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Abstract: This study aims to demonstrate the possibility of incorporating a natural antioxidant
biomolecule into polymeric porous scaffolds. To this end, Poly-L-Lactic Acid (PLLA) scaffolds were
produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with
different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness
of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Mi-
croscopy analyses demonstrated the presence of an interconnected porous network, characterized by
a layer of RA at the level of the pore’s surfaces. Moreover, the presence of RA biomolecules increased
the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water
from 128◦ to 76◦. The structure of PLLA and PLLA containing RA molecules has been investigated
through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases
when increasing the RA content. This approach is cost-effective, and it can be customized with
different biomolecules, offering the possibility of producing porous polymeric structures containing
antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer
a potential solution to reduce inflammation associated with scaffold implantation, thus improving
tissue regeneration.

Keywords: three-dimensional scaffold; poly-L-lactic acid; rosmarinic acid; thermally induced phase
separation; solvent casting deposition; hydrophilicity

1. Introduction

Tissue engineering (TE) is a multidisciplinary field that integrates life sciences and
engineering to develop biological substitutes that replace, repair, and enhance tissue
functions [1]. Central to TE is the triad of cells, scaffolds, and growth factors. Cells
play a key role in synthesizing the matrix of the new tissue, while scaffolds provide an
optimal environment for cell proliferation or differentiation, and growth factors aid in
the formation of new tissue [2]. A scaffold is a three-dimensional, porous structure that
supports the growth, proliferation, and interconnection of cells. It also facilitates the
efficient transportation of nutrients, oxygen, and waste metabolites [3,4]. The fabrication of
the scaffold is crucial for the success of implants. To achieve this, the careful selection of
materials and manufacturing techniques tailored to specific requirements is necessary [5–9].
This involves considering factors such as the shape, size, and properties of the scaffold.
In particular, the materials used must be biocompatible, biodegradable with an adequate
degradation time, and not release toxic degradation products [3]. Furthermore, during the
design phase of a scaffold, special attention must be paid to the mechanical and physical
properties of the porous matrix [4]. Once the most suitable material has been selected, the
fabrication methods used to make scaffolds are varied [5–8].

Thermally Induced Phase Separation is an advanced manufacturing process known
for its efficiency in producing a well-connected polymer network [9]. The process is
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based on a homogeneous polymer solution whose solubility equilibrium varies with
temperature [10]. On cooling, phase separation occurs, leading to the formation of pores
and the growth of a highly porous and interconnected structure. Precise control is achieved
through carefully designed protocols that control the temperature and time during these
phases [10,11]. Known for its versatility, this approach is characterized by its simplicity,
speed, and adaptability, particularly in producing polymeric structures with different
pore sizes and high interconnectivity [11]. Poly-L-lactic acid is a thermoplastic polymer
derived from lactic acid [12]. It is produced by the ring-opening polymerization of lactide
monomers and is particularly suited to the TIPS method.

PLLA is a commonly used biodegradable and biocompatible synthetic polyester in
the biomedical field. It has high crystallinity, low glass transition temperature, and a
high melting point. PLLA scaffolds can provide the necessary mechanical support for
tissue regeneration due to their adequate mechanical properties [13]. Furthermore, the
use of PLLA scaffolds has been extensively reported in the literature, in part due to its
piezoelectric properties, which promote optimal tissue regeneration [14,15].

However, despite the use of biocompatible materials, scaffold implantation inevitably
triggers an immune response, leading to inflammation and potential scarring that could
compromise the success of the implant [16]. One of the key features of the inflammatory
response is a phenomenon known as oxidative stress [17]. Oxidative stress is manifested
by an overabundance of reactive oxygen species (ROS), which are characterized by an
un-paired electron in their outermost orbital, making them unstable and capable of causing
cellular damage by reacting readily with other molecules [18]. The use of natural antioxi-
dants, thanks to their scavenging properties, allows the neutralization of excessive ROS,
restoring the correct redox balance and reducing the inflammatory response [19–21].

Rosmarinic acid is a polyphenolic constituent found in many plants such as the Lami-
aceae family and the subfamily Nepetoideae [22,23]. As documented, it is the ester of caffeic
acid and 3,4-dihydroxyphenyllactic acid, and it has various biological effects, including
antioxidant, anti-inflammatory, antibacterial, and anticancer properties, sup-ported by
numerous in vivo and in vitro studies [23–35]. Moreover, rosmarinic acid demonstrates
lipophilic characteristics, rendering it highly soluble in several organic solvents, such
as ethanol (EtOH), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), while
displaying poor solubility in water. The anti-inflammatory actions of RA are believed
to stem from its scavenging abilities, inhibition of neutrophil activity, suppression of
metalloproteinase-9 (MMP-9) activity, and modulation of the NF-jB pathway [35]. These
processes suggest that RA may have potential as a treatment for inflammatory conditions
through its ability to reduce inflammation and prevent tissue damage.

This information suggests that it is worth exploring the therapeutic use of RA in
the development of treatments to minimize the inflammatory process caused by scaffold
implantation. Of particular importance is the striking lack of studies proposing composite
polymeric structures incorporating RA. To our knowledge, information about polymeric
scaffolds doped with natural antioxidants is limited. Previous research by Chen et al. [36]
demonstrated the possibility of incorporating other antioxidant molecules into 3D porous
matrices for tissue regeneration. In their study, a 3D-printed PLLA scaffold was coated
with a layer of polydopamine (PD) and then functionalized with varying concentrations
of quercetin (Qu). This resulted in Qu/PD-PLLA scaffolds that showed potential for
bone repair, as demonstrated by their application in MC3T3-E1 cells. Furthermore, the
study conducted by Lihao et al. [37] further underscores the potential of this scaffold
and antioxidant molecule approach. Utilizing 3D printing technology, they created a
porous SAB-SA-Gel composite scaffold by incorporating salvianolic acid (SAB) into a
matrix of sodium alginate (SA) and gelatin (Gel). This scaffold exhibited antioxidant,
anti-inflammatory, and pro-angiogenic properties, reducing the expression of inflammatory
factors while enhancing tissue regeneration and collagen deposition, thereby promoting
diabetic wound healing. This paper aims to explore the possibility of manufacturing
composite PLLA-RA scaffolds. A protocol was designed to include varying amounts of RA
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in PLLA scaffolds produced through the TIPS technique. The scaffolds were characterized
using a range of analyses, such as gravimetric, microscopic, and spectroscopic analyses,
to evaluate their morphological, thermal, and surface properties. In addition, contact
angle tests were conducted to determine their hydrophilicity, providing a comprehensive
assessment of their potential for tissue engineering applications.

2. Materials and Methods
2.1. Materials

Poly-L-lactic-acid (PLLA, Resomer, L 209 S, Evonik Industries, Essen, Germany; In-
herent Viscosity = 2.6–3.2 dL/g) and 1,4-dioxane (Sigma-Aldrich, Munich, Germany) were
used for scaffold preparation. Rosmarinic acid (RA, 96% pure, Sigma Aldrich) and Ethanol
absolute anhydrous (Carlo Erba Reagents, Cornaredo, Italy) were used for ethanol/RA
solution preparation.

2.2. Scaffold’s Preparation

PLLA scaffolds were prepared according to a previous work Lombardo et al [38].
Briefly, the polymer was dissolved in 1,4-dioxane at a concentration of 4% (wt/wt) at a
temperature of 120 ◦C. Distilled water was then added to obtain a final dioxane/water
weight/weight ratio of 87/13. Five mL of the solution, kept at 60 ◦C, was poured into a
cylindrical high-density polyethylene sample holder (inner diameter 17.6 mm and height
35.7 mm). The sample holder was then immersed in a thermostatic water bath at 20 ◦C
(demixing temperature) for 15 min (demixing time). At the same time, a cylindrical polyte-
trafluoroethylene (PTFE) coating, used to obtain a homogeneous temperature distribution
in the sample holder, was pre-cooled to −20 ◦C. Finally, the sample holder was inserted
into the PTFE cylinder, and the system was rapidly quenched by immersion in an ethyl
alcohol bath at a temperature of −20 ◦C for at least 15 min to stop the demixing process and
freeze the structure obtained. The obtained samples were washed in deionized water and
dried at 60 ◦C to remove any remaining traces of the solvent completely. The cylindrical
scaffolds were then first cut transversely into 2 mm discs and finally shaped into cylinders
of 4 mm diameter and 2 mm height using a biopsy punch.

2.3. Rosmarinic Acid Additivation

The samples were first weighed using an ABT220-D5M (Kern, Bakersfield, CA, USA)
analytical balance.

Subsequently, the weighed scaffolds were placed into a 96 multiwell plate and soaked
in pure ethanol under vacuum for 2 min, to ensure complete penetration of the solvent
into the pores. Once the entire surface was penetrated, the ethanol was removed. For the
addition of RA, two ethanol/RA wt/wt solutions were prepared, one containing 2% wt/wt
RA and the other containing 4% wt/wt RA. Then, 200 microlitres of the solution was added
to each well containing scaffolds. After evaporation of the ethanol (at least 24 h), the dry
samples were extracted from the well and reweighed. The procedure used is schematized
in Figure 1.
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2.4. Characterization

The percentage of additivated RA with respect to total weight was calculated as
follows:

%RA =
wA − wB

wA
× 100 (1)

where wA is the weight of the sample after RA additivation process, and wB is the initial
weight of the sample.

The microstructure of the scaffold was observed by Scanning Electron Microscopy
(SEM) using a Philips Quanta 200 F SEM at 10 kV. The external surfaces of the samples were
visualized after a gold deposition (Sputtering Scancoat Six, Edwards, Irvine, CA, USA) for
150 s.

Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy
using a Spectrum One spectrometer from PerkinElmer, Waltham, MA, USA, was used to
study the molecular deposition and surface structural characteristics of the material. This
technique was used to investigate the vibrational modes and chemical bonds within the
sample to be analyzed. For each scaffold studied, ATR-FTIR analysis was performed on
both the top and bottom surfaces to determine the presence of the RA molecule. A total of
16 scans were performed at 4 cm−1 resolution. The ATR-FTIR spectra presented have been
carefully selected based on normalized results obtained from a minimum of three samples.

The crystalline structure of RA, PLLA, and PLLA-RA scaffolds was investigated by
XRD (X-ray diffraction). The measurements were carried out through a Panalytical X‘Pert
Powder Diffractometer with 2θ angle ranging from 5◦ to 35◦,with a step angle and a step
time of 0.1◦ and 10 s, respectively. The voltage was 40 kV, and the tube current was 30 mA.

The samples were analyzed calorimetrically using a DSC Setaram 131 evo. Pure
PLLA, RA powder, additivated PLLA-RA samples, and an RA film obtained via solvent
casting were analyzed. Each sample was subjected to two heating scans. The samples
were carefully weighed and placed in aluminum crucibles for analysis, and the following
thermal protocol was applied: first heating from 25 ◦C to 220 ◦C at 10 ◦C/min, held at
220 ◦C for 10 min, cooling to 50 ◦C at 10 ◦C/min, held at 50 ◦C for 10 min, and second
heating from 25 ◦C to 220 ◦C at 10 ◦C/min. Melting enthalpies and temperatures were
determined using data processing Calisto software–2.0.

The static contact angle test was performed using an FTA 1000 (First Ten Ångstroms,
Cambridge, UK) instrument with distilled water (DW) as the liquid. Specifically, a
drop of DW (~4 µL) was dropped onto the scaffold, and images were taken 10 s after
DW deposition.

3. Results
3.1. Gravimetrical Analysis

In this study, we used the solution deposition method starting with two solutions at
2% and 4% wt/wt, as reported in Section 2. Figure 2 shows the picture of pure PLLA and
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RA additivated samples. A clear change in the color of the scaffold can be attributed to the
presence of RA in the samples.
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Figure 2. Digital images of samples, right to left: PLLA, PLLA-RA 2%, and PLLA-RA4%.

In order to evaluate the presence of RA incorporated into the scaffold, 5 samples of
each type were weighed dry before and after the deposition of RA. The obtained data
are presented in Table 1. A significant amount of biological molecules of RA are clearly
incorporated into the polymeric structure, leading to a substantial increase in weight.

Table 1. Weight percentages (%) of PLLA and RA in the different samples.

Sample Code % PLLA Component % RA Component

PLLA 100 0
PLLA-RA 2% 56.23 ± 1.31 44.77 ± 1.31
PLLA-RA 4% 18.03 ± 3.62 81.97 ± 3.62

3.2. Morphology Evaluation

Scanning Electron Microscopy (SEM) is a powerful analytical technique widely uti-
lized for examining the surface morphology and microstructure of scaffolds at a micro-
scopic level. In this study, SEM was employed to investigate the morphology of samples.
Figure 3a–f show SEM images of three investigated scaffolds at different magnifications,
while Figure 3g–i provide a closer look at the high magnification of a PLLA-RA 4% scaffold.
As noticeable, the dimensions of pores could be estimated ranging from 50 to 70 µm with a
good interconnectivity.

The images in Figure 3a–f show that the pores’ morphology remained unchanged
despite the presence of RA. Moreover, the micrographs at high magnification of PLLA-RA
4% samples revealed the presence of an RA layer (see Figure 3g–i) at the level of the pore’s
surfaces. Additionally, the presence of the RA layer can be observed in Figure 3e, although
it was less pronounced.
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3.3. Spectroscopy Evaluation

Results of Attenuated Total Reflectance Fourier Transform Infrared Analysis (ATR-
FTIR) analysis on RA powder and PLLA, PLLA-RA 2%, and PLLA-RA 4% scaffolds are
shown in Figure 4a,b for top and bottom surfaces.
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PLLA-RA 4%.

In addition, according to the literature, Table 2 contains the assignments of charac-
teristic peaks of both PLLA [39] and RA [40]. As expected, the pure PLLA sample, on
both top and bottom surfaces, showed no peaks in the spectral region between 3500 and
3000 cm−1, while RA itself showed several peaks in this region related to phenolic −OH
stretching, occurring at c.a. 3500 cm−1, and C−H stretching, occurring at the frequencies
above 3000 cm−1. Further, within the range at 1700–1000 cm−1, distinct peaks appeared
in RA spectra, specifically, one at 1700 cm−1 corresponding to the stretching vibration of
>C=O, followed by peaks around 1605 and 1520 cm−1 indicating stretching of the aromatic
ring. In addition, two other signals appeared at 1360 cm−1 and 1180 cm−1 due to O−H
and C−O stretching, respectively.

In the spectra of PLLA-RA 2% and PLLA-RA 4% samples, changes in peaks in the
regions around 3500–3000 cm−1 and 1700–1000 cm−1 were observed. In particular, PLLA-
RA 2% and PLLA-RA 4% showed a small shoulder around 3500–3000 cm−1. Furthermore,
PLLA showed various intrinsic peaks in the range of 1700–1000 cm−1, and as noticeable,
the spectra of PLLA-RA 2% and 4% showed more complex peaks in this region.

Interestingly, some specific characteristic peaks in PLLA shifted to lower frequencies
due to the presence of RA molecules. Specifically, the −C−O− stretch at 1086 cm−1 in
the spectrum of PLLA shifted to 1081 cm−1 in the spectrum of PLLA/RA 4%, and the
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−CH and CH3 stretches at 1386 cm−1 and 1456 cm−1 shifted to 1379 cm−1 and 1448 cm−1,
respectively. Further, small shifts for the bands at ca. 3000 and 2945 cm−1 attributed to
the stretching of −CH groups were also noticed. All these changes suggest that in the
samples containing RA, the interactions between the RA biomolecules and PLLA scaffold
structure occurred.

Table 2. FTIR spectra of PLLA and RA peak band assignments.

Sample Peak Position (cm−1) Assignment Ref.

PLLA 3507 −OH stretch [39]
2993, 2943 −CH stretch

1746 −C=O carbonyl stretch
1450 −CH3 bend

1381, 1358 −CH− deformation including symmetric and
asymmetric bend

1265 −C=O bend
1183, 1128, 1086 −C−O− stretch

1044 −OH bend
925, 868 −C−C stretch

RA >3000 −CH stretch
−OH stretching of the phenolic groups [40]

COOH-carboxylic groups stretching
1750–1725 Ester groups

1725, 1700, 1395 ± 55 Carboxylic groups
1605, 1520, 1445 Aromatic ring stretching

1360 −OH stretch
1180 C−O stretch

3.4. Diffractometric Analysis

XRD (X-ray diffraction) analysis of the PLLA samples and rosmarinic acid are shown
in Figure 5a. Pure PLLA pattern presents two typical peaks located at 15.6 and 18.3 degrees,
which are associated with the crystalline component of the biopolymer [41]. Figure 5b
shows the XRD patterns of PLLA and PLLA-RA samples. It is easy to notice that the
RA peaks are totally absent in the composite samples, whereas the PLLA peaks are well
noticeable. Finally, a significant increase in the amorphous halo can be noticed when
increasing the RA content.
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3.5. Thermal Analysis

Since the RA is additivated to the scaffolds through a solvent casting procedure, a thin
film of RA, obtained with the same technique, was prepared, analyzed, and compared to
RA powder. Figure 6a,b illustrate, respectively, the thermograms of the first and second
heating of the RA powder and RA-solution-casted film (RA-SC).
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The data obtained from the tests are shown in Table 3. It can be observed that there
was a large difference in terms of melting enthalpy and temperature between the two
samples. No peaks were detected in the second heating, due to the degradation of RA over
200 ◦C, which agrees with the value reported in the literature [42].

Table 3. Melting enthalpies and temperatures of first and second heating.

Sample ∆HfusI Heat
(J/g)

Temp.fus.I Heat
(◦C)

∆HfusII Heat
(J/g)

Temp.fus.II Heat
(◦C)

RA powder 135.4 ± 12.3 172 − −
RA−SC 35.09 162 − −
PLLA 69.43 ± 2.6 181 55.70 ± 1.7 177

PLLA−RA 2% 29.36 ± 5.0 174 12.65 ± 2.0 172
PLLA−RA 4% 6.67 ± 0.2 163 6.46 ± 0.7 166

− Not determined.

The thermograms of PLLA, PLLA-RA 2%, PLLA-RA 4%, and RA-SC of the first and
second heating are shown in Figure 6c,d. From the thermograms, it can be noticed that the
melting peaks of the composite scaffolds appear very different with respect to the peak of
pure PLLA. Specifically, PLLA-RA 2% presents a broader peak, whereas the PLLA-RA 4%
peak appears very small. The data analyses reveal a concentration-dependent decrease in
melting enthalpies and temperatures of PLLA when increasing RA content. As a matter of
fact, in the PLLA-RA-2%, the melting enthalpy decreases from 72 to 39 J/g, whereas the
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melting temperature drops from 181 to 174 ◦C. A further decrease is observed in PLLA-
RA-4% samples for both investigated parameters. The obtained data are displayed in
Table 3.

3.6. Surface Analysis of Hydrophilicity

Figure 7 shows the water contact angle (WCA) values obtained with distilled water on
PLLA, PLLA-RA 2%, and PLLA-RA 4% samples. The test was performed on three samples
of each type to assess the change in the hydrophilicity of the scaffold.
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As can be noticed from Figure 7, the water contact angle decreases when increasing
RA concentration, highlighting that the presence of RA induces the hydrophilicity change.
Interestingly, the water contact angles of PLLA samples remain unchanged over time.
For example, immediately after water deposition, the value is 128.40◦ ± 1.5◦. After one
minute, it decreases slightly to 128.28◦ ± 1.3◦, and after 5 min, it further decreases to
127.86 ± 1.2◦. This suggests that the PLLA scaffold maintains this hydrophobicity in limited
time (ca. 5 min). The water angle contact of PLLA-RA 2% and PLLA-RA 4% samples is
103.96◦ ± 1.2◦ and 76.51◦ ± 1.0◦, respectively. After 1 min, the water drop disappears. The
water absorption is in favor of RA presence, and the measurement cannot be performed.

4. Discussion

In this work, the solution deposition method was employed to incorporate an antioxi-
dant molecule into polymeric scaffolds produced via TIPS. Scaffolds, with a diameter of
4 mm and a thickness of 2 mm, were obtained and characterized. Ascribing to the presence
of RA, the color of the whole surface of the scaffolds changed from white to yellow. More-
over, when the concentration of RA increased, the pigmentation of the samples was more
evident. A gravimetric analysis revealed that the percentual of RA incorporated in the sam-
ples doubled when passing from 2% to 4% solution. The data obtained from the analysis
show that samples of PLLA-RA 2% and PLLA-RA 4% contained high concentrations of the
antioxidant molecule, approximately 47.7%, and 81.9%, respectively.

An analysis of SEM micrographs revealed the presence of an interconnected porous
network in the samples. As known, the pore dimension is widely regarded as one of the
most important requirements of a scaffold for tissue regeneration. A study by Bergonzi
et al. showed that increasing the concentration of antioxidants, particularly vitamin E, led
to changes in pore size and a wider range of pore sizes in the scaffold [43]. The deposition
method used in this study to incorporate natural antioxidant molecules into the scaffolds
preserved the interconnectivity and maintained the original pore size. Moreover, as the
concentration of antioxidants on the scaffold increased, a visible layer of RA became more
evident at the level of the surface of the structure. All things considered, the Thermally
Induced Phase Separation method with solvent casting deposition allowed the production
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of 3D porous structures capable of accommodating high concentrations of antioxidant
molecules while precisely controlling pore size and interconnectivity.

ATR-FTIR analysis was conducted to determine the presence of RA molecules on both
the top and bottom surfaces of the scaffold. All obtained results suggest that the RA solution
penetrated and permeated the entire three-dimensional polymeric structure. The neat RA
showed typical intrinsic peaks in the regions around 3500–3000 cm−1 and 1700–500 cm−1

and assignment to the presence of phenolic and carboxylic functionalities [40]. The neat
PLLA sample shows typical peaks in 1700–1000 cm−1 according to the literature [39].

The spectra of both PLLA-RA samples showed an evident presence of phenolic func-
tionalities and more complex peaks around 1700–1000 cm−1 in comparison to PLLA sample.
These changes were attributed to the presence of RA molecules, especially in the PLLA-RA
4% sample, due to the lower amount of PLLA, which is only 18% of the total weight.

Furthermore, it can be assumed that the biomolecule interacts physically with the
polymer through the formation of hydrogen bonds; this kind of interaction is confirmed by
several papers in which polymer/polyphenol systems were analyzed through the same
technique [44–46].

These considerations confirm the presence of RA molecules and the occurrence of the
interactions between PLLA and RA molecules, according to the SEM images.

In order to establish if the presence of RA could have effects on the scaffold crystallinity,
XRD spectra were carried out. Surprisingly, the XRD patterns of PLLA-RA scaffold did
not show the RA peaks. This observation leads one to state that the crystallization of RA
was completely inhibited, and it was present on the scaffold in a totally amorphous state.
The presence in these samples of a more evident amorphous halo with the respective neat
PLLA supports this hypothesis.

Calorimetric analyses substantially confirm the integration of RA and its distribution
throughout the PLLA-RA scaffolds. The RA powder shows a melting enthalpy about three
times that of the RA-SC film, and additionally, RA shows higher fusion temperatures than
the RA-SC one. These results show that after solubilization of the powder in ethanol, the
formation of crystalline structures by the RA molecule is disfavored, and as expected, the
RA molecules are organized in a predominantly amorphous state with low crystalline
content, in comparison to RA powder. Once the RA powder sample reaches the upper
temperature of 200 ◦C, the molecules probably undergo irreversible degradation. The
second rise of the RA powder and RA-SC samples shows small humps at a temperature
of about 120 ◦C probably due to the reorganization of the decomposition products of the
RA molecule.

However, it seems that RA exhibits a different behavior, in terms of crystallization
kinetics during the additivation process, as it is present in the scaffolds only in amorphous
state (as evidenced by XRD analyses).

PLLA scaffolds show a reduction in the fusion enthalpy of second heating of fusion
of about 20.8% in comparison to the first fusion enthalpy, while the temperature of fusion
changes from 181 ◦C to 177 ◦C.

The samples containing 2% and 4% PLLA-RA do not show two distinct peaks for RA
and PLLA, but only one peak. As the amount of RA increases, a decrease in their melting
temperatures compared to pure PLLA is observed. In the case of 4% PLLA-RA, this value
is very similar to the RA value. Additionally, a decrease in melting enthalpies compared to
pure PLLA is also observed. Specifically, considering the melting enthalpy and temperature
values of 4% PLLA-RA, that are 6 J/g and 165 ◦C, respectively, it is possible to hypothesize
that the RA addition protocol, adopted here, influences the PLLA crystallinity. Indeed, even
assuming that the melting peak is exclusively due to PLLA and recalculating the enthalpy
value normalized to the PLLA weight (i.e., 18% of sample weight is PLLA), a melting
enthalpy of 33 J/g can be calculated, that is significantly lower than the experimentally
measured value of 68 J/g for pure PLLA.
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Therefore, it is not easy to establish the specific contributions of PLLA and RA to the
melting peaks and/or enthalpies, since the RA is in the amorphous state in the composite
samples, and moreover, it interacts with PLLA.

Hydrophilicity is considered to play an important role in the interaction between the
scaffold and the tissue. For tissue engineering applications, good scaffold hydrophilicity is
required for cell adhesion and proliferation. Several studies reported in the literature have
shown that the use of polyphenolic coatings was able to improve the hydrophilicity of the
scaffold surfaces [47].

The WCA values of the PLLA scaffold were revealed at three different times (immedi-
ately after water drop deposition and after 1 and 5 min of deposition). The result suggests
that the PLLA sample maintained in the time its hydrophobic nature. Different results
were obtained for the samples after the surface modification by RA. In PLLA-RA 2% and
PLLA-RA 4% scaffolds, the WCA values decreased when increasing the RA concentra-
tion. Moreover, it was noticed that the droplet deposited on the samples in a few seconds
appeared distributed over the entire surface. These phenomena could be explained by
the presence of polyphenolic compounds in the RA according to the data found in the
literature [47].

All obtained results suggest that the considered ad hoc protocol allows the successful
production of PLLA scaffolds, incorporating large amounts of RA molecules. As previously
stated, our main objective was to produce a composite scaffold and effectively incorporate
RA molecules, without specifically examining the biological activities of RA. As a result,
this particular topic will be the center of attention for our upcoming study, which will serve
as a natural extension of the current work.

5. Conclusions

In our study, we successfully incorporated rosmarinic acid, a natural antioxidant, into
Poly-L-Lactic acid scaffolds. To achieve this, we introduced a novel protocol to incorporate
a natural biomolecule, which is soluble in organic solvents, into the polymeric scaffolds pro-
duced via TIPS. This approach is not only cost-effective but also customizable with different
biomolecules. The presence of RA molecules in the whole scaffold structures was confirmed
by ATR-FTIR analysis. The resulting scaffolds showed well-defined pore networks with
good interconnectivity, even in those containing different amounts of rosmarinic acid (up
to 81.9% of RA). Notably, these scaffolds not only exhibit a favorable morphology but also
excellent hydrophilicity, meeting the requirements for tissue engineering. The water contact
angle of the samples decreased from 128.40◦ ± 1.5◦ to 76.51◦ ± 1.0◦. The DSC and XRD
analyses suggest that the RA was in amorphous state, and due to the interactions between
the PLLA and RA, the overall crystallinity of the scaffolds decreased.

Our focus on composite PLLA-RA scaffolds yielded promising results, indicating that
incorporating natural antioxidant molecules into polymeric structures could be a potential
solution to mitigate implant-associated inflammation, opening new avenues for future
development in this field.
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