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Abstract
The article extends the formulation of a 2D geometrically exact beam element
proposed by Jirásek et al. (2021) to curved elastic beams. This formulation is
based on equilibrium equations in their integrated form, combined with the
kinematic relations and sectional equations that link the internal forces to sec-
tional deformation variables. The resulting first-order differential equations are
approximated by the finite difference scheme and the boundary value problem
is converted to an initial value problem using the shooting method. The article
develops the theoretical framework based on the Navier–Bernoulli hypothesis,
with a possible extension to shear-flexible beams. Numerical procedures for the
evaluation of equivalent nodal forces and of the element tangent stiffness are
presented in detail. Unlike standard finite element formulations, the present
approach can increase accuracy by refining the integration scheme on the ele-
ment level while the number of global degrees of freedom is kept constant.
The efficiency and accuracy of the developed scheme are documented by seven
examples that cover circular and parabolic arches, a spiral-shaped beam, and a
spring-like beam with a zig-zag centerline. The proposed formulation does not
exhibit any locking. No excessive stiffness is observed for coarse computational
grids and the distribution of internal forces is not polluted by any oscillations.
It is also shown that a cross effect in the relations between internal forces and
deformation variables arises, that is, the bending moment affects axial stretch-
ing and the normal force affects the curvature. This coupling is theoretically
explained in the Appendix.

K E Y W O R D S

curved beam, geometrically exact nonlinear beam, Kirchhoff beam, large rotations, planar frame,
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1 INTRODUCTION

Curved beam models are widely used in various engineering applications involving for example arches, pipes, and bridge
slab structures in civil engineering or lattice metamaterials, tires, and rings in mechanical engineering. Often, these
structures are discretized into multiple straight elements that represent the curved geometry only approximately. The
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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majority of contributions to the development of curved beam elements are based on the finite element (FE) method within
the small-displacement theory and address shear and membrane locking caused by the coupling between bending and
stretching.1-6 On the other hand, design and manufacturing of flexible as well as soft metamaterials have opened an area
for the application of beams made of polymers or soft materials, for which large displacements and rotation may arise.

The key contributions to large-deformation analysis of thin beams are the theory of Reissner,7,8 based on the extension
of Timoshenko’s assumption to finite deformations, and the FE formulation developed by Simo and his coworkers.9-12 The
geometrically exact beam theory is still attracting researchers, with recent developments in the isogeometric approach13,14

or in computational procedures related to the parameterization of rotations using the rotation vector.15,16 In a recent
work17 we have presented a numerical formulation for two-dimensional straight beams under large sectional rotations
based on the shooting method: the boundary value problem is converted into an initial value problem handled by a finite
difference scheme, and the estimated values used in artificially added initial conditions are iteratively adjusted until the
boundary conditions on the opposite beam end are satisfied. On the global (structural) level, the governing equations
are assembled in the same way as for a standard FE beam element with six degrees of freedom (DOFs). It has been
demonstrated that the advantage of this approach is a dramatic reduction of the number of global degrees of freedom,
since the accuracy of the numerical approximation can be conveniently increased by refining the integration scheme on
the element level instead of introducing additional global unknowns.

The present paper extends the geometrically exact formulation presented by Jirásek et al.17 to curved beams under-
going large displacements and rotations. The theoretical framework is developed in Section 2 and the corresponding
numerical procedures are described in Section 3. The efficiency and accuracy of the proposed method is illustrated in
Section 4 by five examples, which treat circular and parabolic arches and a logarithmic spiral.

2 BEAM WITH INITIAL CURVATURE

2.1 Kinematic description

The approach developed by Jirásek et al.17 will now be extended to initially curved beams. Consider that the centerline of
the undeformed beam is a planar curve of length L. An auxiliary curvilinear coordinate s is defined as the arc length mea-
sured along the undeformed centerline, with s ∈ [0,L]. For a given shape of the centerline, it is possible to specify function
𝜑0(s)which describes the initial rotation of section s with respect to the left end section (this means that𝜑0(0) = 0). Coun-
terclockwise rotations are considered as positive. Displacement components u and w will be expressed with respect to a
local Cartesian coordinate system xz that is attached to the left end section and follows its motion; see Figure 1A.

(A)

(B) (C)

F I G U R E 1 (A) Coordinate system xz aligned with the left beam end, fictitious straight configuration (black), initial stress-free
configuration (red), and current deformed configuration (blue); (B) infinitesimal triangle with hypotenuse on the centerline in the initial
stress-free configuration; (C) infinitesimal triangle with hypotenuse on the centerline in the current deformed configuration
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572 HORÁK et al.

The transformation of the beam from the undeformed state to the current one is decomposed into

• (A) a rigid-body translation and rotation that follows the motion of the left end section, and
• (B) a true deformation during which the left end section remains fixed.

Phase A can be handled by simple geometrical transformations and does not affect the end forces expressed with
respect to the moving local coordinate system. It is therefore sufficient to focus on phase B and consider the left end of
the beam as fixed. The black straight beam in Figure 1A corresponds to a fictitious state used as a reference, while the
initial stress-free configuration of the beam is plotted in red and the current deformed configuration in blue.

Fictitious displacements that describe the mapping of an arbitrary point (x, z) from its reference position in the ficti-
tious straight state to its actual position in the initial stress-free configuration are denoted as u0 and w0 and considered
as functions of x and z. Based on the standard assumption that all cross sections remain planar, these functions can be
expressed as

u0(x, z) = us0(x) + z sin𝜑0(x), (1)
w0(x, z) = ws0(x) − z(1 − cos𝜑0(x)), (2)

where us0 and ws0 are functions of x that correspond to displacements of points on the centerline. Let us recall that 𝜑0 is
the already introduced function defining the angle between a generic section and the left end section in the stress-free
state. This angle at the same time corresponds to the rotation from the fictitious straight state to the initial stress-free state.
It is also worth noting that the coordinate s measured along the arc of the curved centerline in the stress-free state has the
same value as the coordinate x measured along the Cartesian axis in the fictitious straight state, and in the subsequent
derivations we will write all functions as dependent on x instead of s. In the same spirit, Cartesian coordinate z in the
fictitious straight state corresponds to the coordinate that would be measured in the initial stress-free state in the direction
normal to the curved centerline.

Functions us0, ws0, and 𝜑0 are supposed to be specified in advance but they are not independent. The length of the
centerline must remain unaffected by the transformation from the fictitious straight reference configuration to the initial
stress-free configuration, which is described by conditions

u′s0 = cos𝜑0 − 1, (3)
w′

s0 = − sin𝜑0, (4)

in which the prime denotes the derivative with respect to x. Relations (3) and (4) follow from the geometry of the
infinitesimal triangle depicted in Figure 1B. By definition, cross sections in the initial state are perpendicular to the initial
centerline, and so the angle by which the tangent to the centerline deviates from the x axis is the same as the angle 𝜑0 by
which the section deviates from the z axis.

In principle it is possible to specify only function𝜑0 and construct us0 and ws0 by integrating Equations (3) and (4) with
initial conditions us0(0) = 0 and ws0(0) = 0. Alternatively, one can characterize the initial shape by specifying functions
us0 and ws0, making sure that they satisfy the constraint (1 + u′s0)

2 + w′2
s0 = 1, and then evaluate function𝜑0 = − arcsin w′

s0.
However, one should bear in mind that the description based on a given function 𝜑0 combined with relations (3) and (4)
is fully general and permits arbitrary values of the “rotation” 𝜑0, while the inverse relation 𝜑0 = − arcsin w′

s0 is valid only
as long as 𝜑0 ∈ [−𝜋∕2, 𝜋∕2]. This is always true in the vicinity of the left end section but not necessarily along the whole
beam. For instance, if we consider a circular arch of radius R, the initial shape is described by

𝜑0(x) =
x
R
, (5)

us0(x) = R sin x
R
− x, (6)

ws0(x) = R
(

cos x
R
− 1

)
, (7)

from which

u′s0(x) = cos x
R
− 1, (8)

w′
s0(x) = − sin x

R
. (9)
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HORÁK et al. 573

Functions us0 and ws0 defined in (6) and (7) satisfy the constraint (1 + u′s0)
2 + w′2

s0 = 1, but the corresponding function
𝜑0 can be evaluated as − arcsin w′

s0 only for x ≤ 𝜋R∕2. If the centerline length L exceeds 𝜋R∕2, one needs to modify the
formula for the inversion of (4) accordingly and set 𝜑0 = 𝜋 + arcsin w′

s0 for x ∈ [𝜋R∕2, 3𝜋R∕2] and so forth.
The “total” centerline displacements, us and ws, and the “total” rotation, 𝜑, are understood as changes between the

fictitious straight state and the final deformed configuration. They differ from the initial values by increments

Δus = us − us0, (10)
Δws = ws − ws0, (11)
Δ𝜑 = 𝜑 − 𝜑0, (12)

that represent the actual displacements and rotation. Similar relations can be written for the displacements of an arbitrary
point, u and w, for which the subscript “s” is dropped. In analogy to (1) and (2), the displacements of an arbitrary point
can be expressed in terms of the centerline displacements and sectional rotation as

u(x, z) = us(x) + z sin𝜑(x), (13)
w(x, z) = ws(x) − z(1 − cos𝜑(x)). (14)

2.2 Deformation variables

Let us proceed to the evaluation of strains. The sections are assumed to remain perpendicular to the centerline, and so
the shear strains are neglected and it is sufficient to characterize the stretching in the direction parallel to the centerline.
Consider a fiber segment parallel to the centerline and located at section x and at height z, which is in the reference
straight configuration represented by an infinitesimal interval of length dx. In the deformed configuration, this segment
is mapped on the hypotenuse of an orthogonal triangle with catheti dx + du and dw and its length is

dx =
√
(dx + du)2 + dw2 = dx

√
(1 + u′)2 + w′2

. (15)

Making use of (1) and (2), we express the ratio between the current and reference fiber lengths as

dx
dx

=
√
(1 + u′)2 + w′2 =

√(
1 + u′s + z𝜑′ cos𝜑

)2 +
(

w′
s − z𝜑′ sin𝜑

)2 =

= 𝜆s + z𝜑′, (16)

in which

𝜆s =
√(

1 + u′s
)2 + w′2

s , (17)

is the centerline stretch.
When evaluating the actual physical stretch of a generic fiber, we need to take into account that the length of the

considered fiber segment in the stress-free configuration is not dx but

dx0 =
(
𝜆s0 + z𝜑′0

)
dx =

(
1 + z𝜑′0

)
dx. (18)

Here we have taken into account that

𝜆s0 =
√(

1 + u′s0
)2 + w′2

s0 = 1, (19)

due to the constraint on the functions that define the initial shape (which follows from the assumption that coordinate x
corresponds to the arc length measured along the centerline). Based on the above, the stretch of a generic fiber is given by

𝜆 = dx
dx0

= 𝜆s + z𝜑′

1 + z𝜑′0
= 𝜆s + z𝜅

1 + z𝜅0
, (20)
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574 HORÁK et al.

where 𝜅0 = 𝜑′0 is the initial curvature and 𝜅 = 𝜑′ is the curvature in the deformed state. The fact that for z = 0 we obtain
𝜆 = 𝜆s confirms that 𝜆s defined in (17) is the stretch evaluated at the centerline.

If we imagine the beam first as straight and then deform it to what we later consider as the initial configuration, the
stretch would be given by 1 + z𝜅0. Measured with respect to the fictitious straight shape, the final stretch would be 𝜆s + z𝜅.
However, since the fiber is actually stress-free in the initial (but curved) configuration, the effective stretch that it feels is
the ratio (𝜆s + z𝜅)∕(1 + z𝜅0).

2.3 Internal forces

The next step is to set up the expression for the strain energy of the deformed beam and identify the internal forces as the
variables work-conjugate with the sectional deformation variables 𝜆s and 𝜅. Since the stress state at each material point
is considered as uniaxial, it is sufficient to specify the strain energy density, int, as function of the stretch, 𝜆, and then
integrate it over the volume. The density is understood here as strain energy per unit initial volume, that is, volume in
the stress-free but initially curved state of the beam. When integrating over the volume of the initially curved beam, we
have to take into account that an infinitesimal segment of length dx measured along the centerline contains fibers whose
length (1 + z𝜅0) dx varies as function of their distance from the centerline. The strain energy is therefore written as

Eint =
∫

L

0 ∫A
(1 + z𝜅0)int(𝜆) dA dx, (21)

and its variation is

𝛿Eint =
∫

L

0 ∫A
(1 + z𝜅0)

𝜕int

𝜕𝜆

𝛿𝜆 dA dx, (22)

where A is the cross section and

𝛿𝜆 = 𝛿𝜆s + z𝛿𝜅
1 + z𝜅0

, (23)

is the variation of stretch. The derivative 𝜕int∕𝜕𝜆 = 𝜎 is the stress work-conjugate with the Biot strain, because differen-
tiation with respect to 𝜀 = 𝜆 − 1 gives the same result as differentiation with respect to 𝜆. This stress can be interpreted
as the normal component of the back-rotated first Piola–Kirchhoff stress (where the back rotation eliminates the effects
of the cross-sectional rotation).

The expression for the strain energy variation can be further converted into

𝛿Eint =
∫

L

0 ∫A
(1 + z𝜅0) 𝜎

𝛿𝜆s + z𝛿𝜅
1 + z𝜅0

dA dx =
∫

L

0 ∫A
𝜎 (𝛿𝜆s + z𝛿𝜅) dA dx =

∫

L

0
(N 𝛿𝜆s +M 𝛿𝜅) dx, (24)

in which

N =
∫A
𝜎 dA, (25)

M =
∫A

z𝜎 dA, (26)

are identified as the normal force and bending moment, playing the role of stress resultants that are work-conjugate with
the centerline stretch and curvature.

If the expression for strain energy density is taken as quadratic, given by

int(𝜆) =
1
2

E(𝜆 − 1)2, (27)

where E is the Young modulus, the resulting stress–strain relation

𝜎 = dint(𝜆)
d𝜆

= E(𝜆 − 1) = E𝜀, (28)
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HORÁK et al. 575

is linear in terms of the Biot strain 𝜀 = 𝜆 − 1 and the (back-rotated) first Piola–Kirchhoff stress 𝜎. However, since the
distribution of stretches across the height of the section of an initially curved beam is not linear but is given by the rational
function (20), the distribution of stresses across the section height is nonlinear even for this type of a linear stress–strain
law, and it is given by

𝜎 = E
(
𝜆s + z𝜅
1 + z𝜅0

− 1
)
= E 𝜆s − 1 + z(𝜅 − 𝜅0)

1 + z𝜅0
= E 𝜀s + zΔ𝜅

1 + z𝜅0
, (29)

where

𝜀s = 𝜆s − 1, (30)

is the strain at the centerline and

Δ𝜅 = 𝜅 − 𝜅0, (31)

is the difference between the curvatures in the deformed state and in the stress-free state.
Substituting the stress expressed from (29) into the integral formulae for internal forces, Equations (25) and (26), we

obtain

N =
∫A
𝜎 dA = E

∫A

𝜀s + zΔ𝜅
1 + z𝜅0

dA = E
∫A

dA
1 + z𝜅0

𝜀s + E
∫A

z dA
1 + z𝜅0

Δ𝜅, (32)

M =
∫A

z𝜎 dA = E
∫A

z𝜀s + z2Δ𝜅
1 + z𝜅0

dA = E
∫A

z dA
1 + z𝜅0

𝜀s + E
∫A

z2dA
1 + z𝜅0

Δ𝜅. (33)

The resulting sectional equations, that is, relations between internal forces and sectional deformation variables, can be
written as

N = EA
𝜅0𝜀s + ES

𝜅0Δ𝜅, (34)
M = ES

𝜅0𝜀s + EI
𝜅0Δ𝜅, (35)

where

A
𝜅0 = ∫A

dA
1 + z𝜅0

, (36)

S
𝜅0 = ∫A

z dA
1 + z𝜅0

, (37)

I
𝜅0 = ∫A

z2dA
1 + z𝜅0

, (38)

are modified sectional characteristics, dependent on the initial curvature 𝜅0. They remain constant during the simulation
and thus can be computed in advance, so their evaluation does not represent any problem even for general sections.
Moreover, by manipulating the integrals it is easy to show that S

𝜅0 = −𝜅0I
𝜅0 and A

𝜅0 = A − 𝜅0S
𝜅0 = A + 𝜅2

0 I
𝜅0 where A is

the standard sectional area. Therefore, it is sufficient to evaluate the modified moment of inertia, I
𝜅0 , and the modified

area and modified static moment are then obtained in a straightforward way.
For a rectangular section, the modified moment of inertia can be expressed analytically:

I
𝜅0 = bs

∫

hs∕2

−hs∕2

z2dA
1 + z𝜅0

= bs

𝜅

3
0

(
ln 2 + hs𝜅0

2 − hs𝜅0
− hs𝜅0

)
= bsh3

s

(
1

12
+

h2
s𝜅

2
0

80
+

h4
s𝜅

4
0

448
+ · · ·

)
. (39)

The dimensionless product hs𝜅0 is equal to the ratio hs∕R0 where R0 = 1∕𝜅0 is the initial radius of curvature. If this ratio is
1:10, the relative difference between the modified moment of inertia I

𝜅0 and the standard moment of inertia I = bsh3
s∕12
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576 HORÁK et al.

is just 0.1503%. The approximation

I
𝜅0 ≈ bsh3

s

(
1

12
+

h2
s𝜅

2
0

80

)
=

bsh3
s

12

(
1 + 0.15

h2
s

R2
0

)
, (40)

is then sufficiently accurate.
Sectional equations (34) and (35) have been derived using a rigorous procedure that combines (i) the definition of

internal forces as stress resultants (25) and (26), (ii) the kinematic assumption of planar cross sections remaining planar,
which leads to (20), and (iii) the linear uniaxial stress–strain law (28). If no further approximations are made, the con-
sistently derived equations reflect a certain coupling between axial stretching and bending, in the sense that the normal
force depends not only on the axial strain but also on the change of curvature, and the bending moment depends not only
on the change of curvature but also on the axial strain. Of course, this is true for a beam with nonzero initial curvature.
For a straight beam, sectional characteristics A

𝜅0 and I
𝜅0 are respectively equal to the standard area A and moment of

inertia I, and S
𝜅0 vanishes because it corresponds to the static sectional moment S = 0. In this case, sectional equations

(34) and (35) reduce to their simple form

N = EA 𝜀s, (41)
M = EI Δ𝜅, (42)

in which the axial stretching and bending are decoupled. For curved beams, sectional equations in the decoupled form
(41) and (42) need to be considered as a simplified version of the consistently derived Equations (34) and (35), which is
based on an approximation and introduces a certain error.

It is worth noting that the coupling between axial stretching and bending for curved beams is a phenomenon described
in the literature but often ignored. The consistent sectional equations were, in a different notation, derived for instance
by Bauer et al.;18 see their Equations (72) and (73). Similar issues arise also in shell theory. Detailed discussion of the
appropriate form of sectional equations for curved beams is provided in Appendix A.

2.4 Equilibrium equations

The equilibrium equations in their differential form could be derived from the stationarity conditions of the total potential
energy functional using the standard variational approach. This procedure is described in detail in our previous paper17

and it will not be repeated here because the resulting equations

− (N cos𝜑)′ −
(

M′

𝜆s
sin𝜑

)′

= 0, (43)

(N sin𝜑)′ −
(

M′

𝜆s
cos𝜑

)′

= 0, (44)

are exactly the same as Equations (26) and (27) in Reference 17. It is important to note that 𝜑 needs to be properly under-
stood as the rotation of the section with respect to the fictitious straight configuration and not as the actual rotation with
respect to the initial curved state, which would be Δ𝜑 = 𝜑 − 𝜑0. Furthermore, Equations (43) and (44) can be integrated
in closed form using the same approach as in Reference 17, which finally leads to

N(x) = −Xab cos𝜑(x) + Zab sin𝜑(x), (45)
M(x) = −Mab + Xabws(x) − Zab(x + us(x)), (46)

where Xab, Zab, and Mab are integration constants that physically correspond to the end forces and end moment acting
on the left end of the beam. Again, 𝜑, us, and ws are the rotation and displacements with respect to the fictitious straight
configuration, and the components of end forces are expressed with respect to the local xz coordinate system attached to
the left end. Of course, Equations (45) and (46) could be set up directly as equilibrium conditions deduced from a free-body
diagram, but it is reassuring that they can be derived variationally and that the internal forces (primarily defined as work
conjugates of the deformation variables) have indeed their usual meaning.
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HORÁK et al. 577

2.5 Treatment of the governing equations

The approach used here when setting up the relations between the generalized end forces (i.e., end forces and moments)
and the generalized end displacements (i.e., end displacements and rotations) follows the main idea described in Refer-
ence 17. Instead of approximating the centerline displacement functions by a linear combination of pre-selected functions
(e.g., polynomials) and enforcing equilibrium in the weak sense, we consider the integrated equilibrium equations (45)
and (46) and combine them with the sectional constitutive equations (34) and (35) and with a set of three first-order
differential equations

𝜑

′ = 𝜅, (47)
u′s = 𝜆s cos𝜑 − 1, (48)
w′

s = −𝜆s sin𝜑, (49)

which link the centerline displacement functions us and ws and the sectional rotation function 𝜑 to the deformation
variables—centerline stretch 𝜆s and curvature 𝜅. Equation (47) directly follows from the definition of the curvature, spec-
ified in the text after Equation (20), while Equations (48) and (49) follow from the geometry of an orthogonal triangle
with hypotenuse given by a deformed centerline segment of length 𝜆s dx inclined by𝜑with respect to the horizontal axis;
see Figure 1C.

One component of the outlined approach is the evaluation of the deformation variables from the internal forces, which
is based on the inverted form of consistent sectional equations (34) and (35),

𝜀s =
I
𝜅0 N − S

𝜅0 M
E
(

A
𝜅0 I

𝜅0 − S2
𝜅0

) , (50)

Δ𝜅 =
−S

𝜅0 N + A
𝜅0 M

E
(

A
𝜅0 I

𝜅0 − S2
𝜅0

) . (51)

Exploiting previously mentioned relations S
𝜅0 = −𝜅0I

𝜅0 and A
𝜅0 = A + 𝜅2

0 I
𝜅0 , this can be rewritten as*

𝜀s =
N + 𝜅0M

EA
, (52)

Δ𝜅 = 𝜅0N
EA

+ M
EI

𝜅0

+
𝜅

2
0 M

EA
= M

EI
𝜅0

+ 𝜅0𝜀s. (53)

If the consistent sectional equations (34) and (35) are replaced by their simplified form (41) and (42), the inverted relations
read

𝜀s =
N

EA
, (54)

Δ𝜅 = M
EI
. (55)

One could now express the internal forces on the right-hand sides of (52) and (53) using the integrated equilibrium
equations (45) and (46), and then transform the deformation variables 𝜀s and Δ𝜅 into 𝜆s = 1 + 𝜀s and 𝜅 = 𝜅0 + Δ𝜅 and
substitute the resulting expressions into the right-hand sides of (47)–(49). This would lead to a set of three ordinary
differential equations for functions us, ws, and 𝜑, with all the other unknown functions eliminated. However, for the
purpose of numerical treatment, it is preferred to keep the equations separate and process them one by one, because the
procedure will be more transparent and individual operations will retain a clear physical meaning.

Before we proceed with the details of numerical implementation, let us note that the proposed approach shares some
common features with the technique developed by Saje20 in a more general context of the Reissner beam model,7 that is,
with shear distortion taken into account. Saje20 started from a variational formulation based on the Hu-Washizu principle.
The potential energy was written as the sum of (i) the strain energy dependent on functions that characterize deformation
of individual beam segments (axial strain, curvature, and shear distortion) and (ii) the load energy dependent on the
displacement and rotation functions and on the generalized displacements at both end sections. Compatibility constraints
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578 HORÁK et al.

that link the deformation and displacement functions were enforced by an additional term that contains two Lagrange
multiplier functions, and the curvature was expressed directly as the derivative of rotation. The resulting functional was
then reduced by imposing relations that correspond to some of the stationarity conditions (Euler–Lagrange equations).
In particular, the axial strain and shear distortion were expressed in terms of the rotation and Lagrange multipliers,
and the Lagrange multiplier functions were expressed in terms of their values at the left end and prescribed loads. The
reduced functional was dependent on only one function—the rotation, and on eight discrete values—six generalized
end displacements and two left-end values of Lagrange multiplier, which physically correspond to the left-end forces.
The functional was then discretized by approximating the rotation function by a polynomial of degree M − 1 with M
unknown coefficients. The discretized model has M + 6 DOFs, because the unknown end rotations directly depend on
the coefficients of the polynomial rotation approximation, and thus only four end displacements and two end forces need
to be considered as additional DOFs.

In the present context (of an Euler–Bernoulli beam model), the approach of Saje20 would correspond to the
second-order differential equation for the rotation function that can be constructed in the following way: Equation (47)
is differentiated with respect to x, 𝜅′ is replaced by 𝜑′′0 + Δ𝜅

′, Δ𝜅′ is expressed as M′∕EI using the differentiated form of
(55), M′ is then evaluated according to (46) with the derivatives u′s and w′

s expressed by (48) and (49), and finally 𝜆s is
written as 1 + 𝜀s where 𝜀s is set to N∕EA according to (54) and N is expressed using (45). After a simple rearrangement,
the resulting equation reads

EI𝜑′′ +
(

1 + Zab sin𝜑 − Xab cos𝜑
EA

)
(Xab sin𝜑 + Zab cos𝜑) = EI𝜑′′0 . (56)

Instead of solving this equation in its weak form by constructing a polynomial approximation of function 𝜑, in our
approach we treat the original Equations (45)–(49) and (52)–(53) separately, replace the first derivatives in (47)–(49) by
finite differences, and handle the problem by marching from the left end to the right end without the need for solv-
ing a coupled set of equations. Of course, the left-end forces and moment still have to be determined iteratively, but the
resulting set always consists of only three nonlinear algebraic equations, no matter how fine discretization we use along
the beam. In contrast to that, the approach of Saje20 leads to a coupled set of M + 6 nonlinear algebraic equations if the
rotation function is approximated by a polynomial of order M − 1. We also use the fully consistent inverted sectional
equations (52) and (53) instead of their simplified form (54) and (55), which would follow from the formulation adopted
by Saje.20

Another potential advantage of our approach is that it can handle (with high precision) cases when the curvature
varies along the beam in a non-smooth way, which would be quite hard to approximate by a polynomial. An example of
such a problem will be presented in Section 4.7.

3 NUMERICAL PROCEDURES

3.1 Choice of primary unknown functions

Based on the theoretical description developed in the preceding section, a natural choice of the primary unknown func-
tions would be the centerline displacements us and ws and the sectional rotation 𝜑. However, we should bear in mind
that these kinematic variables describe changes of the current beam state with respect to the fictitious straight state.
A potential disadvantage of the approach based on such “total” displacements is that even the initial stress-free shape
would be computed numerically with some error, even though functions us0, ws0, and 𝜑0 that characterize the stress-free
state are assumed to be known. One also needs to take into account that since the computed “total” displacements and
rotation at the right end of the beam, us(L), ws(L), and 𝜑(L), are referred to the fictitious straight shape, they do not
correspond to the actual displacements and rotation of the joint to which the right end is attached. The joint displace-
ments and rotation are in fact Δus(L), Δws(L), and Δ𝜑(L). For instance, if the beam ends do not move at all, the target
values that should be obtained by the shooting method (to be described in Section 3.2) would not be zero but us0(L),
ws0(L), and 𝜑0(L). These corrections would need to be included in the expressions for the residual used by the shooting
method.

The above considerations motivate an alternative choice of displacements and rotation with respect to the stress-free
configuration,Δus,Δws, andΔ𝜑, as the primary unknown functions. In terms of these “true” displacements and rotation,
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HORÁK et al. 579

Equations (47)–(49) can be rewritten as

Δ𝜑′ = Δ𝜅, (57)
Δu′s = (1 + 𝜀s) cos(𝜑0 + Δ𝜑) − cos𝜑0, (58)
Δw′

s = −(1 + 𝜀s) sin(𝜑0 + Δ𝜑) + sin𝜑0. (59)

These equations have been obtained by combining (47)–(49) with (10)–(12), (3), (4), (30), and (31). Function𝜑0 is known
(it specifies the initial geometry) and the deformation variables 𝜀s and Δ𝜅 are directly evaluated from N and M using
(52) and (53). Of course, when the internal forces are computed based on Equations (45) and (46), the displacements and
rotation must be substituted in their total form, that is, Δus, Δws, and Δ𝜑 must be increased by the known values of us0,
ws0, and 𝜑0.

3.2 Shooting method

From the mathematical point of view, the problem that we need to solve looks like an initial value problem, because
Equations (57)–(59) are first-order differential equations for Δ𝜑, Δus, and Δws and the initial values Δ𝜑(0) = 0, Δus(0) =
0, and Δws(0) = 0 are known (due to the definition of the local coordinate system that remains firmly attached to the left
end section). However, in order to proceed with the integration, one also needs to know the left-end forces Xab and Zab
and the left-end moment Mab, which are used when expressing the internal forces according to (45) and (46).

In the context of structural analysis, the beam under consideration is attached to joints that link it to other beams, and
the joint displacements and rotations play the role of basic global unknowns. Therefore, a typical task at the beam element
level is to evaluate the end forces and moments (at both ends) generated by prescribed displacements and rotations of the
joints. Numerical treatment of this task can be based on a special version of the shooting method, that is, of the method
that converts a boundary value problem into an initial value problem with an iterative modification of those initial values
that are not known. These values are first guessed and then repeatedly corrected until the boundary conditions on the
opposite end of the interval are satisfied with sufficient accuracy. In the present setting, the left-end forces Xab and Zab
and the left-end moment Mab need to be adjusted until the numerically computed displacements and rotation of the right
end (with respect to the coordinate system attached to the left end) become equal to the target values determined from the
prescribed joint displacements and rotations. This iterative process at the beam element level is embedded in the global
iteration of joint displacements and rotations leading to satisfaction of joint equilibrium conditions.

To formalize the computational procedure outlined above, let us introduce the column matrix of the left end
generalized forces,

fab =
⎛
⎜⎜⎜⎝

Xab

Zab

Mab

⎞
⎟⎟⎟⎠
, (60)

and the column matrix of the right end generalized displacements,

ub =
⎛
⎜⎜⎜⎝

ub

wb

𝜑b

⎞
⎟⎟⎟⎠
. (61)

Numerical integration along the beam, starting from zero values of generalized displacements at the left end and using
generalized forces fab, leads to the values of generalized displacements at the right end. This is formally described by the
mapping

g(fab) =
⎛
⎜⎜⎜⎝

Δus(L;Xab,Zab,Mab)
Δws(L;Xab,Zab,Mab)
Δ𝜑(L;Xab,Zab,Mab)

⎞
⎟⎟⎟⎠
, (62)
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580 HORÁK et al.

where for instance Δus(L;Xab,Zab,Mab) means the value of function Δus at x = L determined with the left end forces set
to Xab and Zab and the left end moment to Mab.

For given values of ub, condition

g(fab) = ub, (63)

represents a set of three nonlinear equations for unknowns fab. The solution is found by the Newton–Raphson method,
using the recursive formula

f(k+1)
ab = f(k)ab + G−1

(
f(k)ab

)(
ub − g

(
f(k)ab

))
, k = 0, 1, 2, … (64)

where

G =
𝜕g
𝜕fab

, (65)

is the Jacobi matrix of mapping g.
Note that the target values of Δus(L), Δws(L), and Δ𝜑(L) are the true displacements and rotation of the joint attached

to the right end of the beam. Of course, the displacement components must be taken with respect to the local beam coor-
dinate system aligned with the left end. The advantage of the approach based on displacements and rotation with respect
to the initial shape is that, for this choice, g(0) = 0 holds exactly, even when the mapping g is evaluated numerically, and
so for zero prescribed displacements of the joints, leading to ub = 0, Equation (63) yields zero end forces, fab = 0. This
would not be the case if the numerical integration used the “total displacements” as primary unknowns, because the
initial shape would not be captured exactly by the numerical approximation.

3.3 Algorithms

A numerical algorithm for evaluation of function g will be developed in Section 3.3.1 and the corresponding algorithm for
evaluation of the Jacobi matrix G will be described in Section 3.3.2. Approximation of the governing equations is based on
finite difference expressions. The interval [0,L] is divided into N segments of equal length h = L∕N, which connect the
grid points xi = ih, i = 0, 1, 2, … N. The approximate values of various quantities at point xi will be denoted by subscript i.
To increase the accuracy, in some cases it is beneficial to deal with approximate values at the midpoint of segment number
i, which will be denoted by subscripts i − 1∕2. Of course, the coordinates of the midpoints are given by xi−1∕2 = (i − 1∕2)h,
i = 1, 2, … N.

3.3.1 Evaluation of right-end displacements and rotation

For a beam with arbitrary geometry, the initial shape is supposed to be described by given functions us0, ws0, and 𝜑0,
from which it is possible to derive the initial curvature function, 𝜅0 = 𝜑′0. In the special case of a circular arch, we have
𝜅0 = 1∕R0 = const., where R0 is the initial radius of curvature of the centerline. More precisely, 𝜅0 = 1∕R0 if the shape of
the arch is convex (center of curvature above the arch), while 𝜅0 = −1∕R0 should be used if the shape is concave.

Based on the shape and dimensions of the cross section, one can determine the modified moment of inertia, I
𝜅0, as

function of the initial curvature. For a rectangular section, the exact expression (39) or its approximation (40) can be used.
For other sectional shapes, an appropriate analytical formula can be derived or, as the last resort, numerical evaluation
of the integral in (38) can be performed. The algorithm also works with the standard sectional area, A.

Evaluation of right-end displacements and rotation for given left-end forces and moment and for left-end displace-
ments and rotation set to zero can be described as follows:

1. Set initial values

Δu0 = 0, (66)
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HORÁK et al. 581

Δw0 = 0, (67)
Δ𝜑0 = 0, (68)

M0 = −Mab, (69)
𝜅0,0 = 𝜅0(0), (70)
𝜀0 = (−Xab + 𝜅0,0M0)∕EA, (71)

Δ𝜅0 = 𝜅0,0𝜀0 +M0∕EI
𝜅0(𝜅0,0). (72)

2. For i = 1, 2, … N evaluate

Δ𝜑i−1∕2 = Δ𝜑i−1 + Δ𝜅i−1Δx∕2, (73)
𝜑i−1∕2 = 𝜑0(xi−1∕2) + Δ𝜑i−1∕2, (74)
Ni−1∕2 = −Xab cos𝜑i−1∕2 + Zab sin𝜑i−1∕2, (75)
𝜅0,i−1∕2 = 𝜅0(xi−1∕2), (76)
𝜀i−1∕2 = (Ni−1∕2 + 𝜅0,i−1∕2Mi−1)∕EA, (77)
Δui = Δui−1 +

[
(1 + 𝜀i−1∕2) cos𝜑i−1∕2 − cos𝜑0(xi−1∕2)

]
Δx, (78)

Δwi = Δwi−1 +
[
sin𝜑0(xi−1∕2) −

(
1 + 𝜀i−1∕2

)
sin𝜑i−1∕2

]
Δx, (79)

Mi = −Mab + Xab(w0(xi) + Δwi) − Zab(xi + u0(xi) + Δui), (80)
𝜅0,i = 𝜅0(xi), (81)
𝜀i = (Ni−1∕2 + 𝜅0,iMi)∕EA, (82)

Δ𝜅i = 𝜅0,i𝜀i +Mi∕EI
𝜅0(𝜅0,i), (83)

Δ𝜑i = Δ𝜑i−1∕2 + Δ𝜅i Δx∕2. (84)

3. The resulting values of right-end displacements and rotation are ub = ΔuN , wb = ΔwN , and 𝜑b = Δ𝜑N .

This algorithm has a similar structure to the procedure developed in Reference 17 for a straight beam. It is fully
explicit and at the same time second-order accurate because time derivatives are replaced either by central differences,
or by a sequence of two half-steps that use a forward difference combined with a backward difference. For instance,
Equation (57) is integrated in two half-steps described by (73) and (84), the first one being based on a forward difference
and the second on a backward difference. For an initially straight beam, the axial strain depends only on the normal force,
which can be determined from the sectional rotation without knowing the displacements, and the curvature depends
only on the bending moment, which can be determined from the displacements without knowing the rotation. In that
case, integration of Equation (57) in two half-steps described by (73) and (84) corresponds to the trapezoidal rule, and
integration of Equations (58) and (59) described by (78) and (79) corresponds to the midpoint rule. The initial curvature
introduces a slight coupling but the effects of the normal force on the change of curvature and of the bending moment
on the axial strain remain small. This is why the accuracy is not substantially compromised if

• the evaluation of the axial strain at midpoint described by (77) is based on the normal force at midpoint and the bending
moment at the beginning of the segment, and

• the evaluation of the curvature change at the end of the segment described by (83) is based on the bending moment at
the end of the segment combined with the normal force at midpoint; see (82).

Using this scheme, it is sufficient to evaluate the normal force only at the midpoint and the bending moment only at
the end of the segment. One can avoid the evaluation of the bending moment and displacements at the midpoint and of
the normal force at the end of the segment, which would involve additional calculations without a substantial increase
in accuracy. Note that 𝜀i−1∕2 and 𝜀i computed in (77) and (82) are auxiliary variables, which are directly used in (78), (79),
and (83) but do not need to be stored. On the other hand, Δ𝜅i evaluated in (83) is used not only in (84) but also in the
next segment in (73) under the name of Δ𝜅i−1 (with the value of i incremented). In fact, one could proceed from Δ𝜑i−1∕2
to Δ𝜑i+1∕2 in one single step of length Δx and skip the evaluation of Δ𝜑i. A half-step is needed only in the first segment
and the last one, to obtain Δ𝜑N as one of the basic output variables.
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582 HORÁK et al.

3.3.2 Jacobi matrix

The foregoing algorithm defines the mapping g of the generalized left-end forces fab on the generalized right-end dis-
placements g(fab), which is needed for the evaluation of the left-hand side of (63). For iterative solution of equations (63)
by the Newton–Raphson method, one also needs the Jacobi matrix of mapping g, that is, the matrix

G =
𝜕g
𝜕fab

, (85)

which contains derivatives of the right-end displacements and rotation with respect to the left-end forces and moment.
The entries of the Jacobi matrix are evaluated numerically using the linearized version of the computational scheme.

Suppose that the input values of left-end forces Xab, Zab, and Mab are perturbed by infinitesimal increments dXab, dZab,
and dMab. The corresponding infinitesimal changes of displacements and rotations along the beam can be computed from
the linearized form of Equations (73)–(84), which reads

d𝜑i−1∕2 = d𝜑i−1 + d𝜅i−1Δx∕2, (86)
dNi−1∕2 = −dXab cos𝜑i−1∕2 + dZab sin𝜑i−1∕2 + Xab sin𝜑i−1∕2d𝜑i−1∕2 + Zab cos𝜑i−1∕2d𝜑i−1∕2, (87)
d𝜀i−1∕2 = (dNi−1∕2 + 𝜅0,i−1∕2dMi−1)∕EA, (88)

dui = dui−1 +
[
d𝜀i−1∕2 cos𝜑i−1∕2 − (1 + 𝜀i−1∕2) sin𝜑i−1∕2d𝜑i−1∕2

]
Δx, (89)

dwi = dwi−1 −
[
d𝜀i−1∕2 sin𝜑i−1∕2 +

(
1 + 𝜀i−1∕2

)
cos𝜑i−1∕2d𝜑i−1∕2

]
Δx, (90)

dMi = −dMab + dXab(w0(xi) + Δwi) − dZab(xi + u0(xi) + Δui) + Xabdwi − Zabdui, (91)
d𝜀i = (dNi−1∕2 + 𝜅0,idMi)∕EA, (92)
d𝜅i = 𝜅0,id𝜀i + dMi∕EI

𝜅0(𝜅0,i), (93)
d𝜑i = d𝜑i−1∕2 + d𝜅iΔx∕2. (94)

The values of du0, dw0, and d𝜑0 are set to zero, because the zero values of Δu0, Δw0, and Δ𝜑0 are fixed; see (66)–(68).
The value of dM0 is set to −dMab, and d𝜅0 is obtained as 𝜅0,0d𝜀0 − dMab∕EI

𝜅0(𝜅0,0) where d𝜀0 = −(dXab + 𝜅0,0dMab)∕EA.
If we set dXab = 1 and dZab = dMab = 0, the resulting values of duN , dwN and d𝜑N will correspond to the first column

of the Jacobi matrix G. They are evaluated using the adapted scheme with d𝜅0 = −𝜅0,0∕EA and

d𝜑i−1∕2 = d𝜑i−1 + d𝜅i−1Δx∕2, (95)
dNi−1∕2 = − cos𝜑i−1∕2 + Xab sin𝜑i−1∕2d𝜑i−1∕2 + Zab cos𝜑i−1∕2d𝜑i−1∕2, (96)
d𝜀i−1∕2 = (dNi−1∕2 + 𝜅0,i−1∕2dMi−1)∕EA, (97)

dui = dui−1 +
[
d𝜀i−1∕2 cos𝜑i−1∕2 − (1 + 𝜀i−1∕2) sin𝜑i−1∕2d𝜑i−1∕2

]
Δx, (98)

dwi = dwi−1 −
[
d𝜀i−1∕2 sin𝜑i−1∕2 +

(
1 + 𝜀i−1∕2

)
cos𝜑i−1∕2d𝜑i−1∕2

]
Δx, (99)

dMi = w0(xi) + Δwi + Xabdwi − Zabdui, (100)
d𝜀i = (dNi−1∕2 + 𝜅0,idMi)∕EA, (101)
d𝜅i = 𝜅0,id𝜀i + dMi∕EI

𝜅0(𝜅0,i), (102)
d𝜑i = d𝜑i−1∕2 + d𝜅iΔx∕2. (103)

The other two columns are obtained in an analogous fashion. In practice, the evaluation of (95)–(103) in a loop over i =
1, 2, … N is performed simultaneously with the evaluation of (73)–(84), so that various auxiliary values such as cos𝜑i−1∕2,
sin𝜑i−1∕2, or 𝜀i−1∕2 can be reused.

3.4 Transformation to global coordinates

Suppose that the algorithms described in Section 3.3 have been implemented and Equation (63) can be solved numerically
based on the iterative scheme (64). The prescribed values of right-end displacements ub on the right-hand side of (63) as
well as the resulting left-end forces fab are expressed in a local coordinate system xz, with the origin located at the left end
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HORÁK et al. 583

of the beam in the deformed configuration and with the x axis in the direction of the tangent to the deformed centerline
at the left end. Now we need to link the local components of forces and displacements to the components expressed with
respect to the global coordinate system used for the whole structural model, which will be denoted by a superscript G.

The initial geometry is described by global coordinates of the joints connected by the beam, that is, xG
a and zG

a at the left
end and xG

b and zG
b at the right end, and also by the beam length measured along the centerline, L, and by functions us0,

ws0, 𝜑0 and 𝜅0 that specify the curved shape of the beam. These functions are not independent, and in principle it would
be sufficient to specify the curvature, 𝜅0, because the rotation, 𝜑0, could be computed by integrating 𝜅0 and imposing
initial condition 𝜑0(0) = 0, and the functions describing the centerline, us0 and ws0, could be computed by integrating
Equations (3) and (4) and imposing initial conditions us0(0) = 0 and ws0(0) = 0. Instead of performing these operations
numerically or developing complicated rules for symbolic integration, the implementation in OOFEM21,22 leaves it up to
the user to prepare all needed functions and specify them on input, making sure that they are consistent.

For the purpose of transformation between local and global coordinate systems, we need to characterize the angle 𝛼ab
by which the local axes are rotated (clockwise) with respect to the global axes. Suppose that 𝛼0ab is the value of this angle
in the initial stress-free state, which can be determined from the given geometrical data. During the deformation process,
the local coordinate system rotates with the left end joint, and so

𝛼ab = 𝛼0,ab − 𝜑G
a , (104)

where 𝜑G
a is the rotation of the left joint (positive counterclockwise). Another quantity that will play a role in the trans-

formations is the angle by which the beam chord deviates from the local x-axis. The value of this angle in the initial
stress-free state, denoted as 𝛽0ab, can easily be deduced from the description of the initial beam shape.

As already explained in Section 2.1, the total transformation of the beam can be conceptually decomposed into two
parts: (A) rigid-body motion and (B) pure deformation. We can imagine that during stage A the beam moves as a rigid
body such that it gets translated by uG

a and wG
a and then rotated about the left end by 𝜑G

a counterclockwise. This part of
the overall motion does not affect the deformation state of the beam and has no effect on the end forces and moments,
provided that their components are expressed with respect to a coordinate system that rotates with the beam.

During stage B, the left end remains fixed while the right end is moved to its actual position in the deformed configu-
ration and the right end section is rotated by 𝜑G

b − 𝜑
G
a . The displacements of the right end experienced during this second

stage and expressed with respect to the local coordinate system attached to the left end are

ub =
(

uG
b − uG

a
)

cos 𝛼ab +
(

wG
b − wG

a
)

sin 𝛼ab + Lab
(

cos
(
𝛽0ab + 𝜑G

a
)
− cos 𝛽0ab

)
, (105)

wb = −
(

uG
b − uG

a
)

sin 𝛼ab +
(

wG
b − wG

a
)

cos 𝛼ab + Lab
(

sin
(
𝛽0ab + 𝜑G

a
)
− sin 𝛽0ab

)
, (106)

where Lab is the length of the initial chord, see (117), and the rotation is

𝜑b = 𝜑G
b − 𝜑

G
a . (107)

Therefore, if the global displacements and rotations are prescribed, they can be transformed into the local displacements
and rotation of the right end with respect to the left end, which are assembled into the column matrix ub. The corre-
sponding column matrix of left-end forces fab, obtained by solving Equations (62) and formally denoted as g−1(ub), has
components Xab, Zab, and Mab. Here, Mab is directly the end moment acting at the left end, while the end forces must be
transformed into the global components

XG
ab = Xab cos 𝛼ab − Zab sin 𝛼ab, (108)

ZG
ab = Xab sin 𝛼ab + Zab cos 𝛼ab. (109)

Finally, equilibrium equations written for the whole beam lead to expressions for the right-end forces

XG
ba = −XG

ab, (110)
ZG

ba = −ZG
ab, (111)

and the right-end moment

Mba = −Mab + Xab(ws0(L) + wb) − Zab(L + us0(L) + ub). (112)
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584 HORÁK et al.

The angle characterizing the initial deviation of the local axes from the global ones can be expressed as

𝛼0ab = 𝛾0ab − 𝛽0ab, (113)

where

𝛾0ab = arctan
zG

b − zG
a

xG
b − xG

a
, (114)

is the angle between the beam chord (straight line connecting the end joints) and the global axis xG, and 𝛽0ab is the angle
between the beam chord and the tangent to the centerline at the left end; see Figure 2. Recall that

(
xG

a , zG
a
)

and
(

xG
b , z

G
b

)
are the global coordinates of the end joints a and b in the initial state.

Strictly speaking, formula (114) gives the correct result only if xG
b > xG

a and, to make it general, the rule for evaluation
of 𝛾ab would need to be split into several cases. However, for evaluation of the transformation formulae we will not really
need the angle 𝛾0ab as such but rather its sine and cosine, which are conveniently expressed as

cos 𝛾0ab =
xG

b − xG
a

Lab
, (115)

sin 𝛾0ab =
zG

b − zG
a

Lab
, (116)

where

Lab =
√(

xG
b − xG

a
)2 +

(
zG

b − zG
a
)2
, (117)

is the initial chord length (distance between the end joints). These equations give the correct values of cos 𝛾0ab and sin 𝛾0ab
including the signs for arbitrary inclinations of the chord.

In a similar fashion, the sine and cosine of angle 𝛽0ab between the beam chord and the local axis (in the initial state)
can be expressed as

cos 𝛽0ab =
L + us0(L)

Lab
, (118)

sin 𝛽0ab =
ws0(L)

Lab
. (119)

Consistency requires that

(L + us0(L))2 + w2
s0(L) = L2

ab. (120)

Recall that L is the length of the beam measured along the curved centerline while the chord length Lab represents the
distance between the end joints, both in the initial stress-free state.

F I G U R E 2 Local and global coordinate axes in the initial state and definition of angles 𝛼0,ab, 𝛽0,ab, and 𝛾0,ab
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HORÁK et al. 585

3.5 Matrix formalism and stiffness matrix

It is convenient to rewrite relations (105)–(109) in the matrix notation:

ub = T
(
𝜑

G
a
)(

uG
b − uG

a
)
+ l

(
𝜑

G
a
)
, (121)

fG
ab = TT(

𝜑

G
a
)

fab, (122)

where

T(𝜑G
a ) =

⎛
⎜⎜⎜⎝

cos
(
𝛼0,ab − 𝜑G

a
)

sin
(
𝛼0,ab − 𝜑G

a
)

0
− sin

(
𝛼0,ab − 𝜑G

a
)

cos
(
𝛼0,ab − 𝜑G

a
)

0
0 0 1

⎞
⎟⎟⎟⎠
, (123)

l(𝜑G
a ) = Lab

⎛
⎜⎜⎜⎝

cos
(
𝛽0ab + 𝜑G

a
)
− cos 𝛽0ab

sin
(
𝛽0ab + 𝜑G

a
)
− sin 𝛽0ab

0

⎞
⎟⎟⎟⎠
. (124)

Recall that fab and ub are the column matrices of local components defined in (60) and (61). The column matrices of
global components are defined as

uG
a =

⎛
⎜⎜⎜⎝

uG
a

wG
a

𝜑

G
a

⎞
⎟⎟⎟⎠
, uG

b =
⎛
⎜⎜⎜⎝

uG
b

wG
b

𝜑

G
b

⎞
⎟⎟⎟⎠
, fG

ab =
⎛
⎜⎜⎜⎝

XG
ab

ZG
ab

Mab

⎞
⎟⎟⎟⎠
. (125)

For computing purposes, the coefficients in matrices T and l can be expanded into

cos
(
𝛽0ab + 𝜑G

a
)
= cos 𝛽0ab ⋅ cos𝜑G

a − sin 𝛽0ab ⋅ sin𝜑G
a , (126)

sin
(
𝛽0ab + 𝜑G

a
)
= sin 𝛽0ab ⋅ cos𝜑G

a + cos 𝛽0ab ⋅ sin𝜑G
a , (127)

cos
(
𝛼0,ab − 𝜑G

a
)
= cos 𝛼0,ab ⋅ cos𝜑G

a + sin 𝛼0,ab ⋅ sin𝜑G
a , (128)

sin
(
𝛼0,ab − 𝜑G

a
)
= sin 𝛼0,ab ⋅ cos𝜑G

a − cos 𝛼0,ab ⋅ sin𝜑G
a , (129)

where cos 𝛽0ab and sin 𝛽0ab are pre-computed constants given by (118) and (119) and

cos 𝛼0,ab = cos 𝛾0ab ⋅ cos 𝛽0ab + sin 𝛾0ab ⋅ sin 𝛽0ab, (130)
sin 𝛼0,ab = sin 𝛾0ab ⋅ cos 𝛽0ab − cos 𝛾0ab ⋅ sin 𝛽0ab, (131)

are pre-computed constants obtained from the constants given by (115)–(119).
Combining (121) and (122) with the inverse form of (63),

fab = g−1(ub), (132)

we get

fG
ab = TT(

𝜑

G
a
)

g−1(T
(
𝜑

G
a
)(

uG
b − uG

a
)
+ l

(
𝜑

G
a
))
. (133)

This formula summarizes the process of evaluation of the left-end forces and moment from the end displacements and
rotations. For better clarity, let us rewrite it in the simplified form

fG
ab = TTg−1(T

(
uG

b − uG
a
)
+ l

)
, (134)

bearing in mind that matrices T and l depend on the left-end rotation, 𝜑G
a , which is at the same time the last component

of column matrix uG
a .
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586 HORÁK et al.

The dependence of T and l on 𝜑G
a needs to be taken into account when developing the relation between infinitesimal

increments of end displacements and end forces, which will provide an appropriate formula for the tangent element
stiffness matrix.

The linearized form of Equations (121) and (122) reads

dub = T
(
duG

b − duG
a
)
+
(

T′(uG
b − uG

a
)
+ l′

)
d𝜑G

a , (135)

dfG
ab = TTdfab + T′Tfab d𝜑G

a , (136)

where

T′ =
𝜕T

(
𝜑

G
a
)

𝜕𝜑

G
a

=
⎛
⎜⎜⎜⎝

sin
(
𝛼0,ab − 𝜑G

a
)

− cos
(
𝛼0,ab − 𝜑G

a
)

0
cos

(
𝛼0,ab − 𝜑G

a
)

sin
(
𝛼0,ab − 𝜑G

a
)

0
0 0 0

⎞
⎟⎟⎟⎠
, (137)

l′ =
𝜕l
(
𝜑

G
a
)

𝜕𝜑

G
a

= Lab

⎛
⎜⎜⎜⎝

− sin
(
𝛽0ab + 𝜑G

a
)

cos
(
𝛽0ab + 𝜑G

a
)

0

⎞
⎟⎟⎟⎠
. (138)

Combining this with the linearized version of (132),

dfab = G−1(ub) dub, (139)

we get

dfab
(
𝜑

G
a
)
= TTG−1[T(duG

b − duG
a
)
+
[
T′(uG

b − uG
a
)
+ l′

]
d𝜑a] + T′Tfab d𝜑a =

= TTG−1T
(
duG

b − duG
a
)
+
[

TTG−1 [T′(uG
b − uG

a
)
+ l′

]
+ T′Tfab

]
d𝜑a, (140)

where G−1 is the inverse of Jacobi matrix G evaluated at fab = g−1(ub) where ub = T
(

uG
b − uG

a
)
+ l.

Based on (140), we can set up the first three rows of the 6 × 6 element tangent stiffness matrix (in global coordi-
nates). In view of (110) and (111), the fourth row is minus the first row, and the fifth row is minus the second row,
because dXG

ba = −dXG
ab and dZG

ba = −dZG
ab. To determine the sixth row, one needs to linearize the expression for Mba.

Instead of using (112), it is convenient to set up an equivalent formula written in terms of the global components. From
the moment equilibrium condition written with respect to the centroid of the right end section in the deformed state,
we get

Mba = −Mab + XG
ab

(
zG

b − zG
a + wG

b − wG
a
)
− ZG

ab

(
xG

b − xG
a + uG

b − uG
a
)
, (141)

and the infinitesimal increment of the right-end moment can be expressed as

dMba = −dMab +
(

zG
b − zG

a + wG
b − wG

a
)
dXG

ab −
(

xG
b − xG

a + uG
b − uG

a
)
dZG

ab+
+ XG

ab

(
dwG

b − dwG
a
)
− ZG

ab

(
duG

b − duG
a
)
. (142)

Consequently, the sixth row of the stiffness matrix can be constructed as a linear combination of the first three rows
with coefficients

(
zG

b − zG
a + wG

b − wG
a
)
, −

(
xG

b − xG
a + uG

b − uG
a
)

and −1, resp., added to the row
(

ZG
ab,−XG

ab, 0,−ZG
ab,X

G
ab, 0

)
.

However, this does not even have to be done, since the stiffness matrix must be symmetric and we already have its sixth
column, except for the last (i.e., diagonal) entry. So it is sufficient to mirror the entries from the sixth column into the
sixth row and put

k66 =
(

zG
b − zG

a + wG
b − wG

a
)

k16 −
(

xG
b − xG

a + uG
b − uG

a
)

k26 − k36, (143)

on the diagonal.
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HORÁK et al. 587

4 NUMERICAL EXAMPLES

A nonlinear curved beam element based on the proposed approach has been implemented into OOFEM,21,22 an
object-oriented finite element code. Even though the present formulation is not based on an interpolation of dis-
placements and rotations using fixed shape functions multiplied by unknown nodal values, the element can still be
incorporated into a structural model in the same way as conventional beam elements. For given input values of nodal
(joint) displacements and rotations, the corresponding end forces and moments are evaluated and assembled into nodal
equilibrium equations. Also, the corresponding 6 × 6 element tangent stiffness matrix is constructed and assembled (by
standard procedures) into the structural tangent stiffness matrix used in global equilibrium iterations. The accuracy and
efficiency of the suggested approach will now be demonstrated using seven examples.

The first four examples treat arches of a circular shape, for which functions𝜑0, us0, and ws0 that characterize the initial
geometry in terms of the arc-length coordinate are given by (5)–(7). The fifth example deals with a parabolic arch, and it
shows that analogous closed-form expressions are in this case not available; therefore, it is explained how the description
of the initial geometry can be handled numerically. The sixth example analyzes a logarithmic spiral, for which functions
(157)–(159) describing the initial geometry are derived in Appendix B. Finally, the last example shows that the present
formulation can handle not only beams with a smooth centerline, but also cases in which the centerline exhibits kinks,
for example, a beam consisting of multiple straight segments. Even in this case, the whole beam can be treated as one
element, and no intermediate nodes hosting additional global DOFs need to be introduced.

4.1 Symmetric circular arch, initial stiffness

It is well-known that curved finite elements suffer by excessive stiffness unless the axial displacement interpolation is
of a sufficiently high order. When low-order axial displacement approximations are used, membrane locking makes it
difficult for the elements to bend without stretching, and parasitic oscillating stresses may appear. This locking effect can
be eliminated by using selectively reduced integration of the stiffness terms.2,3

The present formulation exploits the equilibrium equations in their strong form and does not work with a priori chosen
shape functions for the kinematic approximation, unlike standard displacement-based finite elements. In each integration
segment, the values of curvature and axial strain are completely independent. The membrane locking effect is therefore
not expected to occur, and accuracy can be increased simply by increasing the number of integration segments. This can
be verified by analyzing the circular arch in Figure 3A. The same problem was studied by Stolarski and Belytschko, who
constructed a geometrically nonlinear model in the spirit of the shallow-shell approximation of Marguerre,23 first for a
curved Euler–Bernoulli beam2 and then for a curved beam with shear distortion.3

To facilitate the comparison, let us take the geometrical and constitutive parameters from the original papers. They
were specified in British units (inches and psi), which will be omitted here. The cross section is a rectangle of width
bs = 1.2 and depth hs = 0.125, the radius of the undeformed centerline is R0 = 2.935, and the elastic modulus is set to
E = 1.05 × 107 (which is the value for aluminum in psi). Symmetry is exploited, and so the numbers of elements reported
below always correspond to one half of the structure. On the other hand, the applied force P is considered as the full load
on the whole structure.

P

45°

2.93
5

x
z

F I G U R E 3 Symmetric circular arch: Geometry
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588 HORÁK et al.

The complete load-deflection curve is nonlinear but locking phenomena can be detected already in the geometrically
linear range, where the structural response is conveniently characterized by the load-deflection ratio, P∕w, playing the
role of the initial structural stiffness (i.e., the initial slope of the nonlinear load-deflection diagram). Here, w denotes
the vertical deflection under the loading force, P. Stolarski and Belytschko2 reported the analytical value of the P∕w
ratio for the Euler–Bernoulli model to be equal to 471.09, but this value was actually based on the load acting on one
half of the structure and later3 it was corrected to 942.2. However, our analytical calculation based on the force method
indicates that, for a model that neglects the shear distortion and takes into account the axial and flexural deformation,
the initial stiffness is 943.73. In this calculation, and also in the numerical simulations, the interaction between bending
and axial deformation is neglected, so that the underlying theory remains the same as in the original papers by Stolarski
and Belytschko2,3 and the results can be directly compared. This means that the consistent sectional equations (34) and
(35) are replaced by their simplified form (41) and (42), which is reflected by appropriate modifications in lines (71), (72),
(77), (82), and (83) of the algorithm (in fact, it is sufficient to set 𝜅0,i = 0, i = 0, 1, 2 … N). If the effect of shear distortion
is added, the stiffness decreases to 941.11, provided that the Poisson ratio 𝜈 = 0.3 and the effective shear area is equal to
the actual area, as assumed by Stolarski and Belytschko.3 With the shear area reduction factor set to the standard value
for a rectangle, that is, 5∕6, the resulting stiffness would be 940.59.

The results presented by Stolarski and Belytschko2 showed that a simulation on a mesh composed of eight curved finite
elements with a linear approximation of the displacement component in the direction of the chord and a cubic approxi-
mation of the displacement perpendicular to the chord leads to an excessive structural stiffness if the integration scheme
uses 4 or 3 Gauss integration points. The resulting P∕w ratios were 1396.6 and 1405.1, respectively, which corresponds
to relative errors of 48% and 49%. Reduced integration with 2 integration points per element resulted into P∕w = 900.26,
which is by 4.6% lower than the exact value.

Stolarski and Belytschko3 analyzed the same problem using a slightly adjusted model with shear distortion taken into
account and with the effective shear area considered as equal to the actual area. In this case, the theoretical stiffness is
941.11. The displacement-based element used a cubic interpolation for transverse displacements, quadratic for sectional
rotations and linear for axial displacements. Eight elements with full integration would again lead to an excessive stiffness
(1389.8, 48% above the exact value) while a 2-point integration (which corresponds to reduced integration of the mem-
brane terms and full integration of the shear terms) gives a substantial improvement (946.6, 0.6% above). Various hybrid
and mixed formulations were tested as well but none of them gave a closer approximation of the analytical result.

In our analyses, we used discretizations by one or two curved elements. It is remarkable that, for the one-element
mesh, no global DOFs were needed and the problem was solved simply by prescribing the end displacements and rotations
and evaluating the corresponding end forces and moments. For the two-element mesh, only three global unknowns had
to be introduced. Accuracy was increased by refining the integration segments and the full nonlinear model was used,
but the initial load-deflection ratio was evaluated from the stiffness matrix computed in the undeformed configuration.

The results in Table 1 show that as the number of integration segments (NIS) is increased, the load-deflection ratio
converges to the exact value, 943.73. Convergence is monotonic (from below) and fully regular. Asymptotically, quadratic
convergence is observed, in the sense that the error is inversely proportional to the square of the NIS (i.e., when the NIS

T A B L E 1 Symmetric circular arch: Initial load-deflection ratios and the corresponding errors caused by numerical integration.

1 element 2 elements

NIS P/w Error (%) NIS P/w Error (%)

Exact 943.73

4 632.01 33.031 2 633.33 32.891

8 839.37 11.058 4 839.82 11.010

16 915.23 3.020 8 915.36 3.007

32 936.44 0.773 16 936.47 0.769

64 941.90 0.194 32 941.91 0.193

128 943.27 0.049 64 943.28 0.048

256 943.62 0.012 128 943.62 0.012

→ ∞ 943.73 0.000 → ∞ 943.73 0.000
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HORÁK et al. 589

is doubled, the error is reduced by a factor close to 4). Solutions obtained on the one-element and two-element meshes
are very similar, provided that the total number of integration segments is kept the same. The relative error obtained with
one element divided into 16 integration segments (or for two elements, each divided into 8 segments) is about 3% and
it is lower than the error reported by Stolarski and Belytschko2 for 8 finite elements with reduced two-point integration,
which required 18 global unknowns.

4.2 Simply supported circular arch, internal forces

The second example corresponds to the cylindrical shell strip analyzed by Bieber et al.24 in their section 4.3.1. Since the
Poisson ratio was considered as zero, the problem is equivalent to the circular arch schematically shown in Figure 4. The
radius of the undeformed centerline is R0 = 100 while the sectional depth is just hs = 0.25, which corresponds to a very
slender arch. Bieber et al.24 analyzed the structural response in an extremely large range of support displacements u up
to 300, using 10 isogeometric NURBS elements of polynomial orders p varying between 2 and 15. They showed that the
load-displacement curve becomes reasonably accurate already for p = 4 while the distribution of normal force exhibits
wild oscillations even for p = 10, provided that the simplified formulation is used. With an improved formulation, Bieber
et al.24 were able to get substantially better results using low-order polynomials.

We can analyze the same problem using again just one element. If the simulation is run under displacement control
(prescribed displacement u at the left support), only two global unknowns are needed. To be consistent with example
4.3.1 in Bieber et al.,24 the elastic modulus is set to E = 21,000, the sectional width to bs = 10, and simplified sectional
equations (41) and (42) are adopted. The load-displacement diagram plotted in Figure 5A is in good agreement† with the
results of Bieber et al.,24 and reasonable accuracy is attained already for 8 integration segments. Moreover, the distribution

x
z

P,u

55° 35°

R
0=
10

0

F I G U R E 4 Simply supported circular arch: Geometry and loading
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F I G U R E 5 Simply supported circular arch: (A) Load-displacement diagram, (B) distribution of normal force in the state characterized
by u = 100, plotted as function of the global coordinate x marked in Figure 4.
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590 HORÁK et al.

T A B L E 2 Simply supported circular arch: Normal force at the right support in the state when the displacement of the left support is
u = 100, obtained numerically with different values of the number of integration segments (NIS), and the corresponding relative errors.

NIS Normal force Error (%)

4 0.03793 24.66

8 0.04723 6.20

16 0.04956 1.56

32 0.05015 0.39

→ ∞ 0.05035 0.00

of normal forces shown in Figure 5B is not polluted by any oscillations and exhibits fast convergence. To illustrate the
convergence rate, the value of the normal force at the right support in the state at which the left support is displaced by
u = 100 (i.e., near the first peak of the load-displacement diagram) is taken as a representative example. Values of this
normal force computed for different numbers of integration segments (NIS) are reported in Table 2. Convergence is seen
to be quadratic, that is, of the same order as convergence in terms of displacements.

4.3 Unfolding of a circular cantilever beam

In the previous examples, the sectional equations that link the internal forces to deformation variables were used in their
simplified form (41) and (42), so that the results could be directly compared to those reported in the literature. For linear
elastic beams, it is usually assumed that the bending moment is not affected by the axial strain and the normal force is not
affected by the curvature. However, this can be rigorously proven only if the beam is initially straight. For beams with an
initial curvature, we have derived consistent relations (34) and (35), which contain modified sectional characteristics and
cross-coupling terms. Let us now explain the physical origin of these modifications and illustrate the resulting effects on
the structural behavior. For this purpose, we will consider a curved cantilever which has the initial form of a full circle,
cut at a certain section. One side of the cut is clamped and the other is loaded by an increasing bending moment, which
gradually unfolds the beam to a straight configuration and subsequently folds it again to a circular shape with the opposite
curvature.

Even though this fictitious test might seem to be the direct analog of the simple example of a straight cantilever folded
to a circle by an end moment,10,17 the case of the initially curved beam is actually more involved. For pure bending (i.e.,
zero normal force) and a rectangular cross section of width bs and depth hs, the consistent inverted sectional equations (52)
and (53) reduce to

𝜀s =
𝜅0M
EA

= 𝜅0
M

Ebshs
, (144)

Δ𝜅 =

(
1

EI
𝜅0

+
𝜅

2
0

EA

)
M =

12 + h2
s𝜅

2
0 + 0.15h4

s𝜅
4
0

1 + 0.15h2
s𝜅

2
0

M
Ebsh3

s
, (145)

in which 𝜅0 = 1∕R0 is the initial curvature. Here we have taken into account that, for the rectangular section, the modified
moment of inertia I

𝜅0 can be approximated by formula (40) and the standard sectional area is A = bshs.
For an initially straight cantilever of length L = 2𝜋R0, the moment needed to fold the cantilever into a full circle would

be M0 = EI𝜅0 = EI∕R0, and the radius of that circle would be R0. On the other hand, if the cantilever in its initial stress-free
shape has the form of a circle of radius R0, application of moment −M0 (the negative sign means that the moment acts
clockwise) leads to the change of curvature

Δ𝜅 = −
12 + h2

s𝜅
2
0 + 0.15h4

s𝜅
4
0

1 + 0.15h2
s𝜅

2
0

EI𝜅0

Ebsh3
s
= −

12 + h2
s𝜅

2
0 + 0.15h4

s𝜅
4
0

12 + 1.8 h2
s𝜅

2
0

𝜅0, (146)

and the resulting curvature

𝜅 = 𝜅0 + Δ𝜅 =
0.8 h2

s𝜅
2
0 − 0.15h4

s𝜅
4
0

12 + 1.8 h2
s𝜅

2
0

𝜅0, (147)
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HORÁK et al. 591

is not zero. For instance, for hs = 0.4 and R0 = 1 we obtain hs𝜅0 = hs∕R0 = 0.4 and 𝜅 = 0.0101. To get precisely zero
curvature, the applied moment needs to be set to −M1 where

M1 =
12 + 1.8 h2

s𝜅
2
0

12 + h2
s𝜅

2
0 + 0.15h4

s𝜅
4
0

EI𝜅0 =
12 + 1.8 h2

s𝜅
2
0

12 + h2
s𝜅

2
0 + 0.15h4

s𝜅
4
0

M0. (148)

Under this load, the initially curved cantilever becomes perfectly straight but its length does not remain equal to the initial
centerline length L = 2𝜋R0 because the axial strain

𝜀s1 =
𝜅0

Ebshs
⋅ (−M1) = −

h2
s𝜅

2
0 + 0.15 h4

s𝜅
4
0

12 + h2
s𝜅

2
0 + 0.15h4

s𝜅
4
0
, (149)

is not zero. For our example with hs𝜅0 = 0.4, we obtain 𝜀s1 = −0.0135.
The physical reason why the circular arch unfolded by a uniform moment into a straight beam tends to shrink is that if

it did not, the compressive strain in the fibers that were initially on the outer surface and had initial length 2𝜋(R0 + hs∕2)
would be−hs∕(2R0 + hs)while the tensile strain in the fibers that were initially on the inner surface and had initial length
2𝜋(R0 − hs∕2)would be hs∕(2R0 − hs), that is, it would be higher in magnitude than the compressive strain. If the material
law is linear elastic (in terms of the Biot strain and its work-conjugate stress), the same would hold for the stresses and
the resulting normal force would be tensile. To get zero normal force, the centerline length must be reduced.

The case of a fully unfolded circle that still remains linear elastic in terms of the engineering strain and nominal stress
may look purely academic, but the same argument applies even to much lower strain levels and thus the centerline would
shrink at least during an initial stage of the unfolding process (see Appendix A for deeper analysis). This phenomenon is
neglected by the widely used simplified theory, which is in many cases justified because the effect is indeed weak provided
that hs𝜅0 ≪ 1. The difference between M1 and M0 for hs𝜅0 = 0.4, 0.2, 0.1, and 0.05 is about 1%, 0.3%, 0.07%, and 0.02%,
respectively. However, note that the case of hs𝜅0 = 0.4 is not outside the range of what is normally considered as slender
beams, because the total length of the circular centerline is L = 2𝜋R0 = 2𝜋∕𝜅0 and thus the span-to-depth ratio of the
unfolded cantilever is L∕hs = 2𝜋∕(hs𝜅0) ≈ 15.7. In fact, the unfolding of a circular cantilever was studied in Reference 25
using the simplified theory, with dimensions set to L = 10 and hs = 1, which corresponds to hs𝜅0 = 2𝜋hs∕L ≈ 0.628. In
this case, the described modification would play a significant role and the difference between M1 and M0 would be about
2.4%.

Another (closely related) consequence of the coupling between membrane and bending effects is that if the applied
moment is −2M1, the curvature changes from 𝜅0 to −𝜅0 and one may think that the centerline is located on a circle of
radius R0 (i.e., of the same radius as in the initial state), but in reality the radius is different. The reason is that, according
to the definition adopted here, the curvature is equal to the derivative of rotation with respect to the arc length coordinate
measured along the initial centerline, but the arc length along the deformed centerline is different, since the axial strain
is not zero. The actual radius of curvature under loading by constant moment −2M1 leading to curvature −𝜅0 and axial
strain 2𝜀s1 is evaluated as

R =
||||
(1 + 2𝜀s1) dx

d𝜑
|||| =

1 + 2𝜀s1

𝜅0
= (1 + 2𝜀s1) R0 ≈ 0.973 R0. (150)

This means that if the consistent theory is used and moment −2M1 is applied, the resulting shape is a perfectly closed
circle of a smaller radius than the initial one, with the radius reduced by approximately 2.7% (here we consider again our
specific example with hs𝜅0 = 0.4).

The deformed shapes of the initially circular beam that correspond to the applied moment ranging from 0 to
−2M1 with step −0.2 M1 are shown in Figure 6. The solid red curves have been obtained using the simplified rela-
tions N = EA 𝜀s and M = EI Δ𝜅 while the dashed purple curves have been obtained with the consistent relations (34)
and (35). In the middle of the deformation process, at applied moment M = −M1, the current shape computed using
the consistent theory is straight and the centerline length is slightly reduced as compared to the initial one. On the
other hand, according to the simplified theory the centerline length would remain constant, and the current shape
would be straight at applied moment M = −M0 while at M = −M1 it would be slightly curved. The markers plot-
ted in Figure 6 indicate the position of points that are initially regularly spaced on the centerline at s = iL∕5 where
i = 0, 1, … 5.
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592 HORÁK et al.

The simulations also confirm the theoretical solution that corresponds to the ultimate stage of loading, with applied
moment −2M1; see the “lower” circle in Figure 6A, which is also shown in more detail in Figure 6B. For the consistent
theory, the deformed shape plotted by the dashed blue line corresponds to a full circle of radius close to 0.973, as predicted
in (150). On the other hand, the simplified theory would give a perfectly closed circle of the same radius as the initial
one only if moment −2M0 was applied. Under moment −2M1 it gives a deformed centerline located on a circle of radius
approximately 0.98 R0, plotted in Figure 6 by the solid red line. As seen in Figure 6B, this circle is “more than closed”, that
is, the free end of the cantilever initially located at the origin does not end up at the origin but is slightly shifted along the
circle clockwise.

To provide not only a visual but also a quantitative assessment, the distances between the positions of the end point
computed using the consistent and simplified theories at different levels of loading are evaluated in Table 3. The distance
(i.e., the Cartesian norm of the difference between displacement vectors) is normalized here by the initial radius R0, so
the values around 0.2 represent a considerable error.

The deformed shapes in Figure 6 and the error values in Table 3 are based on a highly accurate numerical solution with
1 element divided into 2048 integration segments. The dependence of the numerical error on the number of integration

−1 0 1 2 3 4 5 6

−5

−4

−3

−2

−1

0

1

2

3

−1 0 1
−3

−2

−1

simplified consistent

(A) (B)

F I G U R E 6 Comparison of the consistent and simplified theories for pure bending of a circular cantilever beam: (A) Deformed
configurations for an increasing end moment ranging from 0 to −2M1, (B) closer look at the final stage.

T A B L E 3 Pure bending of a circular cantilever beam subjected to an increasing end moment: Evaluation of the error in the
displacement of the end point caused by replacement of the consistent theory by the simplified one (normalized by the circle radius R0).

−M∕M1 Normalized error

0.2 0.0228

0.4 0.0660

0.6 0.1224

0.8 0.1780

1.0 0.2168

1.2 0.2279

1.4 0.2095

1.6 0.1726

1.8 0.1388

2.0 0.1256
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HORÁK et al. 593

T A B L E 4 Pure bending of a circular cantilever beam subjected to end moment −M1 or −2M1: Evaluation of errors in vertical
displacement caused by numerical integration along the beam element.

M = −M1 M = −2M1

Model w∕R0 Error (%) w∕R0 Error (%)

Exact −2 – −3.946122 –

4 segments −2.221453 11.07265 −4.383040 43.69177

8 segments −2.052343 2.61715 −4.049401 10.32787

16 segments −2.012914 0.64570 −3.971593 2.54707

32 segments −2.003215 0.16075 −3.952468 0.63457

64 segments −2.000802 0.04010 −3.947707 0.15847

128 segments −2.000201 0.01005 −3.946518 0.03957

256 segments −2.000050 0.00249 −3.946221 0.00987

512 segments −2.000012 0.00060 −3.946147 0.00247

1024 segments −2.000003 0.00015 −3.946128 0.00057

2048 segments −2.000001 0.00005 −3.946124 0.00017

segments is illustrated in Table 4. The evaluated quantity w is the vertical displacement of the point initially located at
s = L∕2 caused by the applied moment −M1 or −2M1. At M = −M1, the exact value of this displacement is w = −2 R0,
where R0 = 1 in our example. At M = −2M1, a highly accurate computation yields w = −3.94612 R0. The table confirms
that asymptotically the error decreases in inverse proportion to the square of the number of integration segments.

All results presented so far have been obtained for a discretization of the entire circular cantilever by 1 curved element.
Consider now the effect of mesh refinement. For curved elements, the initial geometry is reproduced exactly and no extra
benefit would be gained by using several elements, provided that the total number of integration segments would remain
the same. This has already been illustrated for the previous example in Table 1. On the other hand, if the initial circular
shape is approximated by straight elements, the initial curvature of each element will be zero and the expressions for
internal forces will have the simplified form (the information about initial curvature is transformed into jumps in the
centerline slope between neighboring elements). Upon mesh refinement, the initial centerline geometry approximated
by a polygon will converge to a circle, but the numerical solutions obtained for the deformed shape will converge to a limit
that corresponds to the simplified theory, which neglects the effect of initial curvature on the relations between internal
forces and deformation variables. This paradox is related to the fact that if the curved beam is approximated by straight
elements that connect nodes located at the curved centerline, the total length of the polygonal approximation properly
converges to the length of the curved centerline, and the length of fibers located at a given nonzero distance from the
centerline converges to the same limit, which is however different from the actual length of those fibers on the curved
beam. This fact is schematically illustrated in Figure 7, which shows the circular arch (Figure 7A) and its approximation
by eight straight elements of the standard type (Figure 7B). A gradual change of the inclination angle of individual sections
is replaced by jumps at element interfaces. The arrangement of rectangular domains representing individual elements
leads to gaps and overlaps, the area of which does not vanish in the limit as the element size tends to zero.

To get the proper limit even with straight elements, one would need to abandon the idea that individual sections are
initially perpendicular to the centerline and consider non-parallel end sections as shown in Figure 7C. In this way, the
information on the variable fiber length could be incorporated into the model, but instead of this artificial adjustment it
is better to use fully consistent curved elements.

4.4 Asymmetric circular arch, complete load-displacement curve

The third example is representative of an arch instability after large deflections. The structural setup is similar to the arch
analyzed in Section 4.1 but the supports are not symmetric and the dimensions are different. This particular structure was
investigated by several authors1,10,26 and the solution based on Euler’s nonlinear theory of the inextensible curved elastica
was evaluated by DaDeppo and Schmidt,27 who reported a value of the maximum load equal to 8.97 EI∕R2. The theory
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594 HORÁK et al.

(C)(B)(A)

F I G U R E 7 Geometry of a circular arch: (A) Exact, (B) approximated by straight beam elements with the same length of all
longitudinal fibers, (C) approximated by straight beam elements with variable length of longitudinal fibers.

(C)(B)(A)
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31
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F I G U R E 8 Asymmetric circular arch: (A) Geometry, (B) forty-element mesh used by Simo and Vu-Quoc,10 (C) two-element mesh
used by the present curved beam formulation.

they used was exact in the sense that no restrictions were imposed on the magnitudes of deflections.28 The nonlinear
boundary-value problem of the inextensible elastica was solved numerically to a high degree of accuracy, which was
confirmed by comparisons with certain exact solutions of other problems previously derived by the same authors.29

The arch is circular with one boundary hinged and the other clamped, and it is loaded by a vertical concentrated load
applied at the top, as shown in Figure 8A. In calculations presented in the literature, the structure was usually considered
as very slender, so that the solution obtained for the axially incompressible case with neglected shear distortion could be
used as a reference. However, the specific values of parameters are in some cases hard to find.

Wood and Zienkiewicz26 obtained a buckling load of 9.24 EI∕R2 using a mesh consisting of sixteen 2D six-noded
paralinear elements (linear approximation in the direction of thickness and quadratic in the longitudinal direction), and
one 2D three-noded linear element near the hinged support. Overall, their mesh had 67 nodes with 127 global unknowns,
and they analyzed an arch of depth hs = 1, which corresponds to hs𝜅0 = 0.01.

Simo and Vu-Quoc10 performed their analysis with a mesh consisting of forty straight beam elements (Figure 8B) and
found a maximum load of 9.0528 EI∕R2. A similar result was obtained with straight elements by Ibrahimbegović,25 who
also reported a great improvement with twenty 3-node curved elements. The resulting maximum load of 8.973 EI∕R2 was
very close to the reference value published by DaDeppo and Schmidt.

In our analysis, we have used the minimum number of elements required to discretize the structure, which results in
a two-element mesh shown in Figure 8C, with only four global unknowns—two displacements and the rotation at the
loaded node plus the rotation at the left support. The analysis has been performed under indirect displacement control,
with the load iteratively adjusted such that the rotation at the left support increases by prescribed increments. Direct
displacement control based on prescribed increments of the vertical displacement under the applied force is not advisable
because the corresponding load-displacement diagram, plotted by the red line in Figure 9A, exhibits a section with a very
steep drop and even a slight snapback (see the path 3-4-5 in the figure).
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F I G U R E 9 Asymmetric circular arch: (A) Load-displacement curves and (B) load-rotation curve for the top of the arch (node 2 in
Figure 8C)

T A B L E 5 Asymmetric circular arch: Evaluation of errors in maximum load caused by numerical integration along the beam
element and comparison with results from the literature.

Model N◦ global unknowns PcrR2∕EI Error (%)

DaDeppo and Schmidt27 8.97

Wood and Zienkiewicz26 127 9.24

Simo and Vu-Quoc10 117 9.0528

Ibrahimbegović25 8.973

Present approach, 10 segments 4 8.735135 2.650

20 segments 4 8.912875 0.669

40 segments 4 8.957865 0.168

80 segments 4 8.969161 0.0420

160 segments 4 8.971979 0.0105

320 segments 4 8.972686 0.00263

640 segments 4 8.972863 0.00066

→ ∞ 4 8.972922 0

The simulation has been done with the same sectional stiffnesses as in Reference 25, namely EA = 108 and EI =
106, which correspond to a section of depth hs =

√
0.12 ≈ 0.3464 and thus to hs𝜅0 ≈ 0.003464. The numerical solution

naturally depends on the number of segments used for integration of the governing equations on the element level. As
seen in Table 5, the accuracy of the present simulation is higher than in Reference 26 if 10 integration segments are used
and higher than in Reference 10 if 20 integration segments are used.

Further refinement of the integration grid leads again to quadratic convergence. The error is calculated by consider-
ing a highly accurate limit value of 8.972922, obtained by refinement until the resulting maximum load stabilizes up to
seven valid digits. This limit is in good agreement with the truncated value of 8.97 reported by DaDeppo and Schmidt,27

and it perfectly agrees with the value of 8.973 reported by Ibrahimbegović.25 One should note that Reference 25 used
shear-flexible elements and the actual limit value would be in that case slightly lower.

In the simulations reported in Table 5, the simplified relations between internal forces and deformation variables
have been used. Since, for the given input data, hs𝜅0 ≪ 1, the results obtained with the consistent relations would be only
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F I G U R E 10 Asymmetric circular arch: Deformed shapes and normalized vertical displacement along the arch for the six states labeled
by numbers 1–6 in Figure 9.

slightly different. The maximum load calculated with very high accuracy would change from 8.972922 to 8.972950 if the
consistent relations are used.

The load-displacement curves plotted in Figure 9 indicate that the arch exhibits a snap-through behavior after reaching
the peak load at the state marked by label 3. The last physically reasonable numerical solution is obtained at the state
marked by label 4. The simulation can be continued without problems but the deformed structure passes across the left
support (see Figure 10). This aspect was investigated by Simo et al.,30 who showed that a contact constraint condition on
the left support needs to be introduced to obtain a more realistic solution. Here, we have not considered contact activation
and the subsequent stiffening effect in the structure because these phenomena are out of scope of the present study.

4.5 Parabolic arch

In the previous three examples, the initial shape was supposed to be circular and its analytical description was based on
formulae (5)–(7). Let us now consider a parabolic arch. In the simplest case, when the left end of the parabolic beam
element is located at the apex of the parabola, functions us0 and ws0 that characterize the initial undeformed shape must
satisfy the equation

ws0 =
a
2
(x + us0)2, (151)

where a is a given geometric parameter. These functions are also constrained by the condition

(1 + u′s0)
2 + w′2

s0 = 1, (152)

which follows from the fact that differential segments in the fictitious straight configuration have the same length as in the
initial undeformed configuration. Taking the derivative of (151) and substituting into (152), we obtain after rearrangement

√
1 + a2(x + us0)2 (1 + u′s0) = 1, (153)

and integration after separation of variables leads to

a(x + us0)
√

1 + a2(x + us0)2 + arcsinh(a(x + us0)) = 2ax. (154)

This equation implicitly defines function us0(x) but the closed-form expression for this function is not available. Still,
Equation (154) could be solved numerically for each prescribed value of xi and the corresponding us0(xi) could be evalu-
ated. In this way, the analytical description of the initial shape would be replaced by a precomputed table of values of xi
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HORÁK et al. 597

and us0(xi) for all points of the integration grid. It is then easy to evaluate the corresponding ws0(xi) from (151) and the
initial rotations 𝜑0(xi) from

𝜑0(x) = − arctan a(x + us0). (155)

The procedure described above can be used to ensure uniform spacing of the grid points, which was assumed in the
algorithms described in Section 3.3. As an alternative, one can prescribe uniform spacing in projection of the curved beam
element onto the local x axis, which coincides with the tangent to the centerline constructed at the left end. In this case,
the prescribed values are xi + us0(xi) = ihp, i = 0, 1, 2, … N, where hp = Lp∕N is the projected integration segment length
derived from the projected element length, Lp. The corresponding values of xi are then directly obtained from (154) by
evaluating the expression on the left-hand side and dividing by 2a. Afterwards, us0(xi) = ihp − xi can be determined and
the corresponding values ws0(xi) and 𝜑0(xi) are calculated as usual from (151) and (155). All this can be done “on the fly”
and there is no need to solve nonlinear equations and store a precomputed table of values. In the algorithms, the constant
segment length h needs to be replaced by a variable length hi, computed for each integration segment separately as the
Euclidean distance between points with coordinates ((i − 1)hp,ws0(xi−1)) and (ihp,ws0(xi)). In theory, this may slightly
disturb the quadratic convergence rate when the number of segments increases, since the integration of curvature is no
longer based on a central difference scheme. However, no problems have been observed in the specific calculations to be
reported next.

For these calculations, we adopt an example of a parabolic arch from Reference 13 and investigate two selected geome-
tries (Figure 11). One, characterized by H = 0.25 m, corresponds to a shallow arch, and the other, with H = 0.5 m, to a
deeper one. The cross section is a square with bs = hs = 0.2 m and the elastic modulus is E = 104 MPa.

It is well known that the load-displacement curves of shallow arches typically exhibit snap-through followed by an
unstable branch and eventually by restoration of stable equilibrium, while the behavior of deep arches is more complex,
with the so-called looping of the load-displacement curve.31 The aim of this example is to demonstrate that the proposed
formulation is able to capture such phenomena. The arch is simply supported and loaded by a concentrated force acting
at midspan. Symmetry is exploited and only one half of the arch is simulated, which means that a possible bifurcation
into a nonsymmetric shape is ignored.

The response of the shallow arch is described by the diagrams in Figure 12A,C. The load-displacement curve
(Figure 12A) shows excellent agreement with the results reported in Reference 13, where isogeometric analysis was used.
To illustrate the deformation process, the deformed shapes corresponding to four selected states that are marked by spe-
cial symbols in the load-displacement curve are presented in Figure 12C: the initial state (black), the state at peak load
and onset of snap-through instability (red), the state at the end of the unstable branch (blue), and a stable state attained
at displacement w = 0.5 m (green).

In a similar fashion, the response of the deeper arch is described by the diagrams in Figure 12B,D. In contrast to the
shallow arch, the vertical displacement under the load does not increase monotonically and the snapback phenomenon is
observed in addition to the snap-through. The simulation cannot be performed under direct displacement control and an
arc-length technique is needed. Still, the complicated load-displacement diagram can be captured and the results nicely
agree with those from Reference 13.

4.6 Logarithmic spiral

The last example presents an extreme case of a highly curved beam, which has the initial shape of a planar spiral. It would
not be so easy to properly approximate such a “structure” by straight elements or by shallow curved elements. Using the

P

L /2 L /2

H

F I G U R E 11 Parabolic arch: Geometry and loading, with L = 10 m, H = 0.25 m for the shallow arch and H = 0.5 m for the deeper arch.
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F I G U R E 12 Parabolic arch: Load-displacement diagrams (A) for the shallow arch and (B) for the deeper arch, and deformed shapes
(C) for the shallow arch and (D) for the deeper arch.

present approach, the whole spiral can be represented by one single element and its shape can be taken into account
precisely, independently of the total number of loops.

The spiral considered in this example is a logarithmic one, and in polar coordinates (r, 𝜃) it is described by

r = a eb𝜃
, (156)

where a and b are positive parameters. Figure 13 depicts the shape of the spiral obtained for b = 0.15 and 𝜃 ∈ [0, 4𝜋].
Parameter a sets the length scale and determines the distance of the clamped end of the spiral (at 𝜃 = 0) from the pole.

For the logarithmic spiral, it is possible to derive closed-form expressions for functions that describe the initial shape
with respect to local Cartesian coordinates with the origin at the left end of the spiral and with the local x axis in the
tangential direction. The details of the derivation are provided in Appendix B. The resulting expressions read

𝜑0(x) =
ln (1 + cx)

b
, (157)

us0(x) = a ((1 + cx) sin(𝜑0(x) + 𝜑∗) − sin𝜑∗) − x, (158)
ws0(x) = a ((1 + cx) cos(𝜑0(x) + 𝜑∗) − cos𝜑∗) , (159)

where

c = b
a
√

1 + b2
, (160)

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7133 by C
ochraneItalia, W

iley O
nline L

ibrary on [05/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HORÁK et al. 599

M

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

x G

z G

x/a

z/
a

F I G U R E 13 Logarithmic spiral: Geometric shape, support and loading, and the choice of global coordinate axes

and

𝜑

∗ = arctan b, (161)

are auxiliary parameters, introduced only to simplify notation. Formulae (157)–(159) can be understood as a generalized
form of the formulae that characterize a circular geometry. Indeed, by setting a = R and b → 0, we can reduce (157)–(159)
to (5)–(7). Since b → 0 leads to c → 0, the expression on the right-hand side of (157) tends to a fraction 0/0 but the limit,
x∕R, can be properly evaluated using L’Hospital’s rule. Formulae (158)–(159) are then reduced simply by setting a = R,
c = 0, 𝜑∗ = 0 and 𝜑0(x) by x∕R.

Similarly to Example 4.3, one side of the curved beam is clamped and the other is loaded by an increasing end moment
unfolding the spiral, see Figure 13. Parameter b that controls the shape of the spiral is in this example set to 0.15 and the
polar angle 𝜃 varies from 0 to 4𝜋, which means that the spiral has initially two full loops. The only other parameter that
matters is the ratio hs∕a = 1∕30, which leads to a dimensionless parameter EAa2∕EI = 1080.

Selected deformed shapes (and the initial undeformed shape in black) for a sequence of applied moments ranging
from 0 to EI∕a are shown in Figure 14, and the final state, reached at M = EI∕a, is reproduced in detail in Figure 15. The
spatial coordinates used in Figures 13–15 have their origin at the pole of the spiral and are normalized by constant a. In
the dimensionless coordinates, the clamped section is located at (−1, 0).

4.7 A zig-zag beam (two-dimensional spring)

One advantage of the proposed formulation is that it can easily handle not only beams with a smooth curved centerline,
but also beams with kinks, that is, with discontinuities in the centerline slope. An illustrative example is the zig-zag beam
depicted in the top part of Figure 16A, which can be considered as a two-dimensional form of a spring. This beam consists
of ten straight segments, with a right angle between neighboring segments. During the initial phase of loading by an
increasing horizontal force P at the left support, the spring is compressed and its “macroscopic axis” remains straight.
However, since the zig-zag centerline does not coincide with that fictitious axis, individual segments experience bending
and, from the macroscopic point of view, the spring is relatively flexible in tension or compression. The overall deformed
shape is plotted in the bottom part of Figure 16A in black. The vertical displacement of the traced point marked by a
special symbol remains very small and the horizontal displacement increases almost proportionally to the applied force;
see the first steep part of the load-displacement diagrams in Figure 16B. When a critical force is reached, the spring starts
buckling and the vertical displacement increases dramatically (solid curve in Figure 16B). The deformed shape evolves
as indicated by images in green and blue in Figure 16A until the ends of the spring meet (red image).
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F I G U R E 14 Initial undeformed shape of the spiral (black) and selected deformed shapes for applied moment increasing up to
M = EI∕a, plotted in the space of dimensionless coordinates normalized by a.
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F I G U R E 15 Deformed shape of the final configuration.

This highly nonlinear process has been simulated using one single element. The results are presented in Figure 16B
in terms of the dimensionless force PL2∕EI and dimensionless displacements u∕L and w∕L. The axial sectional stiffness
was selected such that EAL2∕EI = 1000, which corresponds to a not too stocky beam, with individual physical segments
deforming mainly by bending. The fact that the centerline consists of straight segments with kinks does not lead to any
changes in the algorithm presented in Section 3.3.1. It is sufficient to make sure that each kink point is at the same time one
of the points of the computational grid. In other words, each physical segment is divided into an integer number of com-
putational segments. The simulation results are presented here for 200 computational segments per regular full-length
physical segments (100 computational segments in the first and last physical segment), that is, with NIS = 1800, but it
has been checked that the load-displacement curves would remain visually almost the same even with NIS = 90. It has
also been verified that the same results are obtained if the zig-zag beam is divided into 10 straight elements.

The critical force can be estimated based on analogy with a standard straight beam that has an equivalent stiffness.
For the linearized model, one can easily evaluate the displacement caused by a unit force applied along the macroscopic
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F I G U R E 16 Zig-zag beam: (A) Initial geometry and loading (top) and deformed shapes (bottom), (B) load-displacement diagrams for
the horizontal and vertical displacements of the selected point at beam center

axis and also the end rotations caused by two unit moments applied at the opposite ends with opposite orientations. This
is then set equal to the displacement L∕EA and rotation L∕EI that would be produced on a standard beam with axial
sectional stiffness EA and flexural sectional stiffness EI. For the present input data, the resulting equivalent stiffnesses are
EA = 486

√
2EI∕L2 and EI = EI∕

√
2. A simple estimate of the critical load is obtained using the standard Euler formula

for a simply supported beam,

PE =
EI𝜋2

L2 = EI𝜋2
√

2 L2
≈ 6.9789 EI

L2 . (162)

This would be exact for an axially incompressible beam. An improved estimate that takes into account the axial com-
pressibility is constructed using formula (112) from our previous paper17 (the more accurate version of the formula is
used):

Pcr =
EA
2

⎛
⎜⎜⎝
1 −

√
1 − 4EI𝜋2

EAL2

⎞
⎟⎟⎠
=

243
√

2 EI
L2

(
1 −

√
1 − 𝜋

2

243

)
≈ 7.0512 EI

L2 . (163)

The critical force evaluated by a highly accurate numerical simulation turns out to be 7.0514EI∕L2.
The reason why the algorithm from Section 3.3.1 does not need to be modified is that the discontinuity in the initial

slope, that is, in function 𝜑0, does not affect the evaluation of 𝜑0(xi−1∕2) in the algorithmic steps described by Equations
(74), (78), and (79), provided that the midpoints of integration segments do not coincide with the kink points on the
centerline. The initial curvature 𝜅0 is considered as zero and 𝜑0 is constant in each physical segment. For the present
geometry,𝜑0 = 0 in odd physical segments and𝜑0 = −𝜋∕2 in even physical segments. Functions u0 and w0 are also easy to
describe. The accuracy depends on the number of computational segments per physical segments. The whole spring with
a zig-zag centerline can be handled by one element and the number of global DOFs remains low (equal to 2 if the loading
process is controlled by applied horizontal displacement at the left support) and independent of the number of physical
segments in the spring. Since the function that describes the distribution of bending moments is not smooth (for small
changes of the initial geometry, it is piecewise linear), it would be very hard to approximate the resulting rotation function
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602 HORÁK et al.

by a polynomial. Therefore, the approach of Saje,20 described in Section 2.5, would in this case require discretization
into elements that correspond to individual physical segments, leading to many global DOFs. Of course, the example is
somewhat artificial, but it is not totally meaningless and illustrates the high flexibility of our approach.

5 CONCLUDING REMARKS

As illustrated by the examples, the formulation developed in this article can describe curved elastic beams under large
displacements and rotations with high accuracy. In summary, the main idea is that the equilibrium equations are used in
their integrated form (45) and (46), and they are combined with the geometrically exact kinematic relations (47)–(49) and
sectional equations (52) and (53). The resulting set of three first-order ordinary differential equations is then numerically
approximated by an explicit finite difference scheme and the boundary value problem is converted to an initial value
problem using the shooting method. On the global (structural) level, the governing equations are assembled in the same
way as for a standard two-noded beam element with six DOFs. In this sense, it plays the same role as traditional finite
elements in the context of structural analysis. The advantage is that accuracy of the numerical approximation can be
conveniently increased by refining the integration scheme on the element level while the number of global DOFs is kept
constant.

The specific formulation presented in this article is based on a number of simplifying assumptions, some of which
could be generalized. From the kinematic point of view, the formulation has been developed for curved planar beams
assuming the validity of the Navier–Bernoulli hypothesis. An extension to shear-flexible beams would be relatively
straightforward. One would need to include the shear force among the internal forces and link it to the sectional shear
distortion. This would not substantially affect the structure of the governing equations. A much more challenging task
would be an extension to three dimensions, which would require a major change of the descriptor that characterizes the
sectional rotation.

The initial shape of the curved beam that can be considered by the present formulation is virtually arbitrary. It is
described by functions that relate the position of each centerline point and the inclination of the corresponding section
to the arc-length coordinate. For some shapes, most notably for the circular shape, such functions are available in closed
form. If this is not the case, a table of values of these functions can be precomputed numerically. Alternatively, for flat
elements, one can use the projection onto a straight line as a replacement of the arc-length coordinate, with the slight
drawback that the integration segments along the centerline then do not have a constant length.

Since accuracy can be efficiently improved by increasing the number of integration segments into which the element
is divided, the size of the element does not need to be reduced and the number of global degrees of freedom can be kept low
and independent of the refinement level. There is of course a limitation stemming from the presently used assumption
that the loading is applied exclusively at joints that connect the elements while individual element are not loaded at their
intermediate sections. However, this assumption has been introduced only for simplicity and it could easily be removed.
In the integrated form of the equilibrium equations, the effect of loads applied directly on the element can be incorporated.
This is conceptually easy and the extended implementation only requires a more refined specification and processing of
the input data.

A very attractive feature of the present formulation is that it does not suffer from membrane locking. This is docu-
mented in examples in Sections 4.1 and 4.2. Convergence to the exact solution is found to be very regular, the results are
meaningful even for relatively coarse discretizations, and no parasitic oscillations of internal forces are detected.

From the constitutive point of view, the presented simple version of the method is based on the assumption of linear
elasticity. The expressions for internal forces (normal force and bending moment) as functions of the sectional deforma-
tion variables (axial stretch or strain and curvature) are then linear and easily invertible. Still, for a curved beam, it is
interesting to note that the sectional equations are coupled, in contrast to the case of a straight beam. This phenomenon
and its consequences are illustrated by an example in Section 4.3 and analyzed in detail in Appendix A. The difference as
compared to the simplified uncoupled equations is negligible for very slender beams but it may play an important role if,
for instance, a thick-walled cylinder is analyzed using a circular beam model.

The constitutive description can be generalized to nonlinear elasticity (as outlined in Appendix A.2) and even to
inelastic behavior, for example, to plasticity. Of course, the computational demands are then increased, because the
inverted form of the relation between internal forces and deformation variables can hardly be described analytically and
numerical evaluation, involving an iterative solution of a set of two nonlinear algebraic equations, needs to be adopted.
It is fair to admit that the method would fail if this relation becomes non-invertible, for example, due to softening in
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HORÁK et al. 603

the moment-curvature diagram. Such cases would lead to localization phenomena and would need to be handled by
adaptively introducing generalized inelastic hinges.

Certain theoretical aspects that are not necessary for proper understanding of the present approach but could be of
general interest are discussed in detail in Appendix A. In particular, the appendix presents a rigorous analysis of the
structure of sectional equations for curved beams. The present approach, with sectional equations consistently derived
from a uniaxial hyperelastic stress–strain law, is compared to the reduced form of the equations used for description of
shells by Simo and Fox,19 which were derived from a potential postulated directly in terms of the deformation variables
on the sectional level. It is shown that such a potential cannot have an arbitrary form and that, if it is derived consistently,
the definition of the effective membrane stress resultant used by Simo and Fox19 needs to be modified.
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ENDNOTES
∗According to Equation (52), the centerline strain is not proportional to the standard normal force N but to a certain combination of the normal
force and bending moment, N + 𝜅0M. This may evoke the notion of “effective membrane stress resultant” introduced by Simo and Fox19 in
the context of shell analysis. However, it turns out that our corrective term 𝜅0M has a different origin. The relation between the present theory
and the framework used by Simo and Fox19 is discussed in detail in Appendix A.
†It is worth noting that we report here the total force P acting on the beam of width bs = 10 and the (total) normal force N, while Bieber
et al.24 reported the load multiplier 𝜆 and the specific normal force n11 = N∕bs. This is why our normal forces are 10 times larger than those
in figs. 27–29 in Bieber et al.24 According to their fig. 25, the load intensity was set to 0.1𝜆 on a strip of width 10, and so the load multiplier
𝜆 should correspond to our load resultant, P. However, the values of 𝜆 in fig. 26 in Bieber et al.24 are 10 times smaller than the values of P in
our Figure 5A, which means that Bieber et al.24 probably plotted the load intensity 0.1𝜆 instead of the load multiplier.
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APPENDIX A. STRUCTURE OF SECTIONAL EQUATIONS FOR CURVED BEAMS

A.1 Brief summary of the origin of sectional equations adopted in this article
In general, sectional equations link the internal forces to variables that characterize the deformation of an infinitesimal
beam segment. In our case (planar Euler–Bernoulli beam), the relevant internal forces are the normal force, N, and the
bending moment, M, which have a clear physical meaning. On the other hand, the deformation variables can be selected in
different ways, but they should characterize the processes of axial stretching and bending. Perhaps the most natural choice
is to consider the centerline stretch 𝜆s, defined in (17), and the curvature 𝜅, defined as the derivative of the sectional rota-
tion 𝜑with respect to the initial centerline length, that is, as 𝜅 = 𝜑′. Using these variables, one can conveniently describe
the distribution of normal stretch 𝜆 across the section by formula (20), which also contains the initial curvature, 𝜅0.
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It is worth noting that formula (20) directly follows from the basic kinematic assumptions that are behind
Equations (1), (2), (13), and (14). The stretch, 𝜆, is understood here as the ratio of the current and initial lengths of an
infinitesimal fiber parallel to the centerline. Since shear deformation is neglected and individual material fibers parallel
to the centerline are expected to be in a state of uniaxial stress, it is perfectly justified to assume that the density of strain
energy (per unit initial volume), int, is a function of the stretch. The resulting expression (24) for the strain energy vari-
ation shows that, at the sectional level, the normal force is work-conjugate with the centerline stretch, and the bending
moment is work-conjugate with the curvature (understood in the present sense, that is, as the derivative of sectional rota-
tion with respect to the initial centerline length). The stress 𝜎 that appears in the integral definitions of internal forces
as stress resultants, Equations (25) and (26), is understood as the quantity that is work-conjugate with the stretch at the
fiber level.

In the special case of a quadratic expression for strain energy density (in terms of the Biot strain 𝜀 = 𝜆 − 1), the
corresponding material law that links the stress to the stretch (or to the Biot strain) is linear, which then leads to a
linear form of the sectional equations (34) and (35). In contrast to what would be obtained for an initially straight
beam, these equations are coupled, in the sense that the normal force depends not only on the axial strain but also
on the change of curvature, and the bending moment depends not only on the change of curvature but also on the
axial strain.

A.2 Extension to other hyperelastic material laws
For general hyperelasticity, the strain energy density does not need to be quadratic in terms of Biot strain. The description
of stretch distribution across the section by formula (20) as well as the definitions of internal forces as stress resultants
given by (25) and (26) remain valid, independently of the constitutive model. One only needs to adjust the material law
that links the stress to the stretch, and then derive the corresponding sectional equations. Often, the integrals in (25) and
(26) would have to be evaluated numerically.

A.2.1 St. Venant–Kirchhoff model
It is instructive to look at one of the special cases that permit analytical evaluation. Let us consider the
St. Venant–Kirchhoff model, which postulates a linear relationship between the Green–Lagrange strain and its
work-conjugate stress, which is the second Piola–Kirchhoff stress. This model is obtained by defining the strain energy
density as a quadratic function of the Green–Lagrange strain 𝜀GL = (𝜆2 − 1)∕2. From

int =
1
2

E𝜀2
GL =

E
8
(𝜆2 − 1)2, (A1)

we get

𝜎 = dint

d𝜆
= E

2
(𝜆2 − 1)𝜆 = E

2
(𝜆3 − 𝜆), (A2)

in which 𝜎 is the first Piola–Kirchhoff stress (note that the second Piola–Kirchhoff stress would be obtained by
differentiating int with respect to 𝜀GL and would be given by E𝜀GL). The internal forces are then evaluated as

N =
∫A
𝜎 dA = E

2 ∫A

(
(𝜆s + z𝜅)3

(1 + z𝜅0)3
− 𝜆s + z𝜅

1 + z𝜅0

)
dA =

= EA3

2
(
2𝜀s + 3𝜀2

s + 𝜀3
s
)
+ ES3

2
(
𝜅0𝜀s(4 + 3𝜀s) +

(
2 + 6𝜀s + 3𝜀2

s
)
Δ𝜅

)
+

+ EI3

2
((

2𝜅2
0 + 6𝜅0Δ𝜅 + 3Δ𝜅2)

𝜀s + 4𝜅0Δ𝜅 + 3Δ𝜅2) + EJ3

2
(
2𝜅2

0Δ𝜅 + 3𝜅0Δ𝜅2 + Δ𝜅3)
, (A3)

M =
∫A

z𝜎 dA = E
2 ∫A

(
z(𝜆s + z𝜅)3

(1 + z𝜅0)3
− z𝜆s + z2

𝜅

1 + z𝜅0

)
dA =

= ES3

2
(
2𝜀s + 3𝜀2

s + 𝜀3
s
)
+ EI3

2
(
𝜅0𝜀s(4 + 3𝜀s) +

(
2 + 6𝜀s + 3𝜀2

s
)
Δ𝜅

)
+

+ EJ3

2
((

2𝜅2
0 + 6𝜅0Δ𝜅 + 3Δ𝜅2)

𝜀s + 4𝜅0Δ𝜅 + 3Δ𝜅2) + EK3

2
(
2𝜅2

0Δ𝜅 + 3𝜅0Δ𝜅2 + Δ𝜅3)
, (A4)
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in which

A3 =
∫A

1
(1 + z𝜅0)3

dA, (A5)

S3 =
∫A

z
(1 + z𝜅0)3

dA, (A6)

I3 =
∫A

z2

(1 + z𝜅0)3
dA, (A7)

J3 =
∫A

z3

(1 + z𝜅0)3
dA, (A8)

K3 =
∫A

z4

(1 + z𝜅0)3
dA, (A9)

are modified sectional characteristics. These five quantities are linked by the relations A3 + 3𝜅0S3 + 3𝜅2
0 I3 + 𝜅3

0 J3 = A and
S3 + 3𝜅0I3 + 3𝜅2

0 J3 + 𝜅3
0 K3 = 0, and so only three of them are independent. For a straight beam, they reduce to A3 = A,

S3 = 0, I3 = I, J3 = ∫A z3dA, and K3 = ∫A z4dA.
The internal forces are now nonlinear functions of the (Biot) axial strain, 𝜀s, and the curvature change, Δ𝜅. Inversion

of the nonlinear sectional equations (A3) and (A4) in closed form is not possible, but the deformation variables that
correspond to a given combination of internal forces N and M can, at least within a certain range, be evaluated numerically
by the Newton–Raphson method.

The main reason why we present the explicit form of these more complicated sectional equations (A3) and (A4) is that
they can now be compared with the linear sectional equations (34) and (35). The common feature is that, in both cases,
the equations are coupled. For instance, the normal force depends not only on the axial strain but also on the change
of curvature. For the linear sectional equations, it is possible to find a transformed quantity, N + 𝜅0M, which is linked
exclusively to the centerline strain and independent of the curvature change. However, this special property is closely
related to the choice of the constitutive model and cannot be considered as general. To see that, it is sufficient to realize
that

N + 𝜅0M =
∫A
𝜎 dA + 𝜅0

∫A
z𝜎 dA =

∫A
(1 + z𝜅0) 𝜎 dA. (A10)

If the stress–strain law (28) is used, the resulting stress distribution is given by (29), with 1 + z𝜅0 in the denominator, and
expression (A10) yields a very simple result:

∫A
(1 + z𝜅0)𝜎 dA =

∫A
(1 + z𝜅0) E 𝜀s + zΔ𝜅

1 + z𝜅0
dA = E

∫A
(𝜀s + zΔ𝜅) dA = EA𝜀s. (A11)

In contrast to that, for the stress–strain law given by (A2), the integrand does not simplify that much, and the result still
depends on Δ𝜅:

∫A
(1 + z𝜅0)𝜎 dA =

∫A
(1 + z𝜅0)

E
2

(
(𝜆s + z𝜅)3

(1 + z𝜅0)3
− 𝜆s + z𝜅

1 + z𝜅0

)
dA = E

2 ∫A

(
(𝜆s + z𝜅)3

(1 + z𝜅0)2
− 𝜆s − z𝜅

)
dA = (A12)

= E
2 ∫A

(𝜆s + z(𝜅0 + Δ𝜅))3

(1 + z𝜅0)2
dA − EA

2
𝜆s. (A13)

One can also verify that if the expression on the right-hand side of (A4) is multiplied by 𝜅0 and added to the expression
on the right-hand side of (A3), terms with Δ𝜅 do not cancel out. This fact will be used later on in the discussion of the
differences between the present modeling approach and the framework used by Simo and Fox19 for shells.

It is interesting to note that if all nonlinear terms in Equations (A3) and (A4) are neglected, the equations reduce to

N =
(

EA3 + 2𝜅0ES3 + 𝜅2
0 EI3

)
𝜀s +

(
ES3 + 2𝜅0EI3 + 𝜅2

0 EJ3
)
Δ𝜅, (A14)

M =
(

ES3 + 2𝜅0EI3 + 𝜅2
0 EJ3

)
𝜀s +

(
EI3 + 2𝜅0EJ3 + 𝜅2

0 EK3
)
Δ𝜅. (A15)

This form of sectional equations linearized around the initial state is equivalent to the linear sectional equations (34) and
(35). To see that, it is sufficient to realize that A3 + 2𝜅0S3 + 𝜅2

0 I3 = A
𝜅0 , S3 + 2𝜅0I3 + 𝜅2

0 J3 = S
𝜅0 and I3 + 2𝜅0J3 + 𝜅2

0 K3 = I
𝜅0 ,
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as follows from definitions (A5)–(A9) and (36)–(38). In the next subsection, we will show that the same linearized form
is obtained for sectional equations derived from any uniaxial hyperelastic stress–strain law, that is, not only from the
presently considered St. Venant–Kirchhoff law.

A.2.2 General hyperelasticity
A certain drawback of uniaxial stress–strain laws that follow from the assumed quadratic expression for strain energy
density in terms of Biot strain or Green–Lagrange strain is that they fail to describe the extreme compression limit, 𝜆 → 0+.
The energy density remains finite and the stress as well. For the St. Venant–Kirchhoff model, the first Piola–Kirchhoff
stress even tends to zero in this limit. This deficiency is not so critical for applications to slender beams, which usually
buckle in compression and large compressive strains are not really attained. If needed, a more realistic behavior in extreme
compression can be obtained if the strain energy density is taken as quadratic in terms of the logarithmic strain, that is,
if we set

int =
1
2

E (ln 𝜆)2. (A16)

The first Piola–Kirchhoff stress is then given by

𝜎 = dint

d𝜆
= E ln 𝜆

𝜆

. (A17)

This tends to minus infinity as 𝜆 → 0+, that is, in extreme compression. On the other hand, in tension the first
Piola–Kirchhoff stress attains its maximum at 𝜆 = e and afterwards decreases to zero.

Of course, one could further improve the material description by constructing a more appropriate (and presumably
more complicated) expression for strain energy density, but it is also possible to postulate directly the function Σ that links
the first Piola–Kirchhoff stress to the stretch. For such a general elastic material law

𝜎 = Σ(𝜆), (A18)

the corresponding sectional equations read

N =
∫A
Σ
(
𝜆s + z𝜅
1 + z𝜅0

)
dx =

∫A
Σ
(

1 + 𝜀s + z Δ𝜅
1 + z𝜅0

)
dx, (A19)

M =
∫A

z Σ
(
𝜆s + z𝜅
1 + z𝜅0

)
dx =

∫A
z Σ

(
1 + 𝜀s + z Δ𝜅

1 + z𝜅0

)
dx. (A20)

Differentiating the internal forces with respect to the deformation variables 𝜀s and Δ𝜅, we obtain the tangent sectional
stiffnesses

𝜕N
𝜕𝜀s

=
∫A

1
1 + z𝜅0

Σ
,𝜆

(
1 + 𝜀s + z Δ𝜅

1 + z𝜅0

)
dx 𝜕N

𝜕Δ𝜅
=
∫A

z
1 + z𝜅0

Σ
,𝜆

(
1 + 𝜀s + z Δ𝜅

1 + z𝜅0

)
dx, (A21)

𝜕M
𝜕𝜀s

=
∫A

z
1 + z𝜅0

Σ
,𝜆

(
1 + 𝜀s + z Δ𝜅

1 + z𝜅0

)
dx 𝜕M

𝜕Δ𝜅
=
∫A

z2

1 + z𝜅0
Σ
,𝜆

(
1 + 𝜀s + z Δ𝜅

1 + z𝜅0

)
dx. (A22)

Here, Σ
,𝜆

≡ dΣ∕d𝜆 is the tangent material modulus. Its value at 𝜆 = 1 is the standard elastic modulus, E.
The main point to be made here is that no matter which specific form of the material law is used, the coupling effect is

always present, already in the small-strain range. Indeed, the cross-coupling stiffness, 𝜕N∕𝜕Δ𝜅 ≡ 𝜕M∕𝜕𝜀s, vanishes only
exceptionally, for example, when 𝜅0 = 0 and Σ

,𝜆

is constant, which corresponds to a straight beam and linear material law
(28). In the initial undeformed state, we have 𝜀s = 0 and Δ𝜅 = 0, and the cross-coupling stiffness is

𝜕N(0, 0)
𝜕Δ𝜅

= 𝜕M(0, 0)
𝜕𝜀s

=
∫A

z
1 + z𝜅0

Σ
,𝜆
(1) dx =

∫A

Ez
1 + z𝜅0

dx = ES
𝜅0. (A23)

In a similar fashion, one gets 𝜕N(0, 0)∕𝜕𝜀s = EA
𝜅0 and 𝜕M(0, 0)∕𝜕Δ𝜅 = EI

𝜅0. This means that even if the material law
is nonlinear, the sectional equations linearized around the initial state always have the form (34) and (35) and thus are
coupled, provided that the beam is curved.
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Material nonlinearity cannot eliminate the coupling, and it can even introduce coupling for straight beams. For 𝜅0 = 0
(but a general deformation state), the cross-coupling sectional stiffness reduces to

𝜕N(𝜀s,Δ𝜅)
𝜕Δ𝜅

= 𝜕M(𝜀s,Δ𝜅)
𝜕𝜀s

=
∫A

z Σ
,𝜆
(1 + 𝜀s + z Δ𝜅) dx. (A24)

This vanishes if the tangent modulus Σ
,𝜆

= const., but not in general. For instance, for the St. Venant–Kirchhoff model
we have Σ

,𝜆

(𝜆) = E(3𝜆2 − 1)∕2, and substitution into (A24) leads to

∫A
z Σ

,𝜆
(1 + 𝜀s + z Δ𝜅) dx = E

2 ∫A
z
[
3
(
1 + 𝜀s + z Δ𝜅

)2 − 1
]

dA = E
2

3 ⋅ 2 ⋅ (1 + 𝜀s)Δ𝜅
∫A

z2dA = 3EI(1 + 𝜀s)Δ𝜅. (A25)

Here, the coupling effect vanishes as long asΔ𝜅 = 0, that is, the beam remains straight. However, as the beam gets curved,
the coupling effect gradually builds up.

A.3 Comparison with the framework used by Simo and Fox for shells
Simo and Fox19 proposed a framework for geometrically exact modeling of shells based on systematic tensorial description
of basic quantities and governing equations. Among other developments, they introduced the concept of the effective
stress resultants, which were obtained from the specific normal and shear forces by adding a certain linear combination of
specific moments. The main objective was to construct internal forces that can be linked by sectional equations exclusively
to the in-plane deformation variables, with the effect of bending eliminated. It is interesting to check how the Simo-Fox
approach would reduce to the case of a two-dimensional Euler–Bernoulli beam studied here, and whether the effective
membrane stress resultant corresponds to our N + 𝜅0M, which was found to be dependent exclusively on the axial strain
in the special case of linear sectional equations (34) and (35).

Simo and Fox19 worked with a general shape of the shell midsurface and described it using curvilinear coordi-
nates and the corresponding surface convected frame, plus an additional director orthogonal frame. For comparison
with the two-dimensional curved beam, it is sufficient to consider a cylindrical surface. Moreover, we assume that the
section remains perpendicular to the deformed centerline, and so the director vector of the corresponding shell remains
perpendicular to the deformed midsurface. The first curvilinear coordinate can be selected as our x, measured as the
distance along the initial centerline, and the second one as the out-of-plane coordinate y. The surface convected frame
is then orthogonal, initially even orthonormal; the first base vector stretches with the centerline and its norm is 𝜆s, the
second remains a unit out-of-plane vector, and the third coincides with the unit director vector perpendicular to the
midsurface.

Considering the curved beam (with a rectangular cross section) as a cylindrical shell strip of width bs and using the
special choice of curvilinear coordinates described above, we can reduce the expression for stress power presented in
eq. (5.1) in Simo and Fox19 to

 =
∫

L

0
bs
(

n11
𝜆s ̇𝜆s + m̃11

𝜆s𝜅̇
)
𝜆s dx, (A26)

where

n11 = N
bs𝜆

2
s
, (A27)

m̃11 = M
bs𝜆

2
s
, (A28)

are stress resultant components used by Simo and Fox,19 evaluated from their eqs. (4.7), (4.11), and (4.22). Fractions N∕bs
and M∕bs are identified as the specific normal force and specific bending moment, and the additional scaling by 1∕𝜆2

s is
related to the fact that the first base vector is not normalized and its norm is 𝜆s. Substituting (A27) and (A28) into (A26),
we can rewrite the stress power expression as

 =
∫

L

0
bs

(
N

bs𝜆
2
s
𝜆s ̇𝜆s +

M
bs𝜆

2
s
𝜆s𝜅̇

)
𝜆s dx =

∫

L

0
(N ̇

𝜆s +M𝜅̇) dx. (A29)
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HORÁK et al. 609

This is consistent with our previously derived Equation (24), which expressed virtual work instead of stress power,
and so the rates were replaced by virtual changes.

In the present paper, we have decided to define one of the deformation variables as 𝜅 = 𝜑′, because this quantity is
work-conjugate with the bending moment, as seen in (24). We refer to this variable as the “curvature”, even though it is
equal to the reciprocal value of the radius of curvature only in the initial state, where 𝜅0 = 𝜑′0 = 1∕R0. In the deformed
state, if the centerline segment is on a circle of radius R, has length 𝜆s dx and the difference in rotation of the right and left
end is d𝜑, elementary geometry considerations lead to the relation R d𝜑 = 𝜆s dx, from which R𝜑′ = 𝜆s. The true curvature
is thus given by k = 1∕R = 𝜑′∕𝜆s. However, Simo and Fox19 used yet another measure of curvature, defined as

𝜅11 = 𝜆s𝜑
′ = 𝜆s𝜅, (A30)

combined with a measure of membrane strain, defined as

𝜀11 = (𝜆2
s − 1)∕2, (A31)

which is easily recognized as the Green–Lagrange strain. The rates of the deformation variables 𝜀11 and 𝜅11 are

𝜀̇11 = 𝜆s ̇𝜆s, (A32)
𝜅̇11 = ̇

𝜆s𝜅 + 𝜆s𝜅̇, (A33)

and so the expression in parentheses inside the integral in (A26) can be transformed as follows:

n11
𝜆s ̇𝜆s + m̃11

𝜆s𝜅̇ = n11
𝜀̇11 + m̃11(𝜅̇11 − 𝜅 ̇𝜆s) = n11

𝜀̇11 + m̃11(𝜅̇11 − 𝜀̇11𝜅∕𝜆s) =
(

n11 − m̃11
𝜅∕𝜆s

)
𝜀̇11 + m̃11

𝜅̇11. (A34)

Consequently, if we define the effective membrane stress resultant

ñ11 = n11 − 𝜅

𝜆s
m̃11

, (A35)

then the stress power can be expressed as

 =
∫

L

0
bs
(

ñ11
𝜀̇11 + m̃11

𝜅̇11
)
𝜆s dx. (A36)

This means that quantities ñ11 and m̃11 are work-conjugate with deformation measures 𝜀11 and 𝜅11. In fact, since
the curvature does not vanish in the initial state, it is preferable to use the curvature increment Δ𝜅11 = 𝜅11 − 𝜅0,11 as the
deformation variable (this quantity was denoted as 𝜌11 in Simo and Fox,19 but we preferΔ𝜅11, to avoid confusion with the
density). Of course, by 𝜅0,11 we mean the value of 𝜅11 in the initial state. Note that the factor 𝜅∕𝜆s in (A35) represents the
true curvature, k.

The constitutive description used by Simo and Fox19 was based on the assumption that there exists a stored energy
function 𝜓 that depends on the deformation variables, in our case only on 𝜀11 and Δ𝜅11, and represents the strain energy
per unit mass. Since the deformation variables already characterize the strain state in the whole elementary segment,
the strain energy of the shell would be evaluated by integrating over the midsurface, and for the 2D beam this reduces to
integration over the centerline:

Eint =
∫

L

0
bshs𝜌0𝜓 dx. (A37)

The product bshs would in general correspond to the sectional area, but since we consider a beam model that represents
a strip of a cylindrical shell, we insert right away the expression valid for a rectangular section. Symbol 𝜌0 represents the ini-
tial mass density (per unit volume), and so the product bshs𝜌0 is the mass per unit length of the centerline. Differentiation
of (A37) with respect to time leads to the rate of the beam strain energy

̇Eint =
∫

L

0
bshs𝜌0

(
𝜕𝜓

𝜕𝜀11
𝜀̇11 +

𝜕𝜓

𝜕Δ𝜅11
Δ𝜅̇11

)
dx, (A38)

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7133 by C
ochraneItalia, W

iley O
nline L

ibrary on [05/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



610 HORÁK et al.

and when this is compared with (A36), the constitutive equations are obtained in the form

ñ11 = hs𝜌0

𝜆s

𝜕𝜓

𝜕𝜀11
, (A39)

m̃11 = hs𝜌0

𝜆s

𝜕𝜓

𝜕Δ𝜅11
. (A40)

In eq. (5.18) in Simo and Fox,19 these relations were written as

ñ11 = 𝜌 𝜕𝜓
𝜕𝜀11

, (A41)

m̃11 = 𝜌 𝜕𝜓

𝜕Δ𝜅11
, (A42)

where 𝜌 is the mass density per unit surface area in the deformed state, which can be for a beam segment evaluated as

𝜌 =
∫A 𝜌0(1 + z𝜅0) dA dx

bs𝜆s dx
= 𝜌0A dx

bs𝜆s dx
= hs𝜌0

𝜆s
. (A43)

This confirms that Equations (A39)–(A40) and (A41)–(A42) are indeed equivalent.
An important difference between our approach and the framework used by Simo and Fox19 is that we start from

constitutive equations at the material point level and construct the sectional equations by incorporating the kinematic
assumptions that link strain to the sectional deformation variables, while Simo and Fox19 start on the sectional level and
postulate the expression for stored energy density𝜓 directly in terms of the sectional deformation variables. The resulting
sectional equations are equivalent only if the expression for 𝜓 is consistently derived instead of arbitrarily postulated.
Indeed, if we consider the strain energy density (per unit volume) as a given function int of the stretch and combine this
with the kinematic assumptions that lead to the distribution of stretch described by (20), substitution of (20) into (21)
gives

Eint =
∫

L

0 ∫A
(1 + z𝜅0) int

(
𝜆s + z𝜅
1 + z𝜅0

)
dA dx. (A44)

This is equivalent to (A37), provided that function 𝜓 is defined as

𝜓 = 1
bshs𝜌0 ∫A

(1 + z𝜅0) int

(
𝜆s + z𝜅
1 + z𝜅0

)
dA = 1

bshs ∫A
(1 + z𝜅0) 𝜓0

(
𝜆s + z𝜅
1 + z𝜅0

)
dA, (A45)

in which 𝜓0 = int∕𝜌0 is introduced only for convenience and represents the specific strain energy (i.e., energy per unit
mass) of our original material model. The expression on the right-hand side of (A45) can be interpreted as averaging of
the specific strain energy over the section, however, instead of uniform averaging, a certain weight function dependent
on the initial curvature is used. Effectively, we average over the volume of the curved elementary segment.

In (A45), function 𝜓 is presented as dependent on deformation variables 𝜆s and 𝜅, but it is no problem to transform
the expression into a function of any other two suitable chosen sectional deformation variables, such as our 𝜀s and Δ𝜅,
or 𝜀11 and Δ𝜅11 used by Simo and Fox.19 For instance, if we adopt the model based on quadratic energy density in terms
of Biot strain, function 𝜓0(𝜆) is given by (E∕2𝜌0)(𝜆 − 1)2 and formula (A45) yields

𝜓 = 1
bshs ∫A

(1 + z𝜅0)
E

2𝜌0

(
𝜆s + z𝜅
1 + z𝜅0

− 1
)2

dA = E
2𝜌0bshs ∫A

(1 + z𝜅0)
(
𝜀s + zΔ𝜅
1 + z𝜅0

)2

dA =

= E
2𝜌0bshs

(
A
𝜅0𝜀

2
s + 2S

𝜅0𝜀sΔ𝜅 + I
𝜅0Δ𝜅

2)
. (A46)

Based on (A30) and (A31), the deformation variables used by Simo and Fox19 are

𝜀11 =
1
2
(
𝜆

2
s − 1

)
= 1

2
(
𝜀

2
s + 2𝜀s

)
, (A47)
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HORÁK et al. 611

Δ𝜅11 = 𝜆s𝜅 − 𝜅0 = Δ𝜅 + (𝜅0 + Δ𝜅)𝜀s, (A48)

and by inversion we obtain

𝜀s =
√

1 + 2𝜀11 − 1, (A49)

Δ𝜅 =
Δ𝜅11 + 𝜅0

(
1 −

√
1 + 2𝜀11

)

√
1 + 2𝜀11

. (A50)

Substitution of these expressions into (A46) leads, after omission of constant terms, to

𝜓 = E
𝜌0bshs

(
A
𝜅0

(
𝜀11 −

√
1 + 2𝜀11

)
+ S

𝜅0

(
Δ𝜅11 −

2𝜅0(1 + 𝜀11) + Δ𝜅11√
1 + 2𝜀11

)
+

+I
𝜅0

(𝜅0 + Δ𝜅11)2∕2 − 𝜅0(𝜅0 + Δ𝜅11)
√

1 + 2𝜀11

1 + 2𝜀11

)
. (A51)

This function of 𝜀11 and Δ𝜅11 can now be used in (A41) and (A42), where 𝜌 needs to be replaced by

𝜌 = hs𝜌0

𝜆s
= hs𝜌0√

1 + 2𝜀11
. (A52)

The resulting expression for the effective membrane stress resultant is

ñ11 = E
bs

(
A
𝜅0

√
1 + 2𝜀11 − 1
1 + 2𝜀11

+ S
𝜅0

(
2𝜅0(1 + 𝜀11) + Δ𝜅11

(1 + 2𝜀11)2
− 2𝜅0

1 + 2𝜀11

)
+ I

𝜅0

(
𝜅0(𝜅0 + Δ𝜅11)
(1 + 2𝜀11)2

− (𝜅0 + Δ𝜅11)2

(1 + 2𝜀11)5∕2

))
. (A53)

A considerably simpler expression is obtained for the specific bending moment:

m̃11 = E
bs

(
S
𝜅0

√
1 + 2𝜀11 − 1
1 + 2𝜀11

+ I
𝜅0

(
𝜅0 + Δ𝜅11

(1 + 2𝜀11)3∕2 −
𝜅0

1 + 2𝜀11

))
. (A54)

Recalling that the actual bending moment is M = bs𝜆
2
s m̃11 and taking into account that deformation variables 𝜀11 and

Δ𝜅11 are linked to “our” variables 𝜀s and Δ𝜅 by Equations (A47) and (A48), we can easily check that Equation (A54)
exactly corresponds to the simple linear law (35) for the bending moment M in terms of 𝜀s and Δ𝜅. For the effective
membrane stress resultant ñ11, the equivalence is more difficult to check because ñ11 corresponds to a combination of
N and M, namely to (𝜆sN − 𝜅M)∕(bs𝜆

3
s ). The comparison becomes easier if the “original” (i.e., not effective) membrane

stress resultant is expressed first:

n11 = ñ11 + 𝜅

𝜆s
m̃11 = ñ11 + 𝜅0 + Δ𝜅11

1 + 2𝜀11
m̃11 = E

bs

(
A
𝜅0

√
1 + 2𝜀11 − 1
1 + 2𝜀11

+ S
𝜅0

(
𝜅0 + Δ𝜅11

(1 + 2𝜀11)3∕2 −
𝜅0

1 + 2𝜀11

))
. (A55)

The resulting expression has the same structure as (A54), only with A
𝜅0 replaced by S

𝜅0 and S
𝜅0 replaced by I

𝜅0 , and
so the equivalence to (34) is easy to verify.

We have shown that, for a given uniaxial hyperelastic stress–strain law, one can derive the corresponding stored energy
density function 𝜓 dependent on the sectional deformation variables such that the sectional equations (A41) and (A42)
used by Simo and Fox19 become equivalent to our sectional equations (34) and (35). The opposite is not true, that is, not
all choices of 𝜓 are consistent with a uniaxial material law. To see that, let us think of how the transformation performed
in (A45) can be inverted, that is, how the functional dependence of the strain energy density int on the stretch can be
identified if the dependence of 𝜓 on the sectional deformation variables is prescribed. To be specific, let us consider that
𝜓 = 𝜓̂(𝜆s, 𝜅), even though the proposed method would work for other choices of independent deformation variables as
well. The key idea is that if 𝜆s and 𝜅 are selected such that 𝜅 = 𝜆s𝜅0, then the fraction in (A45) that represents the stretch
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612 HORÁK et al.

becomes independent of z, and the corresponding value of int can be taken out of the integral. The integral of 1 + z𝜅0
then gives the sectional area, A = bshs, and the first equality in (A45) can be transformed into

int(𝜆s) = 𝜌0𝜓̂(𝜆s, 𝜆s𝜅0). (A56)

This means that function int of one variable (the stretch) is uniquely determined by the values of function 𝜓 on one
single line in the plane of variables 𝜆s and 𝜅. Once int is extracted in this way, the values of 𝜓̂ outside that special line
are uniquely determined by (A45), and so they cannot be chosen arbitrarily. Of course, by far not all possible choices of
𝜓̂ satisfy this constraint.

Let us now return attention to the approach used by Simo and Fox.19 The reason why they introduced the effective
membrane stress resultant ñ11 was that if 𝜀11 and Δ𝜅11 are selected as the sectional deformation variables, then ñ11 is the
static quantity that is work-conjugate with 𝜀11. For stored energy density 𝜓 considered as a function of 𝜀11 and Δ𝜅11, the
sectional equations have the form (A41) and (A42). As the simplest formulation, Simo and Fox19 suggested to use linear
and decoupled sectional equations, which would be in the present notation written as

ñ11 = 𝜌Ehs𝜀11, (A57)

m̃11 =
𝜌Eh3

s

12
Δ𝜅11. (A58)

This form of the equations would be obtained by transcribing the original eq. (5.19) from Simo and Fox,19 taking
into account their eq. (5.20) and setting the Poisson ratio to zero, to eliminate the difference between the beam and the
cylindrical shell strip. However, Equations (A57) and (A58) are not dimensionally correct, because 𝜀11 is dimensionless,
E is the Young modulus in Pa, hs is the shell thickness (or beam depth) in m, ñ11 is a force per unit width, in N/m, and
𝜌 is supposed to be the mass density per unit volume, in kg/m3. The derivation of these equations was not presented in
detail, only briefly described as an approximation based on an asymptotic expansion, and the corresponding choice of
stored energy potential 𝜓 was not specified. One can only guess that the objective was to construct the equations in the
simplest and decoupled form, which could be achieved by using the quadratic potential

𝜓(𝜀11,Δ𝜅11) =
1
2

C1𝜀
2
11 +

1
2

C2Δ𝜅2
11 (A59)

with the meaning of constants C1 and C2 yet to be identified. The corresponding sectional equations (A41) and (A42)
would read

ñ11 = 𝜌C1𝜀11 = hs𝜌0C1
𝜀11√

1 + 2𝜀11
, (A60)

m̃11 = 𝜌C2Δ𝜅11 = hs𝜌0C2
Δ𝜅11√
1 + 2𝜀11

. (A61)

In this way, we would obtain an expression for ñ11 exclusively in terms of 𝜀11 (and given constants), while m̃11 would
depend not only on Δ𝜅11 but also slightly on 𝜀11, even though the potential 𝜓 did not contain a mixed term with the
product 𝜀11Δ𝜅11.

Equations (A60) and (A61) are nonlinear and (A61) contains both 𝜀11 and Δ𝜅11. This could be fixed by considering
static quantities n̂ = 𝜆sñ11 and m̂ = 𝜆sm̃11 instead of ñ11 and m̃11. The resulting sectional equations would be linear and
decoupled. A more fundamental problem is related to the specific choice of quadratic potential (A59), which is not con-
sistent with any hyperelastic uniaxial stress–strain law on the material level. To see that, let us first exploit formula (A56)
and construct the strain energy density expression that could be (but actually is not) at the origin of the assumed quadratic
potential (A59):

int(𝜆s) = 𝜌0𝜓̂(𝜆s, 𝜆s𝜅0) = 𝜌0𝜓
(1

2
(
𝜆

2
s − 1

)
, 𝜅0

(
𝜆

2
s − 1

))
=

(
𝜌0C1

8
+
𝜌0C2𝜅

2
0

2

)(
𝜆

2
s − 1

)2
. (A62)

Recalling (A1), we realize that this is the strain energy density of the St. Venant–Kirchhoff material with elastic
modulus

E = 𝜌0C1 + 4𝜌0C2𝜅
2
0 . (A63)
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HORÁK et al. 613

So far we have shown that if the quadratic potential (A59) is derivable from a material-level strain energy expression,
then the expression would need to have the form (A1), with E given by (A63). However, for this particular strain energy
density, formula (A45) gives

𝜓̂(𝜆s, 𝜅) =
1

bshs𝜌0 ∫A
(1 + z𝜅0) int

(
𝜆s + z𝜅
1 + z𝜅0

)
dA = E

8bshs𝜌0 ∫A
(1 + z𝜅0)

((
𝜆s + z𝜅
1 + z𝜅0

)2

− 1

)2

dA =

= E
8bshs𝜌0 ∫A

(
(𝜆s + z𝜅)2 − (1 + z𝜅0)2

)2

(1 + z𝜅0)3
dA = E

8bshs𝜌0 ∫A

(
𝜆

2
s − 1 + 2(𝜆s𝜅 − 𝜅0)z + (𝜅2 − 𝜅2

0 )z
2)2

(1 + z𝜅0)3
dA =

= E
8bshs𝜌0

(
A3

(
𝜆

2
s − 1

)2 + 4S3
(
𝜆

2
s − 1

)
(𝜆s𝜅 − 𝜅0) + 2I3

(
2(𝜆s𝜅 − 𝜅0)2 +

(
𝜆

2
s − 1

) (
𝜅

2 − 𝜅2
0
))
+

+4J3(𝜆s𝜅 − 𝜅0)
(
𝜅

2 − 𝜅2
0
)
+ K3

(
𝜅

2 − 𝜅2
0
)2
)
. (A64)

Replacing 𝜆s by
√

1 + 2𝜀11 and 𝜅 by (𝜅0 + Δ𝜅11)∕
√

1 + 2𝜀11, which are expressions that easily follow from (A49) and
(A50), we obtain

𝜓 (𝜀11,Δ𝜅11) =
E

8𝜌0bshs

(
A34𝜀2

11 + 8S3𝜀11Δ𝜅11 + 2I3

(
2Δ𝜅2

11 + 2𝜀11
Δ𝜅2

11 + 2𝜅0Δ𝜅11 − 2𝜅2
0𝜀11

1 + 2𝜀11

)
+

+4J3Δ𝜅11
Δ𝜅2

11 + 2𝜅0Δ𝜅11 − 2𝜅2
0𝜀11

1 + 2𝜀11
+ K3

(
Δ𝜅2

11 + 2𝜅0Δ𝜅11 − 2𝜅2
0𝜀11

)2

(1 + 2𝜀11)2

)
. (A65)

Here, A3 to K3 are modified sectional characteristics defined in (A5)–(A9). The resulting functional expression
for 𝜓 contains not only terms proportional to the squares of 𝜀11 and Δ𝜅11 but also many terms with other pow-
ers, including mixed terms that depend on 𝜀11 and Δ𝜅11 simultaneously. Therefore, the simple expression (A59) can
be considered only as a convenient approximation, but it is not consistent with any hyperelastic law on the fiber
level.

If the complete expression (A65) is substituted into (A39) and (A40), the resulting sectional equations are written in
terms of internal forces ñ11 and m̃11 and deformation variables 𝜀11 and Δ𝜅11, but they are equivalent with Equations (A3)
and (A4) written in terms of internal forces N and M and deformation variables 𝜀s and Δ𝜅. For this consistent model,
the effective membrane stress resultant ñ11 depends not only on 𝜀11 but also on Δ𝜅11, in contrast to what was assumed
in Simo and Fox.19 Even if the consistently derived potential (A65) is approximated by a quadratic expression, the mixed
terms still persist and no decoupling is achieved. The quadratic approximation obtained by neglecting terms of third and
higher order in 𝜀11 and Δ𝜅11 reads

𝜓Q (𝜀11,Δ𝜅11) =
E

8𝜌0bshs

(
A34𝜀2

11 + 8S3𝜀11Δ𝜅11 + 2I3
(
2Δ𝜅2

11 + 2𝜀11
(
2𝜅0Δ𝜅11 − 2𝜅2

0𝜀11
))
+

+4J3Δ𝜅11
(
2𝜅0Δ𝜅11 − 2𝜅2

0𝜀11
)
+ K3

(
2𝜅0Δ𝜅11 − 2𝜅2

0𝜀11
)2
)
=

= E
2𝜌0bshs

((
A3 − 2𝜅2

0 I3 + 𝜅4
0 K3

)
𝜀

2
11 + 2

(
S3 + 𝜅0I3 − 𝜅2

0 J3 − 𝜅3
0 K3

)
𝜀11Δ𝜅11 +

(
I3 + 2𝜅0J3 + 𝜅2

0 K3
)
Δ𝜅2

11
)
=

= E
2𝜌0bshs

((
A + 4𝜅2

0 I
𝜅0

)
𝜀

2
11 + 4S

𝜅0𝜀11Δ𝜅11 + I
𝜅0Δ𝜅

2
11
)
, (A66)

and the corresponding approximated sectional equations (A39) and (A40) are

ñ11 ≈ hs𝜌0

𝜆s

𝜕𝜓Q

𝜕𝜀11
≈ E

bs

((
A + 4𝜅2

0 I
𝜅0

)
𝜀11 + 2S

𝜅0Δ𝜅11
)
, (A67)

m̃11 ≈ hs𝜌0

𝜆s

𝜕𝜓Q

𝜕Δ𝜅11
≈ E

bs

(
2S

𝜅0𝜀11 + I
𝜅0Δ𝜅11

)
. (A68)

Here we have replaced 1∕𝜆s = 1∕(1 + 𝜀s) by 1, because 𝜀s is of the same order as 𝜀11, which is tacitly assumed to be small
compared to 1 (note that 𝜕𝜓Q∕𝜕𝜀11 is in fact a linear approximation of 𝜕𝜓∕𝜕𝜀11, which is applicable if the deformation
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614 HORÁK et al.

variables are small). In the same spirit, we can use the linearized approximations

𝜀11 =
1
2
(
𝜆

2
s − 1

)
= 1

2
(
2𝜀s + 𝜀2

s
)
≈ 𝜀s, (A69)

Δ𝜅11 = 𝜆s𝜅 − 𝜅0 = (1 + 𝜀s)(𝜅0 + Δ𝜅) − 𝜅0 ≈ Δ𝜅 + 𝜅0𝜀s, (A70)

and evaluate the transformation from the specific to the total internal forces:

M = bs𝜆
2
s m̃11 ≈ bsm̃11 ≈ 2ES

𝜅0𝜀11 + EI
𝜅0Δ𝜅11 ≈ 2ES

𝜅0𝜀s + EI
𝜅0 (Δ𝜅 + 𝜅0𝜀s) = ES

𝜅0𝜀s + EI
𝜅0Δ𝜅, (A71)

N = bs𝜆
2
s n11 = bs𝜆

2
s

(
ñ11 + 𝜅

𝜆s
m̃11

)
≈ bs

(
ñ11 + 𝜅0m̃11) ≈

≈
(

EA + 4𝜅2
0 EI

𝜅0

)
𝜀11 + 2ES

𝜅0Δ𝜅11 + 2𝜅0ES
𝜅0𝜀11 + 𝜅0EI

𝜅0Δ𝜅11 =
=
(

EA + 2𝜅2
0 EI

𝜅0

)
𝜀11 + ES

𝜅0Δ𝜅11 ≈
(

EA + 2𝜅2
0 EI

𝜅0

)
𝜀s + ES

𝜅0 (Δ𝜅 + 𝜅0𝜀s) =
=
(

EA + 𝜅2
0 EI

𝜅0

)
𝜀s + ES

𝜅0Δ𝜅. (A72)

All the foregoing approximations have been based on the assumptions of small deformations (𝜀s ≪ 1,Δ𝜅 ≪ 1∕hs) but
nothing special has been assumed regarding the initial curvature, 𝜅0 (see Section A.5 for extended analysis). The resulting
Equations (A71) and (A72) are identical with Equations (A14) and (A15) obtained by linearization of Equations (34)
and (35).

In summary, we have shown that the effective membrane stress resultant ñ11 in the form introduced by Simo and
Fox does not really help to decouple the membrane and bending effects for an initially curved beam (considered here as
a special case of a shell). The simple form of quadratic potential (A59) is not consistent with any model systematically
derived from a hyperelastic uniaxial material law governing the response of each fiber, not even as an approximation
valid in the small-strain range. If the quadratic approximation of the consistently derived potential is properly derived,
the resulting formula (A66) contains a mixed term, which is then responsible for the coupling effect demonstrated in
sectional equations (A39) and (A40). This effect is reflected by a mixed sectional stiffness 2ES

𝜅0 , which is in fact the double
of the mixed stiffness in sectional equations (A14)–(A15) or (34)–(35), written in terms of the standard (not effective)
stress resultants.

A.4 Alternative definitions of effective force
The effective membrane stress resultant was defined by Simo and Fox such that it corresponds to the quantity
work-conjugate with the membrane strain measure. However, this definition is also affected by the specific choice of the
deformation variable characterizing flexural effects. For instance, if we select 𝜀s andΔ𝜅 as the sectional deformation vari-
ables, the stress power per unit initial length of the beam segment is given by N𝜀̇s +MΔ𝜅̇, and so the force that provides
work on increments of 𝜀s at constantΔ𝜅 is simply the normal force, N. The shell model of Simo and Fox is based on defor-
mation variables which, for a beam, reduce to 𝜀11 and 𝜅11, defined in (A31) and (A30), and the stress power is then given
by (A36). The force that provides work on increments of 𝜀11 at constant 𝜅11 is in fact not directly ñ11 defined in (A35)
but the product ñ11

𝜆s (the additional multiplication by bs is simple scaling by a constant, which only transforms the spe-
cific internal force, that is, force per unit width, into the internal force at the level of the whole section of a given width).
Clearly, other choices of sectional deformation variables are possible and they may lead to other work-conjugate internal
forces.

One natural choice would be to select the flexural deformation measure such that it remains equal to zero if all fibers
are stretched uniformly. A uniformly stretched straight beam would of course remain straight. For a curved beam segment
whose centerline is initially a circular arc of radius R0 that subtends an angle d𝜑0 = dx∕R0, uniform stretching of all
fibers leads to a centerline still located on a circle of radius R0 but subtending an angle d𝜑 = 𝜆sd𝜑0. We have defined the
curvature as 𝜅 = 𝜑′ = d𝜑∕dx, which means that the initial curvature 𝜅0 = d𝜑0∕dx is equal to 1∕R0 but the curvature in a
deformed state is in general not equal to the reciprocal value of the current radius of curvature. This is fine as long as the
meaning of 𝜅 is properly interpreted. In the case of uniform stretching of all fibers, we get 𝜅 = d𝜑∕dx = 𝜆sd𝜑0∕dx = 𝜆s𝜅0.
This is why we need to consider the combination of 𝜆s and 𝜅 = 𝜆s𝜅0 when constructing the state of uniform strain energy
density, which is exploited, for example, in (A56). It is more natural to define the “true” curvature as k = 1∕R where R is the
current radius of inertia. In general, R d𝜑 = 𝜆sdx, and so k = 1∕R = 𝜑′∕𝜆s = 𝜅∕𝜆s, from which 𝜅 = k𝜆s and 𝜅̇ = ̇k𝜆s + k ̇𝜆s.
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HORÁK et al. 615

The stress power per unit initial length is then

N𝜀̇s +M𝜅̇ = (N + kM)𝜀̇s + 𝜆sM ̇k. (A73)

The initial value of k is k0 = 𝜅0 = 1∕R0. If we define potential

𝜓(𝜆s,Δk) = 1
bshs𝜌0 ∫A

(1 + z𝜅0)int

(
𝜆s + z(𝜅0 + Δk)𝜆s

1 + z𝜅0

)
dA = 1

bshs𝜌0 ∫A
(1 + z𝜅0)int

(
𝜆s

(
1 + zΔk

1 + z𝜅0

))
dA, (A74)

as function of 𝜆s and Δk = k − 𝜅0, the sectional equations resulting from this choice of deformation measures read

N + kM = bshs𝜌0
𝜕𝜓

𝜕𝜆s
, (A75)

𝜆sM = bshs𝜌0
𝜕𝜓

𝜕Δk
. (A76)

The advantage of this formulation is that, for given 𝜓(𝜀s,Δk), the strain energy density is easily identified as

int(𝜆s) = 𝜌0𝜓(𝜆s, 0). (A77)

For instance, for the material model with strain energy density given by (27), we obtain

𝜓(𝜆s,Δk) = E
2𝜌0

(𝜆s − 1)2 +
EI

𝜅0

2𝜌0bshs
𝜆

2
sΔk2

, (A78)

and the corresponding sectional equations read

N + kM = EA(𝜆s − 1) + EI
𝜅0𝜆sΔk2

, (A79)
𝜆sM = EI

𝜅0𝜆
2
sΔk. (A80)

The effective normal force, N + kM, depends not only on 𝜆s but also onΔk, and a full decoupling effect is not achieved.
However, using the small-strain assumptions, we can construct the quadratic approximation

𝜓Q(𝜀s,Δk) = E
2𝜌0

𝜀

2
s +

EI
𝜅0

2𝜌0bshs
Δk2

, (A81)

and the corresponding linearized sectional equations

N + kM = EA𝜀s, (A82)
M = EI

𝜅0Δk, (A83)

are indeed decoupled. The main point here is that the quadratic approximation (A81) does not contain the mixed term
with the product 𝜀sΔk. For other uniaxial hyperelastic models combined with the present choice of deformation variables,
the exact potential is different from (A78) and introduces slight coupling, but the quadratic approximation of that potential
always has the form (A81) and leads to decoupled linearized sectional equations. In this sense, N + kM is a meaningful
choice of the effective normal force, but it is not the only one.

To complete the picture, let us consider yet another choice of deformation variables, namely 𝜆s combined with

𝜅̃ = 𝜅 − 𝜅0𝜀s, (A84)

or, equivalently, 𝜀s combined with

Δ𝜅̃ = 𝜅̃ − 𝜅0 = 𝜅 − 𝜅0𝜆s = Δ𝜅 − 𝜅0𝜀s = Δk 𝜆s. (A85)
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616 HORÁK et al.

The stress power per unit initial length can be expressed as

N𝜀̇s +MΔ𝜅̇ = N𝜀̇s +M(Δ ̇𝜅̃ + 𝜅0𝜀̇s) = (N + 𝜅0M)𝜀̇s +MΔ ̇𝜅̃, (A86)

and so the forces work-conjugate with 𝜀s andΔ𝜅̃ are N + 𝜅0M and M. This time, for the material model with strain energy
density given by (27), the exact potential

𝜓(𝜆s,Δk) = E
2𝜌0

(𝜆s − 1)2 +
EI

𝜅0

2𝜌0bshs
Δ𝜅̃2

, (A87)

is already quadratic in terms of 𝜀s = 𝜆s − 1 and Δ𝜅̃, and moreover does not contain the mixed term. The corresponding
sectional equations

N + 𝜅0M = EA𝜀s, (A88)
M = EI

𝜅0Δ𝜅̃, (A89)

are then linear and decoupled, provided that N + 𝜅0M is considered as the effective normal force. Linearity and decoupling
for arbitrarily large deformation are special properties that are achieved only for one particular uniaxial hyperelastic
material law. For other laws, the exact sectional equations would still be nonlinear and coupled, but their linearized form,
applicable under the small-strain assumption, would be decoupled. Note that if the strains are considered as small, the
difference between effective normal forces defined as N + kM or as N + 𝜅0M is negligible.

A.5 Overview of formulations and discussion
The formulations discussed above are summarized in Table A1. Each of them is characterized by a specific choice of two
variables that characterize the deformation of an infinitesimal segment. The stress power density (per unit length of the
undeformed centerline) can be expressed in terms of rates of these variables and the corresponding conjugate variables
(generalized internal forces) can be identified.

Formulations 1a and 1b are equivalent versions of the approach used in the present paper. The difference is only
formal—1a uses variables𝜆s and𝜅, which do not vanish in the initial state, while formulation 1b uses 𝜀1 = 𝜆s − 1 andΔ𝜅 =
𝜅 − 𝜅0, which are true deformation variables that are initially equal to zero. The rates are the same for both formulations,
and therefore the conjugate forces are also the same and they correspond to the standard normal force, N, and bending
moment, M.

Formulation 2 is a reduced version of the approach used by Simo and Fox, adapted to the case of a planar curved
beam. The original model for shells uses certain tensorial components which, for the beam, reduce to the Green–Lagrange
strain at the centerline, 𝜀11 = (𝜆2

s − 1)∕2, and a curvature measure defined as 𝜅11 = 𝜆s𝜅. The conjugate forces at the beam
section level turn out to be N∕𝜆s − 𝜅M∕𝜆2

s and M∕𝜆s.

T A B L E A1 Various formulations that differ by the choice of sectional deformation variables and the corresponding conjugate forces

Formulation Deformation variables Stress power density Conjugate forces

1a—present 𝜆s N ̇

𝜆s +M𝜅̇ N

𝜅 M

1b—present 𝜀s N𝜀̇s +MΔ𝜅̇ N

Δ𝜅 M

2—Simo and Fox 𝜀11 bs𝜆s
(

ñ11
𝜀̇11 + m̃11

𝜅̇11
)

bs𝜆sñ11
≡ N∕𝜆s − 𝜅M∕𝜆2

s

𝜅11 bs𝜆sm̃11
≡ M∕𝜆s

3a—alternative 𝜆s (N + kM) ̇𝜆s + 𝜆sM ̇k N + kM

k 𝜆sM

4b—alternative 𝜀s (N + 𝜅0M)𝜀̇s +MΔ ̇𝜅̃ N + 𝜅0M

Δ𝜅̃ M
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HORÁK et al. 617

In Section A.4, we have also outlined two alternative formulations, which are presented in Table A1 under labels 3a and
4b. Formulation 3a combines the centerline stretch, 𝜆s, with the “true curvature”, k, which is equal to the reciprocal value
of the current radius of curvature. These variables could be easily replaced by deformation variables 𝜀s and Δk = k − 𝜅0,
which would lead to formulation 3b, with the same conjugate forces as for formulation 3a. Finally, formulation 4b is
written directly in terms of deformation variables that vanish in the initial state, 𝜀s and Δ𝜅̃, but it could also be presented
as formulation 4a using 𝜆s and 𝜅̃. The special definition of the “quasi-curvature” 𝜅̃ given in (A84) leads to conjugate forces
N + 𝜅0M and M, which have a certain potential advantage.

Each formulation provides a specific expression for the distribution of stretch across the section and, when combined
with a suitable uniaxial hyperelastic stress–strain law, leads to a potential written in terms of the selected deformation
variables. The sectional equations are then obtained by setting the conjugate forces equal to the partial derivatives of that
potential with respect to the deformation variables. If the uniaxial law is given, all formulations obtained in this way
are equivalent, just written in terms of different variables. Their mathematical form is in some particular cases simpler.
For instance, for the law based on a linear relation between the Biot strain and its work-conjugate stress, formulation 1
gives linear sectional equations (for arbitrarily large deformations), and formulation 4 gives sectional equations that are
not only linear, but also fully decoupled, still for arbitrarily large deformations. However, this would not be the case if
formulation 4 is combined with another material law, for example, the St. Venant–Kirchhoff law.

If the deformation is assumed to be small, the sectional equations can be linearized around the initial state. Since the
distribution of Biot strain across the section is given by 𝜀 = 𝜆 − 1 = (𝜀s + zΔ𝜅)∕(1 + z𝜅0) where z ranges from −hs∕2 to
hs∕2, the small-strain assumption is in terms of the deformation variables written as 𝜀z ≪ 1 and Δ𝜅 ≪ 1∕hs. For other
types of deformation variables this means that 𝜀11 ≪ 1, Δ𝜅11 ≪ 1∕hs, Δk ≪ 1∕hs, and Δ𝜅̃ ≪ 1∕hs. The resulting form
of sectional equations becomes independent of the specific choice of the uniaxial law (provided that the elastic modu-
lus is fixed), but it still depends on the choice of deformation variables. Consistent linearization leads to coupled linear
equations for formulations 1 and 2, and to two independent equations for formulations 3 and 4 (in fact, in the small-strain
limit, formulations 3 and 4 become equivalent). For formulation 2, the consistently derived quadratic approximation of
the potential𝜓 based on the assumptions of small deformation variables (𝜀11 ≪ 1 andΔ𝜅11 ≪ 1∕hs) with no other simpli-
fying assumptions is given by (A66) and a mixed term with the product 𝜀11Δ𝜅11 is present. The resulting linear sectional
equations (A67) and (A68) contain a coupling sectional stiffness 2ES

𝜅0 , which is in fact “twice as strong” as the coupling
stiffness in Equations (34) and (35) for our formulation 1. This means that transformation from formulation 1 to formu-
lation 2 does not eliminate the coupling (makes it even stronger) and the interpretation of the effective membrane stress
resultant ñ11 as a quantity related exclusively to the membrane strain and independent of the curvature is in general not
justified.

All previous considerations have been done without any restrictions on the initial curvature, except for the mild
assumption that 1 ± hs𝜅0∕2 remains positive and not “too small” (in geometric terms, the initial center of curvature of
the centerline is outside the beam). It is instructive to rewrite the quadratic potential (A66) as

𝜓Q (𝜀11,Δ𝜅11) =
EA

2𝜌0bshs

((
1 + 4𝜅2

0 i2
𝜅0

)
𝜀

2
11 − 4

𝜅0i2
𝜅0

hs
𝜀11(hsΔ𝜅11) +

i2
𝜅0

h2
s
(hsΔ𝜅11)2

)
, (A90)

where i
𝜅0 =

√
I
𝜅0∕A is the modified radius of inertia of the section, which is comparable to the sectional depth, hs. We

have exploited here the general relation S
𝜅0 = −𝜅0I

𝜅0 and transformed the curvature change, Δ𝜅11, to a small dimension-
less variable hsΔ𝜅11. One could now make an additional assumption that the initial radius of curvature is much larger
than the beam depth, that is, 𝜅0 ≪ 1∕hs. This leads to 𝜅0i

𝜅0 ≪ 1 and the factor that multiplies the mixed term in (A90)
becomes much smaller than the factors that multiply the other two terms. The quadratic potential can then be legitimately
approximated by

𝜓Q (𝜀11,Δ𝜅11) =
EA

2𝜌0bshs

(
𝜀

2
11 +

i2
𝜅0

h2
s
(hsΔ𝜅11)2

)
. (A91)

So, if the initial curvature is small, one can indeed postulate the potential in the form (A59) and obtain decoupled
sectional equations. However, under the same assumptions, one could use analogous arguments to simplify the quadratic
potential (A46) that is written in terms of 𝜀s andΔ𝜅 and corresponds to formulation 1, and the resulting equations would
be directly the traditional simplified sectional equations (41) and (42). This means that, if the initial curvature is small,
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618 HORÁK et al.

there is no need to transform the standard normal force into an effective one. And if the initial curvature is not small, the
proper definition of the effective normal force should be based on formulation 3 or 4.

APPENDIX B. LOGARITHMIC SPIRAL: DESCRIPTION OF THE INITIAL SHAPE

The logarithmic spiral is easily defined in polar coordinates by Equation (156) but the algorithm developed in Section 3
works with local Cartesian coordinates aligned with the curved element. The initial deviation from a straight shape needs
to be described by functions that depend on the coordinate measured as the arc length along the undeformed centerline.
The purpose of this appendix is to show the derivation of these functions.

In the first step, we can easily express Cartesian coordinates with respect to an auxiliary coordinate system with the
origin placed at the pole of the polar coordinates and with axis ẑ considered as the axis from which the polar angle is
measured counterclockwise; see Figure B1. Since the radial coordinate is a given exponential function of the polar angle,
the Cartesian coordinates can be expressed as unique functions of the polar angle:

x̂ = r sin 𝜃 = aeb𝜃 sin 𝜃, (B1)
ẑ = r cos 𝜃 = aeb𝜃 cos 𝜃. (B2)

The final objective is to use the arc-length coordinate s as the independent variable, and so we need to find the link
between 𝜃 and s. The differential of the arc length is expressed as

ds =
√
(dx̂)2 + (dẑ)2 =

=
√
(abeb𝜃 sin 𝜃 + aeb𝜃 cos 𝜃)2 + (abeb𝜃 cos 𝜃 − aeb𝜃 sin 𝜃)2 d𝜃 =

= a
√

1 + b2 eb𝜃 d𝜃, (B3)

and integration with initial condition s = 0 at 𝜃 = 0 leads to

s =
a
√

1 + b2

b
(
eb𝜃 − 1

)
= 1

c
(
eb𝜃 − 1

)
, (B4)

F I G U R E B1 Geometry of the logarithmic spiral and position of the auxiliary Cartesian axes x̂ and ẑ and of the local Cartesian axes x
and z aligned with the left end of the element (illustrative plot with b = 0.5, leading to a faster increase of the radial coordinate than for
b = 0.15 considered in the example).
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where c = b∕(a
√

1 + b2) is an auxiliary parameter introduced for convenience; see also (160). By inversion of (B4) one
easily gets

𝜃(s) = ln (1 + cs)
b

, (B5)

and substitution back into (B1) and (B2) yields

x̂(s) = a(1 + cs) sin 𝜃(s), (B6)
ẑ(s) = a(1 + cs) cos 𝜃(s). (B7)

It is also useful to express the angle 𝜑̂ by which the tangent to the spiral deviates (counterclockwise) from the x̂ axis,
because this at the same time determines the deviation of the cross section from the ẑ axis. From

cos 𝜑̂(s) = dx̂(s)
ds

= ac sin 𝜃(s) + a(1 + cs) cos 𝜃(s) c
b(1 + cs)

=

= b√
1 + b2

sin 𝜃(s) + 1√
1 + b2

cos 𝜃(s), (B8)

one can infer that

𝜑̂(s) = 𝜃(s) − 𝜑∗, (B9)

where 𝜑∗ = arctan b, as defined in (161). Interestingly, each section deviates from the radial direction by the same angle,
𝜑

∗.
The final step consists in transformation of the derived expressions from the auxiliary Cartesian coordinate system

aligned with the pole and starting point of the spiral to the local Cartesian coordinate system used by the algorithm, which
as its origin at the starting point of the spiral, that is, at x̂ = 0 and ẑ = a, and the x axis is tangent to the spiral at that point.
This implies that x and z are rotated clockwise by 𝜑∗ with respect to x̂ and ẑ, and the transformation equations can be
written as

x = x̂ cos𝜑∗ + (ẑ − a) sin𝜑∗, (B10)
z = −x̂ sin𝜑∗ + (ẑ − a) cos𝜑∗. (B11)

Substitution from (B6) and (B7) then gives

x(s) = a ((1 + cs) sin(𝜃(s) + 𝜑∗) − sin𝜑∗) , (B12)
z(s) = a ((1 + cs) cos(𝜃(s) + 𝜑∗) − cos𝜑∗) . (B13)

Having derived the description of the initial spiral shape, we can proceed to the interpretation of the results in the
notation used in the main body of this article. In the present derivation, s denotes the arc-length coordinate and x(s)
and z(s) specify the local Cartesian coordinates of the point on the centerline at arc-length distance s from the left end.
However, the theoretical considerations in Section 2 as well as the numerical techniques described in Section 3 use x
instead of s and interpret this symbol as the x coordinate of the point in the fictitious straight configuration, which would
arise if the centerline were unfolded without changing its length (see Section 2.1). The position of each centerline point in
the initial curved configuration is then described by the differences us0 and ws0 with respect to the straight configuration.
This means that on the left-hand sides of (B12) and (B13) we need to replace x(s) by x + us0(x) and z(s) by ws0(x), and
on the right-hand sides s by x. Furthermore, the initial deviation of a generic section from the direction aligned with the
left-end section, denoted in Sections 2 and 3 as 𝜑0, is given by 𝜑̂ + 𝜑∗ (because the present xz coordinate system is rotated
with respect to the x̂ẑ coordinate system by 𝜑∗ clockwise), and therefore, in view of (B9), 𝜑0 turns out to be equal to the
polar angle 𝜃, which is expressed by (B5). This leads to Equation (157), and we can also replace the symbol 𝜃(s) on the
right-hand sides of (B12) and (B13) by 𝜑0(x), which finally yields Equations (158) and (159).
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