C54

1. Introduction
Carbon and carbon dioxide are fundamental for humans and the Planet. However, the last decade has witnessed 
a surprising amount of human-made carbon dioxide emissions in the atmosphere with irreversible 
consequences for future climate patterns. This occurrence has altered the equilibrium of temperature and, in 
turn, climate pathways. Thus, if not promptly addressed, adaptation costs to climate change will become 
unsustainable for humanity. The international community calls for a joint pledge of nations to tackle climate 
change lowering CO2 emitted due to human activities.  After the Kyoto Protocol was adopted and entered into 
force in 2005, most industrialized nations pledged to reduce their GHG primarily via three market-based 
mechanisms. Emission Trading (ET), Clean Development Mechanism (CDM), and Joint Implementation are 
the tools agreed upon by the Conference of Parties (COP-3) to try to curb emissions within the objectives of 
the Protocol. Since then, the carbon market has become one concrete policy option for States to comply with 
Kyoto Protocol obligations. Carbon is now de-facto a commodity, and the number of carbon markets 
worldwide has grown in the last couple of years. World Bank (2020) argue that most of the trading schemes 
at the international level only cover heavily polluting sectors.  According to the latest account by World Bank 
(2021), the 64 emission trading schemes worldwide cover more than 20% of the global GHG emissions 
generation. Charging a price on CO2 emissions might give a consistent shift to the ongoing course of action. 
Pricing carbon will provide a reward for implementing low-carbon production processes (High-level 
Commission on Carbon Prices, 2017). Especially for developing economies, a carbon price might prevent 
development from being locked into a carbon-intensive path (Hourcade and Shukla, 2013). However, a 
sensible difference exists between the optimal theoretical framework and the practical implementation of a 
carbon price scheme (High-level Commission on Carbon Prices 2017). 

Even though single initiatives of the Member States, the European Union, in 2005 launched the so-called 
European Emission Trading Scheme (EU ETS) Directive 2003/87/EC of the European Parliament and of the 
Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within 
the Community and Amending Council Directive 96/61/EC. So far, the mechanism has been functioning for 
more than a decade, providing a price primarily to CO2 emissions for specific categories of enterprises (see 
Annex I, Directive 2003/87/EC) within the European territory. As such, the EU ETS has attracted the interest 
of policymakers and in the academic world (Convery 2008; C.-J. Ji et al., 2019). Several streams of research, 
(Chevallier 2011a; Convery 2008; C.-J. Ji et al. 2019), have tried to disentangle drawbacks, strengths, 
determinants of the European Union Allowance (EUA) price. Price stability has been a growing concern for 
European policymakers (Ellerman and Buchner, 2008).  Since its first steps, EUA prices have not reached a 
stable trend over the years, reaching zero transactions at the end of Phase I. An appropriate account of the 
social costs of carbon is still an open issue and a perceived hurdle to achieving a societal transition towards 
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sustainability (Pearce 2003). Estimates of a carbon price in the 34 IPCC scenarios (430-480 ppm of CO2 by 
2100), as computed by IPCC (2014); Tvinnereim and Mehling (2018), range from US$37 to US$67 per tonne 
of CO2 in 2020, whereas in 2050 would be US$127-US$305. However, if carbon pricing could generate 
revenue flows reducing the overall tax burden, more flexible pricing mechanisms could likely imply less 
adverse effects on competitiveness (OECD, 2016b).

Very few contributions have endeavoured to assess the effect of the EU ETS’ carbon price behaviour on GHGs 
emission generation. Grosjean et al. (2016) proved exogenous shocks undermining price stability might come 
from different sources (e.g., economic recession, overlapping policies, a large influx of Certified Emission 
Reduction/Emission Reduction Units). Furthermore, while adjustment mechanisms (e.g., MSR) have been 
implemented, Azarova and Mier (2021) argued that further investigations of their effects favouring GHGs 
abatement would deliver a more extensive understanding of the functioning of those mechanisms. In its rough 
structure, the MSR ensures a specific range of EUA price variation via automatically injecting or retrieving 
permits whenever the quantity in the market reaches certain (lower or upper) thresholds. Indeed, as the process 
is triggered automatically once the quantity in the market reaches the bounds, the system will be subject to a 
shock that affects prices and other connected variables. On the other hand, other mechanisms (i.e., price 
roof/floor) act directly on prices (Andor et al., 2016). 

 As curbing emissions is the foremost objective of the entire mechanism, the present work will test the effects 
of shocks on EUA prices that might affect carbon emission and a set of relevant variables. Ideally, a positive 
shock on EUA price will negatively impact emission generation. This work will test this hypothesis adopting 
a vector autoregressive (VAR) framework considering a large set of time series from economic (i.e., industrial 
production), to energy (natural gas, crude oil, electricity), to financial, to climate/weather (temperatures, 
rainfall patterns, wind speed). In a much broader perspective, the paper will analyse the current state of the 
interplay among carbon price mechanisms and other relevant dimensions (e.g., industry, energy, finance) via 
assessing their response to a shock on EUA prices considering the broader system (e.g., including climate, 
environmental dimension) (Schusser and Jaraitė 2018). In this framework, the Hierarchical Vector 
Autoregressive (HVAR) model by W. B. Nicholson et al. (2020) will provide a sound methodological approach 
to this high-dimensional context. Building on the assumption the matrix of the lagged coefficient is sparse, 
HVAR employs a lasso-based structure with various degrees of flexibility in the hypothetical structure this 
matrix should have. Besides forecasting, the methodology has been used in Bagheri and Ebrahimi (2020), 
assessing the connectedness between financial markets and commodity markets. Indeed, via employing this 
methodology, this will be modeling the system's response to a shock of CO2 prices in a more flexible context 
capable of better accounting for the behaviours of each dimension (e.g., economic, environmental, climatic) 
(Chevallier 2011b). W. B. Nicholson et al. (2020) proved HVAR delivers better forecast performances with 
respect to other models fitted for high-dimensional time series (when k increases). Concerning other 
approaches, HVAR is better suited to deal with multi-dimensional variables because it takes into account the 
behavior of the single time series. Impulse-Response functions will be derived from the estimates of the 
HVAR. From this, it will be possible to deliver a variable-to-variable analysis modelling the response of 
relevant variables to a shock on carbon prices. Beside IRF analysis, Forecast Error Variance Decomposition 
analysis will investigate on the influence of EUA prices on the set of variables. Results highlighted how EUA 
prices still play a relatively weak role in influencing the other variables of the system. Thus, the contribution 
of this work to the literature is manifold. This paper can be included within the growing research endeavors 
trying to frame machine learning techniques within economic analysis and policy evaluation. In some cases, 
when dealing with high frequency or high dimensionality of the data, machine learning techniques appear to 
fare better with respect to standard econometrics (Athey, 2017; Athey & Imbens, 2017; Varian, 2014). Indeed, 
this paper couples machine learning with standard time series econometrics to deal with high dimensionality 
of data. In light of the research question of this work, HVAR represents a more appropriate methodology to 
assess how the behavior of carbon price at the EU level might affect the economic, financial, environmental, 
and climatic dimensions. This is much more valid when dealing with a high-dimensional context and in 
presence of variables of different nature (environmental, economic, financial, climatic). On the other hand, the 
work will also feed the literature on the effectiveness of carbon prices with respect to GHGs emissions. While 
some instances have analysed focused on a micro (e.g., firm level) dimension, this work will provide a novel 
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empirical approach for macroeconomic analysis considering the EU as a whole. VAR-based methodology has 
already been used until recently to carbon prices analysis (Känzig, 2021). Furthermore, this paper will be one 
of the first applications of HVAR methodology in (macro)economic analysis for climate policy evaluation. To 
policymakers, this work might provide useful insights as to the current role of carbon prices in the socio-
environmental system accounting for the different nature of the variables. The work proceeds with a brief 
overview of the theoretical and institutional underpinnings of the EU ETS, highlighting the main criticalities. 
Further, a detailed description of the data employed and the methodology followed by estimating the Impulse-
Response Function (IRF) and Forecast Error Variance Decomposition (FEVD). The last two sections will 
provide comments and discussions on the results with conclusions and implications for policymakers.  

2. EU ETS- Literature Review
From a legislative point of view, the EU ETS was instituted with Directive 2003/87/EC of the European 
Parliament and of the Council of 13 October, 2003 Establishing a Scheme for Greenhouse Gas Emission 
Allowance Trading within the Community and Amending Council Directive 96/61/EC (Text with EEA 
Relevance). Currently, it operates in 31 Countries, 27 EU Countries, plus Iceland, Norway, Liechtenstein, and 
the United Kingdom. It is designed to cover 45% of the total EU-wide GHG emissions. Right now, it accounts 
for 11,000 heavy energy-using installations all over Europe. Over the three phases, the system has highlighted 
some criticalities that appear to be expected in emission trading design. Indeed, Chevallier (2011a); Asian 
Development Bank (2015); Borghesi et al. (2016); Perino and Willner (2016); Brouwers et al. (2016);Bruninx 
and Ovaere (2022) highlighted all those relevant issues that could be reduced to institutional factors (e.g., lack 
of long-term political commitment, adjustment mechanisms) and agents’ expectations (e.g., Australian Carbon 
Mechanism). In its early stages of implementation, the system has also experienced frauds (e.g., carousel fraud, 
Black Stone).  One other point is related to price behaviour that has not reached a stable trend scheme1 with a 
tendency to allocate more permits to favour their domestic industrial enterprises during the first phases. As for 
policy commitment, Lecuyer and Quirion (2013); Schusser and Jaraitė (2018); Shahnazari et al. (2017) have 
proved empirically that other instruments might be complementary to carbon price at the local level, especially 
in the power sector. Expectations are mostly related to risks and uncertainty at the policy level (energy 
efficiency, technology) and the market level (commodity prices) (Blyth and Bunn, 2011). One of the latest, the 
Market Stability Reserve, conceived a mechanism that creates a corridor for the number of allowances that can 
be traded in the market. 

Aside from the overall faring of the system, researchers have been striving to find determinants of European 
Union Allowances (EUA). Alberola et al. (2008); Creti et al. (2012); Aatola et al. (2013); Koch et al. (2014) 
found that EUA prices are influenced by weather (temperature, extreme weather events) indicators, other 
commodity prices (i.e., oil, gas), industrial productivity, financial markets2 (e.g., commodities). Q. Ji et al. 
(2019); Oberndorfer (2009); Soliman and Nasir (2019); Zhu et al. (2018) have identified the influence of 
commodity markets (i.e., coal, gas, oil, electricity) and other carbon markets. Hitzemann et al. (2015); Eugenia 
Sanin et al. (2015) investigated the effects of specific announcements on EUA price volatility. Despite the 
need to consider the nature of CO2 behaviour, as stated by Chevallier (2011b), most studies have focused on 
the functioning principles of the scheme. 

Research efforts have also tried to disentangle the effects of emission trading on diverse aspects. Adopting a 
diff-in-diffs approach, Marin et al. (2018) and Löschel et al. (2019) analyzed the impact of EU ETS on the 
economic performance of Italian and German enterprises, respectively. Teixidó et al. (2019) reviewed the 

1 for a deeper insight on EUAs price behaviour see https://www.sendeco2.com/it/prezzi-co2 or 
https://www.eex.com/en/market-data/environmental-markets/spot-market/european-emission-allowances

2 EUAs are considered particular category of financial instruments under MiFID II Regulation (Directive 
2014/65/UE du Parlement européen et du Conseil du 15 mai 2014 concernant les marchés d’instruments 
financiers et modifiant la directive 2002/92/CE et la directive 2011/61/UE  Texte présentant de l’intérêt pour 
l’EEE, 2014) pursuant to point (11) of Section C of Annex I of that directive. Derivatives of emission 
allowances are listed under point (4) of Section C of the said Annex.
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empirical literature on the effectiveness of emission trading in fostering a low-carbon technological transition. 
Naegele and Zaklan (2019); Koch and Basse Mama (2019) dealt with carbon and investment leakage 
potentially caused by the scheme. In the context of the UK, Abrell et al., (2022) coupled machine learning 
techniques with economic theory to assess the effect of UK CPS on emissions. Gugler et al., (2021) compared 
the results of EUA carbon price and emission reduction in Germany and UK CPS. They found the higher prices 
for UK emissions led to a more significant reduction.

2.1 Effectiveness of the policy
Despite the effective decreasing trend in CO2 over the last decade, Brink and Vollebergh (2020) notice it is 
pretty hard to trace the direct effect of the EU ETS considering the multiple factors involved. The amount of 
emission reduction might also be influenced by unilateral policy interventions (Perino et al. 2019). However, 
McGuinness and Ellerman (2008); Ellerman and Buchner (2008); Ellerman and Feilhauer (2008); Anderson 
and Di Maria (2011); Martin et al. (2016); Dechezleprêtre et al. (2018) highlighted how EU ETS has been 
effective in decreasing emissions in different Phases of the scheme using country-level data. All the studies 
highlighted a contribution of EU ETS in abating emissions, despite the difficulty of measuring the 
counterfactual. However, possible exogenous shocks can undermine the stability pathway of prices with 
consequences for reaching the targets (Grosjean et al. 2016). Aside from shocks deriving out of economic 
urmoil, Lecuyer and Quirion (2013); Shahnazari et al. (2017), Perino et al. (2019), Bruninx and Ovaere (2022) 
point out other sources can be tracked down to possible conflicting policy aims between the EU ETS and 
national policies (e.g., waterbed effect). Uncertainty on the policy mix is likely to increase according to 
different transition scenarios to a low-carbon economy (NGFS, 2019). 

3. Data and methodology
3.1 Data
A diverse array of time series will be employed to perform this analysis encompassing the multiple dimensions 
involved. For a decade (2008-2019), monthly data will be considered for the analysis. Data on monthly EUA 
stock prices are taken from ICAP3, SendeCO24 and Jiménez-Rodríguez, (2019). Aggregated monthly CO2 
trends have been estimated from data on energy consumption (e.g., Gross Inland Deliveries) for the 31 
Countries and eight fuels (four primary and four secondary) from the Eurostat database following the 
methodology in Eggleston et al. (2006)5 (so-called Reference Approach). The industrial dimension, the Global 
Index of Real Economic Activities6 (e.g., Kilian Index) as conceived in Kilian (2009) and adjusted following 
Kilian (2019); Kilian and Zhou (2018), will be employed as a better measure of economic activity with respect 
to conventional indexes (e.g., real GDP, industrial production). To include the financial market side, the EURO 
STOXX50 index provides a composite measure of value for the biggest Eurozone enterprises in the stock 
market. The index is designed by STOXX and retrieved from Yahoo Finance7. For commodity prices, natural 
gas and oil come from the World Bank Commodity Price Data repository for the Netherlands Title Transfer 
Facility8 (NTTF) and Brent, respectively. Electricity prices are those of the Nord Pool Power Market 
encompassing Northern and Baltic regions. To proxy coal price at EU level, data on the average price of the 
Rotterdam Coal Futures from ICE market will be considered. Climate and weather data are stored in the IEA 

3 https://icapcarbonaction.com/en/ 

4 https://www.sendeco2.com/it/prezzi-co2 

5 The dataset is available upon request, for deeper insights on the methodology see (Quatrosi, 2020)

6 The index is available in the Kilian’s personal webpage and updated monthly by the Federal Reserve Bank of Dallas, 
see https://www.dallasfed.org/research/igrea  

7 For this work it has been decided to use closing prices. 

8 from April 2015, Netherlands Title Transfer Facility (TTF); April 2010 to March 2015, average import border price 
and a spot price component, including UK; during June 2000 - March 2010 prices excludes UK.  
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Weather Energy Tracker, held by IEA and Mediterranean Centre for Climate Change (CMCC). As the database 
contains country-level data, the series employed has been achieved by averaging the values of the 31 Countries 
under the ETS. Climate/Weather data comprise monthly averages of temperatures (i.e., min, max), rainfall 
(maximum rainfall), wind speed (10 mt). Table 1 summarizes the main statistics for the series. 

Table 1 Summary Statistics of the series

Statistic Min Pctl(25) Median Pctl(75) Max Median St. Dev.
Kilian Index -163.170 -61.682 -32.285 12.445 188.060 -32.285 68.268
Brent 30.700 56.458 76.060 108.208 132.720 76.060 26.946
CO2 242.407 275.695 296.484 319.891 358.932 296.484 28.099
EUA 3.538 5.887 8.093 14.613 26.881 8.093 6.003
Max Temperature 7.244 13.483 20.681 26.845 30.958 20.681 7.072
Tot Rainfall 0.053 0.086 0.102 0.113 0.145 0.102 0.018
Min Temperature -13.793 -3.662 1.067 7.840 11.989 1.067 6.779
Wind Speed 10mt 2.940 3.330 3.643 3.956 4.616 3.643 0.401
Dutch TTF 3.910 6.692 8.795 11.262 15.930 8.795 2.834
North Pool Electricity  9.550 28.587 33.925 43.680 81.650 33.925 12.194
STOXX50E 1,976.230 2,665.525 3,025.670 3,362.532 3,825.020 3,025.670 433.066
Rotterdam Coal Futures 44.300 73.113 83.850 95.025 218.000 83.850 28.452

As tests on stationarity will be commented later on (Table 3), the preliminary analysis proceeds with the 
correlation matrix of the series. As it is possible to appreciate (Table 2), there are quite a few high correlations 
between temperature and wind speed. CO2 shows a significant but negative correlation with the temperature 
set and positive with industrial production and commodities (e.g., natural gas price, oil, electricity) for the 
variables of interest. There is a relatively weak but positive correlation with EUA prices and a negative with 
the STOXX index. On the other hand, EUA prices positively correlate with the Kilian Index and Nord Pool 
electricity prices. Positive yet weak correlation for the financial dimension and the other commodities. 
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Table 3 Correlation matrix

Kilian Index Brent CO2 EUA Max 
Temperature Tot Rainfall Min 

Temperature
Wind Speed 

10mt
Dutch 
TTF

North Pool 
Electricity STOXX50e Rotterdam Coal 

Futures

Kilian Index 1 0.357 0.242 0.660 0.054 0.019 0.070 -0.033 0.352 0.380 0.096 0.702

Brent 0.357 1 0.273 0.145 0.112 -0.029 0.075 -0.080 0.712 0.271 -0.232 0.626

CO2 0.242 0.273 1 0.118 -0.717 0.131 -0.684 0.645 0.553 0.409 -0.132 0.352

EUA 0.660 0.145 0.118 1 0.006 -0.114 -0.008 0.031 0.240 0.554 0.161 0.613

Max Temperature 0.054 0.112 -0.717 0.006 1 -0.111 0.962 -0.872 -0.079 -0.289 -0.025 0.040

Tot Rainfall 0.019 -0.029 0.131 -0.114 -0.111 1 -0.014 0.200 0.071 -0.021 -0.123 -0.047

Min Temperature 0.070 0.075 -0.684 -0.008 0.962 -0.014 1 -0.828 -0.078 -0.331 -0.006 0.041

Wind Speed 10mt -0.033 -0.080 0.645 0.031 -0.872 0.200 -0.828 1 0.094 0.153 0.103 -0.014

Dutch TTF 0.352 0.712 0.553 0.240 -0.079 0.071 -0.078 0.094 1 0.344 -0.399 0.554

North Pool 
Electricity  0.380 0.271 0.409 0.554 -0.289 -0.021 -0.331 0.153 0.344 1 -0.153 0.487

STOXX50E 0.096 -0.232 -0.132 0.161 -0.025 -0.123 -0.006 0.103 -0.399 -0.153 1 0.075

Rotterdam Coal 
Futures 0.702 0.626 0.352 0.613 0.040 -0.047 0.041 -0.014 0.554 0.487 0.075 1

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4378270

Preprin
t n

ot p
eer re

vie
wed



3.2 Methodology
To account for the multiple dimensions of the series subject of analysis, Hierarchical Vector Autoregressive 
Model (HVAR) will be employed addressing this high dimensional context. This methodology was first 
introduced in W. B. Nicholson et al. (2020) as a more suitable solution for forecasting exercises in high 
dimensional contexts with respect to other approaches to reduce the dimensionality of time series (e.g., 
correlation analysis, factor models, Bayesian models, scalar component models, independent component 
analysis, dynamic orthogonal component analysis). HVAR encodes lag order selection into a convex 
regularization that simultaneously addresses dimensionality and lag order selection. Unlike Bayesian models 
and lasso-based models, it provides interpretable insights on the contribution of each time series on the 
forecasting exercise. While aiming at interpretability, HVAR introduces maximization in lag order selection 
dealing with increasing maximal order. In fact, in other models, as lag order increases forecasting performances 
tend to degrade. Lasso-based VAR are conceived under the assumption the matrix of the coefficient in high 
dimensional context is sparse (Song and Bickel, 2011). Starting from the matrix representation of a 𝑉𝐴𝑅(𝑝)𝑘
model for a set of k time series of length T9:

𝑌 = 𝑣1⊺ + Φ𝑍 + 𝑈 [1]

Where Φ controls the dynamic dependent of the 𝑖𝑡ℎ component of 𝑦𝑡 on the 𝑗𝑡ℎ component of  𝑦𝑡―1. Some 
contributions have highlighted how the estimation of the least square coefficient matrix might be challenging 
unless T is large. Furthermore, for large (even medium) k, the matrix of the coefficients is sparse even with 
regards to the true Data Generating Process (DGP) (Davis et al. 2012). Some authors, as Song and Bickel 
(2011), have decided to implement convex penalty mechanisms (e.g., Lasso and Group Lasso). In this 
framework, HLag builds on hierarchical group lasso modelling, providing a structure to the sparse matrix with 
different degrees of flexibility (i.e., Componentwise, Own-Other, Elementwise). Each row of the equation of 
the VAR might truncate at a given lag order (e.g., Componentwise) or allow the lag order of the single series 
to truncate at a different order with respect to the other series (i.e., Own-other). The lag structure might also 
allow each component of the series to have its own lag order (e.g., Elementwise). While other approaches (i.e., 
information criteria) provide a universal lag order, Hlag allows lag to vary across marginal models. For the 
sake of this work, the Elementwise HLag structure has been chosen as the more flexible and better performing 
in multiple scenarios also concerning other lasso-based methods as seen in W. B. Nicholson et al. (2020). 
Following the notation on Equation 1, being L a kxk matrix of elementwise coefficient lags 

𝐿𝑖𝑗 = 𝑚𝑎𝑥{𝓁:𝜙𝑖𝑗
(𝓁) ≠ 0} [2]

as the smallest maximal lag structure such that Φ𝑖𝑗
(𝓁) = 0, 𝓁 = 0,…,𝑝 for the model considered. For other 

structures, Elementwise HLag allows all the elements within L to have no stipulated relationships. HVAR 
performances have been tested for macroeconomic and financial forecasting W. B. Nicholson et al. (2020). 
Aside from mere forecasting, Bagheri and Ebrahimi (2020) employ this methodology to investigate the 
interconnectedness of financial stock indexes. To the best of the author’s knowledge, this will be the first 
attempt to employ Hierarchical Vector Autoregressive models for variable-to-variable analysis (i.e., Impulse-
Response) in environmental macroeconomics. 

4. Results and Discussion 
Despite some exceptions (Table 2), all the tests run (e.g., Augmented Dickey-Fuller, KPSS, Box-Ljiung) show 
the series present non-stationarity either in trends or in drift. Therefore, the series will be analysed in their first 
differences in the following steps. 

Table 1 Multiple Stationarity Tests

9 For the notation see Appendix 1

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4378270

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Variable box.pvalue adf.pvalue kpss.pvalue box adf kpss

1 Kilian Index 0 0.155 0.010 TRUE FALSE FALSE

2 Brent 0 0.518 0.010 TRUE FALSE FALSE

3 CO2 0 0.010 0.029 TRUE TRUE FALSE

4 EUA 0 0.704 0.010 TRUE FALSE FALSE

5 Max Temperature 0 0.010 0.100 TRUE TRUE TRUE

6 Tot Rainfall 0.011 0.010 0.100 TRUE TRUE TRUE

7 Min Temperature 0 0.010 0.100 TRUE TRUE TRUE

8 Wind Speed 10mt 0 0.010 0.100 TRUE TRUE TRUE

9 Dutch TTF 0 0.594 0.010 TRUE FALSE FALSE

10 North Pool Electricity  0 0.212 0.018 TRUE FALSE FALSE

11 STOXX50E 0 0.010 0.010 TRUE TRUE FALSE

12 Rotterdam Coal Futures 0 0.014 0.012 TRUE TRUE FALSE

To tackle the different scales and units of measures of the variables, the series will be standardized to refine 
better the subsequent analyses as suggested by James et al. (2013). Since there is no consistent way for 
choosing the maximum lag order that applies to HVAR estimation, W. Nicholson et al. (2017) suggest the 
parameter p will be set according to the frequency of the time series considered (e.g., 12 for monthly series). 
Once estimated the coefficient, the cross-validation will be performed by dividing the dataset into three parts 
T/3; 2T/3, respectively. Figure 1 shows the sparsity matrix of the coefficients as the result of the model 
specification with 12 maximum lags. Furthermore, the matrix shows the model does not consider any ex-ante 
relationship between data (e.g., Elementwise). From here, it is possible to appreciate how the coefficients of 
the diagonals tend to weigh more on estimation than off-diagonal. In other terms, the coefficients of the lagged 
variables tend to influence more the estimation than the single marginal equations.

Figure 1 Sparsity Matrix of Elementwise HVAR

As for the optimization procedure, the chart in Appendix 2 shows a parabolic shape for the penalization term 
𝜆. To show the primary hypothesis, namely, the response of a shock of the carbon price to emission trends 
from the energy sector, the Impulse-Response Function (IRF) has been modeled out of the last estimation of 
the HVAR. The computation of the IRF follows Pesaran and Shin (1998) to relax some further limitations, not 
taking into account the order of the variables. Figures 2-3 show the response of carbon dioxide emission trends 
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and relevant system variables to a shock on EUA prices. Figures 2-3 show the specification of the model 
considering temperatures (min, max), wind speed at 10 mt, total rainfall. Focusing on the response of carbon 
dioxide emissions, it is possible to appreciate how the shock generates a wild trend for future emissions, with 
intensity progressively fading away as time goes by. 

Figure 2 Impulse-Response Function CO2 emissions

As for other relevant variables of the system considered, Figure 3 models IRF for commodity prices, 
production, and financial indexes, EUA appears to exert a downward trend for Kilian Index and specific 
commodity prices (e.g., Brent, Natural Gas) that becomes clearer (yet less intensive) over time. As for the 
STOXX50 index and Nord Pool electricity, a carbon price shock appears to exert a quite intense response, at 
least in the nearer future. 

Figure 3 Impulse-Response Relevant covariates
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Decomposition (FEVD) is depicted in Figure 7, respectively, to 1, 5, 10, and 20 steps ahead. In line with the 
previous analysis, the computation of FEVD follows the approach as in Pesaran and Shin (1998). The Figure 
shows how much of the variance in error forecasting of every variable can be explained by the other variables. 
The higher is the contribution of other variables, the more integrated the system is, and the more robust are 
results and trends of the IRF Lütkepohl (2005). As shown in Figure 4, the variables themselves exert a higher 
contribution to the variance. For the variable of interest (e.g., CO2), other influences mostly come from the 
climate/weather set of variables and commodity prices. Kilian Index and Natural Gas and Coal price explain 
the carbon dioxide variance between 10%-15% of the carbon dioxide variance. In this sense, according to other 
findings in the literature, (Khalili et al. 2012; Du et al. 2018), the influence of commodity prices could be 
considered to a greater extent as prices influence commodity demand and supply. Other factors influencing 
carbon emissions (e.g., industrial production) appear to be in line with Declercq et al. (2011), Dong et al. 
(2019), Zeng et al. (2021). As for the influence of EUA price, despite relatively low (6%-7%), the value slightly 
increases over time. All the variables show external influence in their variance composition regarding the 
broader system. However, the contribution of those variables appears still to be limited. The most significant 
influence of EUA price ranges between 4%-5% for (max) temperature, natural gas price, Kilian Index. On the 
other hand, a carbon price is more influenced by commodity prices and temperatures (min, max) than the 
financial index, rainfall, and wind speed. This latter finding sheds further light on the analysis of the 
relationship of wind characteristics (e.g., speed, direction) as one other determinant of carbon prices 
(Chevallier, 2012a). A more country-specific analysis is deemed appropriate to disentangle more consistent 
results despite the evident yet negligible influence. As for the other variables influencing EU ETS prices, these 
findings are in line with Mansanet-Bataller et al. (2007), Alberola et al. (2008); Aatola et al. (2013). As for the 
behaviour over time, Figure 4 does not show any marked difference among the variables. 

Figure 4 Forecast Error Variance Decomposition (Specification I)

 

5. Conclusions 
While improvements in the so-called carbon price gap signal a better use of market-based instruments reducing 
CO2 emissions, there are concerns the current rate of change could meet the ambitious targets of the Paris 
Agreements (OECD, 2018). On the other hand, the Commission estimated €260 billion (about 1.5% of 2018 
the EU GDP) to comply with the EU Green Deal objectives by 2030. In this sense, the EU budget will play a 
pivotal role in fostering a societal sustainability transition. For this purpose, the EU is planning to earmark 
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20% of the revenue stream coming from the EU ETS. As from the last account the revenue flow of the EU 
mechanism amounted to €14 billion in 2019 (€5.7 billion in the half of 2020), with €57 billion of revenues 
generated within 2012 and June 2020 (Nissen et al., 2020). Furthermore, a sustained price of allowance permits 
ensured a consistent revenue flow despite the lower level of transactions, especially about the most recent 
events (Azarova and Mier, 2021; Borghesi and Flori, 2019; Nissen et al., 2020; Quemin 2022). If the short and 
medium-term effects of COVID-19 pandemics on carbon prices might be predictable, still uncertain are the 
long-term effects coupled with the outcome of Brexit. By all means, Verde et al. (2021) demonstrate factors 
such as policy interplay (e.g., waterbed effect) appear to be key issues undermining price stability, hindering 
concrete abatement efforts, and in turn, a more coordinated framework tackling climate and environmental 
issues. This work tries to provide ulterior insights on the effect of the emission trading scheme at the EU level, 
considering the broader system (environmental, climate, economic, financial) adopting a more suitable 
methodology. Hierarchical VAR has been conceived for high dimensional contexts providing interpretable 
results taking into account the single characteristics of the series considered. As already pointed out, the EU 
ETS represents the cornerstone of the EU climate policy. However, since its introduction, in early 2005, carbon 
prices have not reached a (high) sufficient level. Main factors influencing EUA price level have been identified 
in an oversupply of permits during the first phases, issues related to the implementation of national policies in 
ETS-sectors, and a perceived lack of political commitment. Over the years, the progressive set of reforms 
(Phase I, II, III, IV) has tried to build a more reliable mechanism introducing price adjustments tools and the 
very auctioning of permits. The literature has also focused on the determinants of carbon prices and studies on 
the effectiveness of the policy. Those latter have been mainly conducted on a national basis confronting ETS 
with national policies. This work employs time series econometrics coupled with lasso-based regularization to 
provide new insights on the effectiveness and integration of the EU ETS considering economy, finance, energy, 
climate, environment. HVAR appears to better address simultaneously reduction of dimensionality and lag 
order selection. This provided interpretable results that have been used to model IR functions and FEVD 
analysis. The IR functions highlighted how a shock on carbon price will generate mostly a negative response 
to the set of variables considered. On the other hand, from FEVD it was possible to assess that effective 
influence of carbon prices on those variables was still weak. There appear to be other factors that exert a 
stronger influence on carbon dioxide with respect to EUA prices (e.g., climatic/meteorological, industrial 
performances, natural gas). Furthermore, results align with the preliminary analyses (e.g., correlation matrix) 
and the literature pointing out an influence of carbon prices on industrial performances, commodities, 
(extreme) temperatures. The lack of influence on financial markets could be explained by the fact that not all 
the sectors are included in the EU ETS. Overall, the magnitude of influence of carbon price towards the other 
variables is relatively weak for all the periods considered. On the other hand, the IRF plot has shown a negative 
pattern of the response of those variables to a shock on EUA prices. Results with other model specifications 
confirmed if not highlighted the findings also in line with the literature.  In this sense, the choice of a more 
flexible methodology (HVAR) and the computation of IRF following the approach in Pesaran and Shin (1998) 
provided a more flexible environment to account for the diverse dimension of the system subject of analysis 
as suggested by Chevallier (2011b). These findings provide ulterior insights to policymakers for better taking 
into account possible sources of carbon price shocks (e.g., overlapping policies) and tailoring existing 
adjustment mechanisms (e.g., Market Stability Reserve) for the stability of the European Emission Trading 
Scheme. Results show the still relative prospective influence of carbon prices towards relevant variables 
considering the broader system. These findings should also be contextualized in light of the recent reforms of 
the EU ETS (Phase IV) that are not considered in this work. Factors influencing the effectiveness of the policy 
can be tracked down to the existence of (conflicting) environmental policies at national levels along with 
uncertainty over a sound price adjustment mechanism (Market Stability Reserve, price floor) that are still 
object of discussion for policymakers. A more active dialogue between national and EU policymakers should 
lead to a comprehensive policy mix avoiding overlapping aims. Despite the well-established influence on 
commodity markets, the almost non-existent influence of carbon prices on finance strictu sensu could be 
deemed an ulterior hurdle to channel funds towards sustainable investments. Even though EUA has been 
included as a financial instrument by the recent EU financial directive (MiFID2), apparently, carbon 
allowances are not enough considered by financial players. In this perspective, the huge process of reform 
affecting the financial sector (e.g., Taxonomy) should be designed considering the comprehensive array of 
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policies from multiple aspects. Among the consistent literature on EU ETS and emission trading, this work 
tries to shed light on how this climate policy's current and potential integration with the broader system. This 
will be at the basis to promote a complete transition to sustainability in light of the problem's complexity and 
multi-faceted nature. 

Appendix 1
𝑌 = 𝑣1⊺ + Φ𝑍 + 𝑈 [1]

𝑌 = [𝑦1… y𝑇] (𝑘 𝑥 𝑇);   Z = [𝑧1… z𝑇](𝑘𝑝 𝑥 1);

z = [𝑦⊺
𝑡―1… y⊺

𝑡―𝑝](𝑘𝑝 𝑥 𝑇); U = [𝑢1… 𝑢𝑇] (𝑘 𝑥 𝑇);

1 = [1…1]⊺ (𝑇 𝑥 1);   Φ =  [Φ(1)… Φ(𝑝)] (𝑘 𝑥 𝑘𝑝)

Appendix 2

Figure 5 Lamba Plot I-II Specification
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