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Abstract— Cerebral autoregulation (CA) is a fundamental 

homeostatic mechanism that maintains cerebral blood flow 

(CBF) within a constant range despite blood pressure variations. 

In this work, two different approaches for assessing CA are 

compared, i.e. the autoregulation index (ARI) and dynamic 

entropy measures. The arterial pressure and the CBF velocity 

were acquired on eighteen subjects undergoing coronary artery 

bypass graft surgery, before induction of general anaesthesia 

with propofol and during anaesthesia. The ARI-based method 

confirmed the known result that CA remains unchanged with 

propofol. Entropy measures led to complementary findings, 

suggesting an increased dependence of cerebral blood flow 

dynamics on systemic pressure, probably due to the effect of 

mechanical breathing during surgery. 

Keywords—Cerebrovascular autoregulation, autoregulation 

index, entropy, linear parametric autoregressive modelling. 

I. INTRODUCTION 

erebrovascular autoregulation (CA) is a critical process in 

humans for maintaining adequate cerebral blood flow 

(CBF) values in response to external or internal system 

disturbances, such as changes in arterial blood pressure (AP) 

[1]. The assessment of CA can be carried out by measuring 

changes in CBF in response to slow (static method) [2] or rapid 

changes (dynamic method) [3] in AP. While the static method 

requires external invasive intervention to induce changes in 

AP, the use of the transcranial Doppler ultrasound technique 

(TCD) allow the non-invasive assessment of dynamic CA 

through the investigation of the beat-to-beat CBF changes in 

relation to AP changes occurring spontaneously [4], under the 

assumption that CBF velocity is approximately equal to CBF 

[3]. Indeed, the non-invasive characterization of CA is based 

on the study of the dynamic closed-loop interactions between 

the mean AP (MAP) and the mean CBF velocity (MCBFV) 

along the pressure-to-flow link of the closed-loop system, i.e. 

considering the interactions directed from MAP to MCBFV. 

CA is defined as the intrinsic control mechanism operating 

along this reflex and aiming to maintain a constant and stable 

MCBFV despite beat-to-beat variations of MAP, while 

preserving some degree of uncoupling between MCBFV and 

MAP over a range of values of MAP as wide as possible [4]–

[6]. Dynamic CA has been evaluated exploiting different 

methods, such as the MAP-MCBFV closed-loop system 

transfer function [7], the autoregulation index (ARI) [4], [8], 

and linear parametric autoregressive models [9], [10]. In 

particular, the ARI index models the response of MCBFV to 

changes in MAP by a system of differential equations in which 

each estimated MCBFV curve, numbered from 0 to 9, 

represents a different level of CA [4]. The computation of ARI 

can be carried out by considering three different approaches, 

i.e. the time domain method (TDM) [11] , the non-parametric 

method (non-PM) [12] and the parametric method (PM) [9]. 

Recently, measures of dynamic entropy for bivariate systems 

[13] have been developed, which are derived from full and 

restricted autoregressive models and can be exploited to study 

the dynamic interactions along the pressure-to-flow link.  

The present study focuses on the assessment of dynamic CA 

in patients scheduled for coronary artery bypass graft (CABG) 

surgery, before and during general anaesthesia with propofol 

[14]. Two different approaches are exploited to investigate CA 

mechanisms, i.e. the ARI and measures of dynamic entropy for 

bivariate systems [13]. Herein, we use the PM to assess CA, 

consistently with entropy measures which are also based on 

linear parametric modelling of time series under the hypothesis 

of Gaussian processes [13], [15]. The parametric ARI and 

entropy-based measures are compared evaluating their degree 

of correlation, with the aim to evidence whether the two 

investigated methods highlight similar or different aspects of 

cerebrovascular physiology, also allowing to better understand 

the role of confounding factors in the closed-loop interactions 

between CBF and AP. 

II. MATERIALS AND METHODS 

A. Experimental protocol and series extraction 

Eighteen patients (age: 63.8 ± 7.8 yrs, 1 female) scheduled 

for CABG surgery were enrolled at the Department of 

Cardiothoracic, Vascular Anaesthesia and Intensive Care of 

IRCCS Policlinico San Donato, San Donato Milanese, Milan, 

Italy [14]. Patients signed an informed consent before 

participating to the study and were examined ahead of surgery 

before induction of general anaesthesia (PRE) and after 

intubation of the trachea, during general anaesthesia, before 

opening the chest (POST). During the PRE session, subjects 

were breathing spontaneously, whereas during the POST 

session they were mechanically ventilated with a rate of 12-16 

breaths/min. The PRE session was recorded after application 

of standard premedications including intramuscular 

administration of atropine (0.5 mg) and fentanyl (100 µg). 

Anaesthesia was induced by the intravenous bolus injection of 

propofol and remifentanil. The POST session was recorded 

when the target plasma concentration of propofol was 

expected to be around 3 µg/ml based the pharmacokinetic 

properties of the drug.       
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Electrocardiogram (ECG, lead II), invasive AP from the 

radial artery and CBF velocity (CBFV) from the middle 

cerebral arteries through a TCD device were simultaneously 

acquired. The acquisition phase in PRE and POST conditions 

lasted about 6 minutes. After signal acquisition, MAP and 

MCBFV stationary time series of 250 beats each were 

extracted by integrating respectively the AP and CBFV signals 

between two consecutive diastolic points and dividing by the 

time interval between them. In the following, we refer to MAP 

and MCBFV time series as M and F, respectively. Further 

details about the experimental protocol, signal acquisition and 

series extraction can be found in [14]. The schematic 

representation of the acquisition system, a representative 

example of the acquired signals and the extracted time series 

are shown in Fig. 1. 

B. Autoregulation Index (ARI): parametric estimation 

The autoregulation index (ARI) allows to assess CA by 

modelling F through a system of ten ordinary differential 

equations in agreement with the derivative filter model 

originally introduced by Tiecks et al. [4]. The Tiecks’ model 

provides a set of ten step responses, in which each predicted F 

curve ranks the efficiency of CA from 0, i.e. absent CA, to 9, 

i.e. excellent CA, with ARI values lower than or equal to 4 

indicating impaired CA [4]. The ten F curves derived from this 

model are compared with the F curve estimated from the 

parametric linear representation of the dynamic F-M 

relationship. More precisely, an auto and cross regressive 

model (ARX) is applied to describe the dynamical evolution 

of F due to beat-to-beat changes of both F and M [8]. After the 

application of a linear detrending to both series, the sample Fk, 

where k is the current time instant, is described as the linear 

combination of p past values of F weighted by the coefficients 

ai, with i = 1,…,p, plus the linear combination of p − τ + 1 past 

values of M weighted by the coefficients bi, with i = τ,…,p, 

plus a random unpredictable portion Wk being the sampling of 

a Gaussian white noise W with zero mean and variance λ2: 

𝐹𝑘 = ∑ 𝑎𝑖𝐹𝑘−𝑖
𝑝
𝑖=1 + ∑ 𝑏𝑖𝑀𝑘−𝑖

𝑝
𝑖=𝜏 + 𝑊𝑘,          (1) 

where p is the model order and τ is the lag of the faster 

interactions from M to F. By representing the model 

coefficients in the Z domain as 𝐴(𝑧)  =  ∑ 𝑎𝑖𝑧
−𝑖𝑝

𝑖=1
 and 

𝐵(𝑧)  =  ∑ 𝑏𝑖𝑧
−𝑖𝑝

𝑖=𝜏 , the transfer function from M to F, which 

provides the coefficients of the impulse response, can be 

written as: 

𝐻𝐹−𝑀(𝑧) =
𝐵(𝑧)

1−𝐴(𝑧)
 .                     (2) 

The impulse response was truncated to 31 values taking the 

cardiac beats from 0 to 30. After integrating the impulse 

response to obtain the step response, the comparison between 

each of the ten step responses derived from the Tiecks' model 

and the data-driven step response was carried out via the 

normalized mean square prediction error (NMSPE), computed 

as the mean square value of the difference between the 

measured and the predicted F curves normalized by the mean 

square value of the measured F curve [8]. We selected the 

optimal ARI (i.e. from 0 to 9) as the value corresponding to 

the minimum value of NMSPE. Further details on the 

proposed method can be found in [8]. 

C. Dynamic information measures 

Given the bivariate process S = {M, F}, where M is the 

driver and F is the target process, the framework of 

information theory allows the study of the dynamic 

interactions along the pressure-to-flow link by quantifying the 

information content of the target in terms of predictive 

information PF|S (i.e., information contained in the target that 

can be described by the past history of the entire process S). 

Using the chain rule, PF|S can be decomposed in two different 

ways  [13]:  

(i)𝑃𝐹|𝑆 = 𝑆𝐹 + 𝑇𝑀→𝐹; (ii) 𝑃𝐹|𝑆 = 𝐶𝑀→𝐹 + 𝑆𝐹|𝑀,   (3) 

where SF is the self-entropy (information carried by the present 

state of the target that can be predicted by its own past), TM→F 

is the transfer entropy (information carried by the present of 

the target that can be predicted by the past of the driver above 

and beyond the part that is predicted by the past of the target), 

CM→F is the cross-entropy (information carried by the present 

state of the target that can be predicted exclusively by the past 

of the driver), SF|M is the conditional self-entropy (information 

carried by the present state of the target that can be predicted 

by its past above and beyond the part that is predicted by the 

past of the driver) [13]. Under the assumption of joint 

gaussianity of the observed bivariate process [15], the dynamic 

information measures introduced above were evaluated using 

model-based estimators as: 

𝑆𝐹 =
1

2
𝑙𝑛

𝜎𝐹
2

𝜎𝐴𝑅
2 ;  𝑇𝑀→𝐹 =

1

2
𝑙𝑛

𝜎𝐴𝑅
2

𝜎𝐴𝑅𝑋
2                     (4) 

Fig. 1 (a) Schematic representation of the biomedical instrumentation used for data acquisition: (top) invasive measurement of AP by a catheter inserted into the 

radial artery; (bottom) transcranial Doppler ultrasound (TCD) device with ultrasound probes and adjustable helmet for CBFV acquisition from the middle 

cerebral artery (right or left). (b) exemplary traces of the acquired AP and CBFV signals for a representative subject; (c) the M and F time series are extracted 

respectively by integrating the AP signal within the diastolic pulse interval and the CBFV signal between its two minima within the cardiac period. 
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𝐶𝑀→𝐹 =
1

2
𝑙𝑛

𝜎𝐹
2

𝜎𝑋
2 ;  𝑆𝐹|𝑀 =

1

2
𝑙𝑛

𝜎𝑋
2

𝜎𝐴𝑅𝑋
2                  (5)   

where 𝜎𝐹
2 is the variance of the target process, 𝜎𝐴𝑅

2  is the 

prediction error variance of an auto-regressive (AR) model 

describing the present state of the target from its past values, 
𝜎𝑋

2 is the prediction error variance of a cross-regressive (X) 

model describing the present state of the target from the past 

values of the driver, 𝜎𝐴𝑅𝑋
2  is the prediction error variance of an 

ARX model describing the present state of the target from the 

past values of the entire bivariate process.  The computation of 

the dynamic information measures in (4) and (5) thus reduces 

to the estimation of the error variances of full (ARX) and 

restricted (AR, X) linear regression models, which was 

performed by solving the Yule-Walker equations [13]. 

D. Data pre-processing 

The acquired M and F time series were first pre-processed 

to obtain zero-mean series. As regards the computation of the 

dynamic entropy measures, further pre-processing was 

performed using an AR high-pass filter for detrending (zero-

phase filter, cut-off frequency of 0.0156 times the sampling 

frequency, the latter assumed to be the inverse of the mean HP 

for each subject); model identification was performed by 

setting the model order according to the Akaike Information 

Criterion (AIC) for each subject (with maximum scanned 

model order equal to 14). As regards the parametric ARI 

computation, the model order was set in accordance with [16]. 

E. Statistical and correlation analysis 

The significance of the differences between experimental 

conditions (PRE vs. POST) was assessed using non-parametric 

tests, given the small sample size and that normality of the 

series assessed through Anderson-Darling test was rejected for 

most cases. Specifically, the paired Wilcoxon signed rank test 

was used with a significance level of 5%. 

Moreover, the non-parametric Spearman correlation 

coefficient, corresponding to Pearson correlation coefficient 

computed from rank vectors [17] was used to assess the degree 

of correlation between the parametric ARI and the entropy-

based linear measures. Indeed, given its non-parametric 

nature, the assumption of Gaussianity is not a necessary 

condition and thus it is used to compare discrete variables, 

such as the ARI, with continuous variables, such as the 

measures of dynamic entropy. In this study, the parametric 

ARI values were compared with each of the entropy measures 

(self-entropy, transfer entropy, cross entropy, and conditional 

self-entropy) for any given experimental condition. 

III. RESULTS AND DISCUSSION 

Figure 2 shows the distributions across subjects of ARI values 

obtained with the parametric method (Fig. 2a), transfer entropy 

and self-entropy (Fig. 2b, c), cross entropy and conditional 

self-entropy (Fig. 2d, e), evaluated in the PRE and POST 

experimental conditions.  The ARI method evidenced that CA 

remained intact during the PRE-POST protocol (Fig. 2a), 

confirming that propofol general anaesthesia does not affect 

CA [16]. In fact, although propofol general anaesthesia is 

known to cause autonomic depression, which is a major 

determinant of CA [18], several studies exploiting the same 

experimental protocol have confirmed that CA does not vary 

with the anaesthetic pharmacokinetic properties of propofol 

[16]. 

Measures of dynamic entropy show different interpretations 

of how predictable dynamics in the target process are derived 

from its own past and the past of the driver process. The 

increased cross-entropy in POST (Fig. 2d, p = 0.0386) reflects 

a higher predictability of CBFV dynamics from AP values, 

documenting an increased cerebrovascular coupling that might 

be indicative of reduced cerebral autoregulation (CBFV 

changes are more dependent on AP variations). However, the 

finding that TM→F and SF|M do not vary between conditions 

(Fig. 2b, c) leads us to suggest that the causal interactions from 

M to F and the internal dynamics of F may be unaffected by 

the investigated experimental protocol. Since variations in the 

cross-entropy can be induced by changes in the direct coupling 

along both directions of interaction (M→F and F→M in this 

case) [13], caution should be used in ascribing to a stronger 

coupling the increased cross-predictability of F given M. 

Moreover, the simultaneous effect induced by mechanical 

breathing on M and F during anaesthesia in POST, although 

not directly investigated, could have generated regular 

oscillations in both series at the frequency of mechanical 

ventilation. This would have caused an increased predictability 

of F from M, which appears when considering CM→F but not 

TM→F, i.e. when conditioning also on the past dynamics of F 

apart from M [19].  

Table 1 reports the correlation values between the ARI and 

each of the dynamic entropy measures, evaluated with the 

Spearman correlation index (ρ) in the PRE-POST protocol. 

The weak correlations, confirmed by p values higher than the 

significance threshold (level of significance of 5%), suggest 

that ARI and dynamic entropy measures provide different 

information on the short-term cerebrovascular control and on 

the functioning of CA in this group of patients. 

IV. CONCLUSION 

  This work aimed to compare different methods for 

investigating the interaction link from arterial blood pressure 

to cerebral blood flow (i.e., the pressure-to-flow link), to 

investigate the physiological mechanisms related to cerebral 

Fig. 2 Results of short-term cerebrovascular variability analysis. Boxplots 

depict the distributions of (a) ARI values computed with the parametric 

method, (b) transfer entropy 𝑇𝑀→𝐹, (c) self-entropy 𝑆𝐹, (d) cross entropy 𝐶𝑀→𝐹   
and (e) conditional self-entropy 𝑆𝐹|𝑀 in PRE (left boxplots, red dots) and POST 

(right boxplots, blue dots) conditions. Statistically significant differences 

(p<0.05): *, PRE vs POST, Wilcoxon signed rank test for paired data. 
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autoregulation. The ARI-based method showed that CA 

remained unchanged with the PRE-POST protocol in patients 

undergoing CABG surgery, confirming the known properties 

of propofol on CA maintenance. On the other hand, the 

statistically significant increase of cross-entropy after the 

induction of general anaesthesia showed that the dynamics of 

cerebral blood flow become more dependent on those of 

systemic pressure, suggesting a possible alteration of cerebral 

autoregulatory mechanisms. The weak correlation between the 

two methods confirms that they highlight different aspects of 

cerebrovascular physiology. 

  To corroborate the results of this work, future studies should 

be designed: (i) to investigate cerebrovascular interactions 

through a closed-loop analysis considering also the effects of 

cerebral flow variations on arterial pressure; and (ii) to 

quantify such interactions in the frequency domain separating 

respiration-related oscillations from effects within the very 

low frequency (0.02-0.07 Hz) and low frequency (0.07-0.2 Hz) 

bands during the PRE-POST protocol [6].  
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TABLE I 
SPEARMAN CORRELATION: ARI VS. ENTROPY MEASURES 

 PRE POST 

 ρ p-value ρ p-value 

 

ARI vs TM→F                    
-0.012    0.961 0.447 0.063 

ARI vs CM→F -0.327 0.185 0.254 0.308 

ARI vs SF -0.224 0.372 0.008 0.974 

ARI vs SF|M -0.012 0.423 -0.114 0.654 

   

Comparison between parametric ARI and dynamic information measures 

(transfer entropy TM→F, self entropy SF, cross entropy CM→F, conditional self 

entropy SF|M) using Spearman correlation index ρ during the PRE and POST 

experimental conditions. Rejection of the null hypothesis (p-value < 0.05) 

means that the two investigated metrics are significantly correlated. 
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