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ABSTRACT

Background. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are highly effective in improving glycaemic control
either as monotherapy or in combination with other hypoglycaemic drugs, and have low incidence of side effects, such
as hypoglycaemia, nausea and weight gain, thus increasing patients’ adherence to therapy.
Methods. In this review we report the most recent studies demonstrating the beneficial effects of GLP-1RAs on renal
outcomes, and also discuss the direct and indirect mechanisms through which they confer kidney protection. Finally, we
discuss the metabolic and anti-inflammatory effects of GLP-1RAs in diabetic patients with COVID-19 disease.
Results. GLP-1RAs have a nephroprotective action, which is expressed through both indirect (improvement of blood
pressure and glycaemic control, weight loss) and direct (restoration of normal intrarenal haemodynamics, prevention of
ischaemic and oxidative damage) effects. They have shown also metabolic and anti-inflammation beneficial effects in
patients with COVID-19 disease.
Conclusions. GLP-1RAs prevent albuminuria and slow the decline of renal function towards end stage renal disease in
patients with diabetic kidney disease. They might be an opportunity to break the typical inflammation processes of
COVID-19 disease.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is associated with micro- and
macrovascular complications, which are often responsible for
severe disability in affected patients, with high costs for
health and social care. T2DM represents a major cause of
chronic kidney disease (CKD) worldwide, and statistics show
that the incidence of end-stage renal disease (ESRD) requiring
renal replacement therapy varies from 0.04% to 1.8% per year
[1]. Renal damage related to T2DM includes both structural
(glomerular basement membrane thickening,mesangial expan-
sion, interstitial fibrosis, loss of capillary architecture, hyali-
nosis of small and medium caliber arteries) and functional
(dysfunction of the mitochondrial respiratory chain, over ex-
pression of proinflammatory cytokines such as interleukin (IL)-
6, IL-8, IL-18, TNF-α, interferon (INF)-γ ) alterations induced by
hyperglycaemia [2–4]. The resulting clinical manifestations con-
figure the so-called ‘diabetic kidney disease’ (DKD), character-
ized by selective and nonselective proteinuria, hypertension and
progressive decline in renal function. Except for angiotensin-
converting enzyme inhibitors and angiotensin-II receptor an-
tagonists, for many years no drugs capable of improving re-
nal outcomes in DKD patients have been available. Therefore,
the development of new molecules that allow prevention of the
onset and progression of kidney damage has become a prior-
ity. Current therapeutic strategies aim at optimizing glycaemic
control through various modalities: (i) increasing the availabil-
ity of circulating insulin (through the administration of exoge-
nous insulin or drugs that promote the secretion of endogenous
insulin), (ii) improving tissues sensitivity to insulin, (iii) delay-
ing the absorption of carbohydrates in the gut and (iv) promot-
ing the urinary excretion of glucose. Over the past 10 years, the
advent of drugs such as glucagon-like peptide-1 (GLP-1) recep-
tor agonists (GLP-1RAs), dipeptidyl peptidase 4 (DPP-4) inhibitors
and sodium-glucose co-transport 2 (SGLT-2) gave new impetus to
the implementation of antidiabetic therapy, which today must
be considered to all intents and purposes a topic of multidis-
ciplinary interest. Emerging data support the efficacy of GLP-
1RAs, in reducing the incidence of major adverse cardiovascu-
lar events (MACEs), preventing the onset of macroalbuminuria
and slowing the progression of renal damage toward ESRD [5, 6],
thus stimulating the interest of endocrinologists, cardiologists
and nephrologists. Despite this evidence, the mechanisms by
which GLP-1RAs confer nephroprotection are poorly understood
and their use in clinical practice is still limited. The aim of this
review is to analyse the latest evidence on the pharmacokinet-
ics and pharmacodynamics of GLP-1 RAs, the direct and indirect
mechanisms through which they confer nephroprotection, and
the most recent studies on their efficacy in improving renal out-
comes in diabetic patients. Finally, we discuss themetabolic and
anti-inflammatory effects of GLP-1RAs in diabetic patients with
coronavirus disease 2019 (COVID-19).

PHYSIOLOGY OF INCRETINS

At the same dose, glucose taken orally causes a greater insulin
response than intravenous administration. This is due to the
so-called ‘incretin effect’, which involves two peptide hormones
produced in the gastrointestinal tract: glucose-dependent
insulinotropic polypeptide (GIP) and GLP-1. After a meal, the
glucose located inside the intestinal lumen increases the syn-
thesis and release of GLP-1 into the bloodstream by stimulating
the activity of SGLT-1 expressed on the enteroendocrine L cells
membrane. GLP-1 interacts with its receptor (GLP-1R) expressed

on pancreatic β and δ cells, where it promotes the biosynthesis
and release of insulin and somatostatin, respectively. Somato-
statin, in turn, is able to inhibit the secretion of glucagon by
pancreatic α cells bymeans of the somatostatin receptor 2. In ex-
perimental models of diabetes, GLP-1 has been shown to inhibit
apoptosis of β cells and promote their proliferation through the
recruitment of cellular precursors, thus implementing the avail-
ability of functionally active β cells [7, 8]. In addition to acting on
pancreatic cells, GLP-1 improves glycaemic control and tissues
sensitivity to insulin through numerous indirect systemic
effects. The activation of GLP-1R in the hypothalamic regulatory
centres of hunger and satiety promotes weight loss and reduces
food intake. The bidirectional communication between the
central and the enteric nervous system is known as ‘gut–brain
axis’. During themeal, GLP-1 stimulates the sensory fibers of the
vagus nerve by interacting with GLP-1R in the intrahepatic tract
of the portal vein. The afferent signal reaches the hindbrain,
where efferent fibres originate from the nucleus of the solitary
tract to go toward the liver (where they inhibit gluconeogenesis
and reduce steatosis and fibrosis) and the digestive tract (where
they slow the rate of gastric emptying and peristalsis of the
small intestine). This results in increased satiety and a de-
creased appetite [9]. It has also been demonstrated that the link
between GLP-1 and GLP-1R increases metabolism and energy
consumption at the level of brown adipose tissue cells re-
gardless of physical activity, and at the same time reduces lipid
deposits in white adipose tissue through transduction pathways
involving fibres of the sympathetic nervous system [10].

About 1–2 min after its release into the bloodstream, GLP-1
is rapidly degraded to an inactive peptide by the enzyme DPP-4.
Thanks to its short half-life, the modulating action of GLP-1 on
glycaemic control is calibrated and proportional to the glucose
load introduced with the diet, thereby preventing dangerous hy-
poglycaemia. Figure 1 summarizes the physiological actions of
GLP-1.

PHARMACOLOGICAL PROPERTIES OF
GLP-1RAS

GLP-1RAs induce supra-physiological stimulation of GLP-1R,
mimicking the mechanism of action of endogenous GLP-1 and
amplifying both local and systemic effects without interfering
in any way with GIP and without being degraded by endogenous
DPP-4. A peculiar feature is the ability to increase insulin secre-
tion in proportion to glycaemic values. This glucose-dependent
insulinotropic mechanism explains the low incidence of hypo-
glycaemic events associated with GLP-1RAs therapy, both when
used alone and in dual or triple therapy with metformin, pi-
oglitazone or basal insulin. GLP-1RAs can be classified into two
groups (shown in Figure 1):

Incretino-mimetics: Exenatide (Byetta®), Exenatide long-
acting release (LAR—Bydureon®), Lixisenatide (Lyxumia®). They
derive from exendin-4, a peptide isolated from the saliva of
the Gila Monster (Heloderma suspectum), a venomous lizard from
southernArizona.These drugs are resistant to rapid degradation
by DPP-4, but since they have a structural analogy of only 52%
compared with endogenous GLP-1, they have great immuno-
genic power with potential development of inactivating anti-
bodies. With the exception of exenatide in LAR formulation,
incretino-mimetics are defined as ‘short-acting’ drugs, as they
are characterized by short-lasting plasma concentration peaks
with intermittent periods of very low and almost close to zero
plasma values, duringwhich GLP-1Rs are not activated at all [12].
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Exenatide
Byetta®

5–10 mcg
twice daily

Lixisenatide
Lyxumia®

10–20 mcg
twice daily

Exenatide LAR
Bydureon®

2 mg
per week

Dulaglutide
Trulicity®

0.75–1.5 mg
per week

Semaglutide
Ozempic®

0.25–0.5–1 mg
per week

Liraglutide
Victoza® Saxenda®

0.6–1.2–1.8 mg
once a day

Semaglutide
Rybelsus®

3–7–14 mg
once a day

sc

sc

sc

sc

sc

sc

os

• Short-acting
• High immunogenic
  power
• Reduce post-prandial
  glycaemia
• Elimination by the kidneys

• Long-acting
• Low immunogenic power
• Reduce HbA1c and 
  fasting blood sugar
• Elimination by proteolytic 
  degradation

Incretino-mimetics

Human GLP-1 analogues

GLP-1RAs

FIGURE 1: Physiologic effects of GLP-1 (adapted from Granata et al. [11]).

Thanks to these characteristics, they show amoremarked effect
on slowing gastric emptying, which translates into a greater re-
duction in post-prandial glycaemic increase, while they are less
effective in controlling fasting blood glucose, basal insulin secre-
tion and in maintaining stable values of glycated hemoglobin
(HbA1c) [13–15]. The elimination of these drugs occurs mainly
by glomerular filtration, tubular reabsorption and consequent
proteolytic degradation. Therefore, their use is contraindicated
in the presence of estimated glomerular filtration rate (eGFR)
<30 mL/min/1.73 m2 (shown in Figure 2).

Human GLP-1 analogues: Liraglutide (Victoza®, Saxenda®),
Dulaglutide (Trulicity®), Injectable Semaglutide (Ozempic®),
Oral Semaglutide (Rybelsus®), Albiglutide (Eperzan®). They are
also called ‘long-acting’ since theymaintain elevated blood con-
centrations once the steady state is reached, allowing a continu-
ous stimulation of GLP-1R and only minor fluctuations between
administrations. These drugs have low immunogenic power due
to a high structural analogy with endogenous GLP-1. Specific
molecular characteristics, such as the covalent bond with albu-
min (albiglutide), with the Fc portion of human immunoglobu-
lin (Ig) G4 (dulaglutide) or with specific fatty acids (liraglutide),
give them a long half-life and prevent their elimination by the
kidneys. As a result, human GLP-1 analogues can be safely
used even at eGFR values to 15 mL/min/1.73 m2 (shown in Fig-
ure 2). Catabolism of these drugs occurs in target tissues in a
similar way to large proteins, without an organ-specific main
route of elimination. Contrary to short-acting GLP-1RAs, hu-
man GLP-1 analogues induce amoremarked reduction in HbA1c
and fasting blood sugar and decrease the incidence of side ef-
fects such as nausea and vomiting; moreover, they have shown
greater efficacy on cardiovascular mortality and morbidity
[19, 20].

GLP-1RAs generally require subcutaneous administration.
Nowadays, devices for subcutaneous injection of GLP-1RAs have
reached a remarkable technological evolution in terms of fre-
quency of administration, size of needles and ease of self-
inoculation of the drug using pre-filled pens. All of these aspects
have had a significant impact on the quality of life of diabetic pa-
tients and significantly improved their therapeutic adherence.
Starting from 2020, the first GLP-1RA (semaglutide—Rybelsus®)
has been available in oral formulation and may be administered
once daily. The ‘PIONEER’ series of trials [21–30] demonstrated
that oral semaglutide has a positive impact on average HbA1c
levels and weight reduction compared with several other drug
classes (SGLT-2 inhibitor, DPP-4 inhibitor, another GLP-1RA, in-
sulin and placebo). Based on the data collected so far, renal im-
pairment, even severe, does not significantly affect the pharma-
cokinetics of oral semaglutide and to date it can be used in pa-
tients with eGFR to 15 mL/min/1.73 m2.

GLP-1RA AND COVID-19

It is well known that acute respiratory distress syndrome repre-
sents themost severe form of COVID-19. The so-called ‘Cytokine
Storm’ that happens in this syndrome is characterized by the
highest levels of inflammatory cytokineswhich damage alveolar
epithelial cells in the lung and inactivate pulmonary surfactant,
resulting in the formation of the hyaline membrane and lung
parenchyma breakdown.With this background, GLP-1RAsmight
provide an opportunity to break the remarkable inflammation
process, exerting broad anti-inflammatory actions and reducing
biomarkers of systemic inflammation in particular in human
subjects with type 2 diabetes and people with obesity [31].
Preclinical studies showed that GLP-1RAs reduce cytokine
production, attenuate pulmonary inflammation and preserve
lung function in rats and mice with experimental lung injury
[8, 32]. The stimulation of pulmonary vasodilators like atrial
natriuretic peptide (ANP) and facilitation of surfactant protein
A are documented actions. Moreover, GLP-1RAs exert the re-
pression of the proinflammatory cytokine and the stimulation
of endothelial nitric oxide synthase (eNOS)/soluble guanylate
cyclase(sGC)/protein kinase G (PKG) signalling, and cause the
inactivation of the Nuclear Factor kappa B (NF-κB) signalling.
In addition, liraglutide attenuates the expression of key in-
flammasome components, such as the thioredoxin-interacting
protein which is significantly increased after the administration
of lipopolysaccharide along with cytokines and chemokine
genes [33].

Although it is not possible at present to make recommenda-
tions on this specific use, the metabolic and anti-inflammation
beneficial effects might identify GLP-1-based drugs as funda-
mental tools for treating COVID-19 patients [31].

GLP-1RAS AND KIDNEY: BEYOND
CARDIOPROTECTION

A growing literature supports the hypothesis that GLP-1RAs con-
fer nephroprotection not only because they promote weight loss
and improve glycaemic control but also through direct inter-
action with renal cells. Numerous human studies have shown
the presence of GLP-1R both in the glomerulus and in the re-
nal tubule. GLP-1RAs would appear to counteract glomerular hy-
perfiltration as they induce an increase in diuresis and natri-
uresis by phosphorylation and consequent direct inhibition of
the sodium-hydrogen exchanger 3, located on the brush border
of proximal tubular cells [34, 35]. Kim et al. [36] demonstrated
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FIGURE 2: Direct and indirect effects through which GLP-1RAs confer nephroprotection (adapted from Granata et al. [11]).

that liraglutide promotes natriuresis also through an increased
secretion of ANP by cardiomyocytes. These mechanisms ex-
plain, at least in part, the correlation between chronic GLP-1RAs
intake and lowering of blood pressure. The increased sodium
filtered load that reaches the macula densa restores the nor-
mal functioning of the tubulo-glomerular feedback, suppresses
the overactivation of the renin–angiotensin–aldosterone system
and lowers the serum concentration of angiotensin II. Further-
more, GLP-1RA inhibits mesangial expansion, reduces the en-
dothelial expression of profibrotic molecules and increases the
availability of intraglomerular nitric oxide, thus slowing the pro-
gression of DKD [37, 38].

The decline of glomerular filtrate and microalbuminuria
in diabetic patients is part of a corollary of systemic signs
and symptoms that share dyslipidemia and atherosclerosis
as causative events. According to some authors [39–41], GLP-
1RAs confer nephroprotection through various anti-atherogenic
properties:

• They reduce the production and secretion of intestinal chy-
lomicrons with beneficial effects on plasma levels of total
cholesterol, low-density lipoprotein (LDL) and triglycerides
[39];

• Theyminimize renal hypoxic-ischaemic damage as they reg-
ulate the mitochondrial activity of renal cells [40];

• They prevent oxidative damage and the formation of oxygen
free radicals (ROS) as they increase the levels of cAMP and the
activity of protein kinase A, while they reduce the activity of
NAD(P)H oxidase, interfere with the expression of receptors
for advanced glycation products (AGEs) and suppress the NF-
κB-mediated signalling pathway [41].

Finally, one fascinating hypothesis concerns the possible role of
GLP-1RAs in modifying the composition of the intestinal micro-
biota, whose dysregulation is related to the onset of numerous
pathological conditions, including CKD. An animal model study
compared the effects of liraglutide and saxagliptin on gut mi-
crobiota composition. The authors [42] observed that liraglutide
(but not saxagliptin) causes a lower expression of obesity-
related philotypes (including Roseburia, Erysipelotrichaceae
Incertae Sedis, Marvinbryantia and Parabacteroides), while on
the contrary it promotes the growth of the philotypes Blautia
and Coprococcus, which are related to a lower body mass index.
A possible explanation is that liraglutide induces an increase in
GLP-1 levels between 4 and 6 times higher than the DPP-4 in-
hibitor, with a more pronounced effect on the slowing of gastric
emptying and intestinal transit. All this contributes to modi-

fying the pH and the concentration of the different nutrients
within the intestinal lumen.Mechanisms bywhich the influence
of GLP-1RA on the intestinal microbiota can improve the clinical
outcomes of diabetic patients have yet to be demonstrated.

GLP-1RAS AND RENAL OUTCOMES IN
DIABETIC PATIENTS: REVIEW OF
RANDOMIZED CONTROLLED TRIALS

Numerous studies have investigated the nephroprotective ef-
fects of GLP-1RA in diabetic patients (Table 1).

In the LEADER trial [6], 9340 diabetic patients at high risk or
with known cardiovascular disease were randomly assigned to
the liraglutide versus placebo group.The study included both pa-
tients already on oral hypoglycaemic and/or insulin therapy and
naïve subjects. The primary endpoint was the time elapsed be-
tween randomization and the onset of MACEs (cardiovascular
death, nonfatal myocardial infarction and/or nonfatal stroke).
Other endpoints included percutaneous revascularization, hos-
pitalization for unstable angina or heart failure, death from all
causes, nephropathy (defined as occurrence of macroalbumin-
uria, doubling of creatinine, eGFR <45 mL/min/1.73 m2, need for
dialysis or death from kidney causes) and retinopathy. After a
mean follow-up period of 3.8 years, a mean reduction of 0.4%
for HbA1c and 2.3 kg for body weight was achieved in the li-
raglutide group.The primary endpoint showed a lower incidence
of MACEs in the liraglutide group (13%) compared with placebo
(14.9%). Regarding the renal composite outcome, in the liraglu-
tide group the incidence of nephropathy was 22% lower than
in placebo with a favourable impact especially on macroalbu-
minuria, while no significant differences were observed about
renal hard endpoints. The eGFR decline was slower in the li-
raglutide group; this effect was most evident in subcategories of
patients with moderate (eGFR 30–59 mL/min/1.73 m2) or severe
(eGFR <30 mL/min/1.73 m2) CKD.

The SCALE trial [43] evaluated the usefulness of liraglutide in
the management of body weight in 846 overweight or obese dia-
betic patients. Patients were randomly assigned to receive 3 mg
or 1.8 mg of liraglutide or placebo. At the end of the 56-week
study period, a significant weight loss also but a decreased uri-
nary albumin/creatinine ratio (UACR) was observed in both li-
raglutide arms compared with placebo (18.36, 10.79 and 2.34%,
respectively).

Unlike the LEADER and SCALE trials, in the LIRA-RENAL
trial liraglutide was found to be ineffective in improving renal
outcomes in a sample of 279 diabetic patients with moderate
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Table 1. Review of the main clinical trials that analyzed the impact of GLP-IRA on renal outcomes (adapted from Granata et al. [11])

Drug Renal endpoint Results

LEADER Liraglutide
versus
placebo

- Macroalbuminuria
- Doubling of sCreat
- eGFR <45 mL/min/1.73 m2

- Need for dialysis
- Death for renal causes

A lower incidence of nephropathy was found in the group treated
with liraglutide, due to a favourable impact on macroalbuminuria.
The eGFR decline over time was slower in patients with moderate/
severe CKD.

SCALE Liraglutide
versus
placebo

- Changes in UACR A significant weight loss also but a decreased urinary
albumin/creatinine ratio (UACR) was observed in both liraglutide
arms compared with placebo (18.36, 10.79 and 2.34%, respectively).

LIRA-RENAL Liraglutide
versus
placebo

- Changes in eGFR
- Changes in UACR

There was no difference between liraglutide and placebo in terms
of eGFR and UACR. This result could be partly due to the small
size of the sample and the short observation period.

SUSTAIN–6 Semaglutide
versus
placebo

- Macroalbuminuria
- Doubling of sCreat
- eGFR <45 mL/min/1.73 m2

- Need for dialysis

Semaglutide reduces the incidence of de novo macroalbuminuria.
Nevertheless, no difference was found regarding the incidence of
ESRD and death for renal causes.

ELIXA Lixisenatide
versus
placebo

- Changes in UACR Lixisenatide slows the worsening of UACR over time regardless of
basal albuminuria. No difference was found regarding eGFR
decline rate.

EXSCEL Exenatide LAR
versus
placebo

- 40% eGFR decline
- Need for dialysis
- Death for renal causes
- Macroalbuminuria de novo

Exenatide LAR performs better than placebo regarding the
composite renal outcome, with greater efficacy on the incidence
of macroalbuminuria.

AWARD-7 Dulaglutide
versus
glargine

- Changes in eGFR and UACR
from baseline

Dulaglutide was more effective than insulin glargine in
attenuating the decline in renal function, while there were no
statistically significant differences on the reduction of UACR. The
authors did not observe any significant correlation between the
variation of creatinine, cystatin C and body weight.

REWIND Dulaglutide
versus
Placebo

- Macroalbuminuria de novo
- ≥30% eGFR decline from
baseline

- Need for dialysis

Although the incidence of macroalbuminuria was lower in the
dulaglutide group, the percentages of eGFR decline ≥30% and the
need for dialysis showed an almost comparable trend in the two
groups. Sensitivity analysis revealed that dulaglutide significantly
reduces the worsening eGFR when it is defined as a reduction
of ≥40% or ≥50%, rather than ≥30%.

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; sCreat, serum creatinine; UACR, urine albumin/
creatinine ratio.

CKD (eGFR 30–59 mL/min/1.73 m2). The authors found no differ-
ence in terms of eGFR and UACR compared with placebo after
26 weeks of treatment [44]. This result could be partly due to
the limited sample size and the short observation period.

The ‘SUSTAIN’ series [5, 45–53] includes 10 randomized con-
trolled trials aimed at evaluating the efficacy of weekly subcuta-
neous semaglutide on glycaemic control in patients with T2DM.
Semaglutide was given as monotherapy or in combination with
metformin, sulfonylurea and/or insulin, and compared with the
most commonly used drugs for T2DM (sitagliptin, exenatide,
insulin glargine, dulaglutide, canagliflozin and liraglutide). Re-
cently, Mann et al. [54] conducted a post-hoc analysis of data
from 8416 patients enrolled in SUSTAIN 1–7 trials in order to ex-
amine the effects of subcutaneous semaglutide on eGFR, UACR
and renal adverse events. Although semaglutide is associated
with a decline in eGFR in the first 12–16 weeks of treatment
and then stabilized, the overall difference compared with other
antidiabetic drugs and to placebo over the entire observation
period was statistically insignificant; furthermore, UACR values
showed a decreasing trend in the group of patients treated with
semaglutide. The authors therefore concluded that treatment
with semaglutide does not increase the incidence of adverse
renal events compared with the other antidiabetic treatments.
In particular, the SUSTAIN-6 trial [5] was designed to demon-
strate the noninferiority of semaglutide compared with placebo

in terms of cardiovascular safety on a sample of 3297 patients.
Again, the primary endpoint was the incidence of MACEs. Af-
ter 2.1 years of follow-up, the semaglutide arm performed bet-
ter than placebo for MACEs (6.6% versus 8.9%), glycaemic con-
trol (mean HbA1c −1.1% versus −1.4%), weight loss (−3.6 vs
-4.9 kg) and the onset or worsening of nephropathy (3.8% ver-
sus 6.1%). Similar to what emerged from the LEADER trial, the
reduction in macroalbuminuria (up to 46%) appears to be the
main mechanism by which semaglutide positively affects renal
outcomes.

ELIXA [55] was a randomized, double-blind, parallel-group
study designed to evaluate the impact of lixisenatide on cardio-
vascular risk compared with placebo in a population of 6068 di-
abetic adults with a recent episode of acute coronary syndrome.
The primary composite endpoint, assessed for non-inferiority
and superiority, included the incidence of MACEs. The mean ob-
servation period was 108 weeks. The study showed that lixise-
natide is not inferior, although not superior, to placebo in car-
diovascular safety. In a recent sub-analysis of the results of the
ELIXA trial, Muskiet et al. [56] analysed the effects of lixisen-
atide on renal outcomes. The authors demonstrated that lixise-
natide reduces the UACR variation in both microalbuminuric
(−21%) and macroalbuminuric (−39%) patients at baseline and
prevents the appearance of macroalbuminuria in initially nor-
moalbuminuric subjects (−1.69%). On the other hand, eGFR
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decline in the two groupswas not statistically significant regard-
less of the baseline albuminuria values.

In the EXSCEL trial [57], 14 752 diabetic subjects were ran-
domly assigned to receive exenatide LAR at a dose of 2 mg
weekly versus placebo for an observation period of 3.2 years.
The results showed that exenatide is noninferior to placebo
in terms of safety but is not superior in terms of efficacy in
preventing MACEs. These findings were confirmed in all cate-
gories of patients with CKD of varying severity (baseline eGFR
>60 or <60 mL/min/1.73 m2). Although exenatide did not pro-
duce any significant improvement in eGFR decline and inci-
dence of ESRD and renal-related death in the EXSCEL trial, sub-
sequent analysis of the data adjusted for baseline demograph-
ics and comorbidities revealed a significant improvement in the
renal composite outcome,mainlymediated by a lower incidence
of macroalbuminuria [58].

The AWARD-7 study [59] recruited and randomized 577 dia-
betic patients with CKD stages G3 and G4 in three arms: (i) du-
laglutide, 1.5 mgweekly; (ii) dulaglutide, 0.75mgweekly; and (iii)
insulin glargine, all in combination with insulin lispro. The pri-
mary endpoint was the HbA1c changes at 26 weeks; secondary
endpoints included changes in UACR and eGFR, the latter es-
timated using both creatinine and cystatin C. After 52 weeks
of observation, the results demonstrated that dulaglutide ef-
fectively and safely improves glycaemic control in diabetic pa-
tients with advanced renal disease, with impact on HbA1c fluc-
tuations comparable to basal insulin glargine therapy. Regarding
secondary endpoints, dulaglutide was more effective than in-
sulin glargine in attenuating the decline in renal function (eGFR
reduction of −1.1, −1.5 and −2.9 mL/min/1.73 m2 in the three
groups, respectively), while there were no statistically signifi-
cant differences on the reduction of UACR. It is interesting to
note that the authors did not observe any significant correla-
tion between the variation of creatinine (whose serum concen-
trations are known to depend on the patient’s muscle mass) of
cystatin C (which is not influenced by muscle mass) and that of
body weight. These data indirectly confirm that the weight loss
recorded in patients treated with GLP-1RA is the result of a loss
of fat mass and not of muscle mass.

The REWIND trial [60] was a multicentre, randomized,
double-blind, placebo-controlled study in which 9901 diabetic
patients with a previous cardiovascular event or with cardio-
vascular risk factors were randomly assigned (1:1) to a weekly
subcutaneous injection of dulaglutide (1.5 mg) or placebo. The
primary outcomewas the incidence ofMACEswith an intention-
to-treat approach. Secondary outcomes included a composite of
retinopathy, nephropathy (de novo macroalbuminuria, eGFR de-
cline ≥30% from baseline, need for dialysis), single primary out-
come events, hospitalization for unstable angina or heart failure,
and death. During a median observation period of 5.4 years, the
primary composite outcome occurred in 12% in the dulaglutide
group versus 13.4% in the placebo group. All-cause mortality did
not differ between groups. Although the incidence of macroal-
buminuria was 8.9% versus 11.3% in the placebo group, the per-
centages of eGFR decline ≥30% and the need for dialysis showed
an almost comparable trend in the two groups. This randomized
controlled trial is the only one with a superiority study design.

The meta-analysis by Palmer et al. [61] grouped 764 ran-
domized controlled trials that compared SGLT-2 inhibitors and
GLP-1RA in order to evaluate their efficacy in diabetic patients.
The authors concluded that both drugs, when combined with
other antidiabetic treatments, reduce the incidence of nonfatal
myocardial infarction and severe hypoglycaemia, prevent the
development of CKD and lower mortality in proportion to the

patient’s cardiovascular and renal risk profile at baseline (very
low, low, moderate, high and very high). Careful stratification of
cardiovascular risk in diabetic patients is therefore a necessary
condition in order to establish the most suitable therapeu-
tic strategy. In accordance with this perspective, the latest
American Diabetes Association (ADA) [62], Italian Society of Di-
abetology (SID) [63] and KDIGO guidelines [64] differentiate the
pharmacological approach to T2DM not just based on the target
glycaemic values but also taking into account the indicators of
high-risk or established atherosclerotic cardiovascular disease,
CKD and heart failure.

The re-evaluation of the REWIND trial data, conducted with
the sensitivity analysis method, has shown that dulaglutide sig-
nificantly reduces the worsening eGFR when it is defined as a
reduction of ≥40% or ≥50%, rather than ≥30% as in the original
study design. Similarly, a very recentmeta-analysis [65] in which
sensitivity analysis excluded the only trial that recruited pa-
tients with a recent episode of acute coronary syndrome (ELIXA)
showed that GLP-1RAs not only reduce the incidence of MACEs,
hospitalization for heart failure and all-cause mortality, but also
improve the composite renal outcome in terms of eGFR decline
over time. These data show that the nephroprotective action of
GLP-1RAs is not exclusively linked to their impact on macroal-
buminuria. In 2019, the FLOW trial (Effect of Semaglutide Versus
Placebo on the Progression of Renal Impairment in SubjectsWith
Type 2 Diabetes and Chronic Kidney Disease) [66] was launched.
The authors recruited 3508 patients in order to evaluate the abil-
ity of semaglutide to reduce the incidence of the composite pri-
mary endpoint (eGFR decline ≥50% from baseline, need for dial-
ysis, death from renal causes and death from cardiovascular
disease) compared with placebo. The results of the study, ex-
pected in 2024,will help define the real role of GLP-1RAs as drugs
capable of slowing the worsening of DKD in patients with T2DM.

CONCLUSIONS

GLP-1RAs have shown a positive impact on reducing cardiovas-
cular risk with excellent safety profile. The clinical trials pub-
lished so far agree in attributing to GLP-1RAs a nephroprotective
action, which is expressed through both indirect (improvement
of blood pressure and glycaemic control, weight loss) and direct
(restoration of normal intrarenal haemodynamics, prevention of
ischaemic and oxidative damage) effects. This results in reduced
incidence of albuminuria and a slower decline of renal function.
Although the high cost currently represents an important limita-
tion for their use as a first therapeutic choice, these drugs could
be advantageous compared with insulin treatment thanks to a
lower rate of adverse side effects, better therapeutic adherence
and to the positive effects on body weight. Further studies are
needed in order to expand knowledge on the nephroprotective
effects of GLP-1RAs and their ability to implement long-term car-
diovascular and renal outcomes in diabetic patients.
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