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Potential and limitations of quantum extreme
learning machines
L. Innocenti 1✉, S. Lorenzo 1, I. Palmisano 2, A. Ferraro 2,3, M. Paternostro 2 & G. M. Palma 1,4

Quantum extreme learning machines (QELMs) aim to efficiently post-process the outcome of

fixed — generally uncalibrated — quantum devices to solve tasks such as the estimation of

the properties of quantum states. The characterisation of their potential and limitations,

which is currently lacking, will enable the full deployment of such approaches to problems of

system identification, device performance optimization, and state or process reconstruction.

We present a framework to model QELMs, showing that they can be concisely described via

single effective measurements, and provide an explicit characterisation of the information

exactly retrievable with such protocols. We furthermore find a close analogy between the

training process of QELMs and that of reconstructing the effective measurement char-

acterising the given device. Our analysis paves the way to a more thorough understanding of

the capabilities and limitations of QELMs, and has the potential to become a powerful

measurement paradigm for quantum state estimation that is more resilient to noise and

imperfections.
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Extreme learning machines (ELMs)1–3 and reservoir com-
puters (RC)4–9 are computational paradigms that leverage
fixed, nonlinear dynamics to efficiently extract information

from a given dataset. In the classical context, these schemes rely
on evolving input data through some nonlinear mapping —
typically recurrent neural networks with fixed weights — which
augment the dimensionality of the data, easing the extraction of
the properties of interest. The main discriminator between RCs
and ELMs is whether the reservoir being used can deploy an
internal memory. More precisely, RCs hold memory of the inputs
seen at previous iterations, making them suitable for temporal
data processing5. ELMs instead use memoryless reservoirs.
Although this makes the training of ELMs easier, it also makes
them unsuitable for temporal data processing.

Quantum counterparts to ELMs and RCs — which we will
refer to as QELMs and QRCs, respectively — have recently
attracted significant interest due to their potential to process
quantum information10–18,18–23. Reviews of the state of the art in
this context can be found in refs. 24–26, while a study of QRC
schemes for the implementation of nonlinear input-output maps
with memory on NISQ devices has recently been presented27.

To date, and to the best of our knowledge, a general char-
acterisation of the class of tasks that can be accomplished through
QELM-like schemes for the classification, processing or extrac-
tion of information encoded in quantum states is lacking. This
significantly limits the systematic deployment of such approaches
to the issues of quantum-system and quantum-state character-
ization or validation, which are crucial steps to perform towards
the upscaling of quantum technologies and the achievement of
the fault-tolerant quantum information processing paradigm.

In this paper, we show that the problem of reconstructing
features of a quantum state via an ELM-like setup can be viewed
as a linear regression task on the measurement probabilities
produced by a suitable positive operator-valued measurement
(POVM)28,29. The key observation is that the probability dis-
tribution corresponding to an arbitrary measurement of a
quantum state is linear in the input density matrix30. This is a
fundamental departure from classical ELMs: whereas in the latter
case the reservoir is an intrinsically nonlinear operation, the same
cannot be said about a quantum reservoir. The latter can always
be modelled as a map that linearly processes the input density
matrix. In turn, this allows us to identify crucial constraints on
the properties that QELM setups can be trained to retrieve. While
the learning of classical input information that is nonlinearly
encoded in the states19,31 is certainly not precluded, our study
clarifies how the only possible source of nonlinearity must come
from the encoding itself rather than the reservoir dynamics.

We then show that the intrinsic uncertainty arising from the
sampling noise on estimated measurement probabilities dra-
matically affects the performances of any property-
reconstruction protocol based on QELMs. This pinpoints a
significant fundamental constraint – of strong experimental
relevance – to the performance of such schemes. The number of
measurement outcomes is also shown to play an important role,
affecting the well-conditioning of the associated regression
problem, and thus the numerical stability of any estimate. More
generally, we show that the efficiency of QELMs is directly tied
to the effective POVM summarising both evolution and mea-
surement. This puts the spotlight on the properties of this
effective POVM, and on how these are the ones directly
affecting performances.

By addressing fundamental features of significant practical
repercussions, our study allows us to shape the contours of the
class of tasks that can be successfully tackled with QELM archi-
tectures, and contributes to the investigation of property-
reconstruction protocols, assisted by artificial intelligence, which

is raising growing attention from the quantum-technology
community.

Results and discussion
We start by reviewing the basic features of classical ELMs and
QELMs, present a general way to model QELMs, and characterise
their predictive power in various scenarios.

Notation and theoretical background. An ELM1,3 is a super-
vised machine learning protocol which, given a training dataset
fðxtrk ; ytrk ÞgMtr

k¼1 � Rn ´Rm, is tasked with finding a target function
f target : R

n ! Rm such that, for each k, f targetðxtestk Þ ’ ytestk with a
sufficiently good approximation for previously unseen datapoints
fðxtestk ; ytestk ÞgMtest

k¼1 . As most machine learning algorithms, ELMs are
characterised by their model, that is, the way the input-output
functional relation is parametrised. For ELMs, the model is a
function of the form x↦Wf(x) with f a fixed — generally non-
linear — function implementing the reservoir dynamics, and W a
linear mapping applied to the output of f. The function f is not
trained, but rather fixed beforehand, and can for example be
implemented as a neural network with fixed random weights. The
training algorithm optimises the parameters defining W in order
to minimise some distance function — often the standard
Euclidean distance — between Wf ðxtrk Þ and ytrk . As a classical
example, one can think of a supervised learning task where xtrk are
images representing handwritten digits, and ytrk the digits the
images represent. In this example, n would be the number of
pixels in each image, and the goal of the algorithm would be to
use the training dataset of labelled images fðxtrk ; ytrk ÞgMtr

k¼1 to find the
W such that, for all new images xk, Wf(xk) is the correct digit
drawn in xk.

The standard way to quantise ELMs is to replace the map f
with some quantum dynamics followed by a measurement. To
maintain full generality, we consider a completely positive trace-
preserving quantum map Λ – which we refer to as a quantum
channel — followed by a POVM {μb : b∈ Σ}, where Σ is the set of
possible measurement outcomes30. In the context of QELMs, the
training dataset has the form fðρtrk ; ytrk ÞgMtr

k¼1, with ρtrk an input state
and ytrk the output vector that the QELM should associate to ρtrk .
More precisely, the goal of the training is to find a linear
operation W such that

∑
b2Σ

WabTrðμbΛðρtrk ÞÞ ’ ðytrk Þa; ð1Þ

with a= 1…m and k ¼ 1¼Mtr, and with Wab the matrix
elements of W. It is also possible to use QELMs as a way to
process classical information exploiting complex quantum
dynamics. In this case, the training dataset should be considered
as a set of the form fðstrk ; ytrk Þgk, in direct analogy with the classical
case, where now sk are classical vectors suitably encoded in the
input quantum states ρs. The difference with the classical setup, in
this case, is entirely in the specific form of the function mapping
inputs to outputs. The capabilities of QELM/QRCs to process
classical data depends crucially on the nonlinearity of the
encoding s↦ ρs, as discussed in refs. 19,31 [cf. Fig. 1 for a
schematic overview of the distinction between ELM and QELM
protocols]. We will focus here on the former point of view to
derive results that are independent of the specific forms of
classical encodings ρs, and useful when the goal is to probe
property of the input states.

The “classical reservoir function” f : Rn ! Rm becomes, in
the quantum case, the map

pΛ;μ : ρ7! Tr½μbΛðρÞ�
� �jΣj

b¼1 2 RjΣj; ð2Þ
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which sends each input state to the vector of outcome
probabilities corresponding to a channel Λ and measurement μ
(here ∣Σ∣ is the dimension of the set of measurement outcomes).
Finally, the trained model for QELMs consists of a linear function
W applied to the vector of outcome probabilities. This means
that, during training, the algorithm optimises the parameters W
so as to minimise the distance between WpΛ;μðρtrk Þ and ytrk , for all
the states and target vectors in the training dataset. In Table 1 we
provide a schematic breakdown of the differences between ELMs
and QELMs.

In the most general case, the channel Λ is physically
implemented by making ρ interact with some reservoir state η
and then tracing out some degrees of freedom from the output
space. This scenario can be modelled as a channel Φ 2 CðHS �HE;HEÞ sending states in HS �HE into states in HE, where HS
and HE are the Hilbert spaces of input and reservoir states,
respectively, and CðX ;YÞ denotes the set of quantum channels
sending states in X to states in Y. For notational clarity, we will
distinguish between the two channels Λη 2 CðHS;HEÞ and
Eρ 2 CðHE;HEÞ, defined from Φ as ΛηðρÞ ¼ EρðηÞ ¼ Φðρ� ηÞ;
where η and ρ are states in HE an HS, respectively. Note that
describing the channel as Φ 2 CðHS �HE;HEÞ, means, in

particular, that we assume the output space to have the same
dimension as the input reservoir space. One could easily lift this
restriction by considering measurements performed on the full
space HS �HE , nonetheless we stick to it as it eases our notation.

In the context of open quantum systems, dynamics through a
reservoir are often described through channels acting on the
reservoir itself, parametrised by the input state. When adopting
this point of view, the channel Eρ is the one of more direct
interest. This is useful for example when studying the memory
capabilities of Φ. On the other hand, when one is interested in the
retrievability of information encoded in ρ, the linearity of Λη is of
more direct relevance.

Observable achievability. An observation central to our results is
that the mapping from states to probabilities is, regardless of any
detail of the dynamics, unavoidably linear

pΛ;μðαX þ βYÞ ¼ αpΛ;μðXÞ þ βpΛ;μðYÞ; ð3Þ
for any pair of linear maps X, Y and scalars α; β 2 C. Further-
more, pΛ,μ(ρ) can be interpreted as a direct measure on the state ρ
— that is, the overall process of measuring after an evolution Λ
can be reframed as an effective measurement performed directly
on ρ. Explicitly, this follows from

ðpΛ;μðρÞÞb ¼ Tr½μbΛðρÞ� ¼ Tr½ΛyðμbÞρ� ¼ Tr½~μbρ�; ð4Þ
where Λ† is the adjoint of Λ, and ~μb denotes said effective mea-
surement which, performed on ρ, reproduces the same mea-
surement outcomes obtained measuring μb on Λ(ρ). One can
equivalently view Λ†(μb) as describing the underlying evolution in
the Heisenberg picture. Because the measurement probabilities
ultimately depend on the effective POVM ~μ, we will use the
shorthand notation p~μ � pΛ;μ when ~μ ¼ ΛyðμÞ.

A defining feature of QELMs is the restriction to linear post-
processing of the measurement probabilities, which has signifi-
cant implications for their information processing capabilities. To
see this, note that applying the linear function W to p~μðρÞ

Fig. 1 Schematic overview of ELMs and QELMs. a Classical ELM setup; b QELM setup for classical information processing.

Table 1 Summary of the differences between classical ELMs
and QELMs.

ELM QELM

Training data fðxk; ykÞgk fðρk; ykÞgk
Model to train x↦Wf(x) ρ↦WpΛ,μ(ρ)
Parameters to train W W
Cost function ∥yk−Wf(xk)∥2 ∥yk−WpΛ,μ(ρk)∥2

These two schemes differ in the type of input states ρk fed to the reservoir, and in how the
reservoir map itself is implemented: in the classical case, is some nonlinear function often
implemented via fixed-weights neural network architectures, whereas in the quantum case it is a
quantum channel followed by some measurement.
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produces a vector y � Wp~μðρÞ, with components

yk ¼ ∑
b2Σ

ðp~μðρÞÞbWkb ¼ Tr ∑
b2Σ

Wkb~μb

� �
ρ

� �
: ð5Þ

In other words, any vector y obtainable via linear post-
processing of measurement probabilities has the form yk ¼
Trð~OkρÞ � h ~Ok; ρi for some observable ~Ok that is a linear
combination of the effective POVM elements. Here and in the
following we use the notation 〈 ⋅ , ⋅ 〉 to highlight that expressions
of the form TrðAyBÞ can be interpreted as an inner product
between the matrices. It follows that a QELM can learn to retrieve
the expectation value of an observable Oiff

O 2 spanRðf~μb : b 2 ΣgÞ; ð6Þ
that is, if and only if O can be written as a real linear combination
of operators ~μb. It is worth noting that, in this context, we operate
under the assumption that ~μ — and thus Λ and μ — is known,
and therefore the condition is readily verifiable. In particular, a
QELM can reproduce the expectation value of arbitrary
observables iff~μ is informationally complete (that is,
ifff~μb : b 2 Σg spans the corresponding space of Hermitian
operators). Nonetheless, as will be further discussed later, the
training procedure does not require knowledge of ~μ as it can be
seen as a way to estimate the effective measurement ~μ itself.

Reconstruction method. Even if we can now readily assess
whether a target observable can be retrieved from the information
provided in a given QELM setup, the question remains on how
exactly this would be done. To fix the ideas, consider a scenario
with a single target observable O, and the effective POVM is some
~μ with j~μj the number of possible outcomes. The problem is thus
finding some W — which will be, in this case, a row vector —
such that

hO; ρi ¼ Wh~μ; ρi ð7Þ
for all the elements of the training dataset, which has in this case
the form

fðhO; ρi; h~μ; ρiÞ : ρ 2 TrainingDSg; ð8Þ
where TrainingDS is the set of states used to generate the training
dataset. A convenient way to write this condition is then

hO; ρtri ¼ Wh~μ; ρtri; ð9Þ
denoting with ρtr the vector whose elements are all the training
states, with hO; ρtri the vector of expectation values hO; ρtrk i, and
with h~μ; ρtri the matrix with components h~μb; ρtrk i. Equation (9),
as a condition for W, is a standard linear regression problem. It is
however worth remarking a departure of our task from standard
linear regressions: we are not interested in finding any “true
value” of W, but rather in finding someW which gives the best
performances on the test dataset. That means, in particular, that
the existence of multiple optimal solutions for W is not an issue.

In the context of QELM, the effective measurement ~μ — and thus
thematrix h~μ; σi— is not known a priori. Instead, during the training
phase, only the probabilities h~μ; ρtri and expectation values hO; ρtri
are given. The task is to solve the corresponding linear system

hO; ρtri ¼ Wh~μ; ρtri ð10Þ
for W. Even though without knowing O and ~μ it is not possible to
determine a priori the feasibility of the task, if the accuracies during
the training phase are sufficiently high one can reasonably expect the
condition to be fullfilled. If, on the other hand, the accuracies saturate
to a non-optimal amount while increasing the sampling statistics, we
can now determine the reason to be O not being writable as linear
combinations of ~μ.

A standard way to solve Eq. (10) is via the pseudoinverse

W ¼ hO; ρtrih~μ; ρtriþ ð11Þ
where A+ denotes the pseudoinverse of A. This solution is exact
iff suppðhO; ρtriÞ � suppðh~μ; ρtriÞ, and unique
iffsuppðhO; ρtriÞ ¼ suppðh~μ; ρtriÞ32. Given a Hermitian operator
X and an informationally complete POVM ~μ, there is always a
dual POVM ~μ?, with j~μj ¼ j~μ?j that allows the decomposition33

X ¼ ∑
k
h~μ?k;Xi~μk ¼ ∑

k
h~μk;Xi~μ?k: ð12Þ

The POVM ~μ? is also referred to, in this context, as a dual frame
of ~μ. A particular choice of such a dual basis is constructed as

~μ?k ¼ S�1ð~μkÞ; SðXÞ � ∑
k
~μkh~μk;Xi; ð13Þ

where S is referred to as the frame operator, which is ensured to be
invertible, provided ~μ is informationally complete, and this basis is
the canonical dual frame of ~μ. With ~μ?, we can write

hOi; ρi ¼ ∑
k
hOi; ~μ

?
kih~μk; ρi; ð14Þ

which tells us that a general solution to the linear reconstruction
problem has the form

W ¼ hO; ~μ?i: ð15Þ
This provides a very concrete understanding of what the

training phase achieves: through training, and solving the
associated linear problem, we retrieve a partial description of the
measurement process itself, through its dual operators. Note that
one can also consider this framework using a complete set of
observables Oi as target, in which case hO; ~μ?i also amounts to a
complete characterisation of ~μ?, and thus of ~μ.

The performance of the QELM is quantified by its accuracy on
previously unseen “test” states. A standard choice of quantifier is
the mean squared error (MSE): given a test state ρ, and assuming
that the training produced parameters w, this reads

MSE ¼ ðhO; ρi � w � h~μ; ρiÞ2: ð16Þ
For multiple target observables, the definition is extended

straightforwardly: we have

MSE ¼khO; ρi �Wh~μ; ρik22; ð17Þ
where now O ¼ ðO1;O2; :::Þ is a vector of target observables, and
W the matrix obtained from the training phase.

In an ideal scenario, where the probabilities h~μ; ρi are known
with perfect accuracy, solving Eq. (9) is not an issue. Assuming
that the system is indeed solvable — that is, Eq. (6) is satisfied —
then any solution method, e.g. computing the pseudo-inverse of
h~μ; ρtri, will result in some W which maps perfectly well
measurement probabilities to expectation values. However, any
realistic scenario will result in a radically different outlook.
Because the protocol uses measurement probabilities as funda-
mental building blocks, being mindful of potential numerical
instabilities is paramount. In particular, the probability vectors
h~μ; ρi will only be known up to a finite accuracy which depends
on the finite number N of statistical samples, since the variance of
the estimates will scale as N−1.

These statistical fluctuations will both affect the estimation of
hO; ~μ?i in the training phase, and the final accuracies in the
testing phase. The latter source of noise is present even if hO; ~μ?i
is known with perfect accuracy, while the former is due to the use
of a finite training dataset.

Reconstruction efficiency. An important factor to consider when
using QELMs is the potential numerical instability arising from
solving the associated linear system32. While Eq. (11) provides a
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general and efficiently computable solution to the learning pro-
blem, this solution can be ill-conditioned, i.e. small perturbations
of the inputs can result in large perturbations of the outputs. In
our context, this happens when h~μ; ρtri has small singular values,
which might arise due to noise or finite statistics. The issues
associated to solving a linear system in a supervised learning
context, and some possible ways to tackle them, are discussed in
refs. 34–36. Depending on the circumstances, several regularisation
techniques can be used to deal with ill-conditioned problems.

A standard way to quantify the potential ill-conditioned nature
of a linear system is the condition number32: Given a linear
problem y= Ax which one wishes to solve for x, the condition
number of A is

κðAÞ ¼ smax

smin
;

where smax (smin) is the largest (smallest) singular values of A. The
set of solutions to the linear system is the affine space

x 2 Aþy þ kerðAÞ; ð18Þ
where A+ denotes the pseudo-inverse of A. A simple character-
isation of κ(A) is that it provides the worst-case scenario estimate
of relative error amplification: if Δy is the error associated with y,
the relative error on x is bounded by

Δx
x

����
����≤ κðAÞ Δy

y

����
����: ð19Þ

Equation (10) is precisely the type of linear system whose
numerical stability is estimated via the condition number, in this
case κðh~μ; ρtriÞ, the overarching goal of QELMs is not accurately
estimating W, but rather finding any W that results in accurately
estimating the target expectation values on the test dataset. In
other words, we only care about inaccuracies in the estimation of
W in so far as they are reflected in inaccuracies in the MSE
khO; ρi �Wh~μ; ρik2. That means the errors we are interested in
are those coming from the expression

ðhO; ρtrih~μ; ρtriþÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ W

h~μ; ρi;
ð20Þ

where both h~μ; ρtri and h~μ; ρi are estimated up to some finite
precision.

An unavoidable source of ill-conditioning is the fundamental
statistical nature of the probabilities entering the j~μj ´Mtr matrix
P � h~μ; ρtri. Let PN denote the matrix whose elements are the
frequencies associated with the corresponding probabilities in P,
estimated from N samples. If the input states have dimension

Ninput (e.g. Ninput= 4 for 2 qubits), but j~μj>N input, then P will
have some vanishing singular values. Due to the statistical noise,
these will become nonzero, albeit remaining relatively small with
magnitude of the order of 1/N, in PN. This makes the linear
inversion problem potentially ill-conditioned, as the eigenspaces
corresponding to such singular values do not represent physically
relevant information. A simple way to fix this issue is to truncate
the singular values, setting to zero those beyond the Ninput-th one.
This strategy does not introduce a significant amount of error, as
long as the variances associated to the outcome probabilities are
sufficiently smaller than all the other (physically relevant)
singular values, which is always the case for sufficiently large N.
We will employ this strategy for our simulations.

Another feature is the increase of the condition number κ(PN)
on N [cf. Fig. 2a]. This is somewhat counterintuitive, as we would
expect estimation to become easier when the probabilities are
known more accurately. We refer to Supplementary Note 1 for a
detailed discussion of this aspect.

Single-injection examples. Let us consider how our framework
applies to the case with single-qubit inputs. Most of the literature
focuses on reservoir dynamics defined via some Hamiltonian10,
or on open quantum systems11. Our aim is here to study the
performance of QELMs in standard scenarios, and we therefore
focus on unitary evolutions, and analyse cases where the reservoir
dynamics is a random unitary or isometric evolution rather than
a specific Hamiltonian model, in order to gain a better insight
into the performances of QELMs in more general contexts. More
specifically, we focus on the following three scenarios:

1. The input qubits interact with a high-dimensional state
through some random unitary evolution. In this case, the
reservoir is a qudit, measured in some fixed computational
basis, and the corresponding evolution reads: ΛðρÞ ¼
Tr1½VρVy� with V 2 UðC2;C2 �CnÞ a (2n) × 2 isometry,
for some N 3 n> 2. In this notation, the initial state of the
reservoir is implicitly specified through the choice of
isometry V. The corresponding measurement is taken to
be μj ¼ jjihjj with j= 1, ..., n, and the effective measurement
thus reads

~μj ¼ ΛyðjjihjjÞ ¼ VyðI � jjihjjÞV : ð21Þ
2. Alternatively, one can consider a scenario involving a single

high-dimensional qudit, with no bipartite structure
involved. In this case, the “input qubit” is a two-
dimensional subspace of the qudit, ~ρ ¼ ρ	 η0 with ρ 2
DðC2Þ a single-qubit state, and η0 2 DðCn�2Þ the initial

Fig. 2 Mean squared error and condition number vs number of outcomes. Mean squared error (MSE) associated to reconstruction of TrðOρÞ for some
single-qubit observableO in the first scenario configuration, withMtr ¼ 100 andMtest= 1000 states used during training and testing phase, respectively. In all
plots, different colours refer to different numbers of samples Ntrain,Ntest used to estimate the probabilities. The target observable is chosen at random, and kept
fixed in all shown simulations. Choosing different observables does not significantly affect the behaviour of these plots. a Condition number of the probability
matrix h~μ; ρtri as a function of the number of measurement outcomes. bMSE as a function of the number of measurement outcomes, when both train and test
probabilities are estimated with the same finite precision. c As above, but now the test probabilities are estimated with infinite precision. d As above, but now
the training probabilities are estimated with infinite precision. In this last case, the large error corresponding to four outcomes is due to the amplification of the
statistical error in the vector of probabilities p by the map W. The amount of amplification is described by the condition number in Eq. (19).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01233-w ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:118 | https://doi.org/10.1038/s42005-023-01233-w |www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


state of the reservoir degrees of freedom. The dynamics is in
this case simply an evolution of the form ρ⊕ η0↦
U(ρ⊕ η0)U† for some unitary operator U 2 UðCnÞ.
Measurements are again performed in the computational
basis, μk ¼ kj i kh j with k= 1, ..., n, and thus

~μk ¼ Uy kj i kh jU : ð22Þ
In this notation, the degrees of freedom of the input state
are also measured after the evolution, but this is not an
issue for our purposes.

3. As a further example, let us consider a system of qubits
interacting through some Hamiltonian H. In this case, the
input qubit interacts with NR reservoir qubits through some
Hamiltonian, and the measurement is performed on the
reservoir qubits. The dynamics thus has the form

ρ7!e�iHtðρ� η0ÞeiHt ð23Þ
for some evolution time t and initial reservoir state
η0 2 DðC2NR Þ. For our tests, we use a pairwise Hamiltonian
for a qubit network of the form

H ¼ ∑
NRþ1

ij¼1
Jij σþi σ

�
j þ σþj σ

�
i


 �
þ ∑

NR

i¼1
Δiσ

x
i ; ð24Þ

with random coupling constants Jij drawn uniformly at
random from the interval [−1, 1], and driving coefficients
Δi drawn uniformly at random from [0, 1]. We consider
different network connectivities; in particular we study (1) a
linear chain with nearest-neighbour interactions, (2) a fully
connected reservoir, with a single node connected to the
input, and finally (3) a fully connected reservoir where each
node is connected to the input. If measurements are again
performed in the computational basis of the reservoir, that
is μk ¼ kj i kh j with k ¼ 1; :::; 2NR , the corresponding
effective measurements will have the form

~μk ¼ Tr2 ðI � η0ÞeiHtðI � kj i kh jÞe�iHt
� 


: ð25Þ

As training objective, we consider the reconstruction of the
expectation value of some target observable O 2 HermðC2Þ. For
our simulations, we make the conventional choice O ¼ σx , with
σx the Pauli X matrix. Note that choosing different observables or
different evolutions, does not significantly affect the results.

To reconstruct arbitrary linear functionals of ρ, the effective
measurement must have rank four, that is, it must contain four
linearly independent operators. This is required to have
tomographically complete knowledge of ρ. This means that, in
particular, the reservoir state must be at least four-dimensional.

Figure 2 reports the performances of QELMs trained to retrieve
σx, when the evolution corresponds to an input qubit interacting
with a 25-dimensional qudit through a random unitary operator,
for different numbers of elements in the effective POVM f~μkg. Let
j~μj denote the number of such elements. In the ideal scenario
where training and test probabilities are known with perfect
accuracy, the MSE is precisely zero whenever j~μj≥ 4. To get more
realistic results, we consider the performance when h~μ; ρtri and
h~μ; ρtesti are estimated from finite statistics. In these scenarios, the
condition number of the matrix h~μ; ρtri is also relevant, as it
correlates with how much the statistical fluctuations in h~μ; ρtesti
can be amplified and lead to estimation inaccuracies. As shown in
the figures, the accuracy increases with better statistics, as
expected, but also when increasing j~μj. It is worth stressing that
this feature does not occur with the ideal probabilities, as in that
scenario the MSE is perfectly zero from four measurements
onwards. More precisely, we should say that the ideal MSE
vanishes almost always when the unitary evolution is drawn

uniformly at random. It is in fact possible to find examples of
unitaries which make the reconstruction impossible. Trivial
examples would be unitaries that do not correlate input and
reservoir degrees of freedom. These cases almost never occur
when drawing unitaries at random, however.

Figure 2 shows that, although 4 measurements are in principle
sufficient to retrieve the target information, reconstruction in
realistic circumstances becomes easier when increasing the
dimension of the reservoir, that is, the number of measurement
outcomes. In Fig. 2a we see that the numerical problem becomes
better conditioned when there are more measurement outcomes.
In Fig. 2b, c we appreciate how the accuracy increases when more
statistical samples are used, and thus the probabilities approach
their ideal values.

Figure 2d shows the MSE when the training parameters are
computed from the ideal probability matrix h~μ; ρtri, while finite
statistics is used in the testing phase. In this case, the poor
statistical accuracy found for small numbers of outcomes is due to
the correspondingly large condition number. This is to be
attributed to numerical instability associated with the ideal
reconstruction parameters for few measurement outcomes:
indeed the large error corresponding to four outcomes is due to
the amplification of the statistical error in the vector of
probabilities, amplification that is quantified by the condition
number Eq. (19). Note that such detrimental effect largely
disappears already for j~μj≥ 8. Note that the data shown in Fig. 2d
and in the purple triangles in Fig. 2a corresponds to a training
performed with perfectly estimated training probabilities. Even if
not directly related to performances in practical scenarios, this
data is useful to better isolate the different effects caused by
inaccuracies during training and testing phases.

Finally, in Fig. 3 we consider how different choices of dynamics
influence the reconstruction performances. In particular, we
consider input states interacting with the reservoir through a
random unitary evolution, a random pairwise Hamiltonian, or a
randomly drawn pairwise Hamiltonian with a chain structure, in
which each qubit only interacts with its nearest neighbour.
Overall, as the degree of connectivity of the network increases, the
performance of the reservoir and stability of the linear regression
both improve. This is illustrated by the decrease in the MSE and
the condition number.

Multiple injections scenario. We focused in the previous section
on the achievability of target observables when single copies of an
input state are made to interact with a reservoir, which is then
measured. As shown, this characterises the amount of exactly
retrievable information from functionals that are linear in the
input density matrix. Let us consider now the more general
scenario where several copies of an input state are allowed as
input. We will show that this allows retrieving a broader range of
properties of the input states.

Consider a channel Eρ applied multiple times to an initial
reservoir state η0. For n consecutive uses of the channel and initial
reservoir state η0, the measured state is then ηn ¼ En

ρðη0Þ. This
can be rewritten as

ηn ¼ Φðρ�Φðρ� ηn�2ÞÞ ¼ � � � ¼ ~Φðρ�n � η0Þ; ð26Þ

where we have introduced the resulting channel ~Φ. Following the
same argument employed in the single-injection scenario, we see
that the possible outputs after linear post-processing of the
outcome probabilities are all and only those of the form

y ¼ Trð~Oρ�nÞ; ð27Þ

for some observable ~O acting in the space of n copies of ρ.
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Training these models thus proceeds similarly to the linear
case: the probabilities are estimated from measurements
performed after each series of n injections, and these probabilities
are then used to solve Eq. (7) and thus find the optimal train
parameters W. Figure 4 shows a scheme of the multiple-injection
model here described.

After n injections, the space on which the effective POVM acts
has dimension

dn;m � m2 þ n� 1
n

� �
ð28Þ

with dimðHÞ � m the dimension of each input state. This is the
number of degrees of freedom characterising a symmetric tensor
of the form ρ⊗n with ρ 2 DðHÞ. This is also the space where the
target observables O live. It follows that, in order to be able to
reconstruct arbitrary functionals of ρ up to the maximum order of
n, the measurement must contain at least dn,m linearly
independent components.

Consider for example the task of estimating the purity of a
given state. Observe that the map ρ7!Trðρ2Þ can be written as
Trðρ2Þ ¼ Tr½SWAPðρ� ρÞ�. As per our previous observations,

this means that the purity can be retrieved from a QELM
provided that at least two injections are used, and that the
effective measurement ~μ is such that SWAP can be expressed as a
real linear combination of the measurement operators ~μb.

Multiple injections examples. To showcase the reconstruction of
nonlinear functionals of the input state, in Fig. 5 we consider
targets functionals of the form TrðOρkÞ, TrðeρÞ, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Trðρ2Þ

p
.

We focus on the number of injections required for the recon-
struction in each case, and thus assume ideal training and target
probabilities.

In Fig. 5a we give the MSE associated with the reconstruction
of TrðOρkÞ, k= 1,…, 7, for a random one-qubit observable O, for
different numbers of injections. In these simulations, the reservoir
is an 8-qubit system, with an additional qubit used for the input
states, reset to ρ for each injection. As expected from our previous
discussion, we observe that the reconstruction is only successful
when the number of injections n is larger than the degree k of the
polynomial of the target observable.

Furthermore, note how the reconstruction fails again when the
number of injections increases too much. This upper bound for the

Fig. 4 Summary multiple injection QELMs. The reservoir interacts with multiple copies of the same quantum state ρ and progressively acquires
information about it. The measurement is performed on the final reservoir state ηn.

Fig. 3 Relation between mean squared error and condition number. MSE (in logarithmic scale) obtained by training random reservoirs corresponding to
different types of dynamics to retrieve a fixed target observable, shown against the condition number. The target one-qubit observable O is a the σx Pauli
matrix, b the σz Pauli matrix, and c a one-qubit observable sampled at random. In each case, we plot data corresponding to a reservoir dynamics that is (red
squares) a random one-dimensional spin chain with nearest-neighbour interactions, (green diamond) a random fully connected spin Hamiltonian, where
the input is only connected to a single node of the reservoir, (blue circles) a random fully connected spin Hamiltonian, and (orange triangles) a random
unitary evolution. Each point shows simulation results obtained using Mtr ¼ 100 training states, Mtest= 1000 test states, and a reservoir comprised of 6
qubits. The statistics is fixed to Ntrain= Ntest= 104 samples used to estimate each measurement probability. Except for the random unitary case (orange
triangles), representative of the first scenario, the other configuration are examples of the third scenario and the Hamiltonian parameters Jij and Δi from Eq.
(24) are sampled uniformly at random in the interval [0, 1].
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reconstruction is due to the finite dimension of the reservoir— or,
equivalently, the finite number of measurement operators in ~μ. In
fact, reconstructing TrðOρkÞ from a measurement performed after
n injections amounts to reconstructing a specific observable ~O
acting on the space of states of the form ρ⊗n. If the measurements
are not suitably chosen, as is the case in QELM-like scenarios, this
means that the number of (linearly independent) measurements
must be sufficient to reconstruct all possible observables on such a
space, whose dimensionality is dn,m.

In Fig. 5b we treat the case of nonlinear functionals of ρ. The
performance achieved in approximating

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Trðρ2Þ

p
is poor due

to the slow convergence of the Taylor expansion of the functional.
The step-like behaviour that is evident in the MSE associated with
the reconstruction of TrðeρÞ, which is also present in the case offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Trðρ2Þ
p

although less evidently, can be explained by
noticing that the trace of odd powers of ρ is a polynomial of
the same degree of the previous even ones.

Conclusion
We provided a complete characterisation of the information
exactly retrievable from linear post-processing of measurement
probabilities in QELM schemes. This sheds light on the tight
relation between the capabilities of a device to retrieve nonlinear
functionals of input states, and the memory of the associated
quantum channel.

We found that the estimation efficiency of QELM protocols is
entirely reflected in the properties of an effective POVM
describing the entire apparatus, comprised of a dynamical evo-
lution and a measurement stage. In particular, we showed that the
effective POVM contains all of the information required to
determine which observables can be estimated, and to what
accuracy, as well as which kinds of effective POVMs, induced by
different types of dynamics, result in different degrees of esti-
mation accuracies. In turn, this clarifies the class of dynamics that
result in POVMs that are effective for efficient and accurate
property estimations. We further found that the inevitable sam-
pling noise, intrinsic to any measurement data coming from a
quantum device, crucially affects estimation performances, and
cannot be neglected when discussing the protocols.

Our work paves the way for a number of future endeavours on
this line of research, including an extension of our analysis to
time-trace signals for dynamical QRCs, and the in-depth analysis
of POVM optimality for quantum state estimation. Moreover, the

translation of our findings into performance-limiting factors of
recently designed experimental scenarios for QELMs and QRCs,
and the identifications of ways to counter them, will be para-
mount for the grounding of the role that such architectures could
play in the development of schemes for quantum property vali-
dation. At the same time, our study of QELMs for quantum state
estimation purposes fits tightly with, and has the potential to
improve on, several experimental detection strategies which rely
on some form of linear regression to estimate target states37–41.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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