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Abstract. Diabetic kidney disease (DKD) is a serious complication
of type-2 diabetes, defined prominently by a reduction in estimated
glomerular filtration rate (eGFR), a measure of renal waste excretion
capacity. However DKD patients present high heterogeneity in disease
trajectory and response to treatment, making the one-model-fits-all pro-
tocol for estimating prognosis and expected response to therapy as
proposed by guidelines obsolete. As a solution, precision or stratified
medicine aims to define subgroups of patients with similar pathophysi-
ology and response to the therapy, allowing to select the best drug com-
binations for each subgroup. We focus on eGFR when aiming to identify
eGFR decline trends by clustering patients according to their eGFR tra-
jectory shape-similarity.

The study involved 256 DKD patients observed annually for four
years. Using the Fréchet distance, we built clusters of patients according
to the similarity of their eGFR trajectories to identify distinct clusters.
We formalized the trajectory-clustering approach through category the-
ory. Characteristics of patients within different progression clusters were
compared at the baseline and over time.

We identified five clusters of eGFR progression over time. We noticed
a bifurcation of eGFR mean trajectories and a switch between two other
mean trajectories. This particular clustering approach identified different
mean eGFR trajectories. Our findings suggest the existence of distinct
dynamical behaviors in the disease progression.
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1 Introduction

Precision medicine [1,2] is a flourishing research area, which aims to find the best
individualized treatment for patients according to their characteristics. In fact,
the formula “one-model-fits-all” is unsatisfying when it comes to many diseases
as far as progression and response to therapy is concerned. To find subgroups
of similar patients, cluster analysis approach is a useful and informative tool, as
witnessed by several studies [3–9].

Defining sub-groups of such an evolving population can help shed light on
underlying common features in each sub-group, allowing physicians, if linked to
pathophysiology and drug mode of action, to foster a more appropriate targeted
treatment. This approach to medical research paves the way toward effective
personalized or at least better stratified treatment. This approach to medical
research paves the way toward effective individualized treatments. Of particular
relevance is, for instance, the differentiation at the baseline, regarding different
parameters. We focus on clusters of patients sharing the same disease-behavior
across time, as instances of longitudinal studies. Longitudinal studies have been
used also to address more general quality of life issues [10] and depression pat-
terns across time [11], with statistical approaches such as growth mixture models.

In this article, we focus on patients with type-2 diabetes mellitus (T2DM) and
its associated diabetic kidney disease (DKD) from the DC-ren dataset.1 DKD
is a serious public health problem and the main cause of end-stage renal disease
(ESRD) in developed countries [26]. Longitudinal changes of renal function help
inform on patients’ clinical courses and if, identified by pathophysiologically rel-
evant characteristics, help select individualized treatment according to patients’
specific characteristics.

In this article, we will build clusters of patients’ trajectories. This information
can constitute a first step toward the development of a decision system to foster
individualized strategies for DKD treatment [4,12]. We analyze trajectories of
patients with respect to the dependent variable eGFR. The variation of eGFR
provides an estimate of the severity of the disease and the response to treatment
[8,16]. We build clusters of trajectories based on shape similarity and on eGFR
range-similarity.

To group trajectories according to their shape similarity, we use the Fréchet
distance, first proposed in the domain of calculus [13], and recently applied to
medicine with the kmlShape clustering technique [14]. The Fréchet distance is
evaluated upon the comparison between pairs of points following the profiles of
the curves they belong to.

The approach to trajectory clustering is formalized within the framework of
Category Theory [17,18]. It is an abstract branch of mathematics, initially devel-
oped to formalize the transformations between transformations, and to connect

1 The project Drug combinations for rewriting trajectories of renal pathologies in type
II diabetes (DC-ren), https://dc-ren.eu/, is funded by the Horizon 2020 research and
innovation programme, Action RIA Research and Innovation action Call: H2020-
SC1-BHC-2018-2020; Topic: SC1-BHC-02-2019.

https://dc-ren.eu/
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different areas of mathematics between them. Applied category theory includes
research in physics [19], chemistry [20], neuroscience [21]. A few applications also
concern cluster analysis [22], with the formalization of a clustering method as a
functor. A functor is a morphism between categories. A category is constituted
by objects (points) and morphisms between them (arrows), whose composition
is associative and has the identity element.

We aim to find subgroups of similar patients and build clusters of mean
trajectories. We find cases of bifurcations and switch of trajectory clusters. To
understand the possible pathophysiological reasons underlying patients exhibit-
ing such a behavior, we analyze their medical and demographical variables. Cou-
pled with drug mode of action, our results can be fed into a decision system,
to find the best individualized treatments for future DKD patients. This article
is the development of a first study where the Fréchet distance was applied to
real data [23]. Here, we consider an extended dataset and a more refined com-
putational approach. The novelty of our work is the use of categorical formalism
for a medical real case study, and the application of a relatively-new statistical
method, kmlShape, to a real data for a non-public dataset.

The article is organized as follows. After a review of some concepts of longi-
tudinal cluster analysis and category theory (Sect. 2), we present a case of study
with patients affected by DKD (Sect. 3), and we discuss our findings (Sect. 4).

2 Methodology

In this section, we present our trajectory, clustering approach using some formal
tools of category theory; we then describe the kmlShape method, to investigate
trajectory shape-similarity according to the Fréchet distance.

2.1 A Shape-Similarity Clustering of Longitudinal Data

Longitudinal data are measured repeatedly over time for the same individual. In
this paper, we are interested in the evolution regarding the individual variation
of estimated glomerular filtration rate (eGFR) in a small group of patients with
type 2 diabetes and chronic kidney disease (DKD) at different stages. We used
the kmlShape approach, that creates clusters of trajectories according to their
evolution [14]. This approach is a variation of the longitudinal k-means [24] using
a “shape-respecting distance” and a “shape-respecting mean.”

The Fréchet distance [27] computes the shape similarity of two curves P1 and
P2, based on the smallest of the maximum pairwise distances obtained with two
respective reparametrizations, α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1], as follows:

F (P1, P2) = inf
α,β∈R

max
t∈[0,1]

{dist(P1(α(t)), P2(β(t)))} .

The approach of kmlShape considers the discrete version of the Fréchet distance,
based on a sequence of pairs of points belonging to the two curves (represented
as polylines). Since the two curves need not to have the same length, we have to
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“walk through them” at different speeds. The ratio between the different speeds
to move along the curves is the time scale λ, discussed later.

Since we are interested in assessing the trend of the disease rather than ver-
ifying its presence, we focused on this method. The same approach has recently
been followed in another application of kmlShape to a medical dataset [27]. In
fact, kmlShape quantifies the differences of trend between the eGFR trajectories.
In addition, the kmlShape method presents a highest ARI index when compared
with Traj and GMM method [28].

The Fréchet distance measures the longest link between the trajectories [14].
Its computation between two trajectories does not require the same number of
time-points in each trajectory.

We consider a generalization of the Fréchet mean to n curves. To this aim,
we implement the kmlShape with the RandomAll technique [14], with n patients
randomly scattered through the leaves of a binary tree.

Genolini and co-authors [14] provided a generalized definition of the Fréchet
distance including a time scale λ. Indeed, in the context of real data, there can
be an issue of relative scale, because the variable of interest and the time variable
are measured according to different unities. The change of time scale impacts the
partitioning, and thus the resulting clusters. The meaning of the scale variation
is the change of “travel speed” to go through a curve. The value of λ = 0.5 is
empirically determined for each research problem. We run different tests before
choosing this value. More details including the precise definition of the Fréchet’s
mean can be found in the article by Genolini and co-authors [14].

2.2 Category Theory for Trajectory Clustering

Patients with similar characteristics over time can be computationally and
graphically grouped together in the same cluster [15]. The comparison between
processes over time can be contextualized in the framework of category the-
ory [25]. Here, we use its diagrammatic language to describe patients’ grouping
according to their trajectory similarity. We also discuss the transition from a
patient-based representation to a state-based representation. First, we briefly
summarize the basic definitions of category theory.

A category is constituted by objects (points) and morphisms (arrows) between
them. The composition of morphisms must be associative, and there should exist
the identity morphism. A functor is a generalization of a function. More precisely,
it is a mapping between categories (mapping objects and morphisms of a category
into objects and morphisms of another category, preserving structures), and a
natural transformation is a mapping between functors.

According to Spivak [20], category theory constitutes a powerful (i.e., precise)
communication tool of ideas tool between different fields of mathematics. It can
be used to compare structures and methods of different disciplines. Category the-
ory starts being applied to several domains of science to acquire an abstract and
thus general overview [20]. According to [29], category theory can also be used for
medical dataset. Here, we use category theory as a bridge between clinical prac-
tice as defined by physicians, real data of patients, and information theory. We
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use this formalism to make more precise the comparison between each patient at
different time-points, and between different patients at the same time-point. In
addition, connecting the case study with the categorical framework allows one to
recover all theorems and methods defined in abstract mathematics, which have
the potential to make possible further applications and developments.

Let us consider a dataset composed of n patients characterized by p observ-
able variables at four time points t0, t1, t2, t3. Each patient is characterized
as a triplet (xi(tk), D(tk), yi(tk+1)), where i is the individual (the patient); tk
is the time point k = 0, 1, 2, 3; xi(tk) = x1

i (tk), ..., xp
i (tk) is a set of values of

variables, characterizing the individual; D(tk) = D1(tk),D2(tk),D3(tk),D4(tk)
stands for the given drug combination; yi(tk+1) is the value of the response
variable Y at tk+1, measured after one year of treatment. The response vari-
able is evaluated as the variation of the dependent variable, that is, the esti-
mated glomerular filtration rate (eGFR); we thus indicate it as E in the fol-
lowing. The trajectory over time of the i-th patient (pi) with respect to the
eGFR (E) is: pE

i (t0) → pE
i (t1) → pE

i (t2). For the i’-th patient we have:
pE

i′ (t0) → pE
i′ (t1) → pE

i′ (t2). We can evaluate the distance of a patient with
respect of herself/himself through time, or the distance between different patients
at the same time. We indicate the distance between patients i, i′ with respect to
the variable E and time tk as dE

i,i′(tk), and the distance between values observed
at times tk, tk′ of the variable E for the same patient i as dE

i (tk, tk′), see dia-
gram (1). In such a patient-based representation, each point is a patient at a
time-point. This representation is dual to the state-based representation, which
will be useful to create the state map (Fig. 1).

pE
i (t0)

dE
ii′(t0, t0) � pE

i′ (t0)

pE
i (t1)

dE
ii(t0, t1)

�
dE

ii′(t1, t1) � pE
i′ (t1)

dE
i′i′(t0, t1)

�

pE
i (t2)

dE
ii(t1, t2)

�
dE

ii′(t2, t2) � pE
i′ (t2)

dE
i′i′(t1, t2)

�

(1)

In the language of categories, the construction of diagram (1), with observa-
tions and distances, can be described as an enriched double category with metrics
in R [18], whose objects are the values of variable E, and whose morphisms are
vertical and horizontal distances dE

i,i′(tk), dE
i (tk, tk′). The comparison between

trajectories of different patients involves both of these distances.
Similar trajectories can be grouped within the same cluster of trajectories.

The clustering is described as a functor [22] from the category of dataset to
the category of the partitioned dataset. This concept can be applied to the
trajectory-clustering, from the category of trajectories to the category of clus-
ters of trajectories (Fig. 2). In the language of categories, the comparison between
similar clustering methods corresponds to an arrow between arrows, that is, a
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Fig. 1. Patient-based representation and state-based representation. The representa-
tion on the left is typical of categories. pi(t) indicates the clinical characteristics of
the i-th patient at time t, and pi′(t) refers to the i′-th patient. Time flows vertically.
The representation on the right neglects the detail on single-patient and time, in favor
of a description of the clinical states where one or more patients can stay or return
(loop arrow). The second representation can be built from the overall analysis of single-
patients longitudinal data.

natural transformation. The comparison between the clusters that are obtained
with slightly different methods is formalized as an arrow (morphism) in the
category of clusters of trajectories. Thus, one can shift the attention from the
natural transformation (comparison between clustering methods) to a morphism
(comparison of clusters obtained with slightly different methods). Natural trans-
formations (arrows between arrows) formalize the comparison between different
transformations. Trajectory clustering processes, despite their differences, can
be seen as processes from trajectories to clusters of trajectories, and thus we can
use the language of categories to compare them.

2.3 Study Population

We considered 256 DKD patients observed during annual visits in a time span
of four years. 48.4% were male, the mean age was 67 years. The characteristics
of patients at the baseline are presented in Table 1.

The variability in eGFR decline was analyzed with cluster analysis. The
eGFR is defined in the Appendix. In clinical routine the eGFR trajectory is
used to judge the response to the therapeutic treatment: the controlled disease
corresponds to an increase of eGFR or a decrease not exceeding 5% of the base-
line value (the value at t0), while the uncontrolled disease corresponds to an
eGFR decrease higher than 10% of the baseline value [30].

The mean eGFR at t0 ranges from 31 and 90 ml/min/1.73 m2; at t3 it is
comprised between 19 and 120 ml/min/1.73 m2, denoting an overall decrease of
kidney efficiency through time. The descriptive statistics of eGFR, with mean
and standard deviation at each time-point, are presented in Table 2. The mean
value of eGFR decreases with time, indicating an overall worsening of the disease
in the group.
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Fig. 2. Clustering as a functor from the category of trajectories to the category of
clusters of trajectories. In category theory, a functor is a generalization of a function,
mapping point and arrows from a category to another one. Here, we consider a mapping
from the category of trajectories to the category of clusters of trajectories. The points
are the patients at given time points, and the arrows are the comparisons of their
clinical values. Trajectories are given by the comparisons of patients with themselves
over time. In the second category, we group patients presenting similar trajectories
inside the same cluster.

We derive the profile of patients of this population considering a set of the
most relevant variables describing their characteristics. The variables are mea-
sured at the baseline (time t0) and at three follow-ups (t1, t2, t3). At t0 (Table 1),
the 256 patients have a mean eGFR of 64 ± 16. Their mean values of systolic
blood pressure and diastolic blood pressure are, respectively, 138±16 and 78±10
mmHg, and serum triglycerides (172 ± 106 mg/dl); these values are moderately
high. The mean values of blood glucose (144±46 mg/dl) and HbA1c (7.2±1.2%)
are also elevated. The mean values of total cholesterol (181 ± 44 mg/dl) and
serum potassium (4.5± 0.5 mmol/l) are in the normal range. The mean value of
UACR is moderately elevated (78.94±283.85 mg/g Creatinine). The large stan-
dard deviation takes into account the great variability of UACR values across
patients. In the following, we examine trajectory clusters obtained with the kml-
Shape method.
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Table 1. The mean values and their standard deviations for the 256 patients at the
baseline. SBP is the systolic blood pressure, DBP diastolic blood pressure, SCR the
serum creatinine, TOTCHOL is the total cholesterol, BG the blood glucose, STRIG is
the serum triglycerides, SPOT the serum potassium, HB the hemoglobin, UACR the
ratio of albumine to serum creatinine.

unit N mean std min max

eGFR ml/min/1.73m2 256 64 16 31 90

SBP mm Hg 256 138 16 100 180

DBP mm Hg 256 78 10 44 101

BG mg/dl 256 144 46 47 326

HbA1c % 256 7.2 1.2 4.9 11.8

SCR mg/dl 256 1.08 0.30 0.66 2.12

TOTCHOL mg/dl 256 181 44 85 363

STRIG mg/dl 256 172 106 44 859

SPOT mmol/l 256 4.5 0.5 3.2 6.1

HB g/dl 256 13.5 1.5 9.7 17.6

UACR mg/g 256 78.94 283.85 0.0 2777.14

Table 2. Values of the mean eGFR for the 256 patients at each time-point.

time min max mean std

baseline (t0) 31 90 64.0 16.3

follow-up 1 (t1) 23 122 63.3 18.9

follow-up 2 (t2) 15 105 60.6 18.3

follow-up 3 (t3) 19 120 58.6 18.2

3 Results of the Longitudinal Clustering

In this section, we present the clusters of longitudinal data obtained with the
kmlShape method (Fig. 3). We chose 5 as the number of clusters following clinical
practice to analyze heterogeneity in eGFR patients’ trends, taking into account
that the eGFR is computed from different variables [30]. Such a choice is also
motivated by the analysis of eGFR trajectories in different follow-ups, whose
mean presents a slow decline. The choice of 5 classes allowed us to highlight
behaviors such as crossing and bifurcations2 having a medical interest.

2 Each cluster of trajectories contains the same patients. However, we noticed that
there are crossings, that we called “switches”, between the mean values of eGFR of
specific clusters. It means that, for instance, the patients in a specific cluster had
an improvement over time, while the patients belonging to a cluster of initial good
values of eGFR, had later a worsening of their condition. Or, in another case, we
notice that two initially-close clusters of trajectories are then moving apart (the
bifurcation). This is interesting from a medical point of view, because the patients
who are initially quite close, then can have a different disease behavior.
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Fig. 3. Patients’ eGFR trajectories (left), and mean eGFR trajectories obtained with
kmlShape (right).

Table 3. Characteristics of patients in each of the five clusters of trajectories.

unit cluster 1 (N = 160) cluster 2 (N = 292) cluster 3 (N = 152) cluster 4 (N = 216) cluster 5 (N = 204) p-value

mean std mean std mean std mean std mean std

eGFR mg/dl 84 11 72 10 57 9 57 11 38 9 0.000

age years 62 10 66 7 69 8 69 8 73 9 0.000

BMI kg 30.90 5.18 30.54 4.65 31.53 4.97 31.38 4.65 30.31 5.16 0.050

BG mg/dl 148 50 149 48 144 56 152 54 155 74 0.363

HbA1c % 7.4 1.1 7.2 1.2 7.3 1.3 7.4 1.2 7.3 1.4 0.182

TOTCHOL mg/dl 176 41 184 44 186 49 178 53 172 39 0.020

STRIG mg/dl 159 88 169 102 169 117 203 150 194 131 0.000

SPOT mmol/l 4.5 0.5 4.4 0.5 4.4 0.5 4.5 0.5 4.9 0.6 0.000

HB g/dl 14.3 1.4 14.0 1.3 13.5 1.5 13.2 1.4 12.7 1.5 0.000

CRP mg/l 0.68 2.13 0.49 1.46 0.56 1.15 0.49 0.99 0.86 2.32 0.035

UACR mg/g 34.91 102.07 43.53 157.58 54.68 153.43 88.09 281.23 122.91 324.18 0.000

Examining the resulting mean trajectories, we notice a bifurcation between
cluster 1 and cluster 2, and a switch between cluster 3 and cluster 4. In the
following, we analyze how the relevant variables describe the profile of patients,
trying to understand the pattern of their dynamic behavior.

The mean values of the selected variables for patients in each cluster are
shown in Table 3. They are clusters of patients, grouped according to the shape
similarity of their eGFR trajectories. Patients are distributed along five different
levels of eGFR, ranging from a mean value of 84 ± 11 in Cluster 1, and 30 ± 9
in Cluster 5. For the patients in each cluster, we also computed the mean values
of the variables which presented a statistical significance (with the p-value test):
age, body-mass index, blood glucose, HbA1c, total cholesterol, serum triglyc-
erides, serum potassium, hemoglobin, and UACR. The information provided by
these other variables can shed light on unexpected behaviors of eGFR mean
trajectories.

Observing Fig. 3, we notice that the eGFR trajectories for patients in Clusters
1 and 2 start from close values of mean eGFR around 80 mg/dl, then have a
different trend. Both Clusters 1 and 2 present higher eGFR values (84 ± 11 and
72 ± 10, respectively), UACR under control (34.91 ± 102.07 and 43.04 ± 87.38),
but mean values of STRIG higher for patients in Cluster 2 (169 ± 102 against
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159 ± 88 of Cluster 1). The mean age of patients in Cluster 2 is also higher than
the mean age of patients in Cluster 1 (66 ± 7 against 62 ± 10 of Cluster 1). We
then notice that eGFR trajectories of patients in Clusters 3 and 4 present a
switch after the second time-point, that is, the first follow-up (t1). Patients in
Clusters 3 and 4 present trajectories of eGFR slightly lower, that is, 57 ± 9 and
57 ± 11, respectively. The main difference with respect to the other variables is
constituted by the mean values of CRP, that is, the C-reactive protein: 0.56±1.15
in Cluster 3, and 0.49 ± 0.99 in Cluster 4. Moreover, we notice the difference of
the mean value of STRIG (169 ± 117 in Cluster 3, 203 ± 150 in Cluster 4)
and of UACR (54.68 ± 153.43 in Cluster 3, 88.09 ± 281.23 in Cluster 4). The
improvement of mean eGFR across time for patients in Cluster 4 can be due to
the effect of drug treatment, more effective for patients belonging to this specific
subgroup. Patients in Cluster 5 present the lowest values of mean eGFR (38±9),
and they are characterized by critical values of HB and SPOT (12.7 ± 1.5 and
4.9 ± 0.6, respectively).

4 Discussion

Diabetic kidney disease is a devastating complication of type-2 diabetes mellitus
that reduces quality and quantity of life of affected patients and puts an enor-
mous burden on healthcare budget. In addition to the optimization of lifestyle,
the selection of the optimum drug combination for therapy is crucial to prevent
the incidence and progression of DKD. Once thought to be a uniform disease,
it is now evident that there is massive inter-individual and longitudinal intra-
individual heterogeneity in disease pathophysiology, clinical presentation, and
response to therapy. Linking the characteristics of each patient with the features
of a specific subgroup of patients can give hints about the possible effective drug
combination.

This is why, starting from a DKD dataset, we built subgroups of similar
patients. In particular, we noticed indeed the bifurcation and a switch between
mean trajectories. From a theoretical point of view related with basic definitions
of category theory, we connected the comparison between clustering methods
with the comparison between their results as clusters. A clustering method can
be seen as a transformation, and the comparison between clusters is a natural
transformation. Here, we estimated similarities and differences of the two meth-
ods (and thus, the natural transformation between them) in terms of their effect
on a given dataset.

From our analysis of the results, we emphasize that patients with similar
levels of eGFR at the baseline can then present a different disease evolution.
This fact can be explained with different characteristics of the other variables
at each time-point. This result is found using a shape-similarity method, the
kmlShape, using the Fréchet distance.

The considered patients were given, at each time-point, one of four possible
combinations of drugs, described in the Appendix: RASI + GLP1a, RASi +
SGLT2i, RASi + MCRa, and RASi only. Analyzing the eGFR mean trajectories
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shown in Fig. 3, and comparing them with the respective treatment received by
the patients, we notice that the patients in Cluster 1 mostly received RASi only;
patients in Clusters 2 and 3 were given RASi + MCRa; patients in Cluster 4
mostly received SGLT2i. On the other hand, patients in Clusters 3 and 5 did
not receive GLP1a, independently by the level of eGFR.

The information achieved with trajectory clustering can be fed into a decision
system, to predict the disease evolution of patient, according to their baseline
clinical overview. Thus, our study can lead to a machine-learning application
to help physicians deal with new cases of DKD disease. We highlighted here a
connection between abstract mathematics, medical practice, and patients’ real
data, with a potential for further technological applications.

This research may help foster new strategies to improve DKD patients’ lives.
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