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Abstract

Knowledge about the expected interaction duration and expected distance from which
users will interact with public displays can be useful in many ways. For example, know-
ing upfront that a certain setup will lead to shorter interactions can nudge space owners
to alter the setup. If a system can predict that incoming users will interact at a long
distance for a short amount of time, it can accordingly show shorter versions of content
(e.g., videos/advertisements) and employ at-a-distance interaction modalities (e.g., mid-air
gestures). In this work, we propose a method to build models for predicting users’ inter-
action duration and distance in public display environments, focusing on mid-air gestural
interactive displays. First, we report our findings from a field study showing that multiple
variables, such as audience size and behaviour, significantly influence interaction duration
and distance. We then train predictor models using contextual data, based on the same
variables. By applying our method to a mid-air gestural interactive public display deploy-
ment, we build a model that predicts interaction duration with an average error of about 8 s,
and interaction distance with an average error of about 35 cm. We discuss how researchers
and practitioners can use our work to build their own predictor models, and how they can
use them to optimise their deployment.

Keywords: Pervasive Displays, Users Behaviour, Audience Behaviour

∗Corresponding author
Email addresses: vito.gentile@unipa.it (Vito Gentile), Mohamed.Khamis@glasgow.ac.uk

(Mohamed Khamis), fabrizio.milazzo@unipa.it (Fabrizio Milazzo), salvatore.sorce@unipa.it
(Salvatore Sorce), a.malizia@herts.ac.uk (Alessio Malizia), florian.alt@unibw.de (Florian Alt)

Preprint submitted to International Journal of Human–Computer Studies June 12, 2020

use them to optimise their deployment.

Pervasive Displays, Users Behaviour, Audience Behaviour

and practitioners can use our work to build their own predictor models, and how they can
use them to optimise their deployment.

ment, we build a model that predicts interaction duration with an average error of about 8 s,
and interaction distance with an average error of about 35 cm. We discuss how researchers
and practitioners can use our work to build their own predictor models, and how they can

variables. By applying our method to a mid-air gestural interactive public display deploy-
ment, we build a model that predicts interaction duration with an average error of about 8 s,
and interaction distance with an average error of about 35 cm. We discuss how researchers

and distance. We then train predictor models using contextual data, based on the same
variables. By applying our method to a mid-air gestural interactive public display deploy-
ment, we build a model that predicts interaction duration with an average error of about 8 s,

interactive displays. First, we report our findings from a field study showing that multiple
variables, such as audience size and behaviour, significantly influence interaction duration
and distance. We then train predictor models using contextual data, based on the same

action duration and distance in public display environments, focusing on mid-air gestural
interactive displays. First, we report our findings from a field study showing that multiple
variables, such as audience size and behaviour, significantly influence interaction duration

distance for a short amount of time, it can accordingly show shorter versions of content
(e.g., videos/advertisements) and employ at-a-distance interaction modalities (e.g., mid-air
gestures). In this work, we propose a method to build models for predicting users’ inter-
action duration and distance in public display environments, focusing on mid-air gestural

distance for a short amount of time, it can accordingly show shorter versions of content
(e.g., videos/advertisements) and employ at-a-distance interaction modalities (e.g., mid-air

ing upfront that a certain setup will lead to shorter interactions can nudge space owners
to alter the setup. If a system can predict that incoming users will interact at a long
distance for a short amount of time, it can accordingly show shorter versions of content

ing upfront that a certain setup will lead to shorter interactions can nudge space owners

Knowledge about the expected interaction duration and expected distance from which
users will interact with public displays can be useful in many ways. For example, know-
ing upfront that a certain setup will lead to shorter interactions can nudge space owners
to alter the setup. If a system can predict that incoming users will interact at a long

Knowledge about the expected interaction duration and expected distance from which
users will interact with public displays can be useful in many ways. For example, know-

Bundeswehr University Munich, Research Institute for Cyber Defense (CODE), Germany



Figure 1: In this work we study the influence of the passive audience’s size and behaviour on interactions
with a public display, and accordingly build models to predict the distance from which users will interact,
as well as the interaction duration. The figure shows a sample of our prediction model: users position
themselves close to the display in the absence of an audience (A), a bit farther away in case of an audience
of size two (B), and even further in case of an audience of size four (C). The graphs represent the predicted
probability density functions of the interaction duration in seconds with the respective audience sizes.

1. Introduction

Interactive public displays can today be found in airports, universities, shopping malls
and more. Although it is generally known that users interact with public displays for very
short amounts of time, interaction durations vary widely [1, 2, 3]. The same is true for
interaction distances, particularly when using interaction techniques such as mid-air ges-
tures [2, 4]. Knowing the expected interaction duration and distance upfront can bring in a
plethora of benefits to the different stakeholders of a public display. For instance, if a system
is aware that the current situation will result in the user interacting at a certain distance, it
can dynamically determine which interaction modality to employ [5]. Furthermore, depend-
ing on the expected interaction duration, the system could, for example, dynamically choose
which version of an advertisement video to show according to the video length. In addition
to run-time benefits, knowing which factors influence interaction duration and distance can
be of great value to stakeholders who would then be able to tweak their setups to achieve
the optimal user experience.

To address such issues, designers developed methods that try to keep users interact-
ing longer by, for example, showing autopoiesic content [6], or presenting new content
immediately after the user has finished interacting with current content [7]. Moreover,
previous works reported that users interact at different distances, particularly when using
at-a-distance interaction techniques such as mid-air gestures [2, 4]. The surrounding envi-
ronment also affects how users position themselves: for instance, benches surrounding the
display potentially result in larger audiences, which in turn discourage users from positioning
themselves close to the display [8]. These facts have led researchers to study how to guide
users into positioning themselves in the optimal sweet spot [9, 10].

In contrast to display-centred approaches discussed in previous work, in this paper we
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focus on the people near the display, and in particular on estimating how the audience
could affect possible interactions with the display itself. In more detail, here we present a
method for building models to predict the duration and distance of interactions based on
the behaviour of users (i.e., people who actually interact with the display) and audience
(i.e., people who sit or stay around the display), and on the relationship between them.

To this end, we first analysed the behaviour of users and audience in a real-world deploy-
ment of a public display. We chose a deployment in which mid-air gestures were employed
for interaction because this modality often results in varying interaction durations [11] and
interaction distances [2]. Data analysis revealed that the users’ interaction duration and
distance from the display are significantly influenced by the number of users, the size of
the audience, the user-audience relationship, and the audience’s gaze towards the user(s).
We then used the collected data to train predictor models based on our method, able to
estimate the probability density functions (PDFs) for interaction duration and distance (see
Figure 1), using audience-related information. Our solution estimates the interaction dura-
tion with a mean absolute error (MAE) of about 8 seconds, and the interaction distance with
a MAE of about 35 cm. We describe our approach in details and discuss how the outcomes
of our study, which include the predictor model and a visualisation tool, can be reused by
researchers and designers to build predictor models for their public display setups.

We discuss how this work can help space owners and designers to optimise user engage-
ment and experience, e.g., by (a) building similar models and (b) using them to predict how
settings will influence users to (c) ultimately optimise the setup. We also explain how to
leverage this knowledge to adapt content and interaction modalities in real time.

The contribution of this work is threefold:

• we report our findings from a 35-day long observation of our deployment to identify
factors that influence users’ behaviour;

• we propose and evaluate a machine learning approach based on expectation maximi-
sation, aimed at generating predictor models using the collected data;

• we describe how similar models can be developed for predicting user behaviour on
public displays.

To help visualise the predictions, we implemented a visualisation tool that can be adapted
to other similar deployments. The tool is freely available and open source1.

2. Related Work

Our work builds on previous work on the analysis, modelling, and prediction of the
behaviour of users of interactive public displays. In particular, we focused on display appli-
cations that use mid-air gestures in order to provide interactivity to the users.

In this section, we provide an overview of the most significant previous works on these
main topics.

1Available on https://usi.unipa.it/MLPredictor.zip.
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2.1. Interacting with Public Displays

Today’s public displays feature interactivity in many forms. Some displays offer implicit
interaction, such as reacting to the user’s natural behaviour when they approach the display.
For example, many previous deployments aimed at making the display noticeable by showing
silhouettes that mimic users’ movements [2, 12].

Apart from implicit interaction, a large body of work investigated explicit input through
modalities beyond keys and buttons, such as touch [13], mid-air gestures [14], feet-input
[15], mobile devices [16], eye gaze [17], or multi-modal combinations of them [18].

2.1.1. Touch-based Interaction

Touch interfaces were a significant improvement over physical hardware (e.g., keypads,
buttons and joysticks) since they expand the entropy of interaction possibilities, and allow
faster software-based updates of the user interface [1]. A downside of touch interfaces is that
they have to be physically reachable, while public displays are often mounted above user’s
height for visibility, or placed behind shop windows. As a result, distances from which users
interact with displays via touch do not change significantly.

2.1.2. Mobile Device Interaction

Mobile devices, such as smartphones or smartwatches, can be used to interact with
displays. Researchers explored their use for gesture-based interaction with remote displays
[19, 20]. Some displays allow for interaction using mobile devices via Bluetooth [21], HTTP
[22], or NFC [23]. Interaction distances could vary depending on the used technology. For
example, NFC requires close proximity to the display, while Bluetooth’s range can span
several meters around the display. HTTP allows for interaction from anywhere as long as
the user is connected to the Internet.

2.1.3. Touchless Interaction

Interaction is said to be touchless if does not require mechanical contact between the
human and any part of the artificial system [24]. According to this definition, both eye gaze
and mid-air gestures are touchless interaction modalities.

Eye gaze has been gaining attention as an alternative modality for interaction with public
displays. Gaze has been considered a form of hygienic interaction since it can be used at-a-
distance. Although gaze is fast [25], designing highly accurate gaze interfaces often results
in significantly longer input time [26], thereby increasing interaction durations. Interaction
distances are governed by the range of the cameras used for tracking the eyes. With the
exception of active eye-tracking systems [17], most commercial eye trackers require users to
position themselves 60cm-90cm away from the display [27].

The use of mid-air gestures provides an alternative at-a-distance interaction modality.
Compared to other modalities, mid-air gestures were shown to extend interaction durations
due to their playful nature [11]. Opposed to gaze, mid-air gestures often require larger dis-
tances between the user and the display to allow the sensors to capture the user’s movement
(e.g., Microsoft Kinect requires users to be between 0.5 and 2.5 meters [28]).
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2.2. Mid-air Gesture Interaction with Public Displays

The variance in durations and distances of interactions is not the only reason why we
focused on mid-air gestures. Indeed, especially in the context of public displays, this inter-
action modality has been widely adopted and used due to many advantages. Among them,
touchless gestural interaction limits vandalism by placing displays in unreachable places [29],
maintains hygiene as users no longer need to touch the display [30], and removes constraints
to the display size (see, for instance, works on media façades [31, 32]). Several authors
focused their work on user representation in mid-air gestural applications. Many prior work
suggested to adopt users’ silhouettes or avatars [2, 33, 34, 35], since they have proven to
be very effective in solving some common pervasive display issues, namely interaction blind-
ness (i.e. the inability of the users to recognise the interactive capabilities of a display [36])
and affordance blindness (i.e., the inability to understand the interaction modality of the
display [37]). Gentile et al. showed also that the presence of an avatar makes two-handed
interactions more “natural” in the sense that it contributes to a reduction of the cognitive
workload while interacting with public displays [14].

On the other hand, mid-air gestures have also some drawbacks. If not properly designed,
such interaction modality might indeed require teaching passersby how to perform gestures
[38, 39]. In terms of ergonomics, using gestures for long periods of time might lead to arm
fatigue, an issue often referred as the Gorilla-arm problem [40]. To solve these issues, it is
crucial to incorporate users’ preference when defining the gesture sets [41]. In this sense,
gesture elicitation studies might help, along with specific measures of arm fatigue, used to
filter out potentially bad gestures [42, 43]. Social acceptability of gestural interfaces has
also been investigated by prior work. In particular, Ahlström et al. showed that users are
sensitive and selective regarding where and in front of whom they would feel comfortable
using mid-air gestures [44]. They also showed that acceptance and comfort are strongly
linked to gesture characteristics, such as gesture size, duration and in-air position. Finally,
an additional limitation of mid-air gestures is in the technologies that enable for mid-air
gesture recognition, which are usually not suitable for being used in outdoor deployments.
This is especially the case in very sunny environments as most depth sensors rely on infrared
reflections that are impacted by sunlight [28, 45].

Based on the above considerations, we decided to focus on a gestural interface based on
the use of an avatar, continuously replaying user’s movements. Although we are aware that
this choice might lead to fewer interactions compared to touch-based displays (e.g. due to
social embarrassment of performing gestures in public [46]), the use of gestural interfaces
has many advantages. As further explained in section 3.1, this solution allows us to reduce
interaction blindness [2, 33], makes interactions more natural [14] and does not require
learning specific gestures in order to interact properly [34, 47] – thus supporting immediate
usability. Moreover, technical limitations, such as sunlight sensitivity, do not apply in indoor
deployments, like the one we took into account. Furthermore, given the greater variance in
durations and distances of interaction via mid-air gestures compared to other modalities,
prediction of interaction distance and duration of public displays that employ this modality
is particularly valuable.
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2.3. Behaviour of Public Display Users

Previous works studied how several aspects impact the behaviour of active public display
users, passive audience, and passersby.

For example, researchers looked into how the setup influences users’ behaviour. In Look-
ing Glass, users were reported to be influenced by traffic lights; passersby were observed
waiting expectantly at pedestrian crossings, and then interacting with the display as soon
as they are on the other side [2]. In other words, the waiting situations make passersby
notice the display and hence increase interactions. Similarly, ten Koppel et al. found that
the configuration of multiple screens influences how users position themselves to interact
with a display [48]. They found that arranging the displays in a hexagonal configuration
encourages users to interact with neighbouring displays, while in flat configurations users
maximise the distance to other users. The authors attributed this to the users’ desire to
maintain their personal space. As a result, configurations with a large interaction space had
more simultaneous users. Fatah gen Schieck and colleagues found that the layout of the
building influence the behaviour of spectators, passersby, and audience and suggested that
spatial configuration can be manipulated to encourage certain behaviour [32, 49, 50]. Fatah
gen Schieck et al. used displays as a socialising platform that triggers shared encounters
among passersby, which in turn encouraged interactions [49]. Dalton et al. found that the
architecture of the building in which a display is deployed has a strong influence on whether
or not users notice displays [51]. For example, users followed ceilings and wall edges with
their gaze before looking at a display. Gentile et al. found that the presence of seats around
the display attracts a larger audience, which causes users to interact at a further distance
from the display [8]. This was attributed to discomfort resulting from having a large au-
dience gazing at users as they interact. CityWall [13] and MyPosition [52] showed that
displays can encourage communication among strangers.

Social aspects were also shown to influence interaction in public. Research showed that
people might interact only to be noticed by others [53], or resist interaction due to social
embarrassment [54]. Multiple works observed and investigated the honeypot effect [2, 55, 56,
57, 58, 59], which refers to a social affordance in which the presence of users interacting with
a display encourages surrounding passersby to come forward and interact with the display
as well. Brignull and Rogers described the honeypot effect as a “social buzz” in which those
interacting with a public display seemed to signal to others that they are willing to engage
in discussions and meet new people [56]. Brignull and Rogers also discussed how attempts
to reduce social embarrassment when interacting with a display, such as allowing users to
interact remotely with the displays, might be counterproductive as they could reduce the
honeypot effect which could in turn result in less interactions with the display. Observations
from field deployments indicate the honeypot effect is a powerful cue to attract attention to
displays; those who observed others interacting with a display often return to interact with
it themselves, sometimes even days afterwards [2, 60]. It is expected that the honeypot effect
evokes curiosity thus encouraging users to interact, and counteracts social embarrassment
by suggesting engagement [59]. Indeed, in Dalton et al.’s eye tracking study [51], they found
that 12% of fixations at displays were preceded by noticing someone interacting with the
said display. In summary, as users interact, others are attracted to the display.
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In these cases, the user influences the audience. In contrast, Gentile et al. studied how
the audience influences the user [8]. They found that the larger the audience, and the more
focused they are on interacting users, the farther users position themselves from the display.
While the work of Gentile et al. simply shows an effect of the audience on user’s behaviour,
in this work we significantly build over that by leveraging knowledge about the audience
behaviour to predict the user’s interaction duration and interaction distance.

2.4. Modelling and Predicting Public Display Users’ Behaviour

Several works modelled users’ behaviour. For example, multiple spatial [61, 62] and tem-
poral models [56, 63, 64] were proposed for public displays. While these works contributed
to discovering the existence of interaction zones, our work builds significantly over that
by identifying factors that impact the transition between these zones and leveraging these
factors to predict user’s interaction duration and distance.

Unlike our predictive model, existing models are static and mostly qualitative, and they
cannot easily be adapted to, for example, the interaction modality, application, or display
context. Moreover, our model aims to provide numerically quantifiable predictions, which
would increase its practical applicability in many cases.

Prediction of users’ behaviour has been researched extensively in HCI and psychology.
For example, previous work predicted user’s mouse [65] and touch interactions [66, 67, 68]
to improve accuracy. Several works proposed predicting the user’s gaze based on user’s
behaviour [69, 70]. Erazo and Pino proposed a model for predicting execution time of mid-
air gestures [71]. Other works predicted the applications that will be used next [72, 73]. In
the context of public displays, Huber et al. analysed passerby’s feet position to detect the
user’s intention and accordingly adapt the rendered content [74].

In contrast to these previous works, our approach is the first to provide quantitative
predictions of the behaviour of public display users in terms of interaction duration and
distance, based on audience size and behaviour.

3. Audience’s Impact on Interaction

To study the impact of audience presence and behaviour on interaction in our deploy-
ment, we conducted a longitudinal study in order to observe users’ behaviour while interact-
ing with a public display. In this section, we provide a brief description of the deployment
we analysed, the data collection process and the outcome from our data analysis.

3.1. Description of the Deployment

The public display we studied is located in a 150 square-meters-large indoor space inside
a building within the campus of the University of Palermo. It consists of a 32-inches LCD
monitor placed at eye-level, with a Microsoft Kinect sensor placed below it. The display is
situated next to several benches where students often sit while waiting for lectures to start.

The display acts as an information provision system, which is one of the most common
applications for public displays [75, 76]. In particular, it provides university-related informa-
tion for students of different disciplines and ages (mostly between 19 and 35 years), lecturers,
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and other university staff members. The display runs an Avatar-Based Touchless Gestural
Interface (named ABaToGI [47]), based on the prototype described in [34]. It consists of
an animated avatar shown in the middle of the screen, with other interactive tiles arranged
around it (see Figure 2).

Figure 2: The display allows users to access different types of information via mid-air gestures reflected by
an on-screen user representation.

To make the application interactive, the aforementioned avatar is shown every time a
user approaches the display, and remains visible in the middle of the screen, continuously
reflecting user’s movements. This was done to reduce interaction blindness and affordance
blindness [2, 33, 37], and to make interactions more natural [14]. Users can interact using
in-air direct manipulations by placing a hand on a tile to trigger a selection event. By
not requiring symbolic gestures (e.g., a gesture to convey a certain meaning), this system
alleviates the need to learn which gestures to use in order to interact, greatly reducing the
learning curve and allowing immediate usability [34].

3.2. Data Collection

We needed to collect as much information as possible about the area of interest for our
study, such as the behaviour of people within it and, in particular, people’s interest toward
the display. For this reason, we needed to use an RGB camera to allow us to inspect the
setup and the behaviour of the passersby. Since we were not allowed to install any new
RGB cameras in the test environment, we had to use one of the available WiFi surveillance
cameras. The WiFi camera we used was placed in front of the display, in an unreachable
position, to observe users’ interactions and audience behaviour. This way we were able to
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Figure 3: The wide view of the camera enabled us to identify users who arrived in groups, or communicated
with each other or with the audience before interacting with the display. This allowed us to identify rela-
tionships. The figure shows a sample of the variables and measurements that were logged in the recordings.

remotely observe: (1) users, (2) audience (e.g., people sitting on the benches next to the
display), and (3) the display status. The University’s institutional review board allowed us
to access the camera’s streaming video for the time the experiment has been carried out.
It is worth noting that even though we had a Kinect device installed for gesture detection,
we could not use it for data collection because its range is not wide enough and it does not
allow for gathering contextual data (e.g. audience gaze, and whether the user interacted due
to the honeypot effect).

Figure 3 shows an example of the camera view, and a subset of the variables and mea-
surements we collected. We recorded interactions between 10 am and 5 pm on workdays.

Since we started collecting videos after one year from the first installation of the display,
we can reasonably assume the absence of significant biases due to novelty effect.

For this work, we analysed 200 hours and 47 minutes of recorded video feed collected
along 35 days. During this period of time, we observed 123 total interaction events. For our
study, an event was relevant when there is at least an interaction attempt with the display
by one or more people. Users interacted for 1 to 136 seconds (M = 22.7s, SD = 26.5s, see
Figure 4b). It is worth noting that the average duration of interaction events is in line with
data reported in other public display deployments [2]. Same considerations apply for the
average number of interaction events per hour (0.615), which is in line with data reported
for other indoor public display deployments [3].
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Variable name Symbol Type Values Description

In
p

u
t

Number of Users Ucount Discrete ≥ 1 Number of interacting users

Audience Size Asize Discrete ≥ 0 Number of persons acting as
passive audience while one
or more users interact

Audience-Display
Distance

ADD Continuous ≥ 0 Distance between the dis-
play and the closest person
in the audience

Audience Side Aside Categorical left
right
both

Which side is the audience,
with respect to the display

Audience Gaze Agaze Categorical yes
no

Whether or not someone in
the audience looked at the
user during interaction

User(s) Gaze Ugaze Categorical yes
no

Whether or not a user no-
ticed to be gazed from the
audience

User(s)-Audience
Relationship

UAR Categorical acquainted
strangers
mixed

Relationship between user
and the audience

User(s) was/were
in the Audience

UA
in Categorical yes

no
Whether or not the user(s)
acted as part of the audience
before interacting

User(s) interacted
due to Honeypot
Effect

HE Categorical yes
no

Whether or not the user(s)
interacted due to the honey-
pot effect

O
u

tp
u

t Interaction
Distance

d Continuous ≥ 0 Distance between the
user(s) and the display

Interaction
Duration

t Continuous ≥ 0 Duration of the interaction
session

Table 1: Summary of variables that we tracked while annotating the videos. We used these variables both
for the statistical analysis and for building our predictor model.
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Effect

Interaction
Distance

due to Honeypot
User(s) interacted
due to Honeypot

UinUinUA

UAR Categorical

CategoricalCategorical

yes
no

both
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with respect to the display

play and the closest person
in the audience

Which side is the audience,



There are infinitely many factors that might impact users’ behaviour around displays.
We decided to focus more on the human factors than on technical ones, in particular on how
some audience-related factors affects the behaviour of display’s users-to-be. Furthermore,
some of the audience-related variables, such as size, distance, side, and gaze, can be easily
influenced by the deployment layout (presence/absence of benches, number and position of
seats, etc.). Therefore, space owners might have more control on such changes, for instance in
terms of cost, to achieve the desired values for duration and distance of interactions. Indeed
it is likely that a space owner could easily add, remove or move some furniture around.
We acknowledge that factors such as time (e.g., weekday and time of the day), weather,
screen size as well as the user’s gender, culture, age and body orientation might impact the
users’ behaviour [2, 77, 78]. Indeed we provided an overview of the most significant factors
that impact the users’ behaviour around displays in section 2.3. Here, we decided to take
into account the variables on which space owners may have an easier, and cheaper, control,
and leave the others for future work (see section 5.6). Thus, for each interaction event, we
collected 11 variables, summarised in Table 1. Two researchers separately reviewed all the
recorded videos, based on the following rules:

• Number of Users (Ucount) was tracked because it influences interaction due to the
honeypot effect, which we discussed at length in Section 2.3. Ucount was coded by
counting the number of users simultaneously involved in each interaction event.

• Audience Size (Asize) was tracked as it was shown to influence the behaviour of users
of public displays [8]. Asize was coded by counting the number of persons that, during
an interaction event, were not involved in the interaction

• Audience-Display Distance (ADD) is likely to impact the users’ awareness that they
are being observed, which could in turn cause social embarrassment [54] or, for some,
even encourage interaction [53]. We coded ADD by counting the number of tiles on
the floor from the display to the closest person in the audience, or the number of seats
in case the closest person in the audience was seated. In cases where the audience were
considerably moving during the interaction event (i.e., the distance between audience
and the display varied, and it was not possible to identify a single constant value for
ADD during the whole interaction event), we coded this value as N/A.

• Audience Side (Aside) refers to which side the audience was at, and was coded by
checking whether the audience was on the left, on the right or on both sides with
respect to the user(s). In those cases when the person(s) in the audience were not
clearly placed on the left or on the right (i.e., they were moving around the joining
line between the user and the display), we coded this value as N/A

• Audience Gaze (Agaze) was suggested to influence interaction distance [8]. Agaze was
coded by looking whether at least one person from the audience looked at the user(s)
during the interaction event. In those cases where this determination was dubious or
unclear, and when such determination was useless (i.e., when Asize = 0) we coded this
value as N/A.
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• User(s) Gaze (Ugaze) can be an indicator of whether the user noticed the audience.
This can be valuable in further distinguishing cases where the user was aware of the
surrounding audience. Ugaze was coded by looking whether the user (or one of the
users, in case of groups of users) looked back to a person from the audience who
were looking at her/him during the interaction event. In other words, this variable
represents if the user(s) noticed to be looked by someone in the audience. In those
cases were this determination was dubious or unclear, we coded this value as N/A.

• User(s)-Audience Relationship (UAR) can be influential as previous work showed that
users are sometimes more comfortable interacting in front of friends [57]. UAR was
coded by looking at interactions between user(s) and persons in the audience before
and after the interaction events. For instance, if a user and someone in the audience
talked before or after the interactions, or if they arrived together next to the display,
we assumed they were acquainted. Otherwise, if a user arrived alone at the display,
and went away with no other social interactions with the audience, we assumed they
were strangers. In those cases were this determination was dubious or unclear, we
coded this value as N/A.

• User(s) was/were in the Audience (UA
in): if the user was among the audience earlier, this

can be considered a result of the honeypot effect as it was shown that users return,
sometimes even days, after observing someone interacting with the display [2]. UA

in

was coded by checking if the user(s) was/were part of the audience during a previous
interaction event.

• User(s) Interacted due to Honeypot Effect (HE): tracking this is useful in determining
whether the user was motivated by the honeypot effect or not which is known to
influence user behaviour (see Section 2.3). HE was coded by checking if an honeypot
effect occurred (i.e., at least one user from the audience approached the user during
an interaction event, and then started a new interaction event).

• Interaction Distance (d): this is one of the dependent variables that we wanted to in-
vestigate. Knowing which factors impact the interaction distance can be very valuable
for space owners. For example, a display can dynamically determine which interaction
modality to employ, or the size of the content depending on the anticipated interaction
distance. d was coded by counting the number of tiles on the floor between the user(s)
and the display.

• Interaction Duration (t): this is another dependent variables that we investigated. It
is also very valuable to understand and be able to manipulate the factors that impact
interaction duration. For example, if shorter interaction durations are expected, the
display can play shorter versions of advertisements, or decide to employ more aggressive
approaches for keeping the user. t was coded by measuring the time between an action
that showed user(s)’ intention of initiating the interaction (e.g. stopping in front of the
display and raising arm or moving body), until user(s) left the display.
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Ucount Asize ADD Aside Agaze Ugaze UAR UA
in HE d t

ICC or κ † 0.985 0.977 0.979 0.994 0.991 0.975 0.978 0.981 1.000 0.960 0.994

† p < 0.001 for all the above results

Table 2: Agreement scores: intra-class correlation coefficient (ICC) has been used for continuous variables
(ADD, d, t), while Cohen’s kappa has been computed for all the other variables (weighted in case of discrete
variables Ucount and Asize).

All distances coded by counting the number of tiles or seats were later converted to
centimetres. In a few cases, when variables changed only slightly and shortly during an
interaction event (e.g., changes in audience size amid interaction), we coded the most repre-
sentative value for the specific interaction analysed (e.g., the audience size during the major
part of the interaction session).

Both the researchers who were involved in the video reviewing and coding process did
record the same number of interaction events. We also computed three different agreement
scores, based on the variable type reported in Table 1. In particular, based on the rec-
ommendations by Raganathan et al. [79], we used Cohen’s kappa for categorical variables,
weighted Cohen’s kappa for discrete variables, and intra-class correlation coefficient for con-
tinuous variables. Agreement scores are reported in Table 2. In those cases where the two
researchers disagreed, both the researchers reviewed again the videos together. Then, we
resolved the disagreements as follows:

• for continuous variables (i.e., ADD, d, t), if an agreement was not reached, we com-
puted the average value between the values coded by the two researchers

• for categorical and discrete variables, if an agreement was not reached, the values were
set to N/A (i.e., treated as dubious/unclear cases)

3.3. Limitations

The results of our statistical analysis are valid for the group of users that we considered in
our longitudinal study. Results could be different in other deployments based on the setup,
user groups, and interaction modality. However, the procedure described for data collec-
tion, statistical analysis and predictor training can be replicated in other deployments with
different settings. Another limitation is that although we carefully reviewed the situation
before and after each considered case to note any external influences on users’ behaviour
(e.g., indications that the audience and users know each other), however we are not fully
aware of what happens beyond the camera’s range. Finally, we do not know how often each
user interacted with the display before each recorded interaction attempt. Consequently, we
have not included information about previous experiences in interacting with the display.
While an alternative would be to collect and recognise faces to identify users and collect
such information, this was not feasible due to privacy concerns.
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Figure 4: Histograms show the distributions of (a) interaction distance and (b) interaction duration.

3.4. Statistical Analysis

From the 123 collected interactions, we excluded exceptional cases that occurred very few
times to be significant for drawing general conclusions. Namely, we excluded five interactions
where there was an audience of six or more people, and three cases where the audience was
more than 2.5 meters away from the display. This means we ended up with 115 valid
interactions to analyse.

Out of the 115 considered interactions, 43 occurred in the presence of an audience that
the users were acquainted to, 17 cases were logged where the audience and the users were
strangers, 23 cases had a mixture of strangers and acquaintances among the audience, and in
32 cases there was no audience at all. A one sample binomial test confirmed that there is a
statistically significant tendency for more interactions when there are acquaintances among
the audience or when there is no audience, with a proportion of 0.85 (larger than expected
0.75, p < 0.001).

3.4.1. Interaction Duration

Our main findings with respect to interaction duration are illustrated in Figure 5.
Namely, we found a significant effect of three variables on interaction duration.

We found an effect of the number of users on interaction duration. An ANOVA test
revealed a significant effect of the number of users on interaction duration (F2,113 = 9.84,
p < 0.001). A post-hoc Tukey test showed that interaction duration in the case of a single
user (M = 17.5 s, SD = 18.4 s) is significantly shorter than in the case of two users (M =
33.3 s, SD = 34.9 s, p < 0.05) and three users (M = 58.8 s, SD = 45.5 s, p < 0.005). This
means when multiple users interact, they are likely to interact for longer durations.

The size of the audience also had an influence on interaction duration. An ANOVA
test showed that there is a significant effect of the audience size on interaction duration
(F2,109 = 3.15, p < 0.05). Post-hoc Tukey tests revealed significant differences between
interaction duration when there is an audience of size 4 or more (M = 10.9 s, SD = 9.0 s)
compared to cases where there is no audience (M = 27.6 s, SD = 29.7 s, p < 0.001) and
cases where there is a smaller audience of size 1 to 3 (M = 20.8 s, SD = 25.8 s, p < 0.05).
This means that the bigger the audience, the shorter the duration users interact.
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Figure 5: Users interact for longer durations when they are in groups. Interaction durations are significantly
shorter when a larger audience surrounds the users, and particularly when it includes strangers rather than
only acquaintances to the users.

We also found an effect of the user-audience relationship on the interaction duration. An
ANOVA test showed a significant effect of the relationship on interaction duration (F2,109 =
4.1, p < 0.05). A post-hoc Tukey test showed that interaction duration in the presence of
at least one stranger among the audience (M = 12.3 s, SD = 10.8 s) is significantly shorter
than in the case of an audience composed of acquainted people (M = 26.0 s, SD = 30.6 s,
p < 0.05), and also significantly shorter than the case of no audience (M = 27.6 s, SD =
29.7 s, p < 0.005). There is no significant difference in the interaction duration between
the cases of no audience vs presence of acquaintances. In other words, this means that
interaction durations in front of strangers are 1) shorter than in front of acquaintances, and
2) shorter than in the absence of an audience.

3.4.2. Interaction Distance

An independent-samples t-test was run to determine if there were differences in user-
display distance between presence of an audience compared to the absence of an audience.
A significant main effect was found (t(113) = −2.84, p < 0.01). Users position themselves
significantly farther away from the display when an audience is present (M = 100.1 cm,
SD = 84.9 cm), compared to cases where there is no audience (M = 50.6 cm, SD = 52.2 cm).
When further analysing the cases where an audience is present, an ANOVA showed that the
audience size has a significant effect on the interaction distance (F2,113 = 8.8, p < 0.001).
Post-hoc Tukey tests revealed that users position themselves significantly farther away from
the display in the presence of an audience of size four or more (M = 140.4 cm, SD =
121.9 cm) compared to cases where there is no audience (M = 50.6 cm, SD = 52.2 cm,
p < 0.001) and compared to the presence of an audience of size between one and three
(M = 87.7 cm, SD = 66.4 cm, p < 0.05). This means that users position themselves
significantly farther away from the display in the presence of an audience, and in particular
in the case of a large audience.

Finally, an ANOVA revealed that the audience’s gaze at the user has a significant main
effect on user-display distance (F2,113 = 8.45, p < 0.001). Post-hoc Tukey tests showed
that users position themselves significantly farther away from the display when the audience
gazes at them (M = 112.7 cm, SD = 91.0 cm) compared to when they do not gaze at the
user (M = 70.0 cm, SD = 59.6 cm, p < 0.05), and compared to when there is no audience
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Figure 6: Users position themselves far from the display when a large audience is present, and significantly
farther when the audience gazes at them.

(M = 50.6 cm, SD = 52.2 cm, p < 0.005). This means that when the audience gazes at the
user, the user keeps a larger distance to the display.

4. Predicting Interaction Duration and Distance

In the previous section, we described the process of observing users’ behaviour and
collecting data related to a set of surrounding information, e.g., the audience’s presence and
behaviour, in order to understand the relationship between such audience-related data and
the users’ behaviour while interacting with a display. Using this information, we concluded
that some of the observed variables have a more significant influence than others.

In this section, our goal is to understand how to use such data in order to automatically
predict the impact of audience and users’ behaviour with respect to the deployment setup.
To this end, here we present a machine learning approach for supporting display owners
in predicting users’ behaviour in a specific deployment. Such predictions can then be used
for increasing the use of the display, improving the experience, and making public display
deployments more successful.

4.1. Predictor Model: Definition

The predictor model proposed in this section estimates the probability density function
(PDF) of a continuous output variable y, using a set X of N input variables xi, i.e., X =
{x1, x2, . . . , xN}. In particular, we estimate the PDF of an output variable given the observed
variables (namely p(y|X)), which implies the estimation of the joint probability p(y,X).

In the practice, a perfect joint probability estimation generally requires a number of
samples that grows exponentially with the number of input variables. For instance, suppose
that our predictor model would require nine input variables, each of which can assume only
two values. Thus, a proper joint probability estimation would require at least 29 training
samples, which is often not practical in actual deployments. This is particularly true when
considering video-coded data, which is very often the case of observations in-the-wild and
longitudinal studies in pervasive display research [1].

To overcome this limitation, we leverage a standard technique that implies the as-
sumption of a Naive Bayesian dependence between output and input variables. This is
a machine-learning stratagem that was proven effective and eases the estimation of com-
plex joint probabilities, even with relatively few data samples, unlike other approaches (e.g.,
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neural networks, SVMs, etc...) [80]. In particular, it allows considering the input variables
conditionally independent given the output.

Thus we can write down the conditional as follows:

p(y|X) =
p(y,X)

p(X)
=
p(X|y)p(y)

p(X)
=

=
p(x1|y)p(x2|y) . . . p(xN |y)p(y)

p(X)
=

=
p(y|x1)p(x1) . . . p(y|xN)p(xN)p(y)

p(y)Np(X)

(1)

We can group the constant parts p(xi) and p(X), which form a constant scaling factor
K, defined as follows:

K =

∏N
i=1 p(xi)

p(X)
(2)

Thus, it holds that Equation 1 can be rewritten as follows:

p(y|X) =
K · p(y|x1) . . . p(y|xn)p(y)

p(y)N
=

=K · p(y|x1) . . . p(y|xN)p(y)1−N

(3)

In practice, p(y|xi) and p(y) can be estimated from the observed data (i.e., training
samples) as Gaussian mixtures, using the expectation-maximisation (EM) algorithm [80].

The calculus of K can be avoided because it is equivalent to a simple normalisation
operation of p(y|X).

Thus, the p(y|X) estimation all comes down to estimating p(y|xi) for each i-th input
variable, and p(y). As we explain in section 4.2, such estimations represent the whole
training process of our model, which can be implemented by means of the available (free
and open source) implementations of the EM algorithm [80, 81].

Estimating p(y|X) would then allow to predict the most probable value of y, according
to the input variables xi.

4.1.1. Choice of Prediction Technique

This approach has several significant advantages compared to other machine learning
approaches, such as regression analysis. Although the higher the number of samples are, the
more accurate the estimation can be, unlike neural networks and SVMs this model can be
used with fewer samples. Moreover, it features incremental training which allows improving
precision with newly collected data, without the need to retrain the whole model.

Furthermore, unlike classical regression, this approach allows to train and use the model
even if some of the input variables are not available. For instance, an automatic data
collection process might provide uncertain values in some cases (e.g., due to occlusion or
low video resolution). Even if some input values are missing, this approach would still be
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Figure 7: Overview of the variables and the predictor models. Because some variables, namely ADD, Aside,
Agaze, Ugaze, UAR, would be meaningless if there is no audience, we built a model per interaction duration
(t) and interaction distance (d), and we further split each to two models to account for Asize = 0 and for
Asize > 0.

useful for training a predictor model. While in this paper we have manually coded data
from videos, we envision that future work will collect the data automatically in the wild,
which means that it will be more likely that certain data points will be missing (e.g., due
to inaccuracies, obstacles, etc.). We discuss how to automate the data collection process in
Section 5.5.

The feature of managing missing values is also useful while using the model as a predictor
(i.e., after the training stage): even if some of the input variables are not available, the PDF
estimation is still possible. Of course, the more the known inputs are, the more precise the
estimation will be.

4.2. Predictor Model in Practice

As stated before, our aim is to predict how the distance between the users and the
display varies according to audience behaviour, as well as how long users interact with the
display. In order to put the above methodology into practice, we have thus built two different
predictor models: one for predicting the user-display distance (i.e., p(d|X)), and another
one for predicting the interaction duration (i.e., p(t|X)). The variables d and t are therefore
our outputs.

We have then considered a total of nine possible input variables xi, which correspond to
the data collected for the aforementioned data analysis (see Table 1).

Obviously, if there is no audience (i.e., Asize = 0) then many variables (namely ADD,
Aside, Agaze, Ugaze, UAR) are irrelevant, since they are subsumed by Asize in this particular
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case. For this reason, we have not built two models (i.e., one for predicting p(d|X), and
another one for p(t|X)) but actually four, doubling the original two by splitting the cases
for Asize = 0 and for Asize > 0. This distinction is depicted in Figure 7. However, for the
sake of simplicity and clarity, in the rest of the paper we will often refer to a single model
that predicts both p(d|X) and p(t|X).

Training such models basically means that we have to estimate p(d), p(t) and each p(d|xi)
and p(t|xi) by applying EM-based Gaussian mixture estimation from the data collected
during our observations.

We have implemented this procedure using the Python programming language, exploit-
ing some of the features available from the scikit-learn package [81]. This allowed us to
quickly estimate probability distribution as Gaussian mixtures, and to easily operate on
them. Our predictor model was built using the data gathered during the observations de-
scribed previously. In particular, we used the same dataset analysed during the statistical
analysis.

In practice, interactions from distances of 2.5 meters or farther from the display are
not detected reliably by the Kinect device used in our deployment [28]. This suggests that
interaction experiences from such distances might be skewed. Furthermore, analysing the
distribution of the interaction durations revealed that there is a significant drop in number
of cases per interaction durations that are longer than 60 seconds (see Figure 4b). For these
reasons, we used the 104 interactions with distances and durations below these criteria to
train our model.

4.3. Performance Analysis

We evaluated the performance of our methodology by using the Leave-One-Out Cross
Validation (LOOCV), over the 104 observed samples. Thus, we measured a mean absolute
error (MAE), and its standard deviation σMAE for the two output variables (i.e., interaction
distance and duration).

We computed the MAE by considering all the possible combinations of 8 input variables
(i.e., all the variables except Asize, which was always included in order to select the right
model, as depicted in Figure 7).

According to our evaluation, the best input variables combination for predicting user-
display distance is < Asize, Ucount, UAR,U

A
in > (MAE = 0.3518, σMAE = 0.3525), while for

the interaction duration, the best input variables combination is < Asize, Ucount, Agaze, Ugaze,
UAR, UA

in, HE > (MAE = 7.8786, σMAE = 5.5776).
In order to rank all the input variables combinations for minimising the MAE of both

the outputs, we computed the following metric for each k-th input variable combination:

ME
k (y) = MAEk(y) + σMAE

k (y) (4)

where y can be d or t depending on the considered output. Thus, the error vector
representing the k-th input variable combination can be defined as follows:

Ek = 〈ME
k (d),ME

k (t)〉 (5)
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We adopted the Pareto dominance as an order relation [82] for all the error vectors Ek.
In general, if E1 and E2 are two error vectors, then the Pareto dominance of E1 with respect
to E2 is expressed by the following equation:

E1 � E2 ⇔ {∀i = 0, . . . , n⇒ E1(i) ≤ E2(i)} (6)

Thus, an error vector E∗ can be considered Pareto optimal if it is not worse than (i.e.,
dominated by) any other error vector:

E∗ = {Ei : ∀k = 0, . . . , n ∧ Ei 6= Ek ⇒ Ei � Ek} (7)

Using the Pareto sorting algorithm proposed in [82], the input variable combination <
Asize, Ucount, Agaze, UAR, UA

in > results in the best outcome with respect to both interaction
distance and duration (MAE(d) = 0.3575, σMAE(d) = 0.3530, MAE(t) = 7.8793, σMAE(t)
= 5.9246), since it produced a Pareto optimal error vector.

It is worth noting that, among all the input variables listed in Table 1, HE and UA
in

require knowledge on the behaviour of user(s) before the interaction. This means that
such variables may result tricky to use, and somehow not particularly useful for display
providers or space owners, that are the final users of this predictor model. For this reason,
we report here also the best combination of input variables excluding HE and UA

in, which
is < Asize, Ucount, Agaze, UAR > (MAE(d) = 0.3497, σMAE(d) = 0.3588, MAE(t) = 7.9180,
σMAE(t) = 6.0094).

This means that our model can predict interaction duration with a MAE of 7.9180
seconds, and interaction distance with a MAE of 0.3497 meters.

4.3.1. Prediction Errors and Statistical Significance

The variables < Asize, Ucount, Agaze, UAR > resulted to be the best combination to predict
both user-display distance (d) and interaction duration (t). This is in accordance with
the findings of the statistical analysis (see section 3.4), which showed a significant effect
of audience size (Asize) and audience’s gaze (Agaze) on user-display distance, as well as a
significant impact of audience size (Asize), number of users (Ucount) and relationship between
them and the audience (UAR) on the interaction duration. These results, along with the
MAEs reported above, confirm the effectiveness of our proposed model in automatically
(and correctly) predicting the impact of audience and user’s behaviour with respect to the
deployment setup.

4.4. Validation Against a Different Dataset

In order to further confirm the results discussed in the previous sections, we decided
to perform an additional validation by using a different dataset. To this end, we collected
an additional dataset from the same deployment, after several months from the first data
collection period. In particular, we collected data for a total of 20 interaction events, coded
over 2 days for 14 hours and 20 minutes. It is worth noting that such number of interaction
events represents a sufficient percentage with respect to the size of the dataset, according to
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the common practices adopted for sizing validation sets [83]. The data collection procedure
followed the same rules explained in section 3.2.

Using this additional dataset, we computed the MAE by considering a combination of all
the input variables, as well as using only the combination < Asize, Ucount, Agaze, UAR >, as
this was the more suitable (based on considerations in section 4.3). For the combination of all
the variables, we computed MAE(d) = 0.3753 m (σMAE(d) = 0.3119) and MAE(t) = 7.700 s
(σMAE(t) = 7.4364). Considering instead the combination < Asize, Ucount, Agaze, UAR >, our
results were MAE(d) = 0.3654 m (σMAE(d) = 0.3147) and MAE(t) = 8.0500 s (σMAE(t) =
6.1192). Since the results are in line with the ones reported in section 4.3 after the LOOCV
analysis, we can reasonably confirm the average prediction errors.

5. Discussion and Uses of the Model

In this section, we discuss the results of the field study and the subsequent statistical
analysis, and we describe how display providers and space owners can benefit from the
proposed model.

5.1. Performance Assessment

In section 4.3 we computed a mean distance error of 0.3497 meters, which is roughly 1.5
times the average length of a human foot [84]. Moreover, based on Hall’s work on proxemics
and interpersonal interaction, this error is less than the size of intimate space [85]. As
discussed in section 2.4, to the best of our knowledge prior works do not provide quantitative
estimations that are comparable to these results, but only qualitative interaction zones [56,
61, 62, 63, 64]. Consequently, to our knowledge, our model is the first providing quantitative
predictions, and therefore we cannot entirely compare our results to similar models. In
future work we may expect that new predictor models will improve the aforementioned
prediction error, but based on the above considerations, distance error we obtained here can
be considered acceptable.

As for the duration error, our results showed a mean duration error of 7.9180 seconds.
Prior work, albeit in a variety of different contexts and scenarios, showed an average in-
teraction duration with public displays of about 26 seconds [2] for which, approximately 8
seconds, represents a non-negligible proportion. Nonetheless, such circa 8-sec an error might
be useful to qualitatively predict if interactions will be “short” or “long”, with respect to
some threshold (e.g. the average duration defined in [2]). It is worth noting that up to our
knowledge, no prior works have provided predictor models that are even vaguely able to
predict interaction duration.

5.2. Impact of the Audience on Interaction

In section 3.4, we found that interaction duration increases as the number of users in-
creases. This is in line with previous work which showed that when users interact, they
encourage others to interact too in what is referred to as the honeypot effect [56]. On the
other hand, we also found that an increase in audience size results in a decrease in interaction
duration. This is also the case when people in the audience are strangers; if the users do
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not know the audience, they interact for a short time compared to when they know them.
This is a novel finding that we attribute to social embarrassment resulting from the presence
of strangers and a large audience. Social embarrassment is known to influence interaction
[56, 86]. Previous works have also reported cases where users felt more comfortable when
interacting in front of friends [57], which is inline with our results that show that users
interact longer when in front of an acquainted audience.

Another factor that was found to be influenced by the audience size and behaviour is
the interaction distance. We found that the presence of an audience results in significantly
larger distance between the user and the display. This effect is amplified in case of a large
audience; users position themselves significantly farther as the size of the audience increases.
Furthermore, the audience’s gaze towards the user has a significant effect on the interaction
distance as well. These results can be interpreted as follows: users compensate for the audi-
ence’s eye contact, which is a form of “increasing closeness”, by keeping a larger distance to
the audience. This can be explained by the compensation model of interpersonal distancing,
which states that individuals will increase the distance to others if others are too close in
terms of physical proximity, eye contact, etc. in an attempt to reach an equilibrium [87].

Although previous work showed that there is a relationship between the audience size
and how far users distance themselves from the display [8], our work is the first to find
statistically significant results to support this finding. This is mainly due to our larger
sample size; our sample covers 35 days while previous work coded only 5 days. Another
difference is that previous work found a trend showing that audience-display distance might
influence the user-display distance. Although we noticed a similar trend in our data, we
could not find any significant effects to support the existence of an influence (p > 0.05).

5.3. Data Visualisation

In order to highlight the main advantages that our predictor model can provide to re-
searchers and practitioners, we developed an interface to easily set the inputs and visualise
the outputs of our predictions based on the model2. Through this visual tool, a user can
easily set any of the input variables (see the upper part of the GUI, shown in Figure 8),
in order to see their effects on the outputs. This provides users with a straightforward
visualisation of the predictions.

This visualisation tool shows the most probable interaction areas in front of the display.
The interface (shown in Figure 8) was implemented in Python, by means of some packages
for GUI programming (Tkinter [88]), graph plotting (matplotlib [89]), and image processing
(Pillow [90]). Our tool uses a dataset file to train the predictor model on startup, and then
uses the model to generate distance heat maps based on the input values set by the user.
Such heat maps overlay an orthogonal top view of the deployment.

Along with such visualisation, the probability density functions (PDFs) generated by our
predictor model, both for user-display distance and interaction duration, are shown in the
bottom area of this visual tool. The heat maps are generated by expanding the estimated

2 The tool is available on https://usi.unipa.it/MLPredictor.zip.
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user-display distance PDF within a 2-D wedge-shaped area, corresponding to the field of
view of the Kinect installed below the display.

This means that, in order to adapt our model to different deployments and to suitably
visualise the corresponding predicted values, users would only need to change two files: the
deployment orthophoto, and the dataset used for training the model.

5.3.1. How to adapt the Visualisation Tool to different deployments

The tool can be run by means of the Python script file gui.py. When started, it loads
the two files representing the current deployment, and that can be used for customisation
in other contexts:

• a JPEG image file, representing an orthogonal top view of the deployment;

• a plain text file, formatted as CSV (i.e., comma-separated values), representing the
whole dataset.

The CSV file contains all the coded data used for training the predictor model. The
structure of this file is described in Figure 9. The training time depends on many factors,
such as the number of entries in the dataset and the available computational resources.

The tool can be used by public display researchers and practitioners to visualise the
estimated interaction distances and durations in different settings of their deployments.
Adapting the tool to other deployments is straightforward; the tool’s users only need to
convert their data to CSV format in order for them to be used to train the model, and
replace the JPEG file with a top view of the deployment. By visualising interaction distances,
display owners can better understand the behaviour of their users, and the impact of their
setup. Furthermore, by changing the variables set and values, they can easily estimate the
effect of layout changes on distance and duration of interactions.
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Figure 8: GUI of our proposed visualisation tool. Researchers and practitioners can use their data to feed
the prediction model, and thus visualise the estimated interaction distance and duration through this tool.
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Figure 9: Structure of the CSV file, along with a sample file content. Note the presence of NA (i.e., not
available) values: when Asize is equal to 0, many variables cannot be measured (namely ADD, Aside, Agaze,
Ugaze, UAR), which is in line with our choice of defining two models instead of one. Moreover, there are
some cases where the right values of some variables cannot be correctly assessed (e.g., due to low video
resolution or other uncertain situations): in such cases, NA values can still be used for training, due to the
features of the machine learning approach adopted in this work.

5.4. Use Cases

We envision three possible use cases where our prediction model can be helpful.

Use Case 1: Planning and Improving Setups. Space owners can build a model
for their layout according to our proposed method and then use it, along with the visual
tool, for decision support when planning and improving public display setups. For example,
based on the knowledge acquired from a model, a space owner who wants to achieve certain
values for interaction durations or distances, could use the visual tool to experiment with
different arrangements of seats around the display (which mainly affect the audience size),
without actually making any changes in the real deployment, until the estimated values are
satisfactory. This can be done as follows: the space owner should first collect data from
a period of observations on the actual layout to generate a dataset, and use it to feed the
model built according to our method.
The space owner can then use the visualisation tool to visualise PDF graphs and a heat map
over the top-view picture of the layout, similar to those shown in Figure 8, which would help
understanding how audience behaviour affects the interactions. Here the space owner uses
the model to understand the behaviour resulting from the current layout, in terms of ob-
served values for distance and duration of interactions.
The trained model can then be used to predict the performance of different setups before
actually implementing them. For example, if a space owner would like to test the impact
of changing the audience size, they can just set different values for the audience size vari-
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able in the visualisation tool, thus simulating a different layout (e.g. a different number of
benches around the display), and examining the resulting estimated values of interaction
distance and duration. In other words, once the model has been trained for a given actual
layout, which results in a given set of input variables and data, space owners can simulate
different possible layouts, which means different arrangements of variables and data, with-
out actually changing the layout itself. This allows for quicker and cheaper trials based on
simulations and estimations from the proposed model, instead of expensive experimentation
on different layout arrangements. This opportunity will empower the space owners to make
key decisions to optimise their deployments. According to the result, the space owner can
decide to add/remove seats around the display. Such a decision, which is based on the model
predictions, would, in turn, affect the expected interaction distance and duration as desired.

Use Case 2: Real-time Prediction and Uses in Applications. A second use case
is that the model could be used to forecast the users’ behaviour before they approach the
display. For example, assuming the input variables are collected automatically (e.g., a cam-
era estimates the size of the audience and their gaze direction – as described in section 5.5),
the system could dynamically decide to show the user different types of content (e.g., shorter
videos) depending on the expected interaction durations. The system could also dynamically
decide which input modality is better to enable – if users are likely to come close to the
display, the system could allow for input via touch and disable other at-a-distance supported
modalities (e.g., mid-air gestures).

Use Case 3: Facilitating Qualitative Comparisons across Deployments. An-
other possible use case is of particular interest for display providers. Typically, providers
manage several deployments with different setups, and usually need tools for measuring per-
formance of their deployments. Our visualisation tool would allow them to train multiple
models (one per deployment), and easily compare the outputs by visually inspecting the
differences in the heatmaps. Display providers can then use these estimations to provide
qualitative data to their clients about their users’ behaviour, allowing them to take informed
decisions about arrangements setup or displayed content as explained in the previous use
cases.

5.5. Data Collection Strategies

In the previous sections, we described the process of collecting data and how to use them
in order to train our models and make predictions. However, such a data collection process
may be non-trivial and very time consuming, in particular if the coding is done by watching
videos.

However, all the variables we coded can be collected automatically or semi-automatically.
In particular, the number of users, the audience size and the side at which they were present,
as well as the audience-display distance, can be all collected using video processing tools
specifically aimed at monitoring audience’s behaviour, such as the AudienceMonitor [91]
and/or the pedestrian tracker [92]. The same information can be collected over time to esti-
mate if the honeypot effect occurs (e.g., by looking for peaks in the number of interactions),
or if users were present during previous interactions (i.e., estimating variables HE and UA

in).
Users’ and audience’s gaze can be also captured by visual computing techniques such as
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head pose estimation [93], and appearance-based gaze estimation [94, 95]. Furthermore, the
relationship between the user(s) and the audience can be estimated by tracking the arrival
of users to the display in a way similar to how Block et al. identified if a user is a member
of a group [96]. Indeed, recognising such situation would allow to code an interaction event
where the audience and the user are acquainted. Another possibility is to detect if a group
of users interact with each other. Marin-Jimenez et al. demonstrated that this can be done
using computer vision algorithms [97]. In those cases where some of the aforementioned
variables cannot be identified with sufficient precision, they can be treated as N/A values,
which means they are ignored during the fitting process due to the EM algorithm.

5.6. Extending the Use of the Model

The proposed approach is straightforward to extend by including other types of variables.
We discuss some of the most promising ones below.

5.6.1. Time of the Day

Müller et al. observed a very diverse audience over the day [2]: school children in the
morning, business people during lunch, and people shopping in the evening. In such cases,
including the time of the day as an additional input variable would likely result in more
accurate predictions. This can be done in two ways: one approach is to build different
models for different periods of the days (e.g., one for the morning, one for the afternoon,
and another one for the evening). In this case, the additional variable can be used as we
did with the audience size Asize for selecting the right model accordingly (see Figure 7).
Alternatively, the time of the day can be added as an additional discrete variable, and the
EM algorithm can be used to estimate its probability density function as we described and
did for all the other variables.

5.6.2. Interaction Modality

Another interesting consideration is about the interaction modalities. In our work, we
considered a display that employs interaction via mid-air gestures. Hence we had the pos-
sibility of focusing on both the duration and distance. However, the same approach can
be used for estimating interaction duration only, for instance in the case of touch-based
interfaces, or eye gaze-based ones (where usually the user-display distance is required to be
constant). Moreover, multimodal interface designers can use predictions in order to under-
stand users’ behaviours, and thus design different attracting sequence for different supported
modalities, e.g., based on audience size and/or audience-display distance.

Similarly, instead of guiding users to the sweet spot [9, 10], a system that can estimate
the interaction distance could dynamically determine the sweet spot, according to the input
variables used for the predictions. For example, EyeScout adapts the position of an eye
tracker based on the position of the user of a large public display as detected by a Kinect
[17]. This can be improved by preemptively adapting the system according to the expected
position of the incoming user.
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5.6.3. Promising Variables to Explore in Future Work

Previous work suggested that variables that could impact the user’s behaviour around
displays include the screen’s size and position [78], user’s properties like gender, age and
body orientation [77], as well as the time of the day [2], the weather, and the presence of
nearby events [45]. Future work should explore incorporating these factors into the model
building. Note that this would require very long deployments to collect enough data (e.g.,
how weather over the years impact attention to displays). Additionally, prior work showed
that building layouts [32] and building architecture [51] influence user behaviour. Thus,
future work can investigate how models can be trained to predict the impact of a building’s
layout and architecture on the behaviour of passersby and users of public displays.

6. Future Work

As discussed in section 3.2, the data collection process can be very time consuming if not
automated. A direction for future work is to automatically detect the situation around the
display. Tools such as those proposed by Williamson and Williamson [92] and by Elhart et
al. [91] already track some of the relevant aspects of audience behaviour (e.g., audience size).
These tools can be extended to collect additional information such as the audience’s gaze
by, for example, using head pose estimation [93, 98] or appearance-based gaze estimation
[95]. Another tool proposed by Block et al. [96] infers the relationship between user groups,
which can also be extended to estimate the relationship between the user and the audience in
public display deployments. Collecting the aforementioned data automatically and feeding
it into the model has the potential to result in more accurate models.

In our work we focused on predicting interaction distance and duration, which neither
requires nor produces information about the number or frequency of interactions. Often,
researchers and practitioners are interested in interaction frequency since it provides quanti-
tative information about the passersby interest in the display’s content. Another interesting
direction for future work is to predict the number of expected interactions. This requires
continuous tracking of the audience to pinpoint situations that led to interactions, and would
thereby be practically feasible by using an automated tracking tool like the ones discussed
earlier.

Finally, interaction distance and duration are not the only variables that can be pre-
dicted. The model may be extended to be trained in order to predict, for instance, the
kind of gestures used (e.g. two-handed vs single-handed, or large movements vs subtle ones)
according to a particular audience configuration.

7. Conclusion

In this work, we studied the impact of audience size and behaviour, along with contextual
information, to predict duration and distance of interactions via mid-air gesture on public
displays. Through a field study, we found that the interaction duration is influenced by
the number of users, the audience size and the relationship between the users and the
audience. We also found that the interaction distance is influenced by the audience size and
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whether they gaze at the user(s). We used the collected data along with the expectation
maximisation algorithm to build two predictor models to estimate the probability density
functions of interaction duration and distance. Our results show that our models predict
the interaction duration with a mean absolute error (MAE) of about 8 seconds and the
interaction distance with a MAE of about 35 cm. We found that more accurate predictions
can be achieved by using the variables that showed to have a significant influence on user
behaviour. We also developed and presented a publicly available tool for visualising the
results of our predictor models, making them more useful for researchers and practitioners.
Our methodology can be also extended for including other contextual information (e.g.,
time of the day), and can be applied to many other situations by integrating it with many
available systems for automatic data collection.
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