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Abstract—Energy Sharing Systems (ESS) are envisioned to
be the future of power systems. In these systems, consumers
equipped with renewable energy generation capabilities are able
to participate in an energy market to sell their energy. This
paper proposes an ESS that, differently from previous works,
takes into account the consumers’ preference, engagement, and
bounded rationality. The problem of maximizing the energy
exchange while considering such user modeling is formulated and
shown to be NP-Hard. To learn the user behavior, two heuristics
are proposed: a Reinforcement Learning-based algorithm, which
provides a bounded regret, and a more computationally efficient
heuristic, named BPT- , with guaranteed termination and cor-
rectness. A comprehensive experimental analysis is conducted
against state-of-the-art solutions using realistic datasets. Results
show that including user modeling and learning provides sig-
nificant performance improvements compared to state-of-the-art
approaches. Specifically, the proposed algorithms result in 25%
higher efficiency and 27% more transferred energy. Furthermore,
the learning algorithms converge to a value less than 5% of the
optimal solution in less than 3 months of learning.

Index Terms—Energy Sharing Systems, Virtual Power Plants,
Reinforcement Learning, User Preference.

I. INTRODUCTION

Over the past decade, there has been a growing interest in
overcoming the detrimental effects of the energy industry on
environment, such as the carbon footprint [1]. In fact, numer-
ous studies have focused on energy-efficient, environmental-
friendly, and yet sustainable methods for energy generation [2].
A key enabler of this revolution has been IoT-enabled energy
grid, known as Smart Grid (SG) [3], which exploits novel
sensing, communication, computing, and control technologies
to improve the reliability, resiliency, efficiency, and flexibility
of power systems [4], [5]. Recently, several researchers and
government bodies have put significant efforts into the evolu-
tion of SG technologies towards the paradigm of Virtual Power
Plants (VPPs), such as [6], [7]. Unlike the traditional energy
systems where the energy generation and distribution are
centralized [8], [9], VPPs support a two-way flow of electricity
and information [10]. The objective of VPPs is to aggregate
Distributed Energy Resources (DER), such as Renewable
Energy Technologies (RET) (e.g., photovoltaics (PV), wind
power, etc.), into the grid to provide reliable ancillary services,
traditionally provided by large power plants [2]. Furthermore,
the convenient and low-scale installation and operation of DER
and RET will enable widespread adoption at the consumer
level. As a result, VPPs represent a paradigm shift where
large scale power plants will co-exist, and potentially even
be partially replaced, by distributed consumer-level energy
generation [2], [9].

Consumers equipped with energy generation capabilities can
go beyond self-consumption as they produce surplus energy
depending on the generation type and the weather condition
[8], [9]. Currently in the U.S., the excess energy is either
wasted or sold to the grid [11]. However, this is often not
profitable to the consumers since (8) the grid usually have
a fixed cap on the amount of energy to be purchased from
each producer; and (88) the price offered by the grid is often
low, non-competitive, and non-negotiable [9]. An alternative
is the use of consumer-level batteries for storing the excess
energy. However, it has been shown that in order for this to be
effective, each home should be equipped with batteries larger
than 12kWh, costing more than $6, 000 per household [12].

Supported by the emerging paradigm of VPP, a viable
and more attractive alternative is to trade the surplus energy
between users through an Energy Sharing System (ESS) [13],
[14]. In these systems, consumers with renewable energy
generation capabilities (called producers for simplicity) can
sell their energy at more profitable prices, and compete in
an energy market with standard energy sources (e.g., nuclear,
coal, etc.), and larger renewable energy power plants, to
sell their energy to other consumers. ESSs are not only
economically more convenient, but they can also contribute in
reducing the loss incurred in energy transfer resulting from
the closer proximity of users’ homes with respect to the
utility company [15]. Additionally, ESSs allow to buy energy
from different sources, taking into account the consumers’
increasing environmental concerns and awareness [16]. An
example of a commercial application of ESS is the Dutch
start-up Vandebron. Vandebron enables the local renewable
electricity generators to sell their energy under an online peer-
to-peer (P2P) marketplace platform independent of any utility
or government agency [17]. Similarly, Brooklyn Microgrid
(BMG) offers an energy marketplace in New York City [18].
BMG uses blockchain technology to allow solar PV owners, in
both residential and commercial sectors, to sell excess energy
to other NYC residents who prefer to consume the locally-
generated renewable energy instead of fossil fuel-based energy.

Previous works on ESSs, such as [13], [15], [19], [20] have
proposed matching and/or auction mechanisms to decide how
to share energy among local producers and consumers. Au-
thors of [15], in particular, aim at determining a proper produc-
ers and consumers matching that minimizes the transmission
losses and energy waste. However, these works are mainly
based on simplified models of human behavior, for example
assuming that users are always available and engaged with the
ESS, or will always follow the suggestions that the ESS would
recommend through the matching/auction. Few works assume
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more realistic models of user behavior in their formulation, for
example using prospect theory to model the user’s response
toward energy prices [20], or modifying classical game theory
to better reflect the users’ perception towards perceived loss
and gain [21], or capturing the user’s irrational perception
towards bidding results in an energy market [22]. However,
these works assume that the parameters of such models are
known a priori. This is generally an unrealistic assumption. In
fact, recent researches in the social science domain have shown
that users are highly heterogeneous in their preferences for
energy sources [23] and in engaging with energy management
systems in general [16]. As a result, previous works in ESS
may fail when implemented in the real world [24]–[26].

This paper advances the state-of-the-art in ESSs by consid-
ering realistic and heterogeneous user behaviors in terms of
preferences and engagement, as well as their limited time and
cognitive capabilities in accordance to the principle of bounded
rationality. A general overview of the ESS system considered
in this work is presented in Fig. 1. As depicted in the overview,
an energy community which implements an ESS is considered.
Within this platform, users are allowed to sell and buy energy
to and from other members in the community, as well as from
renewable and standard power plants connected to a larger SG,
and it is grounded on previous models proposed for ESS [8]. In
this system, an active user participation in the energy exchange
is envisaged, where users may have different preferences for
different energy sources options (e.g., solar, wind, nuclear,
coal, etc.), as well as a different level of engagement with the
system. According to the proposed approach, ESS periodically
(e.g., daily) calculates a prediction and a match of demand and
production, to maximize the system performance given the
users preferences and level of engagement. The matching is
translated into a personalized recommendation, sent for exam-
ple through a smartphone app. This recommendation includes
a short list of energy sources and the amount that should be
bought from each source to fulfill the consumer’s demand.
The short size of such list is of primary importance since,
according to the principle of bounded rationality, consumers
have limited cognitive capabilities and time to select the
preferences. Hence, with too many options the user may easily
get overwhelmed, leading to the potential abandonment of the
system [27], [28]. If a recommendation is accepted by the user,
it needs to be honored by the system. Conversely, if a user
ignores a recommendation, for example because he/she is not
engaged with the ESS, or because the source of energy does
not match his/her preferences, the committed energy is wasted
due to the limited energy storage at the producer side. In this
case, the corresponding demand is supplied from the grid,
likely with a higher price. As a result, to maximize the system
performance, it is fundamental to take the user behavior into
account while matching the produced and consumed energy.

The problem of matching the producers and consumers is
formulated as a Mixed Integer Linear Programming (MILP),
which aims at maximizing the amount of exchanged energy,
while considering the user preference, the size of the recom-
mendation list, as well as physical constraints imposed by the
loss of energy in the transfer process. It is shown that the
problem is NP-Hard and requires prior knowledge of the user

Fig. 1. Energy Sharing System Overview

behavioral model. For this reason, a Reinforcement Learning
(RL) approach, called User Preference Learning (UPL), is
adopted to learn the user preference while optimizing the
system performance [29]. It is shown that UPL has a bounded
regret with respect to the optimal case in which the user
preference is known. However, UPL suffers from a relatively
long initialization phase and requires to solve the NP-Hard
MILP problem at every iteration. To address these short-
comings, Faster Initialization Algorithm (FIA) is proposed,
which significantly reduces the time required to complete
the initialization phase. In addition, this paper proposes a
polynomial heuristic, named BiParTite- (BPT- ). BPT- 
performs multiple maximum weighted bipartite matchings to
maximize the energy exchange while implementing the RL
framework to learn user preferences. It is formally shown
that BPT- is totally-correct, i.e. it always returns a feasible
solution of the MILP problem and has guaranteed termination.

This work compares the performance of the proposed al-
gorithms with the state-of-the-art approach for ESS and the
optimal solution, through simulations using the real traces for
consumption and production of energy [30], [31]. Results show
that the proposed approach is able to effectively learn the user
preference in a much shorter time and significantly improve
the performance of the system compared to the state-of-the-art.
In summary, the main contributions are as follows.

• This work studies the problem of optimizing the per-
formance of an ESS while considering realistic user
behavioral model in terms of preferences, engagement
and bounded rationality.

• Problem is formulated as MILP and proved NP-Hard.
• This paper proposes UPL, a heuristic based on Reinforce-

ment Learning (RL), with bounded regret.
• A Faster Initialization Algorithm (FIA), that significantly

reduces the initialization phase time of UPL, is proposed.
• A computationally-efficient heuristic, called BPT- , is

developed based on Maximum Weighted Bipartite Match-
ing (MWBM) and RL.

• It is formally proven that BPT- has polynomial com-
plexity, guaranteed termination, and it is correct.

• Comprehensive experiments based on real data are con-
ducted to evaluate the performance of the proposed algo-
rithms compared with state-of-the-art approaches.
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Rest of the paper is organized as follows. The system model
and problem statement are described in Sections II and III,
respectively. Then, the proposed algorithms are explained in
detail in Sections IV and V. Furthermore, the experimental
results are elaborated in Section VI. Then, Section VII inves-
tigates the related works. Finally, Section VIII concludes the
paper and draws a future direction for this study.

II. SYSTEM MODEL AND ASSUMPTIONS

The system model in this work consists of two sets of users.
% defines the set of producers which includes users equipped
with on-site power generators such as PV panels, larger
utilities based on renewable energies (e.g., solar, wind, etc.),
and traditional power plants (coal, nuclear, hydroelectric, etc.).
Similarly, the set of consumers, represented as �, consists of
users without power generation capabilities or with a higher
consumption compared to their self-production1.

In the envisioned system, energy exchanges are performed
daily, for example during the evening for the next day. For each
producer 8 ∈ % the ESS estimates the production capacity A8 ,
and for each consumer 9 ∈ � the energy demand F 9 , which are
expected for the next day. It has been shown that these can be
accurately predicted with time-series analysis techniques, such
as exponential moving average [15]. This paper considers an
ESS in which users, and specifically consumers, have an active
role in the exchange process. Specifically, the ESS sends a
daily personalized recommendation to each consumer through
a smartphone app. This recommendation consists of a list of
producers, the amount of energy to be bought from each of
them, and the cost. The cost may differ for each producer,
but it is assumed that such cost does not change over time.
Different from previous works in this area, e.g., [15], [32],
which consider the users to always be compliant and engaged
with the system, the current work considers a realistic user
behavioral model in which users may accept, reject, or ignore
each of the recommendations in the list. This behavior is
dictated by the level of engagement of consumers with the
ESS, by their preferences for the source of produced energy
(e.g., coal, renewable, nuclear, etc.), and by the price at which
energy is sold by a producer. This preference is modeled as
a Bernoulli random variable with success probability ?8 9 ∈
[0, 1], representing the likelihood that consumer 9 would buy
energy from producer 8. The probability is initially unknown,
and a Reinforcement Learning (RL) approach is adopted to
learn it. It is assumed that this probability does not change
over time. However, several statistical tests, such as the j2

test [33] and the Student C-test [34], could be used to detect
changes in the user behavior, and restart the learning.

Several studies in the domain of behavioral economics
have shown that humans’ decisions and actions follow the
principle of bounded rationality [27]. Specifically, humans
possess limited information, time, and cognitive capabilities
which prevent them to act optimally. These aspects of human
behavior are modeled in this work by limiting the size of the

1In practice, some users may behave as both producers and consumers,
also known as prosumers, depending on the relative amount of produced and
consumed energy. This paper assumes that such roles do not change over
time, although the proposed approach could be easily extended to this case.

TABLE I
NOTATION SUMMARY

Notation Description
% Set of producers
A8 Production capacity of 8Cℎ producer
� Set of consumers
F9 Energy demand of 9Cℎ consumer
3 Time index corresponding to day

%8 9
Random variable corresponding to preference of

consumer 9 buying from producer 8
?8 9 Mean of %8 9
?̂8 9 Estimation of ?8 9

<8 9
Number of times producer 8 has been

recommended to consumer 9

!8 9
Transmission loss between
producer 8 and consumer 9

A RL action matrix
) Size of the exchangeable unit of energy
 Max. length of recommendations list

recommendation list to a maximum length  . This reduced
size of recommendation list prevents overwhelming the users
by reducing the time, information, and effort to select the
energy sources to buy energy from. It is also considered
that when producer 8 sells energy to consumer 9 , there is
an energy loss during the energy transfer [15]. This loss
depends on the physical distance between 8 and 9 and it
is directly proportional to the amount of energy exchanged.
The loss is modeled as a fraction !8 9 ∈ [0, 1] of the energy
exchanged. It is also assumed that there is a maximum loss
threshold !<0G that the ESS allows and therefore considers
only those recommendations that are within this threshold.
Moreover, the energy exchanged between two users should
be greater than a minimum value U, since it is not convenient
to exchange infinitesimal amounts of energy. Note that, if a
recommendation is accepted, the ESS will fulfill this exchange.
Conversely, if a user ignores or rejects a recommendation,
the grid would serve as a backup producer to satisfy the
user’s demand. Therefore, a recommendation is a commitment
of energy resources. Consequently, if a recommendation is
rejected or ignored, it will result in an energy waste (or in
energy sold to the utility company for a much lower price).
As a result, recommendations need to be carefully designed to
maximize energy exchange and overall performance of system.

III. PROBLEM FORMULATION

The goal of the ESS optimization problem is to find the rec-
ommendations to be sent to the consumers so that the expected
energy exchanged is maximized. This results in minimizing
the amount of wasted energy for local producers. Problem
formulation is presented in Eq. (1). Table I summarizes the
notations used throughout the paper. The decision variables
of the problem are G8 9 ∈ [0, 1]. Given the energy demand
F 9 of consumer 9 , G8 9 represents the fraction of F 9 that
consumer 9 is being recommended to buy from producer 8.
The goal is to maximize the expected amount of exchanged
energy, considering the probability ?8 9 with which consumer 9
will accept the recommendation. The binary decision variable
I8 9 ∈ {0, 1} is equal to 1 if G8 9 > 0, i.e., if producer 8 is
included in the recommendation of consumer 9 .
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maximize
∑
8∈%

∑
9∈�

F 9 ?8 9G8 9 (1)

s.t.
∑
9∈�
(1 + !8 9 )F 9G8 9 ≤ A8 , ∀8 (1a)∑

8∈%
G8 9 ≤ 1, ∀ 9 (1b)∑

8∈%
I8 9 ≤  , ∀ 9 (1c)

UI8 9 ≤ F 9G8 9 ≤ F 9 I8 9 , ∀8, 9 (1d)
I8 9 ≥ G8 9 , ∀8, 9 (1e)
G8 9 ∈ [0, 1], I8 9 ∈ {0, 1}, ∀8, 9 (1f)

The constraint in Eq. (1a) guarantees that the production
capacity of producer 8 is not exceeded, considering the loss
that is incurred in the transmission. Similarly, constraint (1b)
ensures that the demand of consumer 9 is not exceeded. The
variables I8 9 are used in the constraint (1c) to make sure that
the recommendation list is of maximum length  . Finally,
Eq. (1d) certifies that an exchange is larger than the minimum
exchangeable allowed amount U, and Eqs. (1e)-(1f) define the
domain of the decision variables. Note that, the problem allows
exchanges between all pairs of producers and consumers, given
the problem constraints. Nevertheless, an additional constraint
can be added to prevent losses above the maximum allowed
fraction !<0G by setting G8 9 = 0 if !8 9 > !<0G .

The following theorem shows that the problem is NP-Hard.

Theorem 1. The optimization problem in Eq. (1) is NP-Hard.

Proof. In a general instance of GAP [35], there are = tasks and
< processors. A task can be assigned to a single process, and
the goal is to find the assignment that provides the maximum
profit given the resources of the processors. Processor 8 has
A8 resources. By assigning task 9 to processor 8, a profit
58 9 and resource consumption of 68 9 is observed. From this
general GAP formulation, an instance of the problem can be
created through reduction. A consumer for each task and a
producer for each processor are created.  is set to 1, so
that the recommendation for a consumer can contain at most
a single producer. Furthermore, there is (1 + !8 9 )F 9 = 68 9
and the energy production of producer 8 is set to A8 . It also
sets !<0G = ∞ so that all exchanges are possible. At this
point, the only difference between the reduced problem and the
GAP problem is that the decision variables G8 9 are continuous,
while the decision variable under GAP are discrete. However,
infinitesimal exchanges are not allowed in the proposed sys-
tem, as they need to be greater than or equal to U. By setting
U = F 9 , the constraint in Eq. (1d) forces the decision variable
G8 9 to coincide with the discrete variable I8 9 . As a result,
the solution of the reduced problem provides the assignment
that maximizes the profit within the constrained processors’
resources. Therefore, the proposed problem is at least as hard
as GAP, and thus it is NP-Hard. �

Note that, in addition to the NP-Hardness, the solution
of such optimization problem requires the knowledge of the
expected user preferences (?8 9 ), the expected production ca-
pacity (A8), and the expected demand (F 9 ). As mentioned, the

latter two can be predicted using time series analysis [15].
Conversely, learning the user behavior is challenging, as users
may significantly differ in their preferences and engagement
with the ESS [16], [23]. For these reasons, a Reinforcement
Learning (RL) approach, called User Preference Learning
(UPL) is proposed in this paper to learn user preferences,
inspired by [29]. UPL consists of the initialization phase
that aims at probing the user preferences at least once and
optimization phase that requires the optimal solution of a
similar version of the optimization problem in Eq. (1) to
guarantee the bounded regret. Both phases of UPL are further
extended. Specifically, a Faster Initialization Algorithm (FIA)
to speed up the initialization phase, and a computationally-
efficient heuristic called BiParTite- (BPT- ), based on graph
matching theory, for the optimization phase are proposed.

IV. A REINFORCEMENT LEARNING APPROACH FOR USER
PREFERENCE LEARNING

The optimization problem in Eq. (1) requires the knowledge
of the user preferences, expressed in terms of the probabilities
?8 9 . A possible way of predicting the expected user preference
is to directly ask users when the ESS is installed in their
homes. However, social behavioral studies show that such
information does not always reflect the actual preferences.
These situations typically occur when users make choices
that are not always motivated by a well-defined logic, such
as in the case considered in [36]. Given this lack of initial
knowledge, it is necessary to learn the users’ preferences at
run time, by sending recommendations to them while at the
same time optimize the system performance. The assumption
on independence of the preference probabilities, and the linear
nature of the objective function in Eq. (1), allow to formulate
this problem through the framework of combinatorial multi-
armed bandit [29]. Specifically, it is possible to select a subset
of the available matches (arms), observe their realization
(accept/reject), and gain the linear sum of the outcomes
(exchanged energy). This learning process is guided by a
balance between exploration of the unknown user preference,
and exploitation of what is already learned.

Reinforcement Learning (RL) is an effective way to solve
the multi-armed bandit problem. A naive approach to tackle
this problem is to utilize the standard UCB1 algorithm which
regards each arm as an independent action [37]. However,
this approach ignores the inherent dependencies among the
arms, and therefore, ends up learning the information about
the observed actions independently [29]. Therefore, a more
efficient learning approach is to learn from the observations
of the correlated actions and select better decisions based
on these correlations. For this reason, this work extends
the approach proposed in [29], to the problem of finding
the best matching between consumers and producers while
simultaneously learning the users preferences. The unknown
environment in the problem formulation consists of the play-
ers, i.e., consumers; and the available arms, i.e., producers.
Besides, the action in this case is the matching between the
consumers and producers. Therefore, the reward corresponds
to the total energy exchanged among all the consumers and
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Algorithm 1: User Preference Learning (UPL)
/* Initialization Phase */

1 for each 8 ∈ % and each 9 ∈ � do
2 Select any A ∈ F s.t. 08 9 > 0 ;
3 Update [ ?̂8 9 ]|% |×|� | and [<8 9 ]|% |×|� | ;
4 end
/* Optimization Phase */

5 while True do
6 3 = 3 + 1;
7 Select an action A s.t.

A(3) = arg max
A∈F

∑
8∈%

∑
9∈�

F908 9

(
?̂8 9 +

√
(&+1) ln3
<8 9

)
;

8 Update [ ?̂8 9 ]|% |×|� | and [<8 9 ]|% |×|� | ;
9 end

the producers. The action played during a day 3 is modeled
by the action matrix A(3). The matrix has dimension |% | × |� |
and an element 08 9 ranges in the interval [0, 1]. The value of
08 9 represents the fraction of demand that producer 8 is selling
to consumer 9 , similar to the G8 9 variables of the optimization
problem. If 08 9 = 0, there is no exchange between these two
actors. Conversely, if 08 9 > 0, a recommendation is sent to
consumer 9 to buy from 8. The consumer decision is observed,
and the corresponding probability is updated.

Given the action matrix, including acceptance or rejection
of a recommendation by the consumer, the preference of
consumer 9 , with respect to accepting a recommendation for
buying energy from producer 8, is modeled as a random vari-
able %8 9 . The realization of such variable at day 3 is referred
to as %8 9 (3) ∈ {0, 1}. The mean value of %8 9 is denoted as ?8 9
and it is initially unknown. It is also assumed that %8 9 evolves
as an i.i.d. process over time. Given the energy consump-
tion/production predictions for day 3, the ESS decides which
recommendations should be sent to the consumers based on
the action matrix for day 3, A(3) = [08 9 (3)] |% |× |� |The total
number of unknown variables is & = |% | × |� |. Moreover,
the solution space F includes all feasible action matrices that
would satisfy all the constraints of the optimization problem.

Similar to the optimization problem, the amount of ex-
changed energy is to be maximized in this case too. At each
iteration of the optimization phase 3, the ESS chooses the
action matrix A(3) that maximizes the optimization function
given the current knowledge. This knowledge is represented
by the estimated expected ?̂8 9 (3) for each random variable
%8 9 . For an action matrix A(3), the reward is defined as

RA(3) (3) =
∑
8, 9

F 908 9 (3)%8 9 (3). (2)

Since the distribution of variables %8 9 are initially unknown,
the goal is to find a policy, denoted by series of action matrices
in F , that minimizes the regret up to the current time 3. This
is calculated as the difference between the expected reward
having perfect knowledge of the variables realizations and that
obtained by the policy. Formally, the regret is expressed as

R(3) = 3R∗A(3) (3) − E[
3∑
C′=1

RA(C′) (C ′)], (3)

where R∗A(3) (3) is the reward obtained with perfect knowledge
of users’ preferences. Minimizing the regret is a hard problem,
given the initially unknown variable distribution. However,
an efficient algorithm based on RL is adopted that ensures
a bounded regret with respect to the optimal [29]. Bounded
regret is a desirable property, as it ensures that the algorithm
picks a non-optimal action only a limited number of times;
which in this case translates into ensuring that in a finite
time the optimal set of matches are identified and the best
recommendation are sent. This way, the system performance
are eventually maximized although the user preferences are
initially unknown. The pseudo-code of the algorithm is shown
in Alg. 1, namely User Preference Learning (UPL). It is
composed of two consecutive phases: initialization and opti-
mization. During the initialization phase, & actions are played
randomly in order to observe all the & random variables at
least once. Then, in the optimization phase, the system plays
an action that maximizes the function defined in line 8 of
Alg. 1, over the solution space F . This can be accomplished
by solving an optimization problem with the same constraint
as in Eqs. (1a)-(1f), and the following objective function:

A(3) = arg max
A∈F

∑
8∈%

∑
9∈�

F 908 9
©«?̂8 9 +

√
(& + 1);= 3

<8 9

ª®¬ , (4)

The optimization problem solved at day 3 is based on the
estimation of the expected values ?8 9 at day (3 − 1), denoted
as ?̂8 9 (3 − 1). If the selected action at time 3 includes an
energy transaction between consumer 9 and producer 8, i.e.,
08 9 (3) ≠ 0, a new realization %8 9 (3) of the random variable
%8 9 is observed. This information is used to update the current
knowledge estimation of ?̂8 9 (3), as well as the total number
<8 9 (3) of observations of the variable %8 9 , as follows:

?̂8 9 (3) =

?̂8 9 (3−1)<8 9 (3−1)+%8 9 (3)

<8 9 (3−1)+1 if 08 9 (3) ≠ 0,

?̂8 9 (3 − 1) otherwise.
(5)

<8 9 (3) =
{
<8 9 (3 − 1) + 1 if 08 9 (3) ≠ 0,
<8 9 (3 − 1) otherwise.

(6)

Theorem 2. Let F 9 be homogeneous across users for sufficient
amount of time, UPL provides bounded regret given by:

R(3) ≤
[
402
<0G&

3 (& + 1) ln(3)
(Δ<8=)2

+ c
2

3
&2 +&

]
Δ<0G , (7)

where, 0<0G is defined as max
A∈F

max
8, 9

08 9 . Besides, Δ<8= =

min
RA<R∗

(R∗ − RA) and Δ<0G = max
RA<R∗

(R∗ − RA) are the min-

imum and maximum difference to the reward obtained with
perfect knowledge of the users’ preferences, respectively.

Proof. The proof is obtained following Theorem 2 of [29]. �

V. A CONSTRAINED MAXIMUM WEIGHTED MATCHING-
BASED REINFORCEMENT LEARNING APPROACH

This section first describes the Faster Initialization Algo-
rithm (FIA), to improve the initialization phase of UPL. Sub-
sequently, it discusses the heuristic BPT- for the optimization
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phase. The initialization phase of UPL, similar to the one
originally presented in [29], has the purpose of observing each
of the & variables at least once, by selecting random action
matrices, before starting the optimization phase. However, &
grows with the number of producers and consumers. Since
it takes 24 hours to play an action and observe a realization
of the random variables %8 9 , it would be very inefficient to
wait & days before starting the optimization phase, which
serves as the motivation to design FIA. Additionally, given
the NP-hardness of the optimization problem in Eq. (1), the
optimization phase of UPL is also NP-hard. Therefore, a
computationally efficient heuristic algorithm, named BPT- ,
is proposed for the optimization phase of UPL to maximize
the energy exchange while exploiting RL to simultaneously
learn the user preferences. Finally, it is formally proved that
the heuristic terminates and it is correct, i.e., it always returns
a solution that does not violate the problem constraints. It is
also shown that BPT- has a polynomial complexity.

A. Faster Initialization Algorithm (FIA)

The pseudo-code of the Faster Initialization Algorithm
(FIA) is shown in Alg. 2. The primary objective of FIA is to
minimize the number of days required to play all variables at
least once, in order to meet the requirement of the initialization
phase of UPL. Secondarily, the algorithm tries to maximize
the amount of satisfied demand of the users corresponding to
the played actions. To achieve these objectives, the algorithm
keeps track of the already played variables in a binary matrix
B, whereby element 18 9 is equal to 1 if the variable %8 9 has
been played, and zero otherwise. For a given consumer 9 , each
day the algorithm selects at most  previously unassigned
producers (i.e., producers such that 18 9 = 0), in order to
maximize the number of played actions. Additionally, FIA
evenly spreads the demand F 9 across such producers (i.e.,
assigns up to F9

 
to each producer) in order to satisfy the

consumer demand. It also excludes variables that cannot be
played because they violate the loss threshold !<0G (line 2).

Algorithm 2: Faster Initialization Algorithm (FIA)
Input : Sets of Producers (%) and Consumers (�), Producer’s

Capacity([A8 ]|% |), Consumer’s Demand ([F9 ]|� |),
[<8 9 ]|% |×|� | , [ ?̂8 9 ]|% |×|� | , U

Output: Updated [<8 9 ]|% |×|� | and [ ?̂8 9 ]|% |×|� |
1 B = [18 9 ]|% |×|� | = 0; // Binary Matrix B to keep

record of actions played
2 ∀8 ∈ %, 9 ∈ �, if !8 9 > !<0G , then set 18 9 = 1;
/* Run until all actions are played; J: all-ones matrix */

3 while B ≠ � do
4 A = [08 9 ]|% |×|� | = 0 ;
5 for 9 ∈ � do
6 4 = max{ F9

 
, U};

7 while
( ∑
8∈%

08 9 < 1
)

and
(
∃8 | (18 9 = 0 and (A8 ≥ 4))

)
do

8 8 ← Select a producer at random from % s.t. 18 9 = 0
and A8 ≥ 4;

9 08 9 =
4
F9

;
10 A8 = A8 − 4;
11 18 9 = 1; // Update element 18 9 ∈ B
12 end
13 end
14 Select A as actions and update [ ?̂8 9 ]|% |×|� | and [<8 9 ]|% |×|� | ;
15 end

The Fℎ8;4 loop (lines 3−15) is run until all the elements of
B are equal to 1 (i.e., B = � |% |, |� |). An iteration of the Fℎ8;4
loop identifies the variables to play and the energy exchanges
to take place in that day. The matrix A = [08 9 ] |% |× |� | keeps
track of the fraction of demand satisfied for that day between
consumer 9 and producer 8. An action is played if 08 9 > 0. At
each iteration of the Fℎ8;4 loop, the inner 5 >A loop iterates
over the set of consumers �. For each consumer 9 ∈ �, a
random producer 8 is selected such that the variable %8 9 was
not previously observed (i.e., 18 9 = 0) and also producer 8 has
capacity greater than 4 = <0G{ F9

 
, U} (line 7). The amount

of 08 9 , capacity of the producer A8 , and the elements 18 9 are
updated accordingly (lines 9−11). At the end of each iteration
of the Fℎ8;4 loop, the actions inA are played and the observed
realizations are updated according to Eqs. (5) and (6). The
Fℎ8;4 loop terminates as soon as all variables are observed,
and then the optimization phase begins.

B. The BiParTite- Algorithm

1) Overview: The problem introduced in Eq. (1) is an
extension of the generalized matching problem (see Theorem
1), with the additional constraint that consumer-nodes’ degrees
cannot exceed  (see Eq. (1c)). Recall that such  -constraint
is a practical requirement for bounded rationality to prevent
overwhelming users with a large list of recommendations [27].

To solve this problem efficiently, inspired by bipartite
matching theory, an iterative algorithm, named BiParTite- 
(BPT- ) is proposed. In order to perform the assignment, BPT-
 uses Maximum Weighted Bipartite Matching (MWBM) as
a sub-routine, which can be solved polynomially, for example
with the Hopcroft-Karp algorithm [38] or Edmond’s Algorithm
[39], [40]. Since MWBM provides a one-to-one matching, this
would result in significant waste of energy. Therefore, BPT- 
enforces a discretization of energy production capacity and
consumption demand into units of exchangeable energy of
size ) . BPT- implements two views of a bipartite graph
of producers and consumers, referred to as aggregated and
disaggregated graphs. The vertices of the aggregated graph
are the set of producers % and consumers �. In this graph,
there exists an edge between a producer and a consumer
if they can potentially exchange energy, i.e., the loss is
less than the threshold !<0G . Conversely, the disaggregated
graph provides a finer grained view based on the notion of
unit of exchangeable energy. Specifically, in this graph each
consumer demand and producer capacity is expanded into a
proportionate number of nodes of equivalent size ) . Similar
to the aggregated graph, in the disaggregated graph there is
an edge between a demand unit of a consumer and a capacity
unit of a producer, if the loss between them is within !<0G .
By applying iteratively MWBM on the disaggregated graph,
BPT- allows producers to sell to multiple consumers, and
consumers to buy from multiple producers (at most  ). This
also speeds up the learning rate of user preferences by allowing
to probe more variables each day.

The algorithm fulfills two major tasks, namely (i) matching
demand and consumption considering the user preference,
and (ii) learning such preferences by observing the user
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responses to recommendation. As a result, BPT- combines
matching with reinforcement learning to achieve both tasks.
The algorithm takes as input the set of producers % and
consumers �, with respective capacities and demands, and
builds a disaggregated graph �. It returns a matching graph
Φ>DC , with nodes % ∪� and initially no edges. Subsequently,
BPT- runs the MWBM on � resulting in the disaggregated
bipartite matching graph Φ� . Then, Φ� is used to update Φ>DC
without violating the  -constraint (more details are given in
the algorithm description).

Since the proposed algorithm is iterative, this process is
repeated until Φ>DC keeps changing, i.e., the algorithm up-
dates the set of producers and consumers based on residual
capacities and demands and repeats the matching iteratively.
Once the output graph Φ>DC is left unchanged, it means that
either the producers’ capacity and/or the consumers’ demand
have already exhausted; or there are no possible matching
among producers and consumers without violating the  -
constraint. Eventually the algorithm breaks out of the loop and
terminates by sending the recommendations to the consumers
according to the matching expressed by Φ>DC . At the end of the
algorithm, the users’ preferences are learned accordingly based
on the observed responses. To this aim, the same approach
of UPL is adopted, where the preferences and total number
of observations are updated according to Eqs. (5) and (6).
Note that, the parameter ) can be set as a trade-off between
complexity and efficiency of the energy exchange. A smaller
value of ) increases the granularity of the algorithm, thus
increasing the amount of exchanged energy. However, such
improvement in performance is at the expense of an increased
complexity. In Section VI, a sensitivity analysis with respect
to the size ) is provided. Obviously, ) must be set greater
than minimum exchangeable allowed energy U (see Eq. (1e)).

2) Algorithm Description: The pseudocode for the
BiParTite- algorithm (BPT- ) is presented in Alg. 3. The
output is the graph Φ>DC , initialized in line 1. The algorithm
initializes a temporary graph ΦC4<? in line 2 used to verify
if Φ>DC has changed. BPT- is an iterative algorithm so it
utilizes a 3> − Fℎ8;4 loop (lines 3 − 24) to run Maximum
Weighted Bipartite Matching (MWBM) in an iterative fashion.
As explained in the previous subsection, inside the 3>−Fℎ8;4
loop, the algorithm starts with the aggregated bipartite graph
in order to generate the disaggregated graph, �, based on
exchangeable units of energy of size ) . To this aim, it first
updates the set of producers (%) and consumers (�) to keep
only those which have energy capacity and demand greater
than or equal to ) (lines 4−5). The algorithm then discretizes
the production and demand into the units of size ) to obtain
the sets %3 and �3 (lines 6−8), and it builds the disaggregated
bipartite graph � using %3 and �3 (line 9). In line 11
weighted edges are added between pairs of nodes in %3 and
�3 considering the maximum tolerable loss !<0G and the  -
constraint (lines 10 − 14). To keep track of the  -constraint,
following two conditions are verified. First, for each pair (8, 9),
corresponding to producer 8 and consumer 9 , an edge is added
if either 9 has degree less than  , or secondly it has degree
exactly  and has already been assigned to producer 8 in Φ>DC .

In the pseudocode, degree of node 9 in Φ>DC is denoted by
| (., 9) |�Φ>DC .

Subsequently, the algorithm computes the Maximum
Weighted Bipartite Matching (MWBM) on graph � (line 15)
resulting in the graph Φ� . It then sets ΦC4<? = Φ>DC and
updates Φ>DC given Φ� (lines 18 − 23). For this purpose, the
algorithm first sorts the edges in �Φ� by decreasing weight.
Then, for each edge (D, E) ∈ �Φ� it updates the edge in Φ>DC ,
between the corresponding producer 8 and consumer 9 , only if
it does not violate the  -constraint. Then the edge is removed
from �Φ� . The Fℎ8;4 loop in lines 18−23 terminates as soon
as �Φ� is empty. If Φ>DC has changed as a consequence of
these updates (line 24), BPT- performs the next iteration of
the 3>−Fℎ8;4 loop. Otherwise, it sends the recommendations
based on the output graph Φ>DC , observes the performed
exchanges and updates the estimated preferences ?̂8 9 and
number of times each preferences has been observed <8 9 . The
algorithm then terminates for the corresponding day and is
repeated again for the subsequent day with the new demands
and productions based on the latest estimated preferences.

Lemma 1. BPT- algorithm returns a feasible solution of the
optimization problem in Eq. (1).

Proof. To prove the Lemma, it is sufficient to show that the
solution provided by BPT- does not violate the constraints
of the optimization problem Eq. (1). Since the maximum
weighted matching is always performed considering the resid-
ual capacity and unsatisfied demand, BPT- trivially never
violates the capacity and demand constraints in Eqs. (1b) and
(1c). Moreover, by setting the size of the unit of exchangeable
energy ) > U, constraint (1e) is also satisfied. Finally, the  -
constraint in Eq. (1d), requires each consumers to be provided
with no more than  recommendations. To this purpose, BPT-
 either updates the weights of the existing edges of Φ>DC (line
20) or adds new edges to Φ>DC (line 21). A weight update
clearly does not violate the constraint. Similarly, an edge is
added only if a consumer node 9 has degree less than  in
Φ>DC , thus preventing to violate the  -constraint. �

Lemma 2. BPT- algorithm has a guaranteed termination.

Proof. BPT- algorithm consists of a 3> − Fℎ8;4 loop (lines
3 − 24) and other non-iterative instructions. Since the latter
are certain of terminating, the rest focuses on the termination
of the 3> − Fℎ8;4 loop. At the end of each iteration of the
3> − Fℎ8;4 loop, the Fℎ8;4 loop in lines 18 − 23 updates
the weight of existing edges in Φ>DC (line 20) or adds new
edges that do not violate the  -constraint in Φ>DC (line 21).
Each edge update increases the weight of an amount of energy
equal to, or larger than, ) . Since producers’ capacities and
consumers’ demands are bounded, this update can occur only
a finite amount of times. Similarly, an edge (8, 9) is added
to Φ>DC only if it does not violate the  -constraint, i.e. if
| (., 9) |�Φ>DC + 1 ≤  . Clearly, at most  × |� | edges can be
added. As a result, output graph Φ>DC can be updated only a
finite times, after which the 3> − Fℎ8;4 loop terminates.

The proof is concluded by noting that the Fℎ8;4 loop in
lines 18−23 considers at each iteration an edge (D, E) ∈ �Φ� ,
corresponding to a unit of exchangeable energy assigned
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Algorithm 3: BiParTite- (BPT- )
Input : Sets of Producers (%) and Consumers (�), Producer’s Capacity([A8 ]1×|% |), Consumer’s Demand ([F9 ]1×|� |), Unit of Exchangeable Energy

(of size ) ), Recommendation Size ( ), [<8 9 ]|% |×|� | , [ ?̂8 9 ]|% |×|� | , day (d)
Output:  -Recommendations Graph (Φ>DC ), Updated [<8 9 ]|% |×|� | and [ ?̂8 9 ]|% |×|� |

1 Φ>DC = {% ∪�, �Φ>DC = ∅} ;
2 ΦC4<? = {% ∪�, �ΦC4<? = ∅} ;
/* Iterative matching loop */

3 do
4 Remove from % producers with residual capacity less than ) ;
5 Remove from � consumers with unsatisfied demand less than ) ;

/* Generate disaggregated bipartite graph � */
6 ∀8 ∈ %, let %8 be the set of units of exchangeable energy for producer 8;
7 ∀ 9 ∈ �, let � 9 be the set of units of exchangeable energy for consumer 9;
8 Let %3 =

⋃
8∈%

%8 and �3 =
⋃
9∈�

� 9 ;

9 Build Bipartite Graph � = {%3 ∪�3 , �� = ∅} ;
10 for each node D ∈ %8 , E ∈ � 9 do
11 if !8 9 ≤ !<0G and

(
( | (., 9) |�Φ>DC <  ) or

(
| (., 9) |�Φ>DC =  and (8, 9) ∈ �Φ>DC

) )
then

12 Add edge (D, E) to �� with weight, W� (D, E) =
(
) ∗

(
?̂8 9 +

√
(&+1) ln3
<8 9

))
;

13 end
14 end
15 Perform Maximum Weighted Bipartite Matching on � and output graph Φ� = {%3 ∪�3 , �Φ� }, where �Φ� ⊆ �� ;
16 ΦC4<? = Φ>DC ;

/* Add/update the edge in Φ>DC from Φ� without violating the  -constraint */
17 Sort edges in �Φ� by decreasing weight;
18 while �Φ� ≠ ∅ do
19 Consider next edge ( (D, E) ∈ �Φ� s.t. D ∈ %8 , E ∈ � 9

)
;

20 if (8, 9) ∈ �Φ>DC then update the edge weight, WΦ>DC (8, 9) =WΦ>DC (8, 9) +
∑
D∈%8
E∈� 9

W� (D, E);

21 else if ( | (., 9) |�Φ>DC + 1 ≤  ) then add edge (8, 9) to �Φ>DC with weight, WΦ>DC (8, 9) =
∑
D∈%8
E∈� 9

W� (D, E);

22 Remove (D, E) from �Φ� ;
23 end
24 while Φ>DC ≠ ΦC4<? ;
25 Produce a recommendation list from Φ>DC and send them to respective consumers;
26 Observe the performed exchanges and update [ ?̂8 9 ]|% |×|� | and [<8 9 ]|% |×|� | ;

between producer 8 and consumer 9 . The loop continues until
�Φ� ≠ ∅. Since at the end of each iteration the edge (D, E) is
removed from �Φ� (line 22), the Fℎ8;4 loop also terminates.

�

By definition, an algorithm is referred to as totally-correct,
if it returns a feasible solution and also terminates. Following
theorem proves the correctness of BPT- on the basis of
Lemmas 1 and 2.

Theorem 3. BPT- , proposed in Alg. 3, is totally-correct.

Proof. Following the statement made in Lemma 1, BPT- 
returns a correct solution. In addition, Lemma 2 guarantees
the termination. Therefore, by definition, the BPT- algorithm
is provably totally-correct. �

Theorem 4. Complexity of the BPT- algorithm is
$

(
min

{
|%3 |, |�3 |

}
×

(
|%3 | + |�3 |

)3
)
.

Proof. The complexity of the algorithm is dominated by

the 3> − Fℎ8;4 loop (lines 3 − 24). Let |%3 | =
⌊ ∑
8∈%

A8

)

⌋
and |�3 | =

⌊ ∑
9∈�

F9

)

⌋
. At each iteration of the 3> − Fℎ8;4

loop, an edge weight is updated or an edge is added to
Φ>DC . Lemma 2 shows that the number of such operations is
limited. Specifically, the number of edge updates is bounded

by $
(
min

{
|%3 |, |�3 |

})
and the number of edges that can be

added is bounded by $
(
 |� |

)
. Inside the 3> − Fℎ8;4 loop

there are four main operations: the 5 >A loop (lines 10 − 14),
the maximum weighted matching (line 15), sorting of the
edges in �Φ� , and the Fℎ8;4 loop (lines 18 − 23). The 5 >A

loop has complexity equal to $
(
|%3 | |�3 |

)
. The maximum

weighted matching can be solved with the Edmond’s algorithm
with complexity $

( (
|%3 | + |�3 |

)3
)

[39], [40]. The cardinality
of �Φ� is upper bounded by $

(
|%3 | |�3 |

)
, therefore sorting

the edges has complexity $
(
|%3 | |�3 | log

(
|%3 | |�3 |

) )
, and the

while loop has a number of iterations upper bounded by
$

(
|%3 | |�3 |

)
. Since the maximum weighted matching algo-

rithm dominates the operations within the 3>−Fℎ8;4 loop, and
 |� | is generally less than min

{
|%3 |, |�3 |

}
, the overall com-

plexity of BPT- is $
(
min

{
|%3 |, |�3 |

}
×

(
|%3 | + |�3 |

)3
)
. �

VI. EXPERIMENTAL RESULTS

In this section, performance of the proposed approaches
is evaluated versus a state-of-the-art approach, named Zhu,
proposed in [15]. First, the experimental setup is presented,
then the Zhu algorithm is described followed by the discussion
on the comparison results. Furthermore, the performance of the
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Fig. 2. Efficiency versus number of
consumers with constant number of
producers.

Fig. 3. Satisfied Demand versus num-
ber of consumers with constant num-
ber of producers.

Fig. 4. Efficiency versus number
of consumers with constant ratio of
consumer-to-producer.

Fig. 5. Satisfied Demand versus num-
ber of consumers with constant ratio
of consumer-to-producer.

FIA algorithm is investigated and also a sensitivity analysis to
relevant parameters of BPT- is provided.

A. Experimental Setup

Realistic datasets for energy production and consumption
are used for experiment. Real consumption dataset is obtained
from [30] that contains daily aggregated energy consumption
data of 53 residential buildings of different types and sizes
over the course of 2014. 16 solar energy producers located in
Lexington, Kentucky, USA are considered. These producers
are equipped with Photovoltaic (PV) generation capabilities.
Half producers are equipped with a 8kW power plant, while
the other half with a 4kW power plant. Furthermore, the
NREL’s PVWatts Calculator of the U.S. Department of Energy
[31] is used to generate the energy production over time given
the solar irradiance in Lexington and the size of the PV plants.
It is assumed that the amount of demand and production for
the next day is predicted using an Exponentially Weighted
Moving-Average (EWMA) with parameter 0.5. This prediction
has been shown to be particularly accurate in [14], [41].
Preference probabilities are selected uniformly at random from
the set {0.1, 0.5, 1}. Additionally, unless otherwise stated, )
is set to 1kWh and  is equal to 5. A sensitivity analysis of
these parameters is also provided. Finally, losses are assigned
uniformly at random from the set {1%, 2%, 3%, 4%}, the
maximum tolerable loss is !<0G = 2.5% and U = 50Wh. UPL
and BPT- implement Gurobi optimizer [42] and NetworkX
python library respectively.

B. Comparison approach

The proposed algorithms, UPL and BPT- , are compared to
the “Zhu” algorithm presented in [15]. Zhu matches producers
and consumers in order to minimize the transmission loss.
In this method, consumers are sorted in descending order
based on the amount of energy demand. Then, the algorithm
follows such order and matches the consumers’ demand with
the available producers by giving precedence to those that
provide the minimum loss. The interested reader is referred
to [15] for more details. To the best of our knowledge, [15]
is the closest work in context of the proposed system of this
paper which aims at finding an optimal matching among the
producers and consumers in a localized energy sharing system.

It is to be noted that the Zhu algorithm uses minimization
of loss as heuristic for the best match and does not take into
account the consumers’ preferences nor the maximum size  

of the recommendation list as explored in this paper. To pro-
vide a fair comparison, a modified version of Zhu algorithm is
adopted. This modified version replaces the matching criteria
based on loss with the consumers’ preferences to maximize the
likelihood that the recommendation is accepted. Specifically, it
follows sorted order of consumers and matches each consumer
9 with the producer 8 that has the highest preference ?8 9
and satisfy the loss threshold !<0G . Additionally, it stops the
matching for consumer 9 as soon as the number of producers
assigned to it reaches  . The modified approach is denoted as
“Zhu%”. Note that Zhu% only addresses the matching problem
but not the challenge of learning the user preferences. For
fairness, it is assumed that Zhu% has perfect knowledge of
such preferences. The experiments compare UPL and BPT- 
to Zhu% . Experimental results of the original Zhu algorithm
are provided in the conference version of this paper [14].

C. Performance Evaluation
Four experimental scenarios are considered. The first sce-

nario compares performance of the proposed algorithms by
scaling the network size. The second scenario focuses on the
cumulative reward of RL over time, that is the cumulative
energy transfer. In the third scenario, the advantages of the
Fast Initialization Algorithm (FIA) is compared to the original
initialization of UPL. Finally, the fourth scenario provides
sensitivity analysis to study the impact of  and ) on the
performance of proposed as well as comparison approaches.
Experimental Scenario 1. In this scenario UPL, BPT- , and
Zhu% are compared with respect to efficiency and percentage
of satisfied demand. Efficiency is defined as the ratio of
exchanged energy over the optimum value obtained by solving
the optimization problem in Eq. (1) optimally, given the
perfect knowledge of the user behavior. The efficiency of each
algorithm is calculated every day, and it averages the value
over a period of a year. The percentage of satisfied demand
refers to the amount of consumers’ demand that has been
satisfied through exchanged energy, i.e., the recommendations
sent by the algorithms and accepted by the consumers.

The purpose of this experiment is to determine how these
metrics are affected by the scale of the network. Two pos-
sibilities for scaling the network are identified: (i) increas-
ing the number of consumers while keeping the producers
constant, and (ii) increasing the number of consumers and
proportionally increasing the number of producers. These
scenarios are similar, but they present different challenges for
the proposed algorithms. In the former, the amount of available
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Fig. 6. Cumulative reward (trans-
ferred energy) divided by time.

Fig. 7. Percentage of energy losses
over time.

Fig. 8. Average absolute percentage
error of preferences learned over time

Fig. 9. Number of Days required for
initialization vs.  

energy shrinks with respect to the demand, but the number
of matching options only increases linearly. Conversely, in
the latter, the amount of available energy increases with the
network size, but the number of matching options increases
quadratically. As a result, the first scenario is more challenging
for the matching algorithm, while the second for the learning
algorithm, as there are more preferences to learn.

Accordingly, the efficiency achieved by the considered
approaches in the first scenario is shown in Fig. 2. Zhu% shows
the worst performance among the considered algorithms, even
though it has perfect knowledge of the consumers’ preferences.
This is due to the greedy nature of this algorithm, which may
lead to poor performance when some inadequate greedy deci-
sions are taken. Specifically, to satisfy the demand of a given
consumer, Zhu% assigns all possible energy from one producer
before considering the next one. This may prevent to find
better solutions where the demand of a user can be satisfied
by multiple producers. On the contrary, UPL achieves the best
performance both in terms of efficiency and satisfied demand.
By exploiting RL and solving the optimization problem on
the basis of the current knowledge, UPL is able to achieve
performance close to the optimum (i.e., 100% efficiency) in all
scenarios at the expense of a higher computational complexity.
On the other hand, BPT- , by means of the iterative matching
and RL, is also able to provide a solution close to the optimum
while benefiting from a lower complexity.

Fig. 3 shows the percentage of satisfied demand. Since in
this case the number of producers are constant (i.e., constant
amount of produced energy), the satisfied demand decreases
by increasing the number of consumers for all approaches.
Nevertheless, UPL and BPT- significantly outperform Zhu%
even though they need to learn the user preferences through
RL. Note that, the satisfied demand under UPL and BPT- 
is around 80% until the number of consumers is less than
or equal to 30. This is due to two reasons: (8) not enough
energy is available for all consumers on some days over the
year depending on weather conditions; and (88) consumers may
reject some recommendations, which prevents reaching 100%
of satisfied demand although enough energy is available.

In order to further study the scalability of the system,
efficiency and satisfied demand are investigated by varying
the number of consumers from 10 to 150 and proportionally
increasing the number of producers from 3 to 45. Note that,
since the datasets used in this paper only provide data for
53 consumers and 16 producers, an augmented dataset was

created by selecting producers and consumers at random. This
results in an average produced energy which is around 60% of
the demand. The results are shown in Figs. 4 and 5. When the
number of consumers/producers is low, some recommenda-
tions may include less preferred producers, for lack of better
alternatives. This results in a lower efficiency. Nevertheless,
the efficiency rapidly increases as the scale of the network
increases. The efficiency of both UPL and BPT- reaches
values close to 100% around 50 consumers, and remains
almost constant after that point. This shows the impressive
scalability of the proposed solutions. Conversely, Zhu% is not
able to perform well due to its greedy matching strategy and
saturates around 75% only. As a result, our approaches provide
a consistent 25% improvement in efficiency compared to the
state-of-the-art solution. The percentage of satisfied demand
is compared in Fig. 5. The satisfied demand increases as the
number of producers and consumers increases. In fact, as the
size of the network is increased, there are more producers from
whom a given consumer is willing to buy with high probability
(i.e., preference). The maximum satisfied demand approaches
65% (i.e., the production to demand ratio) with 150 consumers
and 45 producers, as most consumers receive highly preferred
recommendations. Also in this case, the RL-based algorithms,
UPL and BPT- , significantly outperform Zhu% .

Experimental Scenario 2. This scenario studies the widely
adopted measure of RL algorithms, that is the cumulative
reward over time. In this case, it corresponds to the cumulative
energy exchanged. To this purpose, for each day 3, the
cumulative energy exchanged up to that day is calculated, then
it is divided by 3. Note that, to better focus on the reward,
the results are shown after the initialization phase of UPL and
BPT- has completed. As a result, day 3 = 0 corresponds
for UPL and BPT- to the first day after the end of their
respective initialization, which may have a different length
for each algorithm. The length of the initialization phase is
explicitly studied in experimental scenario 3.

As the results presented in Fig. 6 show, UPL outperforms
all approaches, demonstrating outstanding performance with
negligible gap with respect to the optimal solution which
assumes perfect knowledge of the user preferences. This
results from the ability of UPL to quickly learn the user
preferences and by solving the optimization problem optimally
at each iteration. Once the preferences are sufficiently learned,
UPL and OPT provide the same solution. BPT- shows a
reward that closely matches the performance of UPL, without
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Fig. 10. Efficiency of the initialization
algorithms vs. No. of consumers with
constant number of producers.

Fig. 11. Efficiency of initialization
algorithms vs. No. of consumers with
constant ratio of consumer-to-producer.

Fig. 12. Number of days required for
initialization vs. number of consumers
with constant number of producers.

Fig. 13. No. of days required for
initialization vs. No. of consumers with
constant ratio of consumer-to-producer.

requiring the solution of a NP-Hard problem at each time
step. On the contrary, Zhu% clearly exhibits its inability to
provide satisfactory performance due to its greedy matching
approach. Overall, both UPL and BPT- are within 5% of
the optimal solution in less than three months of learning.
Additionally, they provide an average 27% gain in energy
transferred compared to Zhu% . It is worth noting that since
realistic energy production data is obtained from [31], there
is a seasonal effect causing the non-monotonic trend of all
approaches in Fig. 6. In fact, during the Fall/Winter months
there is a decrease in energy production of solar panels, which
implies a decrease in the exchanged energy.

For completeness, Fig. 7 illustrates the percentage of energy
loss. In these experiments, there is !<0G = 2.5%. None of
the algorithms is specifically targeting loss as an optimization
metric, as long as no more than !<0G energy is lost in
each transaction. As a result, all approaches incur a loss
lower than !<0G . Finally, the rate of learning user preferences
under various ratios of produced energy versus demand is
studied. To this purpose, Fig. 8 shows the average percentage
absolute error in learning the consumers’ preferences, i.e., the
probabilities ?8 9 , under UPL. Results for BPT-K were omitted
because similar trends were observed. In these experiment, the
produced energy is given as a percentage (10%, 40%, 70%,
and 100%) of the demand, and corresponding learning error
after 10 days, 3 months, and 1 year is observed. Intuitively,
when less energy is produced, less exchanges are possible
which results in a slower learning phase. As expected, the
error decreases as the amount of energy increases, as well as
with time. It is worth noting that, even under just 10 days,
the error is below 10% if at least 70% of the required energy
is available. Interestingly, the error never reaches zero, and
it tends to stabilize around 5%. This is due to the nature
of reinforcement learning, which prefers exploitation over
exploration, once sufficient knowledge is acquired. In fact,
once the best matches (i.e., those with higher chances of
acceptance) are identified, these are selected more often, in
order to maximize the system performance. As a result, other
consumers’ preferences are not learned exactly but this does
not prevent the system from achieving high efficiency.
Experimental Scenario 3. In the third scenario, the perfor-
mance of the Faster Initialization Algorithm (FIA) is studied.
Both the primary objective, i.e., minimizing the number of
days required to complete the initialization phase, as well as
the secondary objective, which is improving the amount of
exchanged energy during the initialization, are considered. In

this scenario, FIA is compared with the initialization phase
of UPL originally proposed in [29]. The goal of the original
initialization is to probe all the variables (here preferences) at
least once. However, the UPL initialization has a fixed duration
of |% | × |� | days, due to the 5 >A loop in Alg. 1 line 1. For
a fair comparison, a modification of this approach is adopted,
called “M-UPL”, wherein the algorithm breaks out of the 5 >A

loop as soon as the goal of probing all the variables at least
once is met. First the number of days required to complete the
initialization phase is studied by varying the value of  from
1 to 8. It is also considered the case of  = ∞, corresponding
to no limit on the size of the recommendation list. The number
of consumers and producers are constant and equal to 10
and 16, respectively. As shown in Fig. 9, FIA is able to
significantly shorten the initialization time by maximizing the
number of probed variables at each iteration, without violating
the  -constraint. Conversely, the original UPL initialization
has a constant initialization time of |% | × |� | = 160 days.
Modified version M-UPL improves the performance of UPL,
but it still achieves a termination time which is 7 times higher
than FIA on average. This is due to the fact that M-UPL
probes single variable at every iteration, while selecting other
variables randomly until all variables are probed at least once.

Next, the impact of network size with respect to the length
of initialization time is studied. Similar to experimental sce-
nario 1, number of consumers is increased by keeping number
of producers constant and also by increasing the producers
proportionally. These experiments set  = 5. Figs. 12 and
13 present the results. In both cases, FIA significantly out-
performs UPL and M-UPL (note the log-scale on the y-axis).
Note that the initialization time increases more significantly for
all approaches when number of producers increases with the
number of consumers. This is due to the number of variables
that increases linearly when producers are kept constant, and
quadratically when they scale with the number of consumers.

Finally, the experiment focuses on the secondary objective
of FIA, which is the amount of exchanged energy. To this
purpose, the efficiency of FIA, UPL, and M-UPL are compared
during their respective initialization phases. The efficiency is
calculated as the total amount of exchanged energy by the
algorithms, during the initialization phases, divided by energy
exchanged by the optimal solution, with perfect knowledge
of preferences, during the same period.  is fixed at 5 and
number of consumers and producers is increased as before.
Results are presented in Figs. 10 and 11. As the figures show
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FIA, even not targeting energy exchange as primary objective,
significantly outperforms the original UPL and M-UPL.

Fig. 14. Energy Transferred vs.  . Fig. 15. Energy Transferred vs. ) .

Experimental Scenario 4. The final experimental scenario
performs a sensitivity analysis to investigate the impact of the
values  and ) on the performance of the proposed methods
and the comparison approaches. First, it focuses on the value
of  . In this experiment,  varies from 1 to 8 and it also
includes  = ∞. The number of consumers and producers
are equal to 10 and 16, respectively. Fig. 14 illustrates the
total energy transferred as a function of  . As observed, UPL
and BPT- outperform Zhu% for each value of  and perform
close to the optimum. The technique of discretization into unit
of exchangeable energy of size ) , results in slightly worse
performance of BPT- compared to UPL. Similar to previous
experiments, Zhu% performs worse than others even with
perfect knowledge of users’ preferences. Numerically, Zhu%
saturates at 75% of the optimum value, while UPL and BPT-
 reach 99% and 98%, respectively. This experiment reveals
that the proposed system aligns well with social-science and
behavioral economic theories of bounded rationality [27]. In
fact, there is no noticeable performance improvement for
values of  larger than 5. Therefore, sending a shorter list
of recommendations to consumers is convenient for them
to interact with the system, without sacrificing the system
performance. Finally, sensitivity analysis of BPT- to size of
the unit of exchangeable energy ) is presented in Fig. 15. The
trend of the total energy transferred over a year, by varying
) from 1kWh to 6kWh. It also sets  = 5 and considers 50
consumers and 16 producers. For ) = 1kWh, the total energy
exchange is close to the optimal value. Increasing ) reduces
the algorithm computational complexity (see Theorem 4), at
the expense of a small decrease in performance.

VII. RELATED WORKS

Energy industry, and specifically electric power sector, is
responsible for a major emissions of carbon worldwide [43].
Today, coal-fired generators supply 41% of total electricity
requirement while they account for 73% of global greenhouse
gas (GHG) emissions [44]. Accordingly, green energy industry
is at the core attention. To this aim, the integration of Dis-
tributed Energy Resources (DERs) such as Renewable Energy
Technologies (RET) in power systems has been introduced [4],
[45]. DERs, defined as the power generations at the customer
side of the distribution network [46], can be aggregated to
optimize generation, storage, as well as demand-side resources
for maximizing the utility of both the end-users and the grid
operator [47]. The idea of aggregating DERs has resulted

into the paradigm of Virtual Power Plants (VPPs), which
has attracted significant interest from both the academic and
industry community [7], [48]. Integrating renewable energy
generation into Smart Grids (SGs) already exists in the form
of net-metering but presents critical challenges, such as energy
fluctuation in the grid. To reduce such fluctuation, [49] studied
the trade-off between use of storage and DERs. The results
showed that in absence of large storage, the grid can notably
gain from exchange energy among the users. Besides, a recent
work shows that the energy mismatch within and between
microgrids pose a significant problem which needs to be opti-
mized through an energy market to reduce the dependency on
the grid [32]. This work adopts game theoretic and hierarchical
optimization approaches to minimize the power mismatch in
and among microgrids in a multiagent-based energy market.
Unlike the mentioned works which aim at integrating the
produced energy into the grid, this work proposes an ESS to
trade energy among the users locally in order to avoid energy
fluctuation in the grid altogether. Further, it has been shown
that trading of this excess energy with grid is neither profitable
nor flexible for producers [9], [50].

There have been several works focusing on the possible
energy exchanges among large producers, the grid, microgrids,
and also among small-scale local producers and consumers. In
[15], a DC power sharing among nearby homes has been intro-
duced to address the problem of mismatching between energy
harvesting and consumption in microgrids. It presents a greedy
approach that maximizes the energy exchanges while mini-
mizing loss and energy waste. Furthermore, self-consumption
of locally generated energy in a microgrid scenario has been
studied in [13], which presents a peer-to-peer (P2P) energy
sharing model with price-based demand response (PBDR) pro-
gram. The efficacy of the method is verified in terms of cost-
savings and improved energy-exchange. A privacy-preserving
framework is proposed in [51] to facilitate the coordinated
operation of large-scale operators like renewable power system
operators and private industrial energy hub operators while
minimizing overall operation costs. Similarly, an offering and
bidding mechanism for a hybrid power producer is proposed
by [52] incorporating the intra-day trading mechanism with
traditional day-ahead trading models to increase the profitabil-
ity and minimize the risks. Solution to coordinated distributed
generation and demand response management problem has
been presented in [53] using multi-agent based approach.
However, it does not consider the autonomous decision making
among the concerned agents to determine the solution. Oper-
ational management of multi-microgrid system is modelled
using a joint constraint in a cooperative manner in [54] using
stochastic predictive control mechanism. Local energy trading
has also been explored among the interconnected microgrids
in [55] and [56] in consideration with uncertain parameters
in the system. Energy exchange and management between
microgrids is achieved in [55] with focus on utilising the
chance-constrained programming to model uncertain param-
eters of the system; while [56] presents a hybrid approach of
information-gap decision theory and stochastic programming
to capture uncertainties in energy trading among microgrids
and proportionate cost-saving among them based on their size.
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These papers, however, do not consider the case of local
energy trading among the users themselves.

In regards to energy trading among the users in a peer-to-
peer (P2P) approach, authors in [57] discuss the existing P2P
electricity trading technologies and the challenges associated
with them. As per their findings, the existing techniques on
P2P energy trade is based on one of the following: game
theory, auction mechanisms, constrained optimization and
blockchain. It further notes that based on current emergence
of SG and blockchain technologies, the deployment of P2P
energy trading can provide a highly efficient and cost-effective
energy management technique in a decentralized way. In [58],
the authors design a decentralized algorithm for an energy
trading market with renewable energy generators and price-
responsive load aggregators. The goal is to propose a receding
horizon energy trading algorithm for the load aggregators
and generators. Although they address uncertainty of energy
demand and energy production, they do not consider real user
involvement. Note that, none of the above mentioned papers
considers the complex aspects of user behavior, thus assuming
users to be either extraneous to the system or perfectly
compliant with the system decision. Therefore, the lack of
realistic modeling may cause failure when implementing ESS
in the real world [25], [59], [60].

Modeling user behavior in SGs has been considered in
the context of Demand Response (DR) [61], [62] that is
concerned with preventing the occurrence of demand peaks.
For instance in price-based DR, the price of electricity is
changed dynamically to alter the user behavior. The authors in
[20] use a reverse approach, in which prospect theory is used
to model the user response to energy prices, and focus on
the impact of such realistic behaviors on the system. Despite
relatively easy implementation through the use of advanced
metering infrastructure (AMI) [63], [64], DR adoption rates
are low [65], and its effectiveness is not clear as it can even
lead to an increase of energy consumption [66].

In addition to [20], recently there has been some efforts
in integrating prospect theory in energy related application to
capture the irrationality of users under uncertain decision mak-
ing [21], [22], [67]. These papers notice that the classical game
theoretic approaches consider users to be rational decision
makers which does not reflect the actual scenario exhibited
by the users, specially under uncertain situation where the
users may deviate from rational decision making to avert the
perceived loss or magnify the perceived utility. In [21], authors
present a framework for energy storage management to allow
users to store or sell the energy while modelling the user’s
subjective perceptions of probable outcomes using Prospect
Theory. Similarly, [67] uses Stackelberg Game Theory to
optimize energy trading between prosumers and grid where the
players make decisions in the face of uncertain future energy
price using framing effect in prospect theoretic framework
that accounts for deviation of utility from a certain reference
point. There has also been an effort on modelling the user’s
perception towards bidding result in a power market [22],
that uses genetic algorithm for solving the optimal power
market bidding problem. Although these papers model the user
behavior more realistically, they assume that such behavior

(e.g., the parameters of the Prospect Theory curve) is known
a priori. Social science studies, such as the one conducted
in Italy to investigate the social acceptance of nuclear energy
using an online survey [23], show that users exhibit significant
heterogeneity in their preferences for the sources of energy.
In fact, it is found that the preferences of users are affected
by not only the environmental aspects but also the financial
aspects resulting from the installation of DERs and also the
engaging with energy management systems in general [16].
Not capturing such heterogeneity provides little benefits in
terms of user modeling. For this reason, this paper focuses
on learning the users’ preferences in the optimization of the
ESS using a Reinforcement Learning (RL) approach based
on exploration and exploitation trade-off while simultaneously
maximizing the system performance. Recent work in [68] is
the only approach that applies Multi-agent Q-learning algo-
rithm to tackle the problem of energy consumption scheduling
for home energy management by minimizing both electricity
price and DR induced dissatisfaction. However, similar to
previous works in this context, this paper also relies on a
simplified user modeling of dissatisfaction, i.e., a quadratic
function of energy consumption difference, and thus lacks
realistic psychological user behavior model. Furthermore, their
problem setting is limited to a house level and particularly
not suited for the proposed model where a community level
engagement between producers and consumers is envisioned.

To the best of the authors’ knowledge, this paper is the first
effort that combines optimization, reinforcement learning, and
user behavioral modeling in the context of ESS under a Virtual
Power Plant (VPP) framework.

VIII. CONCLUSION

This work studies the problem of exchanging locally-
generated energy through an Energy Sharing System (ESS)
enabled by the paradigm of Virtual Power Plants (VPPs). This
problem was formulated as a Mixed-Integer Linear Program-
ming (MILP) and proved its NP-Hardness. Unlike the existing
works that mostly overlook or oversimplify the role of human
behavior in ESSs, a realistic user behavioral model in terms of
the consumer preference, engagement, and bounded rationality
is incorporated. To learn the user preferences, a Reinforce-
ment Learning (RL)-based algorithm called User Preference
Learning (UPL) is proposed. An efficient RL heuristic is
also proposed, called BPT- , which is based on Maximum
Weighted Bipartite Matching (MWBM). Extensive experimen-
tal evaluation, with real energy consumption and production
data, show that the proposed approaches perform close to the
optimal and substantially outperform the comparison method.

However, there are different potential open problems that
could lead to further research in this domain. Specifically,
it is assumed that the user behavior can be modeled as
independent probabilities and it is stationary over time. There
could also be effects of previous actions on future actions,
and the user behavior may mutate over time, which could
be further explored. Additionally, the impact of price is also
not explicitly modeled in this work. In practice, lower prices
may drive a user towards less preferred sources of energy.
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Furthermore, the proposed approaches requires humans to be
actively engaged with the system, which might be challenging
to sustain over long period of time; making a semi-automated
system more practical. Finally, an additional future direction
for this research can include integrated energy storage systems
and considering a more complex model user preferences that
reflects the irrational and variable nature of human decision
would be another interesting research scope.
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