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Combining a data-driven approach with seasonal forecasts data to predict 

reservoir water volume in the Mediterranean area

In the last years, prolonged droughts and water scarcity have become always more frequent, 

exacerbating the problem of the artificial reservoirs management in the Mediterranean area. 

This study proposes a methodology which combines a Nonlinear AutoRegressive network with 

eXogenous input (NARX) data-driven model with Seasonal Forecasts (SFs) data, with the aim 

to predict the water volume stored in reservoirs at a mid-term scale. The methodology is 

applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs 

produced at the European Centre for Medium-Range Weather Forecasting are used to force 

the NARX models. The results show that the NARXs have the capability to reproduce the 

volumes stored in the considered reservoirs for the investigated period up to four months in 

advance. The performance of the modeling system strictly depends on: (i) the goodness of 

climate forecasts and (ii) the strength of the autocorrelation for the water volumes.

Keywords: NARX; Mediterranean area; data driven; seasonal forecasts; bias correction; water 

management in reservoirs.
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1 1 Introduction

2 Management of water resources is still a critical issue in Mediterranean areas (Zribi et al. 2020). 

3 Droughts and water shortage events frequently put a strain on the water supply systems which 

4 serve industrial, civil, and agricultural uses. Jointly, the ever growing water demand (Sanchez et 

5 al. 2020) contrasts with an increasing trend of extreme events, such as droughts, heat waves, etc., 

6 due to the alteration in climate (Fowler et al. 2021). In this context, it is important to improve the 

7 effectiveness and efficiency of the reservoir operation (Ahmad et al. 2014).

8 A sustainable management of the water supply systems by the water utilities depends on 

9 two main capabilities: (i) predicting the future water availability and (ii) adapting promptly and 

10 efficiently to the modifications in water resources. 

11 In the case of the Mediterranean area, one of the main multi-purpose water resources is 

12 provided by artificial reservoirs. Predicting well in advance future reservoir volume is one of the 

13 critical engineering problems to guarantee an efficient water supply planning for water utilities 

14 (Awchi 2014, Hassan et al. 2015). Common methods to do this rely on statistical approaches 

15 based on condition of stationarity of the climate variables involved. Recently, methodologies 

16 based on machine learning (ML) approaches, as optimization algorithms in decision making 

17 processes, are more commonly used (Ahmad et al. 2014, El-Shafie et al. 2007, Niu and Feng 

18 2021, Rozos 2019, Yu et al. 2017). More specifically, Artificial Neural Networks (ANNs) have 

19 been used to derive operational strategies (Chaves and Chang 2008) for water supply and to 

20 identify the optimal sequence of reservoirs water release. Non-linear models like ANNs are 

21 capable to detect complex relationships between input and output data series, which are typical 

22 of the complex and dynamic nature of hydrological processes. More specifically, to deal with 

23 time series, dynamic or recurrent neural networks (RNNs) are preferred to other models, because 

24 all layers have feedback connections, preserve and remember the short- and long-past 

25 information, i.e., time delays, leading to the perception of temporal pattern of hydrological time 
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26 series (El-Shafie et al. 2012). Among these, Nonlinear AutoRegressive networks with 

27 eXogenous input (NARXs) are widely used for time series forecasting, since their capability in 

28 learning long-time dependences among time series, reach faster convergence, and a better ability 

29 to generalize (Hadiyan et al. 2020) as compared to other recurrent neural networks. For this 

30 reason, NARXs are widely preferred in modeling inflow and outflow reservoir forecasting. In 

31 such a context, Yang et al. (2019) provide a comparison among different RNNs, including 

32 NARX, that demonstrates the effectiveness of RNNs in reservoir operations. In these studies, 

33 precipitation and temperature are usually the two main climate variables involved in the 

34 assessment of the reservoir forecast volume.

35 On the other end, alterations in climate have further stressed the problem of water 

36 scarcity in Mediterranean area, more frequently hit by prolonged droughts and short-duration 

37 extreme precipitation (Treppiedi et al. 2021, Forestieri et al. 2018). Indeed, increase in intensity 

38 and frequency of extreme precipitation events, as well as prolonged droughts and heat waves, 

39 has been recognized by different works (Arnone et al. 2020a, WWA 2017, Bonaccorso et al. 

40 2015, Caloiero et al. 2018), thus making even more complex the management of water resources. 

41 In a context of probabilistic assessment of the possible climate anomalies, the use of the seasonal 

42 forecasts (SFs) data may offer a powerful tool for guiding a strategic planning of the resources 

43 across several climate-sensitive sectors (De Felice et al. 2015, Essenfelder et al. 2020, Viel et al. 

44 2016).

45 More in details, SFs are predictions of climate variables covering up to a 6-month period 

46 ahead from initial conditions. As the weather forecasts, they are produced with numerical models 

47 of the climate system; conversely, they predict the anomalies with respect to the average, by 

48 simulating the processes of both the slow and the fast components of the climate system. Despite 

49 the not negligible uncertainty associated with such predictions, it has been demonstrated that 

50 they can provide important indications in the fields of drought-risk assessment and in the mid-

51 term reservoir management (Arnone et al. 2020b, Buontempo et al. 2018, Crochemore et al. 
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52 2017, Viel et al. 2016). Buontempo et al. (2018) provide an overview on potential users of 

53 seasonal data, by promoting the use of climate information for decision support in the context of 

54 the EUPORIAS projects. Arnal et al. (2018) exploit the advantage of SFs in streamflow 

55 forecasting, within the European Flood Awareness System (EFAS). Arnone et al. (2020b) 

56 developed an early warning system tested on two Mediterranean islands to assess the probability 

57 of drought occurrence in the future based on the seasonal forecast of precipitation data. A further 

58 example is given by Peñuela et al. (2020), who evaluate the potential use of a real-time 

59 optimization system informed by seasonal forecasts in a water supply system in the UK. Despite 

60 all these works, it is worth to highlight, however, that the use of seasonal forecasts in 

61 hydrological applications is still rare and yet non-operational.

62 In this study, the potentiality of both NARX model and SF data are exploited to develop a 

63 system able to predict the reservoirs volume and water level at the mid-term scale, using as 

64 inputs to the NARX the monthly precipitation and monthly air temperature provided by the SF 

65 dataset. The case study is carried out for four Sicilian reservoirs, i.e., Piana degli Albanesi, 

66 Poma, Rosamarina, and Scanzano, which are strategic for the water supply of the Metropolitan 

67 City of Palermo. At the turn of 2017 and 2018, these reservoirs experienced very low water 

68 levels due to the records in extreme heat wave and precipitation anomaly that have hit the South 

69 Italy in 2016 and 2017 (ISPRA 2016, SIAS 2016, WWA 2017). The problems experienced by 

70 the water supply system of the city of Palermo led the Italian central government to declare the 

71 state of emergency. 

72 The aim of this research is then to verify how well and how long in advance is possible to 

73 provide a reliable prediction of the reservoirs’ volumes, given the forecasts of temperature and 

74 precipitation climate variables, thus providing a valuable tool to the interested water utilities 

75 which manage the integrated water service of the Metropolitan City of Palermo.
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76 2 Methods

77 2.1 Nonlinear AutoRegressive network with eXogenous inputs Architecture - 

78 NARX

79 A NARX is a type of ANN based on the linear autoregressive model commonly adopted for 

80 input-output modeling of nonlinear systems. According to this model, the value of the dependent 

81 variable at the time , , is calculated by means of a linear regression as follows: 𝑡 𝑦(𝑡)

82

83 (1)𝑦(𝑡) = 𝑓(𝑦(𝑡 ― 1), 𝑦(𝑡 ― 2), …,𝑦(𝑡 ― 𝑚),𝑥(𝑡 ― 1),𝑥(𝑡 ― 2),…,𝑥(𝑡 ― 𝑛))

84

85 where  and  are the previous values of the output and the previous values of an 𝑦(𝑡 ― 𝑖) 𝑥(𝑡 ― 𝑖)

86 independent (exogenous) input, respectively. The indices  and  are the so-called feedback and 𝑚 𝑛

87 input delays, respectively, which define the input data that are used to predict output of current 

88 time series. If the input delay is , it implies that the input value at  time steps before is used to 𝑖 𝑖

89 predict the current output and the same applies for the feedback delay. This implies that an input 

90 delay of 0 is allowable but a feedback delay of 0 is not. Because NARX performances depend also 

91 on the values of input and feedback delays, the correct assessment of  and  is extremely 𝑛 𝑚

92 important. In this research, the variable  is represented by the reservoir volume, which depends 𝑦(𝑡)

93 on the climate variables that are involved in the water balance of the reservoir, i.e., precipitation, 

94 temperature (that controls the evapotranspiration), and controlled outflows, all represented by the 

95 input variable . The input delay, which defines the length of the  variable, is 𝑥(𝑡) 𝑥(𝑡 ― 𝑖)

96 representative of the time within which the considered input variables affect the volume at time t. 

97 As well as ANN, a NARX consists of some layers, namely an input, an output, and one 

98 or more hidden layers, fully connected to each other. Neurons within a layer are connected by 

99 weighted links to every neuron of the successive layer; when the neurons in the hidden layers 

100 receive the input signals, convert them through an activation (or transfer) function, and then 
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101 transfer the information to the next layer. The learning ability of a NARX mainly depends on its 

102 architecture, the training function, and the number of neurons in the hidden layer (Arnone et al. 

103 2014). 

104 Figure 1 shows a generic architecture of a NARX, where it is possible to observe the 

105 input, hidden, and output layers. Generally, in a neural network, the input  is weighted with 𝑥(𝑡)

106 an appropriate weight (  within the square); the sum of the weighted inputs and the bias (  𝑤 𝑏

107 within the square) forms the input to a transfer function (⨍ within the box), which produces the 

108 neuron output as . As compared to a classical ANN, in a NARX comes into play also 𝑓(𝑤𝑥 + 𝑏)

109 a regressive component by means of the input (  within the circle) and feedback (  within 1:𝑛 1:𝑚

110 the circle) delays, in which the estimated output can be fed back within the NARX and 

111 connected to the appropriate input to estimate the next output value.

112 The creation of a NARX generally consists of two phases. Since the true output is 

113 available, in the first phase, a series-parallel architecture, also called open loop network, is used 

114 to train the NARX; in this phase the true output is used instead of feeding back the estimated 

115 output. In the second phase, the NARX is converted from the series-parallel configuration to a 

116 parallel configuration, also called closed loop network (see Figure 1 for an example), which is 

117 useful for multi-step-ahead prediction. In this phase, each estimated output is fed back within the 

118 NARX and connected to the appropriate input to estimate the next output value. Generally, all 

119 the training is done within an open loop, including the validation and testing steps, and only 

120 when the NARX has been trained it is transformed into a closed loop for multistep-ahead 

121 prediction. 

122 2.2 Assessment of model performance

123 The performances of the NARX models here developed are assessed by means of the Nash–

124 Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe 1970) and the Root Mean Square Error 

125 (RMSE) coefficient calculated for the observed and simulated volumes.
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126 2.3 Seasonal Forecast - SF

127 Seasonal forecasts (SFs) are gridded data provided by climate numerical models (Hoskins 2013), 

128 which allow to obtain ensembles of forecasts of climate variables covering a time window up to 

129 6-months ahead in time starting from an initial date and initial conditions.

130 The slowly varying components of the climate system provide the sources of 

131 predictability at seasonal time scales; these components can act as boundary forcings for the 

132 troposphere and subsequently affect local weather and climate after some time lag (Pyrina et al. 

133 2021). Starting from slightly different initial states, several predictions are performed by the 

134 numerical model and their results are the members of an ensemble of predictions. The 

135 uncertainty in the forecasts is implied in the ensemble, whose members might differ significantly 

136 in the future ahead, due to the different initialization. 

137 A peculiarity of the seasonal climate data is the lead time, which is the time distance, in 

138 months, between the release of the forecast and the occurrence of the predicted phenomena. It 

139 ranges between 0 and 6 months and will be indicated hereinafter as LTi, where i is the target 

140 month (i.e., the i-th month after the release); LT0 will indicate the month of the release (present 

141 time).

142 Datasets are produced and released by different climate centers. In this study, the last 

143 generation of SF system, the System 5 (SEAS5), released by the European Centre for Medium-

144 Range Weather Forecasts (ECMWF) is used, which can be retrieved through the data access 

145 system of Copernicus Climate Data Store (CDS). The dataset has a global coverage, with a 

146 spatial resolution of 1°x1°, and includes forecasts in real-time (hereinafter SRT) and hindcasts 

147 (hereinafter SH); SRTs start from 2017, while SH are initialized in the period 1986-2016. SRTs 

148 consist of 51-member ensembles, generated at different atmospheric initial conditions, whereas 

149 hindcasts have a 25-member ensemble. SH data are useful to calibrate and correct the dataset, as 

150 in the case of the bias correction discussed in section 5.2.1. An accurate description of the dataset 

151 can be read in Johnson et al. (2019).
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152 Skill in the seasonal predictions depends on the type of climate variables, location, and 

153 season. In particular, temperature is one of the climate variable most successfully reproduced 

154 (Clark et al. 2017, Doblas-Reyes et al. 2013).

155 2.4 Bias correction methods

156 SFs are typically affected by systematic and random model errors. This poses a problem for 

157 using these data as input for hydrological impact studies. One possible solution is to apply a bias 

158 correction to the SFs by means of observed data. Several bias correction methods have already 

159 been applied in weather forecasting under the name of model output statistics (MOS) about five 

160 decades ago (Glahn and Lowry 1972, Klein and Glahn 1974). 

161 Typical correction approaches aim at correcting the systematic error (bias) in SF 

162 variables by applying a transformation algorithm and are therefore named bias correction 

163 methods. The concept is based on the identification of possible biases between observed and 

164 simulated climate variables. A common assumption of most bias correction methods is 

165 stationarity, or time invariance, of the model errors. This implies that the empirical relationships 

166 in the correction algorithm and its parametrization for current climate conditions do not change 

167 over time and are also valid for future conditions. This assumption is, however, likely not met 

168 under changing climate conditions (Ehret et al. 2012, Maraun 2012, Maraun et al. 2010, 

169 Vannitsem and Nicolis 2008). 

170 More in details, transformations attempt to find a function  that maps a modeled ℎ

171 variable, , such that its new distribution equals the distribution of the observed variable, . 𝑃𝑚 𝑃𝑜

172 Following Piani et al. (2010), this transformation can in general be formulated as .𝑃𝑜 = ℎ(𝑃𝑚)

173 The quantile–quantile relation of observed and modeled precipitation (or temperature) 

174 can be modeled using parametric or non-parametric transformations. In the first case, theoretical 

175 distributions are used to achieve a statistical transformation, while in the second case, the 

176 empirical cumulative distribution function of observed and modeled variables are usually used 
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177 instead of assuming parametric distributions. Here a parametric transformation and three 

178 different non-parametric transformations are used for the bias correction of the SF data. 

179 Excluding the parametric transformation, which performed worse than the non-parametric 

180 methods, for both the precipitation and the air temperature, there is not a method that performed 

181 significantly better than another one. Therefore, for the sake of brevity, only the analyses 

182 conducted by using a non-parametric method for the bias correction of the SF dataset are 

183 reported here. The method is a quantile mapping method that fits a smoothing spline to the 

184 quantile-quantile plot of observed and modeled time series (hereinafter referred to as SSPLIN); 

185 the method then uses the spline function to adjust the distribution of the modeled data to match 

186 the distribution of the observations (Kouhestani et al. 2016). For more information about the 

187 method the reader can refer to Gudmundsson et al. (2012).

188 All the methods have been implemented in the R language by means of the package 

189 qmap, which is available on the Comprehensive R Archive Network (http://www.cran.r-

190 project.org/).

191 3 Study Area and Datasets

192 3.1 Case studies: the Piana degli Albanesi, Poma, Rosamarina, and Scanzano 

193 reservoirs

194 The Piana degli Albanesi, Poma, Rosamarina, and Scanzano reservoirs are strategic for the water 

195 supply to about one million citizens of 23 municipalities of the Metropolitan City of Palermo 

196 (Sicily, Italy).

197 The Piana degli Albanesi reservoir originates from a dam that interrupts the natural flow 

198 of the Belice Destro river. It has a total volume of 32.80 Mm3 and is mainly used for energy 

199 production but also for irrigation and water supply of the city of Palermo. The Poma reservoir 

200 has been created by means of the barrage of the Jato river and has a total volume of 72.50 Mm3. 

201 It is mainly used for irrigation (about 10 Mm3/year) and to supply water to the city of Palermo 
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202 (about 25 Mm3/year). The Rosamarina reservoir, with a total volume of 101.20 Mm3, is the 

203 biggest of the four reservoirs considered here. The reservoir has been realized interrupting the 

204 San Leonardo river with the Rosamarina dam and supplies about 30 Mm3/year of water to the 

205 city of Palermo. The Scanzano reservoir has been created by interrupting the Scanzano and 

206 Rossella rivers with a couple of dams, namely the Scanzano and Rossella dams, and has a total 

207 volume of 18 Mm3. 

208 All the previous information has been provided by the integrated water service company 

209 AMAP S.p.A., which manages the integrated water service in 35 municipalities of the 

210 Metropolitan City of Palermo, the Autorità di Bacino della Regione Sicilia (Basin Authority of 

211 the Sicilian Region; hereinafter referred to as AdB), which manages the Poma, Rosamarina, 

212 Scanzano reservoirs, and the company ENEL S.p.A., which manages the Piana degli Albanesi 

213 reservoir for energy production purposes. 

214 All the reservoirs are in between the parallels 37°N and 38°N, very close to the 38°N 

215 parallel, and the meridians 13°E and 14°E (Figure 2), within the area here defined as cell of 

216 interest (COI) #6 with reference to the SF grid (see inset at the top right in Figure 2). Blue 

217 contours in the insets at the bottom of the Figure 2 show the extension of the reservoirs when the 

218 maximum volume is reached; red contours, on the contrary, indicate the extension reached by the 

219 reservoirs in February 2018, after the drought occurred in 2016 and 2017.

220 3.2 Climate dataset: the AdB and SF datasets

221 3.2.1 Reference network: AdB dataset

222 Precipitation, temperature, and volume data for assessing the goodness of the SF dataset and 

223 calibrating the NARXs for the four examined reservoirs have been collected from the dataset of 

224 the AdB. The meteorological gauges of the network are reported in Figure 2 as blue points.

225 The AdB network includes 195 stations equipped with a tipping-bucket rain gauge and a 

226 thermometer. The stations are rather homogeneously distributed over the entire island with an 
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227 average density equal to about 130 km2/gauge. Data are retrieved with a time resolutions of 10 or 

228 30 min. For each reservoir, the AdB has provided the monthly precipitation and the mean 

229 monthly air temperature spatially averaged over the studied area. For the sake of simplicity, 

230 previous variables will be hereinafter referred to as monthly precipitation and monthly 

231 temperature. In addition, the AdB has provided the monthly volume stored within each reservoir 

232 as well, which represents the reservoir volume to be estimated by means of the NARX. Monthly 

233 precipitation and monthly temperature data cover a period of 32 years, from January 1988 

234 through December 2020, while the stored volumes range between April 1995 and December 

235 2020 (i.e., about 25 years) for the reservoirs of Piana degli Albanesi, Poma, and Scanzano and 

236 between February 2002 and December 2020 (i.e., about 18 years) for the Rosamarina reservoir. 

237 Water withdrawals to supply water system should be included in the modeling system as 

238 input data as well; however, this type of data is present in the AdB dataset only for a small 

239 period. Nevertheless, this limitation is overcome within the NARX structure itself that allows to 

240 take indirectly into account the water withdrawals.

241 Figure 3 shows the time series of normalized monthly volumes stored within the four 

242 reservoirs; in the gray shaded box, it is possible to notice the effects of the drought that affected 

243 Sicily in between 2017 and 2018 on the reservoirs’ volumes. In addition, data in Figure 3 show 

244 two more critical droughts events occurred in late 2002 and 2009.

245 3.2.2 Seasonal Forecast dataset

246 The SF dataset used here consists of the monthly total precipitation and monthly average air 

247 temperature retrieved for the twelve cells that cover the entire Sicily (see inset at the top right in 

248 Figure 2). Specifically, among the twelve cells, the COI #6 (Figure 2) is the one that covers the 

249 analyzed reservoirs and is characterized by a more homogenous climate system given that it 

250 overlaps mostly the terrain system. 
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251 Figure 4 reports an example of ensemble of SF for the selected COI #6 released in 

252 January and June 2019 and predicting the six months ahead in time for both precipitation and air 

253 temperature. A comparison with the observed series from the AdB dataset is reported as well. As 

254 it is possible to observe from the boxplots, the precipitation (Figure 4a and b) shows a higher 

255 variability as compared to the air temperature (Figure 4c and d). From the comparison with 

256 observations, it is possible to notice that the capability of the SFs to predict the observed data 

257 depends on the case study. Additionally, referring to the case studies, the SFs are capable to 

258 predict better the observed data for the summer (i.e., June, July, and August), since the Sicilian 

259 climate is usually characterized by summers almost rainless and with high air temperatures.

260 4 Setup of NARX model 

261 The phases involved in the development of a NARX mainly consist in the definition of the 

262 network design, in terms of variables, structure and algorithms, and the network training.

263 Using the observed data provided by the AdB, the NARX has been trained to reproduce 

264 the historical responses of the four reservoirs in terms of stored volumes. The use of the NARX 

265 model along with the SF data allows for a probabilistic forecast of reservoir volumes in the mid-

266 period. The forecasted volumes can be verified by means of a comparison with the historical data 

267 of the volumes. The variables are assessed at the monthly scale, which defines the time step of 

268 the NARX.

269 The NARX models have been developed within the neural networks toolbox included in 

270 the software Matlab 2021a.

271 4.1 Design of NARX architecture

272 Figure 5 shows a flowchart of all the phases that have been followed to implement the NARX 

273 models, one for each reservoir.
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274 As previously mentioned, the involved variables are the monthly volume stored within 

275 each reservoir as target variable, , and the monthly precipitation and monthly temperature as 𝑦(𝑡)

276 exogenous input variables, . The use of an autoregressive model allows to implicitly 𝑥(𝑡)

277 consider the water withdrawals provided to the water supply system, which affect the reservoir 

278 water balance and, in turn, the volume at time t; by considering the previous values of water 

279 volume as input, the NARX is capable to learn during the training for any variation in the stored 

280 volume that occurs over the time of the feedback delay. Clearly, the procedure is valid under the 

281 assumption of no significant changes in water withdrawals, i.e., under the assumption of 

282 Business-as-Usual (BaU) (Fei and Shuang-Qing 2012), i.e., there are no significant changes in 

283 people’s attitudes and priorities, agriculture, and energy industry scenarios, and thus in water 

284 demand and supply (EIA 2010). 

285 The collected data have been first controlled to identify possible missing data, duplicates, 

286 outliers, and errors such as negative values in precipitation and/or volumes. The input delay has 

287 been defined by means of an input/target cross-correlation analysis between monthly 

288 precipitation and monthly stored volumes by means of the Pearson correlation (Pearson 1895). 

289 Specifically, it has been defined as the time-lag value associated to the highest cross-correlation 

290 value. Since the input delay can be strictly influenced by several factors, such as the soil 

291 characteristics of the basin and its specific hydrological response, it is site dependent. For the 

292 feedback delay, instead, a target-target auto-correlation analysis has been applied to the monthly 

293 stored volumes. In this case, it has been used the auto-correlogram test. The characteristics of the 

294 NARX models for the four analyzed reservoirs are summarized in Table 1.

295 The NARX architecture uses a tan-sigmoid transfer function in between the input and 

296 hidden layers and a linear transfer function in between the hidden and output layers.

297 The neurons within the hidden layer have been set by choosing the number of neurons 

298 that returns the best calibration of the NARX models in terms of NSE and RMSE (Table 1). For 

299 further details, the reader is referred to section 4.2.
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300 As it is possible to observe from the values in Table 1, for all the NARX models, the 

301 correlation analysis has returned a feedback delay of one month, which means that the monthly 

302 stored volume strongly depends on the value that was stored on the previous month; the input 

303 delay is instead equal to five months for the Rosamarina reservoir and to four months for the 

304 other three cases. 

305 4.2 NARX calibration

306 The period of calibration ranges between February 2002 and December 2020 for the Rosamarina 

307 reservoir and between April 1995 and December 2020 for the other three reservoirs. For each 

308 reservoir, the calibration has made possible to identify the best NARX architecture to be used 

309 during the forecast phase with the seasonal forecasts. Each calibration is made of a different 

310 combination of neurons in the hidden layer (from 1 through 50 neurons for a total of 50 

311 combinations) and training function (2 combinations) for a total of 100 combinations.

312 For each reservoir, during the calibration phase, the original dataset has been separated 

313 into three subsets: the 70%, 15%, and 15% of the original dataset have been used for the training, 

314 validation, and test of the NARX, respectively. Two different training functions, namely the 

315 Bayesian Regularization backpropagation and the Levenberg-Marquardt backpropagation, have 

316 been considered. Moreover, to guarantee the replicability of the results, for each calibration 

317 round, the control random number generator has been initialized always with the same seed.

318 Figure 6 reports an example of the performances returned by the NARX model during a 

319 calibration round for the Piana degli Albanesi reservoir and using the Levenberg-Marquardt 

320 backpropagation. Figures 6a through 6d show the results of calibration in terms of regression 

321 analysis during the training, validation, test, and the entire calibration, respectively; the y-axis 

322 shows the simulated volumes, the x-axis reports the targets (i.e., observed volumes), the dotted 

323 line (Y = T) is the perfect agreement line, and the blue, green, red, and black solid lines are the 

324 fit lines obtained during the training (Figure 6a), validation (Figure 6b), test (Figure 6c), and the 

Page 16 of 49

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

16

325 entire calibration (Figure 6d), respectively. As it is possible to notice, in all the phases, also the 

326 Pearson’s correlation coefficient, R, is always close to 1, thus indicating a strong positive 

327 relationship and a good performance of the NARX during all the calibration phases and in the 

328 overall. 

329 For each reservoir, the best performing NARX has been obtained by calibrating the 

330 number of neurons in the hidden layer. Table 1 shows the calibrated hidden neurons 

331 corresponding to the best performing NARX model for each reservoir, along with the computed 

332 model performance metrics (i.e., NSE and RMSE). In all the case studies, the best calibration has 

333 been obtained considering the Bayesian Regularization backpropagation training function. 

334 Results obtained considering the calibrated NARXs, for each reservoir, are reported in 

335 Figure 6e, where it is possible to notice how the calibrated models can efficiently predict 

336 volumes stored within each reservoir.

337 5 Results

338 For each reservoir, the best calibrated NARX model has been forced with the SF data to 

339 estimate, starting from an initial month, the stored volumes for the six months ahead (i.e., 

340 forecasted volumes). Specifically, once chosen the release month of the SF, it is used to run the 

341 simulations and to assess the target variable up to six months after the release month, by 

342 considering the six lead times of the SF release (i.e., from LT0 to LT6). As an example, this 

343 means that the water volume stored in July can be predicted throughout the LT6 of the SF 

344 released in January, or the LT5 of the SF released in the February, or LT4 of the SF released in the 

345 March, and so on until June, with LT1.

346 The performances of the forecast models have been assessed in two different 

347 configurations: (i) by using the SF dataset as it is and (ii) by applying to the SF data the bias 

348 correction method described in section 2.4. For each simulation, the initial conditions are defined 
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349 by forcing the NARX with the observed monthly data up to the month at which the forecast 

350 starts.

351 5.1 Forecast modeling with original SFs

352 Simulations with the original uncorrected SF data have been run for the entire period ranging 

353 from January 2017 through April 2020.

354 Since the performances of the NARX models depend on the reliability of the SFs, the 

355 capability of the original SFs to reproduce the observed data is here qualitatively analyzed. As 

356 previously mentioned, Figure 4 shows the comparison between the SFs (with lead times from 

357 LT0 to LT6) and the observed monthly precipitation (Figure 4a and b) and monthly temperature 

358 (Figure 4c and d) for the January 2019 (Figure 4a and c) and June 2019 (Figure 4b and d) for all 

359 the study cases. The plots show that the SFs are capable to better reproduce both the values of 

360 precipitation and temperature for the summer months, also in the case in which these are the 

361 results of a projection of five or six months forward in time (e.g., forecasts at LT5 and LT6 in 

362 Figure 4a and c, which represent the forecasts for months of June and July 2019). In this case, 

363 indeed, the variability of the ensemble members is very tiny and the climate models correctly 

364 forecast the low precipitations and high air temperature which are typical of the summer season 

365 in Sicily. Additionally, it can be observed that the uncertainty of the ensemble increases either 

366 with the lead time or over the rainy months, as previously discussed.

367 Figure 7 shows the results of the NARX model for the 2019 and for the Rosamarina 

368 reservoir, while similar plots for the remaining reservoirs are shown in Figure SM1 through SM3 

369 in the supplementary material. Each subplot shows, for the period that ranges from the indicated 

370 i-th month to the next six months, the observed monthly volume (blue solid line), the monthly 

371 volume simulated forcing the NARX with the observed input data provided by the AdB (red 

372 dashed line), and the ensemble of monthly volumes (boxplots) obtained forcing the NARX with 

373 the SF data of the i-th release month and all its lead times (i.e., from LT0 to LT6). The ensemble 

Page 18 of 49

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

18

374 of the 51 models of SF data is represented by means of boxplots where the red plus markers 

375 indicate outliers, and the red horizontal lines and the blue plus markers represent the median and 

376 the mean of the volumes forecasted with the trained NARX and the SF data, respectively. 

377 Simulated volumes returned by the NARX forced with observed data (red dashed lines) 

378 reproduce accurately the observed stored volumes (blue solid lines) over the entire shown period; 

379 only two significant exceptions can be noticed in October 2019 and May 2020, when the stored 

380 volumes are slightly underestimated, with an error of about 5 Mm3 in both the cases. The 

381 volumes forecasted by the NARX combined with the SF data (boxplots) are characterized by the 

382 variability inherited from the input data ensembles. It can be observed that the interquartile range 

383 varies across both (i) the lead times, from LT0 to LT6, starting from the release month, and (ii) the 

384 i-th month of the year, given a fixed lead time. More in details, the variability is significant (up 

385 to ~70 Mm3) when LT > LT3 and the release month falls in the autumn and winter periods, i.e., 

386 from September to February. When the release month of the forecast falls in between March and 

387 August, the interquartile range is less variable across the LT (see March and April) and tinier (see 

388 May through July) with few outliers. This means that forecasts released in summer are affected 

389 by a less uncertainty. The overall trend of the forecasted volumes is synthesized by means of the 

390 ensemble mean (blue plus markers) or median (red horizontal lines) values. The most significant 

391 differences between observed and simulated stored volumes can be observed in February and 

392 March for LT ≥ LT3, October and December for LT ≥ LT5 and November for LT = LT6.

393 To assess the overall performances of the NARXs in forecasting the dynamic of stored 

394 volumes as a function of the LT value over the entire period of simulations, Figure 8 shows an 

395 overview of the RMSE of SFs for the precipitation (Figure 8a) and air temperature (Figure 8b), 

396 and NARX model output (Figure 8c) for all the possible combinations of starting months of 

397 simulation and LTs for the Rosamarina reservoir. Specifically, the x axes report the release 

398 month of the SF, the y axes indicate the LTs values, while each cell denotes the relative 

399 performance using a graduated color scale.
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400 As it is possible to observe from both the overviews of precipitation (Figure 8a) and air 

401 temperature (Figure 8b), regardless of the considered LT, the SFs are capable to better reproduce 

402 the observed values for the spring/summer as compared to the remaining months of the year. 

403 This means that, during the winter period (from November to February), SFs of precipitation and 

404 air temperature realize reliable predictions of summer values up to five or six months in advance. 

405 Looking at the overview for the simulated volumes (Figure 8c), instead, it is possible to 

406 notice that for LT0 the NARX is capable to successfully reproduce the stored volumes dynamics. 

407 As the LT increases, the NARX performs worse, especially during the autumn/winter months. 

408 For such months the NARX reproduces the reliable stored volumes only for lower LTs (i.e., LT < 

409 LT3 from September to November; LT < LT2 from December to April). The upper-left and upper-

410 right corners correspond with the worst performances of the model. On the contrary, during the 

411 summer, the NARX is capable to reproduce well the volumes within the reservoir up to five 

412 months in advance. This different behavior, as compared to the overviews of the SF 

413 performances, is mainly due to the autoregressive component of the model, which exploits the 

414 observed volumes at the previous month, thus making possible to always have a good prediction 

415 of the volumes at the lower LTs. Additionally, during the spring/summer time the good 

416 performances in forecasting the volumes extend to the higher LTs as well, since the low values of 

417 RMSE at the lower LTs causes less propagation of error in the following months. 

418 From the analyses of simulations carried out for the other reservoirs (shown in Figures 

419 SM4 through SM6 in the supplementary material), it is possible to affirm that the NARX model 

420 performs better in some case studies than in others, although the models are forced always with 

421 the same SF data. This can mainly depend on the fact that the SF data, although all the reservoirs 

422 lie within the same SF cell, can be more representative of the real climatic conditions of some 

423 reservoirs than others, as it is possible to notice from the example reported in Figure 4, as well.
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424 5.2 Forecast modeling with bias corrected SFs

425 5.2.1 Bias correction of the SF dataset

426 The SF dataset of monthly precipitation and air temperature has been bias corrected through the 

427 SSPLIN method presented in section 2.4. Specifically, it has been used a quantile step equal to 

428 0.01; with reference to the precipitation, the smoothing spline is only fit to the fraction of the 

429 CDF corresponding to observed wet days ( ) and modeled values below this are set to zero. 𝑃𝑜 > 0

430 The values of monthly precipitation and monthly air temperature of each model of the SF 

431 ensemble (i.e., 25 models for the SH and 51 for the SRT) are corrected by using the AdB dataset 

432 as reference and then the mean of each ensemble is ultimately considered to force the NARX 

433 model. The correction covers the period 1995-2020, by using the SH from 1995 to 2016 and the 

434 SRT from January 2017 to April 2020. 

435 For all the case studies, Figure 9 shows the quantile-quantile plots (q-q plots hereinafter) 

436 for the monthly precipitation (Figure 9a) and monthly temperature (Figure 9b) after the 

437 application of the SSPLIN. The gray circles in Figure 9 indicate the q-q plot of observed (i.e., 

438 AdB) and modeled (i.e., SH and SRT) data for a quantile step equal to 0.01. 

439 Looking at the q-q plots of the uncorrected SF data (gray circles), it is possible to notice 

440 that the monthly precipitation (Figure 9a) is always underestimated for all the case studies, 

441 showing the inability of the models in correctly reproducing the precipitation, especially for the 

442 higher values. On the contrary, monthly temperature (Figure 9b) is always overestimated by the 

443 SF data, especially at the lower temperatures, for all the reservoirs. Only for the higher 

444 temperatures (higher than about 25 °C) of the case study of the Poma, the SF data slightly 

445 underestimate the observed ones. Very likely, this combination between underestimation of 

446 precipitation and overestimation of air temperature is one of the reasons of the underestimation 

447 of volumes stored within the reservoirs often observed in the previous analyzed cases (see 

448 Figures 7).
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449 After the application of the SSPLIN method, the q-q plot (red lines) for both the monthly 

450 precipitation and the monthly temperature approaches the perfect agreement line (Figure 9), thus 

451 indicating a better description of observed data by the SF dataset. Moreover, for all the four 

452 reservoirs, the q-q plots seem to show a better agreement for the monthly temperature as 

453 compared with the monthly precipitation, as demonstrated by other studies (Clark et al. 2017, 

454 Doblas-Reyes et al. 2013).

455 5.2.2 Forecasts of NARX with bias corrected SFs

456 The results of the NARX model forced with the bias corrected SFs for the Rosamarina reservoir 

457 are shown in the plots reported in Figures 7, where black dashed lines refer to the NARX 

458 forecasts of stored volumes obtained after correcting the SF data. One can observe an 

459 improvement of the reproduction of the volumes stored within the reservoirs. In most cases, the 

460 black dashed lines approach and follow the line of the observed volumes also when the results 

461 obtained with the uncorrected SF data were not that good. Only for the months of March and 

462 April 2019, obtained as LT4 and LT5 of the release of November 2019 and LT3 and LT4 of the 

463 release of December 2019, respectively, the results worsen as compared to those obtained with 

464 uncorrected SFs. The results depend on the degree of the LT considered as well, showing an 

465 agreement between the simulated and observed volumes as stronger as lower is the LT 

466 considered.

467 For the sake of brevity, Figure 10 provides a resume of the results obtained for the 

468 Rosamarina reservoir when the NARX is forced with the bias corrected data. Starting from the 

469 top, each subplot shows the comparison between the observed volumes (tick blue solid line) and 

470 the simulated volumes (red dotted line with x marker). 

471 As it is possible to observe, the model catches the behavior of the observed volumes, 

472 especially for the lower LTs. Even during the drought period in between December 2017 and 

473 April 2018 (gray boxes in Figures 3 and 10), the model performs well, making a reliable forecast 
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474 of the stored volumes in the reservoir for the medium LTs (e.g., LT3 - LT4). For complete 

475 information, the remaining case studies, which are shown in Figures SM7 through SM9 in the 

476 supplementary material, for the same drought period, performed less well than the Rosamarina 

477 reservoir, probably because of a faster growth in the registered volumes after the drought period 

478 that is not correctly caught by the autoregressive component of the model. Nonetheless, all the 

479 models are still capable to reproduce the water scarcity period due to the drought.

480 Looking at the performances of the NARXs over the entire simulated period, the bias 

481 correction of the data makes it possible to obtain higher performances especially for the higher 

482 LTs (e.g., LT > LT3). In this regard, Figure 11 shows the NSE values for different LTs when the 

483 NARXs are forced with the mean values of SFs for both the uncorrected and bias corrected data. 

484 For LT < LT3, except for the Scanzano reservoir, the NSE of the bias corrected data is always 

485 higher than 0.6, thus indicating that the fit between the observed and simulated data is 

486 “acceptable” to “good”, according to the criteria provided in Moriasi et al. (2007). Table SM1 in 

487 the supplementary material reports the values of NSE shown in Figure 11.

488 Figure 12 shows the overall performances of the SF and NARX model for the 

489 Rosamarina reservoir when the SF data are bias corrected, for all months and LTS. Specifically, 

490 by comparison with Figure 8a and 8b, it can be noticed a general improvement in the prediction 

491 of precipitation and air temperature (Figure 12a and 12b, respectively). 

492 With reference to the volumes (Figure 12c), the comparison with the uncorrected SF 

493 forcing data (Figure 8c) highlights a decreasing in the RMES during the late winter and spring at 

494 LT higher than LT3, thus indicating that the bias correction improves the predictability of the 

495 stored volumes, while during the summer the performances are still good. Moreover, there is also 

496 an increase in performances during the autumn and winter, even if less considerable than the 

497 previous one. Generally, for each month, performances increase for all the LTs. This effect is 

498 obviously due to the correction of monthly precipitation and monthly temperature with the 
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499 observed data. Overall, it is possible to assert that in the case of bias corrected SFs, the results 

500 provided by the NARX are more or less reliable up to LT3.

501 Looking at the results for the other reservoirs (shown in Figures SM4 through SM6 in the 

502 supplementary material), it is still possible to observe the same patterns than in Figure 12, even 

503 though there is not a best combination of starting month and LT; this mainly depends on the 

504 specific case. In this perspective, Figure 12 provides a complete characterization of the capability 

505 of the NARX in predicting the volumes within a reservoir.

506 5.3 Comparison among all models

507 Overall, NARX models developed for the analyzed reservoirs have been forced with three 

508 different climate time series, i.e., the observations provided by the AdB, and the mean of 

509 uncorrected and bias corrected SF data. Figure 13 summarizes the overall results by means of 

510 normalized Taylor diagrams at different LTs. The diagram summarizes the distance between 

511 observed and modeled time series in terms of normalized standard deviation, correlation 

512 coefficient (CC), and normalized root mean square difference (RMSD). The green square in 

513 Figure 13 refers to the observed values for which the normalized standard deviation is equal to 1, 

514 the radial distance from the green square quantifies the centered RMSD normalized by the 

515 standard deviation of observed data (i.e., monthly volumes), the azimuth and the radial distance 

516 from the origin quantify CC and standard deviation normalized by the standard deviation of 

517 observations, respectively.

518 Looking at the first panel of Figure 13, it is clearly shown that, for all the reservoirs, the 

519 NARX models are capable to reproduce very well the observed volumes when forced with 

520 observed precipitation and air temperature provided by the AdB (red markers). Only in the 

521 Scanzano case (x marker) performances in terms of RMSD are slightly worsen (i.e., RMSD 

522 greater than 0.15). These results are independent from the LT and thus they are repeated in each 

523 panel. In all the cases, indeed, the red symbols are very close to the green square that indicates 
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524 the observed data. Moving from lower to higher LTs, generally, it is possible to notice that all the 

525 symbols shift upwards, moving away from the green square, thus indicating a lower performance 

526 of the NARX models, as previously observed. 

527 All the blue markers, which denote the results of NARX model forced with the 

528 uncorrected SFs, are shifted upwards, moving away from the green square, thus indicating 

529 general lower performances of the NARX models. The distance increases as the LT increases, 

530 i.e., moving from the first to the last panel. Additionally, looking at the different marker types, 

531 which denote the case study, it is possible to observe that the Rosamarina case study (+) 

532 performs better than other models, having always lower values of RMSD (except for LT = LT1) 

533 and higher values of CC, while the model for the Scanzano (x) seems to be the worst. As the LT 

534 increases, the Poma case study shows the lowest correlation coefficient (). Finally, the use of 

535 the bias corrected data (black markers), in most of the cases leads to an improvement of the three 

536 analyzed metrics. For the Piana degli Albanesi (o) and Poma () reservoirs, the positive effects 

537 of the bias correction are more evident at LT > LT1; the bias corrected results, in this case, 

538 besides being closer to the green square, have a standard deviation very close to that of the 

539 observed data, thus indicating that the observed and simulated time series have the same 

540 variability and that the model is capable to also reproduce the extreme values of the stored 

541 volumes.

542 6 Discussion

543 A methodology which combines a NARX model with SF climate data to predict the water 

544 volume stored in four Sicilian reservoirs at a mid-term scale is presented in this study. 

545 Correlation analysis (Table 1) has shown that the stored volumes exhibit a strong dependency on 

546 the value that was stored on the previous month, while for all the cases, except the Rosamarina 

547 reservoir, the volumes show a strong dependency on the value of precipitation collected in the 
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548 previous four months. The calibrated NARX models are capable to reproduce very well the 

549 observed volumes when forced with observed precipitation and air temperature (Figure 6e).

550 A first experiment on the four reservoirs using the seasonal forecast data without 

551 applying any correction (Figure 7) has demonstrated that the capability of the NARX models in 

552 reproducing the volumes depends on the specific season, as also obtained by other studies 

553 (Arnone et al. 2020a, Buontempo et al. 2018, Crochemore et al. 2017). This depends on the 

554 combination of two factors: (i) the reliability of SFs in correctly predicting the climate variables 

555 of input and (ii) the strength of the autocorrelation of the dependent variable, i.e., the stored 

556 volume. In fact, on one hand, results are as much better as the SF data are closer to the values of 

557 observed monthly precipitation and monthly temperature, as shown in summer months at low 

558 lead times (Figure 4). This implies that the models are capable to better reproduce the 

559 fluctuations in volumes during the summer period, when it is clearly easier to correctly forecast 

560 the precipitation and air temperature for a region as the Sicily, which is characterized by a 

561 summer season almost rainless and with high air temperatures. However, although in winter 

562 months and at high lead times (LT > LT4) the SFs reliability is good (see Figure 9), the model 

563 performances in predicting the stored volume are low due to the uncertainty in reproducing the 

564 volumes in the previous months, i.e., at lower lead times. Additionally, for LT > LT4, the volume 

565 is auto-correlated only with previous predictions (i.e., any observations) and thus it is more 

566 affected by the absence of the water withdrawals fluxes.

567 The variability of results, generally, increases as the LT increases, especially during the 

568 winter months because of the high variability in forecasting the precipitation for those months 

569 even at low LTs (Crochemore et al. 2017, Viel et al. 2016). However, a good predictability has 

570 been shown up to LT3. This allows to have an acceptable time in advance of forecasts for the 

571 operational needs of the water utilities (Arnone et al. 2020a). So, for example, eventual 

572 anomalies in water reservoirs in August can be predict in May and thus give time to the water 

573 manager to take actions in advance. 
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574 To assess the effect of the systematic and random model errors that generally affect the 

575 seasonal forecasts, the first experiment has been replicated by bias correcting the seasonal 

576 forecasts by means of observed data. By comparing the uncorrected seasonal forecast dataset 

577 with the observed one, it has been possible to notice that the monthly precipitation is always 

578 underestimated for all the case studies, especially for higher values, while on the contrary the 

579 monthly temperature is always overestimated, especially at the lower temperatures (Figure 9). 

580 After the bias correction, both the monthly precipitation and air temperature show a better 

581 description of observed dataset. 

582 In most cases, the volumes simulated forcing the calibrated NARX models with the bias 

583 corrected seasonal forecast data have demonstrated to better reproduce the observed volumes 

584 stored within the reservoirs as compared to the case in which the model is forced with 

585 uncorrected data (Figure 11). Also in this case, results have shown the dependence on the lead 

586 time, showing an agreement between the simulated and observed volumes as stronger as lower is 

587 the lead time considered and acceptable up to LT3 (Figure 12). Finally, with regard to the 

588 different case studies, overall results have demonstrated that the stored volumes are better 

589 forecasted in some reservoirs than other as a consequence of the different reliability of the SF 

590 data as compared to the observations. In fact, even the bias correction leads to a different rate of 

591 improvement. 

592 There are certain limitations to the approach undertaken in this study. First, the observed 

593 data of monthly precipitation and monthly temperature are spatially averaged over the entire 

594 contributing area of the considered reservoir, while the seasonal forecast values are 

595 representative of the average climatic conditions of a very extended area (i.e., about 10,000 km2). 

596 Consequently, although all the reservoirs are within the same cell of the seasonal forecasts, these 

597 can be more representative of the real climatic conditions of some reservoirs than others. A 

598 second limit in the study is that, as previously mentioned, the effective water withdrawals from 

599 the reservoirs have not been considered here since information about those is partially known. 
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600 The knowledge of this component could further improve the performance of the NARX models, 

601 especially for the summer period, where this component is significant in Sicily. 

602 Despite these limitations, results are encouraging, providing reliable information about 

603 the real fluctuations of water levels within the reservoirs. Even during the drought period in 

604 between 2017 and 2018, the NARX models have demonstrated to make a reliable forecast of the 

605 stored volumes in the reservoirs for the medium LTs when forced with the bias corrected dataset.

606 7 Conclusions

607 In 2016 and 2017, a very severe drought hit the Mediterranean area and particularly the Sicily 

608 (ISPRA, 2016; SIAS, 2016; WWA, 2017), causing a critical water shortage with the consequent 

609 problems regarding the water supply for the cities, the industry, and the agriculture sector at the 

610 turn of 2017 and 2018. Already in the recent past (e.g., in late 2002 and 2009), the area had 

611 experienced some droughts that had led to even more consequences. In such an environment, 

612 artificial reservoirs are one of the main water supply resources. Since their management can be 

613 strongly affected by the problems of drought, predicting well in advance reservoir volumes is 

614 critical for a correct planning of the water usage at the short- and mid-term scales.

615 The reservoir water level is the result of the hydrological processes occurring in the 

616 upstream catchment, which, in turn, depend on meteorological variables, such as rainfall and 

617 temperature. It follows that a reliable forecast model of the meteorological forcing, along with a 

618 reliable water balance model, could enhance the correct management of a reservoir. Regarding 

619 the rainfall/temperature forecast model, the use of forecast climate data at the mid-term may 

620 provide further support for the future water level estimation of reservoirs.

621 From the perspective of the water balance model, instead, among the approaches used to 

622 predict the water levels for the next future, those based on data-driven methods have been 

623 demonstrated to be particularly capable of correctly reproducing the correlation between a 

624 dependent variable and some climate covariates. 
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625 This study presents the results of a novel application that exploits the seasonal forecast 

626 data, produced at the ECMWF, within a data-driven model aimed to predict the reservoir water 

627 volume at mid-term scale, up to six months ahead in time, in four reservoirs of the Sicily. For 

628 each case, a NARX was calibrated to reproduce the monthly stored water volume starting from 

629 the monthly precipitation and mean monthly air temperature variables. Results show the 

630 capability of the NARXs to reproduce the water levels in the investigated period, including the 

631 variations during dry periods. Indeed, the proposed methodology allows to predict well in 

632 advance the probable stored volumes, thanks to the use of seasonal forecast data, thus providing 

633 a reliable tool for the management of reservoirs. Moreover, the methodology would be 

634 particularly suitable for considering the water withdrawals as well, where available.
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772 Tables with captions

773 Table 1. Characteristics of NARX models architecture for each of the considered reservoirs.

Reservoir
Input
delay

[months]

Feedback
delay

[months]

N. of neurons in 
the hidden layer

NSE
for calibration

RMSE
for calibration

P. degli Albanesi 4 1 11 0.985 0.040
Poma 4 1 19 0.988 0.105
Rosamarina 5 1 14 0.982 0.207
Scanzano 4 1 21 0.971 0.034

774

775
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776 Figures captions

777  Figure 1. NARX architecture. The scheme refers to a closed loop configuration. In this 

778 case, the network uses information from exogenous input variables along with the target series 

779 itself and the feedbacks past predicted and observed values delayed (e.g.,  delays for the input 1:𝑛

780 variables and  delays for the feedbacks). 1:𝑚

781  Figure 2. Aerial view of the city of Palermo and the Piana degli Albanesi, Poma, 

782 Rosamarina, and Scanzano reservoirs. The blue points indicate the gauge networks of the AdB. 

783 Inset at the top right indicates the SF grid for the Sicily and highlights the COI #6 with a red box. 

784 Blue and red contours in the insets at the bottom indicate the extension of the reservoirs when the 

785 maximum volume is reached and during the month of February 2108, respectively. Source: © 

786 Google Maps Satellite basemap available within the QuickMapServices plugin of Quantum GIS.

787  Figure 3. Normalized monthly stored volumes within the four reservoirs. The gray shaded 

788 box highlights the drought period that affected the reservoirs in between 2017 and 2018.

789  Figure 4. Example of SF released in January (a and c) and June (b and d) 2019 and 

790 predicting the six months ahead in time for the monthly precipitation (a and b) and monthly air 

791 temperature (c and d).

792  Figure 5. Flowchart of the phases followed to define the NARX model to be used with 

793 the SF data to forecast future stored volumes within a reservoir. 

794  Figure 6. NARX model’s performances returned by one of the calibration rounds for the 

795 Piana degli Albanesi reservoir. Performances are evaluated in terms of regression analysis for the 

796 a) training, b) validation, c) test, and d) overall calibration. Subplot e) shows NARX calibration 

797 for the four reservoirs; blue solid lines are referred to the observed volumes stored within the 

798 reservoirs, while red dash-dotted lines are the volumes simulated with the calibrated NARX. The 

799 NSE values in the subplots refer to the calibration phase.

800  Figure 7. Rosamarina reservoir: monthly stored volumes at each i-th month of 2019 and 

801 the six months of LTs ahead. Blue solid lines denote the observed volumes, while red dashed 

802 lines are the volumes returned by the NARX forced with observed monthly precipitation and 

803 monthly temperature data. Boxplots describe the ensemble of the forecasted volumes obtained 

804 with the NARX forced by the SF data of the i-th release month and all its lead times (i.e., from 

805 LT0 to LT6).
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806  Figure 8. Performances of SF for the a) precipitation and b) air temperature and of c) 

807 NARX model for the Rosamarina reservoir for volumes forecasted at different months and LTs 

808 over the entire period of simulations. The numeric values reported within each cell is equal to the 

809 RMSE. 

810  Figure 9. q-q plots for the a) monthly precipitation and b) monthly air temperature bias 

811 corrected with the SSPLIN method and for all the reservoirs. The gray circles indicate the q-q 

812 plot of observed (i.e., AdB) and modeled (i.e., SF) data with quantile step equal to 0.01. The 

813 dashed line indicates the perfect agreement line.

814  Figure 10. Observed and simulated stored volumes for the Rosamarina reservoir at 

815 different LTs obtained by the NARX forced with the bias corrected SF data. 

816  Figure 11. NSE values obtained running the NARXs with the mean values of both 

817 uncorrected and bias corrected SF data for the four reservoirs and the entire dataset. 

818  Figure 12. As the Figure 8 for bias corrected SF data and NARX model forced with them.

819  Figure 13. Normalized Taylor diagram for the results obtained forcing the calibrated 

820 NARX models with observed data provided by the AdB and with uncorrected and bias corrected 

821 SF data, at different LTs. The marker indicates the reservoir case study. The green square refers 

822 to the observed value, where the normalized standard deviation is equal to 1; the radial distance 

823 from the green square quantifies the centered RMSD normalized by the standard deviation of 

824 observed volumes, while the azimuth and the radial distance from the origin quantify the CC and 

825 the normalized standard deviation, respectively. 

826
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Figure 1. NARX architecture. The scheme refers to a closed loop configuration. In this case, the 

network uses information from exogenous input variables along with the target series itself and the 

feedbacks past predicted and observed values delayed (e.g.,  delays for the input variables and 1:𝑛 1:

 delays for the feedbacks). 𝑚
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Figure 2. Aerial view of the city of Palermo and the Piana degli Albanesi, Poma, Rosamarina, and 

Scanzano reservoirs. The blue points indicate the gauge networks of the AdB. Inset at the top right 

indicates the SF grid for the Sicily and highlights the COI #6 with a red box. Blue and red contours 

in the insets at the bottom indicate the extension of the reservoirs when the maximum volume is 

reached and during the month of February 2108, respectively. Source: © Google Maps Satellite 

basemap available within the QuickMapServices plugin of Quantum GIS.
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Figure 3. Normalized monthly stored volumes within the four reservoirs. The gray shaded box 

highlights the drought period that affected the reservoirs in between 2017 and 2018.
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Figure 4. Example of SF released in January (a and c) and June (b and d) 2019 and predicting the six 

months ahead in time for the monthly precipitation (a and b) and monthly air temperature (c and d).
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Figure 5. Flowchart of the phases followed to define the NARX model to be used with the SF data to 

forecast future stored volumes within a reservoir. 
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Figure 6. NARX model’s performances returned by one of the calibration rounds for the Piana degli 

Albanesi reservoir. Performances are evaluated in terms of regression analysis for the a) training, b) 

validation, c) test, and d) overall calibration. Subplot e) shows NARX calibration for the four 

reservoirs; blue solid lines are referred to the observed volumes stored within the reservoirs, while 

red dash-dotted lines are the volumes simulated with the calibrated NARX. The NSE values in the 

subplots refer to the calibration phase.
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Figure 7. Rosamarina reservoir: monthly stored volumes at each i-th month of 2019 and the six 

months of LTs ahead. Blue solid lines denote the observed volumes, while red dashed lines are the 

volumes returned by the NARX forced with observed monthly precipitation and monthly temperature 

data. Boxplots describe the ensemble of the forecasted volumes obtained with the NARX forced by 

the SF data of the i-th release month and all its lead times (i.e., from LT0 to LT6).
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Figure 8. Performances of SF for the a) precipitation and b) air temperature and of c) NARX model 

for the Rosamarina reservoir for volumes forecasted at different months and LTs over the entire period 

of simulations. The numeric values reported within each cell is equal to the RMSE. 
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Figure 9. q-q plots for the a) monthly precipitation and b) monthly air temperature bias corrected with 

the SSPLIN method and for all the reservoirs. The gray circles indicate the q-q plot of observed (i.e., 

AdB) and modeled (i.e., SF) data with quantile step equal to 0.01. The dashed line indicates the 

perfect agreement line.
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Figure 10. Observed and simulated stored volumes for the Rosamarina reservoir at different LTs 

obtained by the NARX forced with the bias corrected SF data. 
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Figure 11. NSE values obtained running the NARXs with the mean values of both uncorrected and 

bias corrected SF data for the four reservoirs and the entire dataset. 
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Figure 12. As the Figure 8 for bias corrected SF data and NARX model forced with them.

Page 49 of 49

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 13. Normalized Taylor diagram for the results obtained forcing the calibrated NARX models 

with observed data provided by the AdB and with uncorrected and bias corrected SF data, at different 

LTs. The marker indicates the reservoir case study. The green square refers to the observed value, 

where the normalized standard deviation is equal to 1; the radial distance from the green square 

quantifies the centered RMSD normalized by the standard deviation of observed volumes, while the 

azimuth and the radial distance from the origin quantify the CC and the normalized standard 

deviation, respectively. 
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