Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

G. van Belle and H. Harris, editors

18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

Contents

Contents	i
Foreword —	xi
Acknowledgements _	xiii
Cool Stars 18 Organization	xv
Cool Stars 18 Awards _	xix
Splinter Session Summaries	1
Splinter Session on Cool Cloudy Atmospheres: Theory and Observations – A.J. Burgasser et al.	4
Upgrading the Solar-Stellar Connection: News about activity in Cool Stars – H. M. Günther et al.	25
Portraying the Hosts: Stellar Science From Planet Searches – B. Rojas-Ayala et al.	39
 A New Light on the Relation Between Rotation Periods and Cycle Lengths of Stellar Activity JD. do Nascimento Jr. et al. 	59
Cool Stars and Space Weather – A. A. Vidotto et al.	65
Touchstone Stars: Highlights from the Cool Stars 18 Splinter Session – A.W. Mann et al.	80

Cool Star Formation, Structure and Evolution

101

ζ Aurigae: Periodic Photoexcited Si I Emission – N. O'Riain et al.	103
Finding Warm Debris Disks with $WISE$ Around Bright Stars - $R.$ Patel et al.	111
A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary System BX Tri – V. Perdelwitz et al.	117
A First Look at Differential Rotation in Kepler Open Clusters NGC 6811 (1 Gyr) and NGC 6819 (2.5 Gyr) – S. H. Saar et al.	121
The Young Solar Analogs Project - Observations & Analysis – J.M. Saken et al.	127
A Bayesian Analysis of Class II M-type SEDs in Cha I – J. Tottle et al.	133
Sub-Stellar Mass Objects in Orion OB1b - $F.M.$ Walter	145
Cool Star Beginnings: YSOs in the Perseus Molecular Cloud - K.E. Young & C.H. Young	151
Revising Circumstellar Disk Evolution – How Binaries Change the Picture – S. Daemgen et al.	155
Observations of Accretion Disc-regulated Stellar Angular Momentum Evolution in Fully Convective Pre-main Sequence Stars – C. L. Davies et al.	161
Updating the Dartmouth Stellar Evolution Model Grid: Pre-main-sequence Models & Magnetic Fields – G.A. Feiden et al.	167
Magnetic Modulation of Stellar Angular Momentum Loss – C. Garraffo et al.	173
The Young Solar Analogs Project – R.O. Gray et al.	179

Spectroscopic Distances and Kinematics of Local Field M Dwarfs and M Subdwarfs – S. Lépine et al.	189
Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission $-$ R. Bonito et al.	193
X-ray Emission from Young Stars in the TW Hya Association – Alexander Brown et al.	197
Zeeman Doppler Imaging of the Surface Activity and Magnetic Fields of Young Solar- Type Stars – B. D. Carter et al.	203
The Transition Between X-ray Emission Regimes in the M34 Open Cluster – Ph. Gondoin	211
Lithium Abundance and Rotation in the Pleiades and M34 Open Clusters – Ph. Gondoin et al.	219
HST FUV monitoring of TW Hya – H. M. Günther et al.	227
Dynamical Masses of Pre-Main-Sequence Binary Systems - R. Köhler & H. Hiss	235
The Extension of the Corona in Classical T Tauri Stars – J. López-Santiago et al.	241
New Results from the GALEX Nearby Young-Star Survey – D.R. Rodriguez et al.	247
M Dwarfs Search for Pulsations and Flare Studies Within Kepler Go Program – C. Rodríguez-López et al.	251
Magnetic Interaction of a Super-CME with the Earth's Magnetosphere: Scenario for Young Earth - V.S. Airapetian et al.	255
Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars – V. S. Airapetian et al.	267
Revising Circumstellar Disk Evolution – How Binaries Change the Picture – S. Daemgen et al.	283
Forward Modeling of Synthetic EUV/SXR Emission from Solar Coronal Active Re- gions: Case of AR 11117 – V.S. Airapetian & J. Allred	289

iii

Short-term Activity in Young Solar Analogs – C.J. Corbally et al.	309
V4046 Sgr: Touchstone to Investigate Spectral Type Discrepancies for Pre-main Se- quence Stars - Joel H. Kastner et al.	315
Cool Stars as Tracers of Multiple Stellar Populations in the Galactic Globular Cluster 47 Tuc – A. Kučinskas et al.	323
Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen Abundance in Extremely Metal-Poor Giant Stars – A. Kucinskas Et Al.	329
Cool Stars as Dynamic Objects	337
The Nature of Variability in Early L Dwarfs - J.E. Gizis	339
Infrared Variability in Young Stars – S. J. Wolk et al.	347
Dynamo Modeling of the Kepler F Star KIC 12009504 – S. Mathur et al.	353
3D Modelling of Magnetized Star-planet Interactions: Cometary-type Tails and In- spiraling Flows - T. Matsakos	361
Investigating the Flare Activity of the Spotted Kepler Star KIC 5110407 - R.M. Roettenbacher et al.	365
Modelling Exoplanetary Radio Emissions Using a Realistic Magnetic Field Geometry – V. See et al.	369
Studying KeplerKepler Superflare Stars – U. Wolter et al.	375
Spontaneous Formation of Cool Polar Spots in Global Dynamo Simulations – Rakesh K. Yadav et al.	381
Using Transiting Planets to Model Starspot Evolution - J.R.A. Davenport et al.	387
Reproduction of the Wilson-Bappu Effect Using PHOENIX – C.M. Guerra Olvera et al.	393

Astrometric Orbits and Masses for Three Low-Mass Binaries – H.C. Harris, et al.	401
Joint Magnetospheres of Star-planet Systems - V. Holzwarth & S.G. Gregory	407
Monitoring the Behavior of Star Spots Using Photometric Data – P. Ioannidis & J.H.M.M. Schmitt	417
Rotation Period - X-ray Activity Relations Based on ASAS and ROSAT Data — Marcin Kiraga et al.	423
Magnetic Field on Brown Dwarf LSR J18353790+3259545 – O. Kuzmychov et al.	429
Activity-rotation relation in the young cluster h Per - C. Argiroffi et al.	433
Convective Dynamo Simulation with a Grand Minimum - K.Augustson et al.	439
MHD Simulations of Near-Surface Convection in Cool Main-Sequence Stars – B. Beeck et al.	455
Magnetic Activities in Outer Atmosphere of the RS CVn-type Binary SZ Psc – D. Cao et al.	463
Monitoring the Variability of Newly-discovered Symbiotic Stars – C. Doughty et al.	471
Calibrating Core Overshooting in Low-Mass Stars with <i>Kepler</i> Data - S. Deheuvels et al.	477
Line Bisector Variability in the Sun as a Star - <i>M. Giampapa et al.</i>	483
Wild Weather: Brown Dwarfs with Dynamic, Rapidly Changing Clouds – A.N. Heinze & S. Metchev	489
Potential Magnetic Field Extrapolation in Binary Star Systems - V. Holzwarth & S.G. Gregory	497
 Probing Rotational Dynamo Extremes: X-ray and Optical Spectroscopy of the 0.5 Day Period Eclipsing Binary, HD 79826 <i>D.P. Huenemoerder et al.</i> 	505
The Long and the Short of it: Timescales for Stellar Activity – Jardine, M. et al.	513

v

	٠
V	1
v	T

Meridional Flow, Differential Rotation, and the Solar Dynamo – Manfred Küker	521
Determining the Stellar Spin Axis Orientation - AL. Lesage & G. Wiedemann	527
First Results of the TIGRE Chromospheric Activity Survey – M. Mittag et al.	535
Molecular Outflows Driven by Young Brown Dwarfs And VLMs. New Clues from IRAM Interferometer Observations – Monin, JL. et al.	541
Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades $-$ KP. Schröder et al.	545
Understanding Astrophysical Noise from Stellar Surface Magneto-Convection - H.M. Cegla et al.	551
Bridging the Gap on Tight Separation Brown Dwarf Binaries - D.C. Bardalez Gagliuffi et al.	559
The (Phased?) Activity of Stars Hosting Hot Jupiters – Ignazio Pillitteri Et Al.	567
Numerical Aspects of 3D Stellar Winds – A. Strugarek et al.	573
Cool Star Abundances	587
Variation in the Composition of Cool Stars - N. R. Hinkel	589
Chemical Abundance Analysis of the Symbiotic Red Giants – Cezary Gałan et al.	595
Metallicity Determination of M Dwarfs from High-resolution IR Spectra - S. Lindgren & U. Heiter	603
Preliminary Analysis of M and L Dwarf Surface Gravities in the NIRSPEC Brown Dwarf Spectroscopic Survey - E.C. Martin et al.	609
X-Shooter Medium Resolution Brown Dwarfs Library – E. Manjavacas et al.	619

 Preparation of the CARMENES Input Catalogue: Mining Public Archives for Stellar Parameters and Spectra of M Dwarfs with Master Thesis Students D. Montes et al. 	633
The Surface Brightness Contribution of II Peg: A Comparison of TiO Band Analysis and Doppler Imaging - H.V. Şenavcı et al.	645
Lithium Inventory of 2 M_{\odot} Red Clump Stars: Is Lilithium Created During the He Flash? - J.K. Carlberg et al.	651
Photometric and Spectral Analysis of Blue and Red L Dwarfs - <i>M.K. Alam et al.</i>	659
3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule – A. Berkner et al.	665
Solar Cycle Dependency of Sun-as-a-Star Photospheric Spectral Line Profiles – L. Bertello et al.	669
Cool Stars as Planet Hosts	679
Hot Stars With Cool Companions – K. Gullikson et al.	681
Magnetically Controlled Mass Loss from Exoplanets - F.C. Adams & J.E. Owen	689
The Cool Tiny Beats Project - A High-cadence HARPS Survey Searching for Short- period Planets, Pulsations and Activity Signatures in M stars - Z.M. Berdiñas	699
A Tale of Two Exoplanets: the Inflated Atmospheres of the Hot Jupiters HD 189733 b and CoRoT-2 b - K. Poppenhaeger	707
Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations – A. Uribe	713
On the Spectroscopic Properties of the Retired A Star HD 185351 – L. Ghezzi et al.	717
SEEDS – Direct Imaging Survey for Exoplanets and Disks – K. G. Hełminiak et al.	723

vii

viii

Empirical Limits on Radial Velocity - Planet Detection for Young Stars — L. Hillenbrand et al.	733
The MEarth-North and MEarth-South Transit Surveys: Searching for Habitable Super-Earth Exoplanets Around Nearby M-dwarfs - J.M. Irwin et al.	741
Transit Polarimetry of Exoplanetary System HD189733 – N.M. Kostogryz et al.	747
Exoplanetary System HD189733 - Chromosphere, Transit, Activity – T. Krejčová et al.	753
The Disk and Planets of Solar Analogue τ Ceti – $S.M.$ Lawler et al.	757
Stars with and without planets: Where do they come from? – V. Zh. Adibekyan et al.	763
Preparation of the CARMENES Input Catalogue: Low- and High-resolution Spec- troscopy of M dwarfs - F.J. Alonso-Floriano et al.	770
 Preparation of the CARMENES Input Catalogue: Multiplicity of M dwarfs from tenths of arcseconds to hundreds of arcminutes M. Cortés Contreras et al. 	779
Star-Planet Interactions - A.F. Lanza	785
Predicting the Extreme-UV and Lyman- α Fluxes Received by Exoplanets from their Host Stars - J.L. Linsky et al.	805
Characterizing the Parents: Exoplanets Around Cool Stars – K. von Braun et al.	813
BinHab: A Numerical Tool for the Calculation of S/P-Type Habitable Zones in Binary Systems — M. Cuntz & R. Bruntz	819
Stellar Spectroscopy During Exoplanet Transits: Dissecting Fine Structure Across Stellar Surfaces – D. Dravins et al.	827
Observational Frontiers	839

Automated Variability Classification and Constant Stars in the Kepler Database $-$ J.E. Neff et al.	841
SOLIS: Reconciling Disk-integrated and Disk-resolved Spectra from the Sun – A. Pevtsov et al.	849
 Manufacturing, Assembly, Integration and Verification of CARMENES and Preparation of its Input Catalogue A. Quirrenbach et al. 	859
Pushing the (Convective) Envelope: Imaging Spotted Stellar Surfaces with Optical Interferometry - R.M. Roettenbacher et al.	869
Zeeman Doppler Imaging of a Cool Star Using Line Profiles in All Four Stokes Param- eters for the First Time - L. Rosén et al.	875
The CASTOFFS Survey: High Resolution Optical Spectroscopy of Bright Targets – J.E. Schlieder et al.	881
Gaia-ESO Survey: the First Release from the Analysis of UVES Spectra of FGK-type Stars – R. Smiljanic	891
DKIST: Observing the Sun at High Resolution - A. Tritschler et al.	895
Improved Parallaxes and Near-Infrared Photometry of L- and T-Dwarfs From the U.S. Naval Observatory Infrared Astrometry Program – <i>F.J. Vrba et al.</i>	905
The M-dwarfs in Multiples (MinMs) Survey - Stellar Multiplicity within 15 pc - K. Ward-Duong et al.	913
Preliminary Parallaxes for Cool Subdwarfs - C.C. Dahn & H.C. Harris	917
New Projected Rotational Velocity Measurements for 65 Mid M-Dwarfs - C.L. Davison et al.	925
Results from BASS, the BANYAN All-Sky Survey – J. Gagné et al.	933
Investigating Brown Dwarf Variability at 3.4 & $4.6\mu m$ with AllWISE Multi-Epoch Photometry - $G.N.$ Mace et al.	953

ix

Progress Report on New Spectroscopic Orbits of Potential Interferometric Binaries – F.C. Fekel et al.	971
The Coolest 'Stars' are Free-Floating Planets – V. Joergens et al.	977
Searching for Binary Y dwarfs with the Gemini GeMS Multi-Conjugate Adaptive Op- tics System - Daniela Opitz et al.	985
UCAC4 Nearby Star Survey: A Search for Our Stellar Neighbors – J.P. Subasavage et al.	991
The HST Treasury "Advanced Spectral Library" (ASTRAL) Programs $-$ K.G. Carpenter et al.	997
Convection in Cool Stars, as Seen Through Kepler's Eyes - F.A. Bastien	1009
Status of known T type sources towards the σ Orionis cluster – K. Peña Ramírez et al.	1017
Scientific Program	1027
Poster Abstracts	1029
Participants _	1031
Index	1039

Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

R. Bonito^{1,2}, C. Argiroffi^{1,2}, S. Orlando², M. Miceli², G. Peres^{1,2}, T. Matsakos³, C. Stehle⁴, L. Ibgui⁴

¹Dipartimento di Fisica e Chimica, Universita' di Palermo, Italy

²INAF - Osservatorio Astronomico di Palermo, Italy

³Department of Astronomy and Astrophysics, University of Chicago

⁴LERMA, Observatoire de Paris, University Pierre et Marie Curie and CNRS, Meudon, France

Abstract. We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surrounding medium. We explored the effects of absorption for different viewing angles and for the He-like line triplets commonly used for density diagnostic. From the model results we synthesize the X-ray emission from the accretion shock, producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare our results with the observations. Our model shows that the X-ray fluxes detected are lower than expected because of the local absorption. The emerging spectra suggest a complex density vs temperature distribution proving that a detailed model accounting for a realistic treatment of the local absorption is needed to interpret the observations of X-ray emitting accretion shocks.

194 Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

1. Introduction

Accretion processes onto classical T Tauri stars (CTTSs) are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear.

First of all, the evidence that the density inferred by the OVII triplet is lower that the value derived from the Ne IX triplet (Brickhouse et al. 2010) appears as a puzzling result in the context of current models of shocks. Another open issue in this context is the evidence that the mass accretion rate derived in the X-ray band is always significatively lower than the values obtained in the other bands (e.g. order of magnitude lower than the optical values, see Curran et al. 2011). Furthermore, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted values. A possible explanation is related to a significant absorption of the emission due to the thick surrounding medium. In this work we focus on the synthesis of the X-ray emission in accretion shocks of young stellar objects (YSOs) and on the effects of the local absorption on its observability.

2. Method

With the aim of explaining the open issues presented above taking advantage of detailed numerical models, we consider a 2D magnetohydrodynamic (MHD) model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona). From the 2D simulations (performed using the PLUTO code, Mignone et al. 2007), we derived the 3D maps of the relevant parameters (density, temperature,) to synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different density profiles of the accretion stream (accounting also for non uniform streams with a density of 10^{12} cm⁻³ on axis and a radial decreasing profile; see also Romanova et al. 2004). In particular, considering a specific cell of the source, we take into account the column density for each cell along the line-of-sight (LOS), using the absorption coefficient of Balucinska-Church & McCammon (1992). Then we add all the contributions of each cell to derive the X-ray image and spectrum. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the LOS. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer (Bonito et al. in prep. 2014). The final products of this approach are the images and the spectra in the X-ray band (in the range 0.3 - 1keV). In particular, we derived the spectra focusing on the lines (e.g. OVII and Ne IX) from which it is possible to perform density diagnostic from the line ratio, as made for TW Hya by Brickhouse et al. (2010).

3. Results

The spectra and images synthesized from our numerical models as detailed explained in the previous section allow us to compare our model results with the observations with the aim

R. Bonito et al.

of explaining the so far unsolved open issues described above. First of all, we derived from our numerical simulations the density vs temperature distribution and performed the density diagnostics usually made for the observations. The main result of our investigation is that the simplistic scenario of a plane-parallel stratified structure of the shock and post-shock region (with increasing density for decreasing temperature) fails to be valid as the distribution of the density with the temperature is quite complex. Therefore, a detailed numerical model is required to properly describe the complex region of the accretion slab.

We also performed a spectral analysis of the X-ray emitting region and we found, as expected, that when the local absorption is taken into account the flux if lower (see Fig. 1). We also investigated the effect of different geometry and found a higher flux emerging from higher inclinations with respect to the LOS (compare red and blue lines in Fig. 1).

The effect on the observability of the post shock region due to a proper treatment of the local absorption, as made for the first time in this model, is found also to vary with the wavelength as the OVII density reduction is higher than 20%, being lower than 9% for NeIX. Therefore, we can conclude that local absorption prevents us from the observation of deeper and denser regions for more absorbed emitting regions as the absorption is higher for the softer part of this very complex region.

In conclusion, we developed and tested a method to derive the X-ray emission from accretion shocks and we synthesized the images and spectra from detailed numerical models to be directly compared with the observations.

The role of the local absorption is crucial as well as the role of the inclination with respect to the LOS. The comparison between the models results and the observations can help in explaining the open issues in this context.

Acknowledgements. R. B. and C. A. acknowledge Dipartimento di Fisica e Chimica, Universita' di Palermo for financial support. R. B. acknowledges PRIN INAF P.I. B. Nisini for financial support.

References

Bonito, R. et al. 2014, in preparation

Brickhouse, N. S., Cranmer, S. R., Dupree, A. K., Luna, G. J. M., & Wolk, S. 2010, ApJ, 710, 1835

Curran, R. L., Argiroffi, C., Sacco, G. G., et al. 2011, A&A, 526, A104

Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228

Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2004, ApJ, 610, 920

Balucinska-Church, M., & McCammon, D. 1992, ApJ, 400, 699

196 Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

Figure .1.: Spectra derived from the numerical simulations without (black line) and with

Participants

Fred Adams (Univ. Michigan, fca@umich.edu) Vladimir Airapetian (NASA/GSFC, vladimir.airapetian@nasa.gov) Thomas Allen (University of Toledo, tom.sco@gmail.com) Kimberly Aller (University of Hawaii, kaller@ifa.hawaii.edu) Katelyn Allers (Bucknell University, k.allers@bucknell.edu) Francisco Javier Alonso Floriano (Universidad Complutense, fjalonso@ucm.es) Julian David Alvarado-Gomez (ESO, jalvarad@eso.org) Catarina Alves de Oliveira (European Space Agency, calves@sciops.esa.int) Marin Anderson (Caltech, mmanders@astro.caltech.edu) Guillem Anglada-Escude (Queen Mary, London, guillem.anglada@gmail.com) Ruth Angus (University of Oxford, ruth.angus@astro.ox.ac.uk) Megan Ansdell (University of Hawaii, mansdell@ifa.hawaii.edu) Antoaneta Antonova (Sofia University, tony@phys.uni-sofia.bg) Daniel Apai (University of Arizona, apai@arizona.edu) Costanza Argiroffi (Univ. of Palermo, argi@astropa.unipa.it) Pamela Arriagada (DTM, CIW, parriagada@carnegiescience.edu) Kyle Augustson (High Altitude Observatory, kyle.augustson@gmail.com) Ian Avilez (Lowell Observatory, iavilez@lowell.edu) Sarah Ballard (University of Washington, sarahba@uw.edu) Daniella Bardalez Gagliuffi (UCSD, daniella@physics.ucsd.edu) Sydney Barnes (Leibniz Inst Astrophysics, sbarnes@aip.de) Eddie Baron (Univ. of Oklahoma, baron@ou.edu) Gibor Basri (UC Berkeley, basri@berkeley.edu) Fabienne Bastien (Vanderbilt University, fabienne.a.bastien@vanderbilt.edu) Juan Carlos Beamin (PUC chile / ESO, jcbeamin@astro.puc.cl) Benjamin Beeck (MPS, beeck@mps.mpg.de) Carolina Bergfors (University College London, c.bergfors@ucl.ac.uk) Alexander Berkner (University of Hamburg, aberkner@hs.uni-hamburg.de) Luca Bertello (NSO, lbertello@nso.edu) Will Best (University of Hawaii, wbest@ifa.hawaii.edu) Emily Bevins (Lowell Observatory, ekbevins@gmail.com) Beth Biller (University of Edinburgh, beth.biller@gmail.com) Alexander Binks (Keele University, a.s.binks@keele.ac.uk) Catie Blazek (Lowell Observatory, catie@lowell.edu) John Bochanski (Haverford College, bochanski@gmail.com) Isabelle Boisse (LAM (Marseille, France), isabelle.boisse@lam.fr) Rosaria Bonito (UNIPA-INAF-OAPa, sbonito@astropa.unipa.it)