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Let R be a one-dimensional Cohen-Macaulay local ring and I an ideal of R.
It is well known that both the classical construction of Nagata’s idealization
R⋉ I and the recent construction R ⋊⋉ I, known as amalgamated duplication,
are Gorenstein when I is a canonical ideal of R. This property holds also for
a more general family of rings, the quadratic quotients of the Rees algebra
associated to R with respect to an ideal I and the elements a, b ∈ R, defined
in an attempt to provide a unified approach of the two construction above.
Since for a one-dimensional Noetherian domain the Gorenstein property is
equivalent to the divisorial property, our pourpose is to understand, in a
more general setting, when a quadratic quotient R(I)a,b is divisorial when I
is an m-canonical ideal of R.
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1

Introduction

Let R be a commutative ring with unit and M an R-module. M. Nagata, 1962,
in an attempt to derive primary decomposition of modules from primary
decomposition of ideals, introduced a sort of "ringification", i.e., put M inside
a new commutative ring A in such a way that M becomes an ideal of this
new ring. This construction is known as the idealization of M over R. More
precisely, this ring, usually indicated by R ⋉ M, is the set R × M endowed
with the ring structure whose addition is defined componentwise and whose
multiplication is defined by setting:

(r1, m1)(r2, m2) := (r1r2, r1m2 + r2m1),

for all r1, r2 ∈ R and m1, m2 ∈ M. This construction is very useful for pro-
ducing examples and counterexamples in commutative ring theory and for
reducing generalizing results from rings to modules, but the versatility of
this ring is limited by the fact that R ⋉ M is not reduced whenever M ̸= 0;
indeed M becomes an ideal whose square is zero.

A remarkable property of the idealization was discovered by I. Reiten,
1972, where it is proved that if R is a Cohen-Macaulay ring then R ⋉ M is
Gorenstein if and only if M is a canonical module of R.

More recently, D’Anna and Fontana, 2007a, introduced a new ring con-
struction that behaves similarly to Nagata’s idealization. Starting from a
ring R and an R-submodule M of its total ring of fractions Q(R) such that
M · M ⊆ M, they defined a new ring, called the amalgamated duplication of R
along M, as the following subring

R ⋊⋉ M := {(r, r + m) | r ∈ R, m ∈ M}

of R × Q(R). One of the main differences with respect to the idealization is
that this new family of rings can contain reduced rings, in particular R ⋊⋉ M
is always reduced when R is a domain. As for the idealization, M. D’Anna
proved that when E = I is a proper ideal of R and R is a local Cohen-
Macaulay ring with canonical module ωR, then R ⋊⋉ I is Gorenstein if and
only if I ∼= ωR (see D’Anna, 2006). In the attempt to provide a unified
approach, Barucci, D’Anna, and Strazzanti, 2015, introduced a new family
of rings that generalize both the two construction recalled above: starting
from a commutative ring R with identity, a nonzero proper ideal I of R and
a, b ∈ R, consider the quotient of the Rees algebra R associated to R with
respect I, by the contraction in R of the ideal of R[t] generated by the poly-
nomial t2 + at+ b. This new family of rings, denoted with R(I)a,b, generalizes
the Nagata’s idealization, R ⋉ I, and the amalgamated duplication R ⋊⋉ I. In
fact when a = b = 0 we have that R(I)0,0

∼= R ⋉ I and, when a = −1, b = 0,
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we have that R(I)−1,0
∼= R ⋊⋉ I. Another remarkable fact about this construc-

tion is that the ring R(I)a,b inherits many properties of the ring R which do
not depend on the choice of the elements a, b. For instance R and R(I)a,b share
the same Krull dimension, R(I)a,b is Noetherian if and only if R is Noethe-
rian, R(I)a,b is local if and only if R is local. Another interesting property
which R(I)a,b inherits from R, in case R local Cohen-Macaulay, is the prop-
erty to have a canonical reduction, i.e., the ring admits a canonical ideal that
is a reduction of the maximal ideal (see Frigenti, 2019): in Theorem 3.2 it is
shown that when R is a one-dimensional Cohen-Macaulay local ring and ad-
mits a canonical reduction J, then R(I)a,b has a canonical reduction for all
a, b ∈ R and for all I such that J ⊆ I.

The canonical ideal, introduced by Herzog and Kunz, 1971, is a particular
fractional ideal ω of R which admits the duality property that ω : (ω : I) = I
for every regular ideal I of R. When R is a one-dimensional local Cohen-
Macaulay ring and its integral closure R is finitely generated as R-module,
Beweis 4. of Satz 3.6 of Herzog and Kunz, 1971, shows the existence of a
canonical ideal ω of R such that R ⊆ ω ⊆ R. In this context Barucci, D’Anna,
and Strazzanti, 2016, showed that R(I)a,b admits also a canonical ideal ωR(I)a,b

such that ωR(I)a,b
∼= 1

z (ω : I) + 1
z ω; so in this particular case, the ring R(I)a,b

inherits the property of R to have a canonical ideal. One of the most inter-
esting consequences for a ring R that admits a canonical ideal I, in case R is
a local one-dimensional Noetherian domain, is that R(I)a,b is Gorenstein if
and only if I is a canonical ideal of R (see Corollary 3.3 of Barucci, D’Anna,
and Strazzanti, 2015). Since for a one-dimensional Noetherian local domain
R Theorem 6.3 of Bass, 1963, states that R is Gorenstein if and only if each
non zero ideals of R is divisorial, it is natural to ask in a more general setting,
not necessary Noetherian or local, if for a particular ideal I and a particu-
lar choice of a, b ∈ R, the domain R(I)a,b is divisorial, that is, every nonzero
ideal of R(I)a,b is divisorial. Since the key duality property of the canonical
ideal holds only in the one dimensional case, when we work in a more gen-
eral situation, we need to work with another ideal that satisfies the property
that I : (I : J) = J for all fractional ideals J of R. This concept was intro-
duced by Heinzer, Huckaba, and Papick, 1998, where the authors defined
for an integral domain R the multiplicative canonical (briefly m-canonical),
as an ideal I satisfying the above equality; moreover, in the one-dimensional
Cohen-Macaulay case the notion of canonical ideal and m-canonical ideal co-
incide.

The aim of this thesis is to understand in which cases the domain R(I)a,b
is divisorial, when I is an m-canonical ideal of R, trying to generalize what
happens in the one-dimensional Noetherian local case. The class of divisorial
domains is studied by Heinzer, 1968, in particular he characterized integrally
closed divisorial domains as h-local Prüfer domains each of whose maximal
ideals is finitely generated.

In the first chapter, we recall the construction of the quadratic quotients of
the Rees algebra associated to R with respect an ideal I and a, b ∈ R and we
recall some useful results for our purposes. Moreover, with terminology used
in Bazzoni and Salce, 1996, we recall the notion of reflexivity with respect an
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R-submodule of Q(R), and the notion of m-canonical ideal, together with its
main properties. We focus our attention on a particular construction, intro-
duced by Barucci et al., 2019, of domains with an m-canonical ideal and we
propose another construction which provides a particular non-Noetherian
domain with an m-canonical ideal. In the second chapter, we start by pre-
senting a key isomorphism that links the I-reflexivity of each regular ideal
of R(I)a,b to its reflexivity whit respect the R(I)a,b-module HomR(R(I)a,b, I),
providing the idea that starting with a domain R with an m-canonical ideal
the quotient R(I)a,b have also an m-canonical ideal, under the hypothesis
that each regular ideal of R(I)a,b is I-reflexive. Moreover, since in such a case
HomR(R(I)a,b, I) is free as R(I)a,b-module, R(I)a,b will be m-canonical of it-
self then divisorial. Thus, in case R(I)a,b is divisorial, we infer that R(I)a,b
inherits form R the property to have an m-canonical ideal. Following this
reasoning, and starting from the fact that in the one-dimensional Noetherian
local case this always happens, we continue our work trying to understand
which other classes of domains with an m-canonical ideal I produce a divi-
sorial quotient R(I)a,b. Since the h-local property is a necessary condition for
a domain to be divisorial or to have an m-canonical ideal, we are interested
to understand when R(I)a,b is h-local starting from a domain R which is also
h-local. In the one-dimensional case, the h-local property is equivalent to the
property to have a finite character and we can prove that R has this property
if and only if R(I)a,b also has it. Moreover, when R is h-local and a = 0, we
prove that R(I)0,−b is an h-local domain for all b for which R(I)0,−b is a do-
main. For dimensions higher than one and when the polynomial is t2 + at+ b
with a ̸= 0, R(I)a,b can fail to inherit the h-local property from R and we
present an appropriate counterexample. Known that the h-local property is
assured in the one-dimensional case, the first class of domains which are of
our interest are Dedekind domains, since for this kind of rings all principal
ideals are m-canonical. In particular, when the domain R is a PID, we can
prove that R(I)a,b is divisorial for all proper ideals I and for all a, b ∈ R
such that the polynomial t2 + at + b is irreducible in Q(R)[t]. When R is a
Dedekind domain but not a PID we can prove the same result for quotients
of type R(I)0,−b for all principal ideal I and for all b ∈ R which is not a square
in Q(R). More generally, since the divisoriality is a local property, the same
result holds for a generic quotient R(I)0,−b, where R is a one dimensional
Noetherian domain with an m-canonical ideal I and b ∈ R a non-square in
Q(R)[t]. After that, it is natural to focus our attention on the non-Noetherian
case, in particular, since we have to work with a domain which have an m-
canonical ideal, we study the case when we start from a valuation domain V
with non-principal maximal ideal m; for a valuation domain, in fact, it is well
known that the maximal ideal m is always an m-canonical ideal. Fuchs and
Salce, 2001, provided a useful necessary condition for a local domain with
non-principal maximal ideal to be divisorial. This result could be used to
provide, if there exists, an example of valuation domain V with non princi-
pal maximal ideal m such that the quotient V(m)0,−b is not divisorial for some
b ∈ V. In the last part of the work, we present different opened problems.
The first refers to a conjecture formulated by Matlis, 1968, then confirmed
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by Goeters, 1999, who suspected the existence of a divisorial domain with
a maximal ideal which is not two-generated; to give an answer to this con-
jecture, we present an example of divisorial domain with a maximal ideal
that could not be two-generated. Finally, in an attempt to find an example of
non-Noetherian valuation domain with quotient V(m)a,b not divisorial, we
present a possible costruction of this type of rings.
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Chapter 1

Some results about R(I)a,b

1.1 Preliminaries

Throughout this thesis with ring R we mean a commutative ring with unit
and we denote by Q(R) its total ring of fractions. For M, N two R-modules,
we will denote with

(M : N) := (M :Q(R) N),

where (M :Q(R) N) := {x ∈ Q(R) | xN ⊆ M}. In some example, with Zp we
indicate the quotient Z/pZ, where p is a prime element of Z.

Definition 1.1. An R-submodule F of Q(R) is regular if F ∩ R is a regular ideal of
R.

Definition 1.2. We say that a R-submodule F of Q(R) is a fractional ideal of R if
there exists a regular element r ∈ R\{0} such that rF ⊆ R. We say that a fractional
ideal F is regular if FQ(R) = Q(R). We denote with F (R) the set of fractional
ideals of R and with F (R)∗ the set of regular fractional ideals of R.

Definition 1.3. Let N be an R-module, we define the rank of N, rk(N), the maxi-
mum number of elements of N which are R-independent.

Let’s start by recalling some properties of the Nagata’s idealization (see Na-
gata, 1962 and Anderson and Winders, 2009), a classical construction which
has had notable results in commutative algebra. Starting from a ring R and
an R-module M, the idealization R⋉ M is a commutative ring with unit with
componentwise addition and multiplication (r1, m1)(r2, m2) = (r1r2, r1m2 +
r2m1) for all r1, r2 ∈ R and m1, m2 ∈ M. For every R-submodule N of M,
then 0 ⋉ N is an ideal of R ⋉ M, in particular 0 ⋉ M is a nilpotent ideal of
R ⋉ M of index 2. For every ideal I of R and R-submodule N of M, I ⋉ N
is an ideal of R ⋉ M if and only if IM ⊆ N (Anderson and Winders, 2009,
Theorem 3.1). The maximal ideals of R ⋉ M have the form m⋉ M, where
m is a maximal ideal of R, so R ⋉ M is local if and only if R is local and
have the same set of residue fields. The prime ideals of R ⋉ M have the form
p⋉ M where p is a prime ideal of R. Moreover ht(p⋉ M) = ht(p) and so
dim(R ⋉ M) = dim(R) (Anderson and Winders, 2009, Theorem 3.2). The set
of zerodivisors of R ⋉ M is Z(R ⋉ M) = {(r, m) | r ∈ Z(R) ∪ Z(M)}, hence
S ⋉ M where S = R\(Z(R) ∪ Z(M)) is the set of regular elements (Ander-
son and Winders, 2009, Theorem 3.5). If S is a multiplicatively closed subset
of R and N is an R-submodule of M, then S ⋉ N is a multiplicatively closet
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subset of R ⋉ M (Anderson and Winders, 2009, Theorem 3.8), moreover the
localization (R ⋉ M)S⋉N is naturally isomorphic to RS ⋉ MS and so the to-
tal ring of fraction T(R ⋉ M) of R ⋉ M is naturally isomorphic to RS ⋉ MS,
where S = R\(Z(R) ∪ Z(M)) (Anderson and Winders, 2009, Theorem 4.1).
R ⋉ M is Noetherian, respectively Artinian, if and only if R is Noetherian,
respectively Artinian, and M is finitely generated (Anderson and Winders,
2009, Theorem 4.8). If R is a Cohen-Macaulay ring, then R ⋉ M is Gorenstein
if and only if M is a canonical module of R (Reiten, 1972, Theorem 7).

A more recent construction that behaves similar to Nagata’s idealization
from several points of view, is the so called amalgamated duplication (see D’Anna
and Fontana, 2007a and D’Anna and Fontana, 2007b). Starting from a ring R
and an R-module M of Q(R), this new family of rings denoted by R ⋊⋉ M, is
defined as the set R ⊕ M endowed with componentwise addition and multi-
plication defined by setting (r1, m1)(r2, m2) := {(r1r2, r1m2 + r2m1 + m2m1)}.
This operations make R ⋊⋉ M a commutative ring with unit. In the particular
case when E = I is an ideal of R, the ring R ⋊⋉ I satisfies properties similar
to those the Nagata’s idealization. Indeed, by Corollary 3.3 of D’Anna and
Fontana, 2007a dim(R ⋊⋉ I) = dim(R) and R is Noetherian if and only if
R ⋊⋉ I is Noetherian. With regard to the prime spectrum of R ⋊⋉ I, it is more
complicated than the prime spectrum of the idealization, for a more accurate
description we refer to D’Anna and Fontana, 2007a. As for idealization in the
case R is Cohen-Macaulay, R ⋊⋉ I is Gorenstein in and only if I is a canonical
ideal of R (D’Anna, 2006, Theorem 11).
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1.1.1 m-canonical ideal

In this section we recall some results about m-canonical ideals, that we can
find in Heinzer, Huckaba, and Papick, 1998 and Barucci et al., 2019. For the
rest of section, we denote by R an integral domain.

Proposition 1.4. The following properties hold.
i) F (R) is closed under sum, intersection and multiplication.
ii) For F ∈ F (R) and H ∈ F (R)∗, then (F : H) ∈ F (R).

Proposition 1.5. Let I be an ideal of R and F ∈ F (R)∗, then (I : F) is isomorphic
to HomR(F, I).

Given two R-modules F, H, we have a canonical homomorphism:

ρF : F → HomR(HomR(F, H), H)

a 7−→ ρF(a) : HomR(F, H) → H where ρF(a)( f ) = f (a)

for all f ∈ HomR(F, H) and a ∈ F.

Definition 1.6. We say that an R-module F is H-torsionless if ρF is a monomor-
phism, H-reflexive if ρF is an isomorphism.

Following Bazzoni and Salce, 1996, we recall the following notation:

Definition 1.7. If H is a given R-submodule of Q(R), we say that R is H-divisorial
(respectively H-reflexive), if every H-torsionless EndR(H)-module of rank one (resp.
of finite rank) is H-reflexive. R-reflexive and R-divisorial rings will be simply called
"reflexive" and "divisorial" respectively.

Remark 1.8. If I is an ideal of R and J ∈ F (R)∗, then the map ρJ corresponds to
the inclusion J ⊆ (I : (I : J)), so it is a monomorphism, therefore J is I-torsionless.

Definition 1.9. We say that the ideal I of R is a m-canonical ideal if each J ∈ F (R)∗

is I-reflexive.

In the following we recall several properties of the m-canonical ideal.

Lemma 1.10 (Lemma 2.2, Heinzer, Huckaba, and Papick, 1998). Let I be an
m-canonical ideal of a domain R. Then:

1) (I : I) = R.

2) If I is a prime ideal, then I is a maximal ideal.

3) I : (I : J) = J for each non zero fractional ideal J of R.

Remark 1.11. In order to verify that the ideal I is m-canonical, it is sufficient to test
the I-reflexivity for all the ideals of R. In fact, every J ∈ F (R)∗ is I-reflexive if and
only if dJ is I-reflexive, for all d ∈ R such that dJ ⊆ R.
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Proof. If J ∈ F (R)∗ is I-reflexive, then J = (I : (I : J)). For every element
d ∈ R, dJ ∈ F (R)∗ and then (I : dJ) ∈ F (R) and (I : (I : dJ)) ∈ F (R); dJ =
d(I : (I : J)) = (I : (I : dJ)). Conversely, if dJ is I-reflexive for all regular
element d ∈ R such that dJ ⊆ R, then dJ = (I : (I : dJ)) = d(I : (I : J)); since
d is regular, then J = (I : (I : J)).

Corollary 1.12. I is m-canonical if and only if each ideal J of R is I-reflexive.

Definition 1.13. A domain R is said to have finite character if every non zero ideal
of R is contained only in finitely many maximal ideals.

Example 1.14. Local and semilocal Dedekind domains have the finite character. On
the other hand k[x, y], with k a field, does not have the finite character.

Definition 1.15. A domain R is said to be h-local if it satisfies the following two
conditions:
1) R has finite character;
2) every non-zero prime ideal of R is contained in a unique maximal ideal.

Remark 1.16. If R is a one-dimensional domain, since every nonzero prime ideal is
maximal, then R is h-local if and only if R has finite character.

A necessary condition for a domain R to have an m-canonical ideal is the
following:

Proposition 1.17 (Proposition 2.4, Heinzer, Huckaba, and Papick, 1998). If R
has an m-canonical ideal, then R is h-local.

Proposition 1.18 (Corollary 3.4, Heinzer, Huckaba, and Papick, 1998). Let I
be an ideal of R such that (I : I) = R. If J is a divisorial fractional ideal, then J is
I-divisorial.

Remark 1.19 (Remark 3.7, Heinzer, Huckaba, and Papick, 1998). From the last
proposition, if D is a Dedekind domain, then each non zero ideal of D is m-canonical.

Proposition 1.20 (Proposition 4.3, Heinzer, Huckaba, and Papick, 1998). Let
R be a Noetherian domain. If R has an m-canonical ideal, then dim(R) ≤ 1.

Proposition 1.21 (Proposition 6.2, Heinzer, Huckaba, and Papick, 1998). Let
(R,m) be a local integrally closed domain. Then, m is an m-canonical ideal for R if
and only if R is a valuation domain.

Theorem 4.7 of Bazzoni and Salce, 1996 shows that R is I-divisorial, for a
proper nonzero submodule I of Q(R), if and only if the endomorphism ring
S of I is h-local and every localization at maximal ideal m of S is Im-divisorial.
Thus the converse of Proposition 5.5 of Heinzer, Huckaba, and Papick, 1998
holds true:

Proposition 1.22. Let I be a non zero ideal of R such that (I : I) = R. Then I is an
m-canonical ideal of R if and only if R is h-local and Im is an m-canonical ideal for
Rm for every maximal ideal m of R.
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1.2 Quadratic quotients of the Rees algebra

In this chapter, we recall some helpful results for the next part of the work.
All unproven results and definitions can be found in Barucci, D’Anna, and
Strazzanti, 2015 and D’Anna and Strazzanti, 2017. Let I ̸= 0 be a proper ideal
of a ring R and let a, b ∈ R. We consider the Rees algebra associated to R and
I, defined as the following subring of R[t]:

R :=
⊕
n≥0

Intn

Finally let R(I)a,b denote the factor ring of R modulo the contraction in R of
the principal ideal of R[t] generated by the monic polynomial t2 + at+ b, that
is,

R(I)a,b := R/(R∩ (t2 + at + b)R[t]).

The ring R(I)a,b is also known as the quadratic quotient of the Rees algebra associ-
ated to R with respect to I and the polynomial t2 + at+ b. As an R-module, R(I)a,b
is isomorphic to R ⊕ I: more precisely, given a polynomial g ∈ R, there is a
unique pair (r, i) ∈ R ⊕ I such that r + it is the representative of the equiva-
lence class of g in R(I)a,b (Lemma 1.2 Barucci, D’Anna, and Strazzanti, 2015).
With a small abuse of notation, we will identify r + it with its equivalence
class in R(I)a,b. It easily follows from the definition that the multiplication of
R(I)a,b is defined by

(r + it)(s + jt) = rs − bij + (rj + si − aij)t,

for every r + it, s + jt ∈ R(I)a,b.
It is well known that for particular choices of a and b, we get particular

rings constructions:

1) if t2 + at + b = (t − α)2, with α ∈ R, then R(I)a,b is isomorphic to R ⋉ I

2) if t2 + at + b = (t − α)(t − β), and (t − α), (t − β) are comaximal ideals
of R[t], then R(I)a,b is isomorphic to R ⋊⋉ I.

Proposition 1.23 (Proposition 1.7, Barucci, D’Anna, and Strazzanti, 2015). If
Q(R) is the total ring of fractions of R, then the total ring of fractions of R(I)a,b is:

Q(R(I)a,b) =
{r + it

u
| r ∈ R, i ∈ I, u is a regular element of R

}
As we can see in the following propositions, the ring R(I)a,b inherits many
properties of the starting ring R, and do not depend on the choice of the ideal
I or of the elements a, b.

Proposition 1.24 (Proposition 1.3, Barucci, D’Anna, and Strazzanti, 2015). For
all ideal I and a, b ∈ R, the ring extensions

R ⊆ R(I)a,b ⊆ R[t]/(t2 + at + b)

are integral, and thus the three rings have the same Krull dimension.
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Proposition 1.25 (Proposition 1.11, Barucci, D’Anna, and Strazzanti, 2015).
The following conditions are equivalent:
1) R is Noetherian;
2) R(I)a,b is Noetherian for all a, b ∈ R;
3) R(I)a,b is Noetherian for some a, b ∈ R.

Proposition 1.26 (Proposition 2.1, Barucci, D’Anna, and Strazzanti, 2015). R
is a local ring of maximal ideal m, if and only if R(I)a,b is a local ring. In this case,
the maximal ideal of R(I)a,b is m+ It.

An interesting variation of quotient of Rees algebras was introduced by
Licata, 2022 as follows. Given a ring R, consider an element b ∈ R and a
fractional ideal I ⊆ Q(R) of R such that bI2 ⊆ R. Then consider the following
subring

R + It := {α + βt | α ∈ R, β ∈ I}

of the factor ring Q(R)[t]
(t2−b)Q(R)[t] (where, as before, α + βt is identified with its

equivalence class in the quotient). In Licata, 2022 a complete characterization
of when R + It is an integral domain is provided and a number of results
about quotient of Rees algebras have their canonical counterpart for rings
of the type R + It, mutatis mutandis. It is worth noting that in case R is a
Dedekind domain and R + It is a domain, the integral closure of R + It (in
its quotient field) is R + Ĩt, where

Ĩ := {i ∈ Q(R) | bi2 ∈ R}.

Now, we want to give a deeper insight to the ideal structure of R(I)a,b.

Lemma 1.27. Given H, J ideals of R with H ⊆ I, J + Ht is an ideal of R(I)a,b if
and only if bIH ⊆ J and I J ⊆ H.

Proof. ⇒). Suppose that J + Ht is an ideal of R(I)a,b; in particular for all
h ∈ H, i ∈ I, (ht)(it) ∈ J + Ht, then −bih − aiht ∈ J + Ht, so bih ∈ J.
Moreover for all i ∈ I, j ∈ J, also j(it) ∈ J + Ht, thus ij ∈ H.
⇐). Suppose that bIH ⊆ J and I J ⊆ H, then

(r + it)(j + ht) = rj − bih + (rh + ij − iha)t ∈ J + Ht

for all r ∈ R, i ∈ I, j ∈ J, h ∈ H. This implies that J + Ht is an ideal of
R(I)a,b.

For an ideal E of R(I)a,b,

A := {r ∈ R | ∃ i ∈ I such that r + it ∈ E}

B := {i ∈ I | ∃ r ∈ R such that r + it ∈ E}.

It is easy to check that both A and B are ideals of R and B ⊆ I.

Proposition 1.28. With the notations above, A + Bt is an ideal of R(I)a,b.
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Proof. It is sufficient to prove that i) bIB ⊆ A and ii) IA ⊆ B.
i) For all β ∈ B there exists r ∈ R such that r + βt ∈ E, moreover for all i ∈ I
we have (r + βt)(it) = −ibβ + (ri − iaβ) ∈ E thus ibβ ∈ A.
ii) For all α ∈ A, there exists j ∈ I such that α + jt ∈ E, moreover for all i ∈ I
we have (α + jt)(it) = −bij + (αi − aij)t ∈ E. Since αi − aij ∈ B and aij ∈ B,
it follows that αi ∈ B.

Definition 1.29. We say that an ideal E of R(I)a,b is homogeneous if

E = A + Bt.

Lemma 1.30 (Lemma 1.1, D’Anna and Strazzanti, 2017). Let p be a prime ideal of
R and suppose that t2 + at + b = (t − ᾱ/γ̄)(t − β̄/γ̄) in Q(R/p)[t]. Let α, β, γ ∈
R such that their classes modulo p are, respectively, ᾱ, β̄, γ̄. Then, the two sets:

p1 := {r + it | r ∈ R, i ∈ I, γr + αi ∈ p},

p2 := {r + it | r ∈ R, i ∈ I, γr + βi ∈ p}
do not depend on the choice of α, β and γ and are prime ideals of R(I)a,b. Moreover,
p1 = p2 if and only if (α − β)I ⊆ p.

Proposition 1.31 (Proposition 1.2, D’Anna and Strazzanti, 2017). Let p be a
prime ideal of R.

1) If t2 + at + b is irreducible in Q(R/p)[t], then the only prime ideal of R(I)a,b
lying over p is q := {p + it | p ∈ p, i ∈ I ∩ p}.

2) If t2 + at + b = (t − ᾱ/γ̄)(t − β̄/γ̄) in Q(R/p)[t], then the ideals p1, p2
defined in the previous lemma are the only prime ideals of R(I)a,b lying over
p.

Corollary 1.32 (Corollary 1.3, D’Anna and Strazzanti, 2017). R(I)a,b is an in-
tegral domain if and only if R is an integral domain and t2 + at + b is irreducible in
Q(R)[t].

Remark 1.33. As consequence of Proposition 1.2 of Barucci, D’Anna, and Straz-
zanti, 2016 if m ∈ Max(R), there are at most two maximal ideals of R(I)a,b lying
over m, precisely:
1) If t2 + at + b is irreducible in (R/m)[t], then the only maximal ideal lying over
m is m+ (m∩ I)t.
2) If t2 + at + b = (t − ᾱ)(t − β̄) in (R/m)[t] and (α − β)I ⊆ m, then the only
maximal ideal lying over m is m1 = {r + it | r ∈ R, i ∈ I, r + αi ∈ m}.
3) If t2 + at + b = (t − ᾱ)(t − β̄) in (D/m)[t] but (α − β)I ̸⊆ m, there are two
distinct maximal ideals lying over m:

m1 = {r + it | r ∈ R, i ∈ I, r + αi ∈ m},

m2 = {r + it | r ∈ R, i ∈ I, r + βi ∈ m}.



12 1. Some results about R(I)a,b

1.3 Example of non-Noetherian domain with an m-
canonical ideal

Barucci et al., 2019 provided the following helpful construction of integral
domain which have an m-canonical ideal. Let K ⊆ L a finite field extension,
n > 1 an integer and V be a valuation domain of the form L + M, where M
is the maximal ideal of V. If we define R := K + Mn, since V/Mn is a finite
dimensional K-vector space, we can choose a1, . . . , am ∈ V such that a1 = 1,
am ∈ Mn−1\Mn and {ā1, . . . , ām} is a K-basis for V/Mn. Then, Theorem 1.15
of Barucci et al., 2019 shows that W = Ra1 + . . . + Ram−1 is an m-canonical
ideal of R.

Example 1.34. Let V := L[[X]] + YL((X))[[Y]] where L := Q(
√

2) and X, Y
are indeterminates over L. V is a valuation domain with maximal ideal M := XV.
The ring R := Q + X2V is a non-Noetherian domain with m-canonical ideal I :=
X2(Q(

√
2) + XQ + X2V).

Now we present an example of one-dimensional Noetherian domain with
an m-canonical ideal. Let’s start recalling a useful construction made by Gul-
liksen, 1974, we anticipate that this construction will be used in Example 3.7.
Let k be a field and we consider D := k[xn | n ∈ N]. Consider the partition
F = {A1 = {x0, x1}, A2 = {x2}, . . . , An = {xn}, . . .} of {xn | n ∈ N} and let
pAi = AiD. Finally, let R := DS, where S := D\⋃

Ai∈F pAi . Gulliksen, 1974
proved that Max(R) = {mi := AiR | Ai ∈ F} and dim(R) = 2.

Proposition 1.35. Let R := DS as before. We have that:

1) R is an h-local domain;

2) Rmi
∼= k(xn | n ̸= i)[xi](xi)

for all i ≥ 2;

3) Rm1
∼= k(xn | n ̸= 0, 1)[x0, x1](x0,x1)

;

4) R is a Noetherian domain.

Proof. 1) The finite character follows easily by definition. Moreover, for all
i ≥ 2, mi contain only 0 as prime ideal thus every non zero prime ideal is
contained in m1.

2) For all i ≥ 2 we have that Rmi =
(

DAiD
)

S = DAiD = k(xn | n ̸=
i)[xi](xi)

.

3) Similarly to point 2) Rm1 =
(

DA1D
)

S = DA1D = k(xn | n ̸= 0, 1)[x0, x1](x0,x1)
.

4) R is a Noetherian domain since is locally finite and locally Noetherian.

Proposition 1.36. With the notation above, the quotient R̃ := R/(x3
0 − x2

1), is
a one-dimensional h-local Noetherian domain, with Max(R̃) = {miR̃ | i ≥ 1},
moreover the ideal I = (∏i≥2 xi)R̃ is an m-canonical ideal.
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Proof. Since:

R̃m1R̃
∼= k(xn | n ̸= 0, 1)[t2, t3](t2,t3) and R̃mi R̃

∼= k(xn | n ̸= i)[xi](xi)

for all i ≥ 2, we have that:

1) IR̃m1R̃
∼= k(xn | n ̸= 0, 1)[t2, t3](t2,t3) which is divisorial, so canonical of

itself.

2) IR̃mi R̃
∼= xik(xn | n ̸= i)[xi](xi)

for all i ≥ 2, which is an m-canonical
ideal, since it is the maximal ideal of a DVR.

3) I : I = (∏i≥2 xi)R̃ : (∏i≥2 xi)R̃ = (∏i≥2 xi)(∏i≥2 xi)
−1(R : R) = R.

By using Proposition 1.22, we can conclude that I is an m-canonical
ideal for R̃, so R̃ is a Noetherian one-dimensional domain, with an m-
canonical ideal.
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Chapter 2

m-canonical ideal for R(I)a,b

The aim of this chapter is to detect when R(I)a,b is a divisorial domain, in
case R is a domain with an m-canonical ideal I.

Proposition 2.1. Let R be a domain with m-canonical ideal I, and let E a regular
fractional ideal of R(I)a,b, then:

HomR(E ⊗R(I)a,b
R(I)a,b, I) ∼= HomR(I)a,b

(E, HomR(R(I)a,b, I))

as R-module and R(I)a,b-module.

Proof. We can observe that R(I)a,b is an R(I)a,b-module, E⊗R(I)a,b
R(I)a,b is an

R(I)a,b-module and it is also an R-module with r · (x ⊗R(I)a,b
y) = x ⊗R(I)a,b

ry for all x ∈ E, y ∈ R(I)a,b. We can give a structure of R(I)a,b-module to
IR(I)a,b := HomR(R(I)a,b, I) with the external product:

(r + it) ◦ f := f(r+it) : R(I)a,b → I

by defining f(r+it)(s + jt) = f ((r + it)(s + jt)).
These conditions are sufficient to give the isomorphism of abelian groups:

Ψ : HomR(E ⊗R(I)a,b
R(I)a,b, I) → HomR(I)a,b

(E, HomR(R(I)a,b, I))

f 7−→ Ψ( f ) : E → HomR(R(I)a,b, I)

Ψ( f )(e)(r + it) := f (e ⊗ (r + it))

Now, we observe that HomR(I)a,b
(E, HomR(R(I)a,b, I)) is also an R-module,

by defining the external product:

r ⋆ f : E → HomR(R(I)a,b, I)

e 7−→ (r ⋆ f )(e) : R(I)a,b → I

(r ⋆ f )(e)(r + it) = r f (e)(r + it)

An easy verification of the linearity of the map shows that the isomorphism
holds as R-module.
We can give, like for IR(I)a,b , the structure of R(I)a,b-module to HomR(E⊗R(I)a,b

R(I)a,b, I), by defining:

(r + it) ◦ f := f(r+it) : E ⊗R(I)a,b
R(I)a,b → I
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f(r+it)(e ⊗ (s + jt)) := f (e ⊗ (r + it)(s + jt))

An easy verification of the linearity of the map shows that the isomorphism
holds as R(I)a,b-modules.

Remark 2.2. By defining IR(I)a,b := HomR(R(I)a,b, I) and with the previous nota-
tions we have:

HomR(E, I) ∼= HomR(I)a,b
(E, IR(I)a,b) as E ⊗R(I)a,b

R(I)a,b
∼= E

and:

HomR(I)a,b
(HomR(I)a,b

(E, IR(I)a,b), IR(I)a,b) ∼= HomR(HomR(I)a,b
(E, IR(I)a,b), I) ∼=

∼= HomR(HomR(E, I), I)

as R-module and R(I)a,b-modules.

Corollary 2.3. With the previous notations, if each regular ideal of R(I)a,b is I-
reflexive, i.e. HomR(HomR(E, I), I) ∼= E, then

E ∼= HomR(HomR(E, I), I) ∼= HomR(I)a,b
(HomR(I)a,b

(E, IR(I)a,b), IR(I)a,b)

so IR(I)a,b is an m-canonical ideal of R(I)a,b.

Proposition 2.4. If I is an ideal of R such that (I : I) = R, then IR(I)a,b is a free
R(I)a,b-module of rank 1.

Proof. Let φ ∈ IR(I)a,b , since R(I)a,b
∼= R ⊕ I as R-modules, φ is uniquely de-

termined by φ|R and φ|It. φ|R ∈ HomR(R, I) ∼= I thus φ|R is the multiplica-
tion by an element i ∈ I. Since I ∼= It as R-modules, φ|It ∈ HomR(I, I) ∼= R,
thus φ|It is the multiplication by an element r ∈ R. It is then easy to check
that IR(I)a,b = {η(r,i) | r ∈ R, i ∈ I}, where η(r,i) : R(I)a,b → I is defined by
η(r,i)(s + jt) = rj + si. If π ∈ IR(I)a,b is such that π(r + it) = i, we claim
that {π} is a base of IR(I)a,b as an R(I)a,b-module. In order to prove this, fix
η(r,i) ∈ IR(I)a,b and we look for x + yt ∈ R(I)a,b such that η(r,i) = (x + yt) ⋆ π.
Since i = η(r,i)(1) = ((x + yt) ⋆ π)(1) = π(x + yt) = y, we have y = i. If
we consider a regular element k ∈ I, rk = η(r,i)(kt) = ((x + it) ⋆ π)(kt) =

π(kt(x + it)) = π(−bki + (xk − aik)t) = xk − aik. Since k is regular, the
equality rk = xk − aik implies r = x − ai, and thus x = r + ai.

Proposition 2.5. If E is an homogeneous ideal of R(I)a,b, and I is an m-canonical
ideal of R, then E is I-reflexive.

Proof. It sufficies to note that

HomR(HomR(E, I), I) ∼= HomR(HomR(A ⊕ B, I), I) ∼=

∼= HomR(HomR(A, I)⊕ HomR(B, I), I) ∼=
∼= HomR(HomR(A, I), I)⊕ HomR(HomR(B, I), I) = A ⊕ B ∼= E
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Let R be a ring with a m-canonical ideal I, and let E be a regular ideal
of R(I)a,b. The natural immersion of E in R ⊕ I, induces on E a structure of
R-submodule of R2. We observe that E is I-torsionless, in fact:
E is I-torsionless if and only if ρE is injective, if and only if for all x ∈ E\{0}
there exists f ∈ HomR(E, I) such that ρE(x)( f ) := f (x) ̸= 0. Let x = x1 +
x2t ∈ E\{0}, πi : R2 → R the ith projection, and y ∈ I such that yxi ̸= 0 for
some i = 1, 2, we consider the following maps:

E i−→ R2 πi−→ R
·y−→ I

let f ∈ HomR(E, I) be the composition of the functions above, we have that
f (x) ̸= 0, thus E is I-torsionless.

Remark 2.6. If N is an R-submodule of Rn, then rk(N) ≤ n, since R-independent
elements of N ⊆ Rn are also R-independent as elements of Rn. In particular for
every ideal N of R(I)a,b, rk(N) ≤ 2 as R-module.

Lemma 2.7 (Fuchs and Salce, 2001, Chapter IV, Lemma 5.1). Let R be an inte-
gral domain and A a nonzero R-submodule of Q(R). For a torsion-free R-module
M of finite rank n, the following conditions are equivalent:
(a) M is A-torsionless;
(b) HomR(M, A) has rank n;
(c) rank 1 torsion-free quotients of M are isomorphic to submodules of A;
(d) M can be embedded in An.

If R is an integral domain and E a regular ideal of R(I)a,b. Since E is an
R-module of finite rank, by Lemma 2.7, if rk(E) = 1, E is isomorphic to a
R-submodule of I so can be seen as a regular ideal of R. Since I is an m-
canonical ideal, then E is I-reflexive.

Lemma 2.8 (Fuchs and Salce, 2001, Chapter IV, Proposition 5.2). Let R be a
domain with m-canonical ideal I, let

0 → N → M → M/N → 0

be an exact sequence of torsion-free R-module. If M is I-torsionless, then both N and
M/N are I-torsionless.

Remark 2.9. Given R a domain with an m-canonical ideal, for all E regular ideal
of R(I)a,b of rank 2, which is in particular I-torsionless, it is possible to find a R-
submodule L of E of rank 1 such that E/L is torsion-free of rank 1. As a matter of
fact, we consider the embedding R ↪→ R(I)a,b and we take the contraction L := Ec

in R; as E is a regular ideal, then L ̸= 0. Since L is an R-submodule of E and
L ⊆ R, L is torsion-free of rank 1. We claim that the quotient E/L is also torsion-
free of rank 1. Indeed: for all non-zero (r + it) + L ∈ E/L, in particular i ̸= 0,
λ((r + it) + L) = 0E/L ⇐⇒ λr + λit ∈ L ⊆ R, in particular λi = 0 this
implies that λ = 0. This proves that E/L is torsion-free. Consider nonzero elements
η = (r + it) + L, ζ = (s + jt) + L,∈ E/L, in particlar i, j ̸= 0. Since rk(I) = 1
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as an R-module there exist nonzero λ, µ ∈ R such that λi + µj = 0, for example
λ = j, µ = −i. Then j((r + it) + L) + (−i)((s + jt) + L) is an element of E/L,
and thus jr + (−i)s ∈ L so jη + (−i)ζ = 0E/L with i, j ̸= 0, proving that η, ζ are
linearly dependent. It follows that E/L has rank 1.

Remark 2.10. We consider the following exact sequence:

0 → Ec → E → E/Ec → 0.

By Proposition 2.8, both Ec and E/Ec are I-torsionless and by Lemma 2.7, both E
and E/Ec can be embedded in R, so they are I-reflexive thus the maps ρEc and ρE/Ec

are isomorphisms. For simplicity, we denote with (E∗)∗ := HomR(HomR(E, I), I).
Consider the following diagram:

0 0 0

0 Ec E E/Ec 0

0 (Ec∗)∗ (E∗)∗ (E∗)∗/(Ec∗)∗

0 0

ρEc ρE

π

ρE/Ec

If this is a commutative diagram with exact rows, since π, ρEc and ρE/Ec are sur-
jective, then ρE is surjective and thus an isomorphism of R-modules. Since R ⊆
R(I)a,b, the map ρE is R(I)a,b-linear, thus is also an isomorphism of R(I)a,b-modules.

Consider the following exact sequence:

0 → Ec i−→ E π−→ E/Ec → 0,

where E is an homogeneous ideal of R(I)a,b. By applying the functor HomR(−, I)
we obtain the sequence:

0 → HomR(E/Ec, I) π∗
−→ HomR(E, I) i∗−→ HomR(Ec, I)

The map i∗ is surjective. For all φ ∈ HomR(Ec, I) take the R-linear map
ψ : E → I such that

ψ(r + jt) = φ(r) for every r + jt ∈ E ⊆ Ra,b(I).

By definition φ = i∗(ψ) = ψi. By applying again the functor HomR(−, I),
the sequence

0 → HomR(HomR(Ec, I), I) i∗∗−→ HomR(HomR(E, I), I) π∗∗
−−→ HomR(HomR(E/Ec, I), I)

is exact.
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Proposition 2.11. Let I be an ideal of a ring R. If each regular homegeneous ideal E
of R(I)a,b is I-reflexive (in the sense that the map ρE is an isomorphism as R-modules
and R(I)a,b-modules) then I is an m-canonical ideal of R.

Proof. Let H be a regular ideal of R, so H + Ht is a regular ideal of R(I)a,b.
Let H∗ := HomR(HomR(H, I), I). By hypothesis, the map ρH+HIt is an iso-
morphism. Then by considering the short exact sequence

0 → H i−→ H + HIt π−→ HIt → 0

and dualizing it twice, we get the exact sequence

0 → H∗ i∗∗−→ (H + HIt)∗ π∗∗
−−→ HIt∗

since i∗ is surjective. If we consider the following diagram

0 0 0

0 H H + HIt HIt 0

0 H∗ (H + HIt)∗ (HIt)∗

0

ρH ρH+HIt ρHIt

i∗∗
,

since HIt ∼= HI as R-modules and since H is a regular ideal and in particular
I-torsionless, by the five Lemma, ρH is an isomorphism of R-modules.

The previous facts lead to the following Theorem.

Theorem 2.12. Let R be a domain and I be an ideal of R such that (I : I) = R. We
consider the following conditions:
1) I is an m-canonical ideal for R;
2) IR(I)a,b is an m-canonical ideal for R(I)a,b for all a, b ∈ R;
3) IR(I)a,b is an m-canonical ideal for R(I)a,b for some a, b ∈ R;
4) R(I)a,b is an m-canonical ideal for R(I)a,b for some a, b ∈ R;
5) R(I)a,b is an m-canonical ideal for R(I)a,b for all a, b ∈ R.
We have that:

5) ⇐⇒ 2) =⇒ 3) ⇐⇒ 4) =⇒ 1)

Moreover, if every regular ideal E of R(I)a,b is I-reflexive, then all the previous
conditions are equivalent. We recall that points 4) and 5) are equivalent to saying
that R(I)a,b is a divisorial ring.

Proof. 5) ⇐⇒ 2) and 3) ⇐⇒ 4). Since (I : I) = R, by Proposition 2.4 IR(I)a,b

is a free R(I)a,b-module of rank 1, that is IR(I)a,b ∼= R(I)a,b, for all a, b ∈ R.
2) =⇒ 3). Trivial.
4) =⇒ 1). If R(I)a,b is an m-canonical ideal for R(I)a,b, for some a, b ∈ R, in
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particular each regular ideal E of R(I)a,b is I-reflexive. By Proposition 2.11, I
is an m-canonical ideal of R.
1) =⇒ 2). By Corollary 2.3, if I is an m-canonical ideal of R and every regular
ideal E of R(I)a,b is I-reflexive, then IR(I)a,b is an m-canonical ideal of R(I)a,b.

Remark 2.13. If I is an m-canonical ideal of R, in particular:

(IR(I)a,b : IR(I)a,b) = R(I)a,b.

By definition, R(I)a,b is divisorial if and only if each R(I)a,b-torsionless R(I)a,b-
module of rank 1 is R(I)a,b-reflexive, that is if and only if every regular ideal of
R(I)a,b is divisorial, i.e., for all regular ideals E of R(I)a,b we have

E ∼= HomR(I)a,b
(HomR(I)a,b

(E, R(I)a,b), R(I)a,b) ∼=

∼= HomR(I)a,b
(HomR(I)a,b

(E, IR(I)a,b), IR(I)a,b).

Since HomR(I)a,b
(HomR(I)a,b

(E, IR(I)a,b), IR(I)a,b) ∼= HomR(HomR(E, I), I), then
every regular ideal E of R(I)a,b is I-reflexive if and only if R(I)a,b is divisorial.

Keeping in mind the Remark 2.13, by studying when R(I)a,b is divisorial,
if we start from a domain R with an m-canonical ideal, we will find also the
existence of an m-canonical ideal for R(I)a,b. In the one-dimensional Noethe-
rian local case, Theorem 2.12 yields the following corollary.

Theorem 2.14. Let R be a one dimensional local Noetherian domain, I an ideal of R
such that (I : I) = R. Then the following conditions are equivalent.
1) I is an m-canonical ideal for R;
2) IR(I)a,b is an m-canonical ideal for R(I)a,b for all a, b ∈ R;
3) IR(I)a,b is an m-canonical ideal for R(I)a,b for some a, b ∈ R;
4) R(I)a,b is an m-canonical ideal for R(I)a,b for some a, b ∈ R;
5) R(I)a,b is an m-canonical ideal for R(I)a,b for all a, b ∈ R.

Proof. Since (I : I) = R, by Theorem 2.12 it is sufficient to prove that 1) =⇒
5). As a consequence of Corollary 3.3 of Barucci, D’Anna, and Strazzanti,
2015, R(I)a,b is Gorenstein. Then by Theorem 6.3 of Bass, 1963 R(I)a,b is divi-
sorial, so it is an m-canonical of itself.
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Chapter 3

Divisoriality of R(I)a,b

In this chapter, we investigate the divisiorality property of R(I)a,b, when we
start from a domain R with an m-canonical ideal I. By studying this property
and using Remark 3.13, we will be able to understand in which other cases,
other than the one dimensional Noetherian local case, Theorem 2.12 holds.

3.1 h-local property for R(I)a,b

Since the h-local property for a domain is a necessary condition to be divi-
sorial, we first investigate when R(I)a,b inherits this property from R. We
recall that in the one-dimensional case, the h-local property is equivalent to
the property to have a finite character.

Lemma 3.1. Let R be a ring, I an ideal of R and a, b ∈ R. Consider a nonzero
element η := r + it ∈ R(I)a,b. Then there exists a nonzero element ζ ∈ R(I)a,b
such that ηζ ∈ R.

Proof. If i = 0 then η ∈ R and thus we can obviously take ζ = 1. If i ̸= 0 then
the element ζ := r − ia − it ∈ R(I)a,b is nonzero and an easy computation
shows that ηζ ∈ R.

Corollary 3.2. Let R and I be as before and let E be a regular ideal of R(I)a,b. Then
R ∩ E ̸= 0.

Proof. Take a regular element η ∈ E. By the previous lemma, there exists
a nonzero element ζ ∈ R(I)a,b such that ηζ ∈ R ∩ E. Since η is regular, it
follows that ηζ ̸= 0.

Proposition 3.3. If R is a one-dimensional domain with finite character, then R(I)a,b
is a domain with finite character, for all I and for all a, b such that R(I)a,b is a do-
main.

Proof. Let E be a non-zero ideal of R(I)a,b and suppose that E is contained
in infinitely many maximal ideals, say {mi | i ∈ H, |H| = ∞}. We consider
the contraction Ec of E in R, thus Ec ⊆ mc

i for all i ∈ H, and we know that
mc

i ∈ Max(R). Since R is h-local and Ec ̸= 0 by the previous corollary, Ec

is contained in only finitely many maximal ideals, so eventually the ideals
mc

i must coincide, and they are in a finite number. But the maximal ideals
of R(I)a,b lying over a maximal ideal of R are at most two, as showed in
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Remark 1.33. Thus we get a contradiction and therefore E is contained in
finitely many maximal ideals.

Now we study the particular case a = 0, but for rings of any dimension.
If m ∈ Max(R) and n is a maximal ideal of R(I)0,−b lying over m, by Remark
1.33 only three cases can occur. We claim that the third case, for R(I)0,−b,
never occurs. In fact, if there exists i ∈ I, such that (α− β)i /∈ m, the following
results hold true.

Proposition 3.4. Let I be an ideal of R, m be a maximal ideal of R and n ∈
Max(R(I)0,−b) lying over m. Let b ∈ R such that t2 − b = (t − ᾱ)(t − β̄) in
(R/m)[t] and (α − β)I ̸⊆ m; let i ∈ I be an element such that (α − β)i /∈ m. Then
s + jt /∈ n if and only if s /∈ m.

Proof. First of all, we assume that n = {r+ jt | r ∈ R, j ∈ I, r+ αj ∈ m}. Let us
consider the element −βi + it, where i is the element fixed in the statement.
Notice that −βi + it /∈ n, in fact −βi + αi = (α − β)i /∈ m.

If we take s + jt /∈ n, we have (s + jt)(−βi + it) /∈ n, but, since (s +
jt)(−βi + it) = −sβi + ijb + (si − βji)t /∈ n, we obtain that i(−sβ + jb + αs −
αβj) /∈ m, thus s(α − β) + j(b − αβ) /∈ m; since α − β /∈ m and b − αβ ∈ m, it
follows that s /∈ m.

Conversely, take s + jt ∈ n; we need to prove that s ∈ m. Since we have
(s + jt)(−βi + it) = −sβi + ijb + (si − βji)t ∈ n, therefore i(−sβ + jb + αs −
αβj) ∈ m; then, since i /∈ m, s(α − β) + j(b − αβ) ∈ m and since α − β /∈ m
and b − αβ ∈ m, we conclude that s ∈ m.

The same argument holds for n = {r + jt | r ∈ R, j ∈ I, r + βj ∈ m}, by
using the key element αi − it /∈ n.

Corollary 3.5. For R(I)0,−b the third case of Remark 1.33 never occurs.

Proof. Let m be a maximal ideal of R such that t2 − b = (t − ᾱ)(t − β̄) in
(R/m)[t] and (α − β)I ̸⊆ m. In this case we know that there are two distinct
maximal ideals of R(I)0,−b lying over m precisely: m1 = {r + jt | r ∈ R, j ∈
I, r + αj ∈ m} and m2 = {r + jt | r ∈ R, j ∈ I, r + βj ∈ m}. By Proposition
3.4 it follows that if s + jt ∈ m1 then s ∈ m and, since s + αj ∈ m, also j ∈ m.
From this fact we get m1 ⊆ m+ (m ∩ I)t, which is a proper ideal of R(I)0,−b,
so from the maximality of m1, the equality follows. Since the same fact holds
for m2, the maximal ideals lying over m must coincide with m+(m∩ I)t. This
is a contraddition.

Proposition 3.6. If R is an h-local domain then R(I)0,−b is an h-local domain, for
every b for which R(I)0,−b is a domain.

Proof. As in Proposition 3.3, it easily follows that every ideal E of R(I)0,−b
is contained in finitely many maximal ideals. To get thesis, it is sufficient to
prove that each prime ideal is contained in a single maximal ideal. Let p ∈
Spec(R(I)0,−b), by Corollary 3.2 pc ̸= (0); if p ⊆ m1 ∩m2, then pc ⊆ mc

1 ∩mc
2;

since R is h−local, mc
1 = mc

2 and, by the previous corollary, m1 = m2.
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When a is different from 0 it might happen that, even if R is h-local, R(I)a,b
might not be h-local. In fact, from the condition mc

1 = mc
2 it does not follow

that m1 = m2: if t2 − b = (t − ᾱ)(t − β̄) in (R/m)[t] but (α − β)I ̸⊆ m, then
m1 and m2 are two distinct maximal ideals lying over m.

By using the same construction of Proposition 1.35, we provide an exam-
ple of an h-local domain R such that the quotient R(I)a,b, for a particular ideal
I and particular elements a, b ∈ R, is not h-local.

Example 3.7. We suppose that D = Q[X1, X2, X3], F = {A1 = {X1, X2}, A2 =
{X3}}, p1 = (X1, X2)D and p2 = X3D. If we consider S = D\(p1 ∪ p2) and
R = DS, by Proposition 1.35 R is an h-local domain with Max(R) = {p1R, p2R}.
If we choose f (T) = T2 − T + X1 and I = X3R, the domain R(I)−1,X1 is not h-
local. In fact, since in R/p1R f (T) = T2 − T has two roots α = 0 and β = 1, and
(α − β)I = I ̸⊆ p1R, then two distinct maximal ideals, say n1 and n2, lie over p1R.
Finally the prime ideal X1R ⊊ p1R induces by the Lying-over Theorem a prime ideal
p̃ of R(I)−1,X1 , which is contained both in n1 and n2.

3.2 The Noetherian case

In order to understand for which domains the conditions of Theorem 2.12
are true, we start from a Dedekind domain R. In this particular case, we
know that all principal ideals of R are m-canonical ideals. We are interested in
studying the quadratic quotients R(I)0,−b of the Rees algebra of the domain R
with respect to a principal ideal I, especially when R(I)0,−b is not a Dedekind
domain. We start with an example.

Example 3.8. Let R = Z, Q(R) = Q. For every proper ideal I of Z, R(I)0,−2 is a
domain, since t2 − 2 is irreducibile in Q[t]. Moreover, Ĩ = {i ∈ Q | 2i2 ∈ Z} =

Z, R(I)0,−2 = Z + Zt ̸= R(I)0,−2, so R(I)0,−2 is not integrally closed then is
not a Dedekind domain. If we pick I = 2Z, we want to understand the form of the
maximal ideals of R(I)0,−2. In Z2[t], the polynomial t2 − 2t has only the root 0 of
multiplicity 2, so there exists only one prime ideal over 2Z, which is 2Z + 2Zt.

On the other hand, for p ̸= 0, if t2 − 2 is irreducible in Zp[t], there is only one
prime ideal over pZ, we say mp := pZ + 2pZt. If t2 − 2 is reducible in Zp[t],
with roots a, b such that a + b = p, then there are two prime ideals lying over pZ,
say n1 = {r + it | r ∈ Z, i ∈ 2Z, r + ai ∈ pZ} and n2 = {r + it | r ∈
Z, i ∈ 2Z, r + bi ∈ pZ}. We can observe that in this case, since r + ai ∈ pZ, there
exists z ∈ Z such that r + ai = pz, so r = pz − ai and r + it = pz − ai + it =
pz + 2i′(−a + t). Since 2(−a + t) ∈ n1 we obtain n1 = (p,−2a + 2t)Z∗. In
the same way n2 = (p,−2b + 2t)Z∗. In both cases, each maximal ideal is either a
principal maximal ideal or a 2−generated maximal ideal.

Proposition 3.9 (Theorem 3.9, Matlis, 1968). Let R be a Noetherian domain of
dimension 1; if every maximal ideal can be generated by at most two elements, then
R is reflexive(then divisorial).

As conseguence of the last theorem, our domain R(I)0,−2 is divisorial,
thus R(I)0,−2 is canonical of itself, even if it is not Dedekind.
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The previous result on Z(I)0,−2 can be easily generalized if we start with
any PID and any nonzero proper ideal.

Proposition 3.10. Let R be a PID and let t2 + at + b ∈ R[t] be irreducible in
Q(R)[t]; then for all I = iR proper ideal of R, R∗ := R(I)a,b is a divisorial domain.

Proof. Let m = mR ∈ Max(R); if t2 + at + b is irreducible in (R/m)[t], then
there is only one prime ideal lying over m, that is the principal ideal m +
mIt = mR∗. On the other and, if t2 + at + b is reducible in (R/m)[t] and α, β
are its roots, then there are two prime ideal lying over m:

m1 = {r + jt | r ∈ R, j ∈ I, r + αj ∈ m}

m2 = {r + jt | r ∈ R, j ∈ I, r + βj ∈ m}
Since r+ αj ∈ m, it follows that r+ αid1 = md2, for some d1, d2 ∈ R; hence r =
md2 − αid1, and thus r + jt = md2 − αid1 + id1t = md2 + d1(−αi + it). Since
m,−αi + it ∈ m1, then m1 = (m,−αi + it)R∗; analogously m2 = (m,−βi +
it)R∗. In both cases, all the maximal ideal are principal or 2−generated, then
by Theorem 3.9, R∗ is divisorial.

Now, we are interested to understand what happens, when we start from
a domain R, which is Dedekind but not PID.

Let R be a Dedekind domain not PID, let I = xR be a principal ideal, so
an m-canonical ideal for R. We want to understand when, under the hypoth-
esis that b is an element of R, which is not a square in Q(R) and such that
R(xR)0,−b is not integrally closed, the domain R(xR)0,−b is reflexive.

Proposition 3.11 (Theorem 4.7, Bazzoni and Salce, 1996). Let R be a domain;
the following facts are equivalent:
1) R is divisorial.
2) R is h-local and Rm is divisorial for all maximal ideal m.

In light of the last proposition, a good approach to our problem is to study
the localizations of R(xR)0,−b.

For all n ∈ Max(R(xR)0,−b) lying over m ∈ Max(R), we know that only
two cases can occur:
1) if t2 − b is irreducibile in (R/m)[t], then (R(xR)0,−b)n ∼= Rm(xRm)0,−b.
2) if t2 − b = (t − ᾱ)(t − β̄) in (R/m)[t] and (α − β)I ⊆ m then also in this
case (R(xR)0,−b)n ∼= Rm(xRm)0,−b.

Proposition 3.12. Let R be a Dedekind domain not PID, b an element of R which
is not a square in Q(R), m a maximal ideal of R; then Rm(xRm)0,−b is reflexive, for
every non zero x ∈ R.

Proof. We can distinguish two cases.
1) If x ∈ m, then the ideal xRm is a proper ideal thus, since Rm is a DVR, it
follows the reflexivity by Proposition 3.2 .
2) If x /∈ m, we have to study the reflexivity of Rm(Rm)0,−b = Rm[t]

(t2−b) , so it is
sufficient to prove that each maximal ideal can be at most 2-generated.
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Let k := Rm/mRm, R̃ := Rm[t]
(t2−b) and mRm = mRm. Let us consider the projec-

tion

π : R̃ −→ k[t]

(t2 − b)
.

If t2 − b is irreducible then R̃ has a unique maximal ideal, which is ker(π) =
(t2 − b, m)R̃.

If t2 − b = (t − α)(t − β), fix the ideal (t − α, m)R̃. Since π((t − α, m)) =

(t − α), we obtain R̃/(t − α, m)R̃ ∼= k, so (t − α, m)R̃ is a maximal ideal. In a
similar way, also (t − β, m)R̃ is a maximal ideal.

Notice that the previous proposition is not in contradiction with Corollary
3.5, since in that case we are considering the quadratic quotient obtained
using a proper ideal.

The previous proposition shows that, when we start from a Dedekind do-
main which is not PID, the quadratic quotient of the Rees algebra R(xR)0,−b
is divisorial. This result is more general:

Theorem 3.13. Let R be a one dimensional Noetherian domain with an m-canonical
I and let b be an element of R which is not a square in Q(R); then R(I)0,−b is
divisorial.

Proof. From Theorem 4.7 of Bazzoni and Salce, 1996, R(I)0,−b is divisorial
if and only if (R(I)0,−b)m is divisorial, for every maximal ideal m. Since
(R(I)0,−b)m = Rmc(Imc)0,−b, by Proposition 1.22 Im is an m-canonical ideal of
Rm and Rm is a one dimensional local Noetherian domain, then (R(I)0,−b)m
is Gorenstein so divisorial.

3.3 The non-Noetherian case

In the non-Noetherian case we conjecture that Theorem 3.13 may not be true.
We recall a remarkable result that could be used in an attempt to find a coun-
terexample, when we work with a valuation domain with non principal max-
imal ideal. We know that if V is a valuation domain with maximal ideal m,
then m is an m-canonical ideal for V.

Proposition 3.14 (Proposition 8.2, Chapter XV Fuchs and Salce, 2001). Let R
be a divisorial local domain with non-principal maximal ideal m, and let R1 = m : m.
Then one of the following mutually exclusive cases arises:
1) R1 is a local domain with maximal ideal m1 ⊃ m; m1/m is simple both as an
R1-module and as an R-module; furthemore, m2

1 ⊆ m and R : m1 = m1.
2) R1 is a valuation domain with maximal ideal m.
3) R1 has exactly two maximal ideals, m1 and m2 such that m1 ∩ m2 = m; for
i = 1, 2, mi/m is simple as an R1-module and as an R-module, and R : mi = mj for
i ̸= j; moreover, R1 = V1 ∩ V2 where the Vi are valuation domains with maximal
ideals Ni, such that m = N1 ∩ N2 (so R1 is a Prüfer domain).

Lemma 3.15. Let R be a ring, m a regular maximal ideal of R and a, b ∈ R. Then:

(m+mt :Q(R(m)a,b)
m+mt) = (m :Q(R) m) + (m :Q(R) m)t
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Proof. Let v+mt
u ∈ (m+mt : m+mt); then(

v + mt
u

)
(m+mt) ⊆ m+mt

In particular, for any m̃ ∈ m,

v + mt
u

· m̃ ∈ m+mt

so v
u · m̃ ∈ m and m

u · m̃ ∈ m. Therefore v+mt
u ∈ (m :Q(R) m) + (m. :Q(R) m)t.

Conversely, if α + βt ∈ (m :Q(R) m) + (m :Q(R) m)t, we can write it as
v
u + v′

u t = v+v′t
u . If we pick a regular element x ∈ m, then we have v+v′t

u =
xv+xv′t

xu that belongs to Q(R(m)a,b), by Proposition 1.23. Let m1 + m2t ∈ m:(
v
u
+

v′

u
t
)
· (m1 + m2t) =

(
v
u

m1 −
v′

u
m2b

)
+

(
v
u

m2 +
v′

u
m1 −

v
u

m2a
)

t

Since v
u , v′

u ∈ (m :Q(R) m) we get(
v
u
+

v′

u
t
)
· (m1 + m2t) ∈ m+mt,

so v
u + v′

u t ∈ (m+mt :Q(R(m)a,b)
m+mt).

Proposition 3.16. Let V be a valuation domain with non principal maximal ideal
m, and consider V(m)a,b, which is a local ring with maximal ideal m+mt. Then the
following properties hold true:
1) (m+mt : m+mt) = V + Vt;
2) if b ∈ m, m+ Vt is a maximal ideal for V + Vt;
3) if a, b ∈ m, m+ Vt is the unique maximal ideal of V + Vt.

Proof. 1) It follows from Lemma 3.15.

2) If I is an ideal of V + Vt, such that I ⊋ m + Vt, then there exists
v1 + v2t ∈ I\(m+ Vt), so v1 /∈ m and v−1

1 ∈ V. Since, in particular Vt ⊊ I,
v2t ∈ I, so v1 ∈ I. Thus I must contain a unit and I = V + Vt.

3) If a, b ∈ m, we prove that every element v1 + v2t /∈ m+ Vt is a unit. In
fact, since v1 /∈ m we obtain v2

1 − av1v2 + bv2
2 /∈ m, so the inverse of v1 + v2t

is (v1 − av2)(v2
1 − av1v2 + bv2

2)
−1 − v2(v2

1 − av1v2 + bv2
2)

−1t.

Remark 3.17. If a, b ∈ m and V(m)a,b is a domain, then V + Vt is a local domain
with maximal ideal m+Vt ⊋ m+mt and (m+Vt)/(m+mt) is simple as V +Vt
and V(m)a,b-module.
Moreover (m+ Vt)2 ⊂ m+ mt and (V(m)a,b : m+ Vt) = m+ Vt; in fact, let
v+mt

u ∈ (V(m)a,b : m+ Vt), so(
v + mt

u

)
(m+ Vt) ⊆ V +mt;



3.3. The non-Noetherian case 27

if m
u /∈ V, then u

m ∈ m and in particular(
v + mt

u

)
u
m

=
v
m

+ t ∈ V +mt,

that is not possible; so m
u ∈ V.

If v
u /∈ m, then u

v ∈ Vand thus(
v + mt

u

)
u
v

t = −bm
v

+
(

1 − am
v

)
t ∈ V +mt;

since u
v ∈ V, m

u ∈ V and a ∈ m, we get am
v ∈ m and this is not possible since 1 /∈ m.

Thus v+mt
u ∈ m+ Vt. The other inclusion is straightforward.

Hence if a, b ∈ m, we are exactly in the first case of the Proposition 3.14, choosing
as R the domain V(m)a,b and as R1 the local domain V + Vt.

Proposition 3.18. Let V be a valuation domain, then (V(m)a,b : m+mt) = V +
Vt for all a, b ∈ V.

Proof. If v+mt
u ∈ (V(m)a,b : m+mt), then(

v + mt
u

)
(m+mt) ⊆ V +mt;

if v
u /∈ V, then u

v ∈ m and(
v + mt

u

)
u
v
= 1 +

m
v

t ∈ V +mt

thus m
v ∈ m. Moreover,(

v + mt
u

)
u
v

t = −bm
v

+ (1 − am
v
)t ∈ V +mt

this is not possible, since 1 /∈ m and am
v ∈ m. In a similar way if m

u /∈ V, then
u
m ∈ m, so, in particular,(

v + mt
u

)
u
m

=
v
m

+ t ∈ V +mt

that is not possible, since 1 /∈ m.

Proposition 3.19 (Proposition 2.2, Barucci, 2009). Let (R,m) be a local ring hav-
ing an m-canonical ideal. Then lR((R : m)/R) = 1 if and only if R is a divisorial
ring.

Corollary 3.20. Let V be a valuation domain. If V(m)a,b has an m-canonical ideal,
then V(m)a,b is a divisorial ring.

Proof. Since (V(m)a,b : m+mt) = V + Vt, we get

lV(m)a,b
((V(m)a,b : m+mt)/V(m)a,b) = lV(m)a,b

((V + Vt)/(V +mt)) = 1
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We refer to Example 3.36 as an attempt to prove that in the non-Noetherian
case Theorem 3.13 may not be true.
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3.4 An homological approach to our problem

Let R be a ring. We denote by M(R) the category of R-modules. Through
this section we will follow the notations and we will recall some results of
Hilton and Stammbach, 2013.

Definition 3.21. Let A, B ∈ M(R); we call extension of A by B every short exact
sequence of type

0 → B → E → A → 0

We immediately observe that at least one extension exists

0 → B
iB−→ A ⊕ B

πA−→ A → 0

Moreover, in this case iA : A → A ⊕ B and πB : A ⊕ B → B are maps such
that πAiA = 1A e πBiB = 1B.

Definition 3.22. Let ξ1 := 0 → B → E1 → A → 0 and ξ2 := 0 → B → E2 →
A → 0 be extensions of A by B; we define the following relation: ξ1 ∼ ξ2 if and only
if E1

∼= E2 as R-modules. This is an equivalence relation, and we denote by E(A, B)
the set of equivalence classes of extensions of A by B.

Definition 3.23. We say that 0 → B i−→ E π−→ A → 0 is a splitting exact
extension of A by B if it is equivalent to 0 → B −→ A ⊕ B −→ A → 0. In this case
there exist i′ : A → E and π′ : E → B such that πi′ = 1A e π′i = 1B.

Definition 3.24. Consider the following diagram:

A ×X B A

B X

α

β φ

ψ

where A ×X B = {(a, b) ∈ A ⊕ B | φ(a) = ψ(b)}. This is a commutative diagram
and we denote it by pull-back of (φ, ψ).

Lemma 3.25. The square:
Y A

B X

α

β φ

ψ

is a pull-back if and only if the sequence 0 → Y
{α,β}−−−→ A ⊕ B

<φ,−ψ>−−−−−→ X → 0 is
exact. Moreover, if this the case:
1) β induces an isomorphism between ker(α) and ker(ψ).
2) If ψ è surjective, so is α.
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Consider an R-modules homomorphism α : A′ → A. Let 0 → B k−→ E ν−→
A → 0 be an element of E(A, B) and take the pull-back (Eα, ν′, ξ) of (α, ν)

Eα A′

0 B E A 0

ν′

ξ α

k ν

.

By Lemma 3.25, ξ induces an isomorphism between B and ker(ν′). Moreover,
since ν is surjective, so is ν′. Then 0 → B −→ Eα −→ A′ → 0 is an element
of E(A′, B). The map α∗ : E(A, B) → E(A′, B) which assigns the class of
0 → B −→ E −→ A → 0 to the class of 0 → B −→ Eα −→ A′ → 0 makes E(−, B)
a contravariant functor.

Definition 3.26. Consider the following diagram

E A

B A ⊔E B

k

β ξ

k′

where A ⊔E B := (A ⊕ B)/N, with N := {(k(e),−β(e)) | e ∈ E}. This is a
commutative diagram and we denote it by push-out of (k, β).

Lemma 3.27. If the square

E A

B Y

k

β ξ

k′

is a push-out of (k, β), then:
1) the map ξ induces an isomorphism between coker(k) and coker(k′).
2) If k is injective, so is k′.

Let β : B → B′ be an homomorphism of R-modules and let 0 → B k−→
E ν−→ A → 0 be an element of E(A, B). Consider the following diagram

0 B E A 0

B′ Eβ

k

β

ν

ξ

k′

where (Eβ, k′, ξ) is the push-out of (β, k). By the previous lemma the se-
quence 0 → B′ −→ Eβ −→ A → 0 is an element of E(A, B′). The map
β∗ : E(A, B) → E(A, B′) which assigns the class of 0 → B −→ E −→ A → 0 to
the class of 0 → B′ −→ Eβ −→ A → 0, makes E(A,−) a covariant functor.
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Proposition 3.28 (Theorem 1.4, Hilton and Stammbach, 2013). For all α :
A′ → A and for all β : B → B′ the induced maps α∗ and β∗ are such that

α∗β∗ = β∗α∗ : E(A, B) → E(A′, B′).

Then E(−,−) is a bifunctor from the category of R-modules to the category of sets.
It is contravariant in the first variable and covariant in the second one.

3.4.1 The R-module E(A, B)

In this section we recall the operations that make E(A, B) an R-module. We
start by defining the sum, known as Baer sum, of two elements of E(A, B),
which will make it an abelian group.

Let ξ1 : 0 → B
i1−→ E1

π1−→ A → 0 and ξ2 : 0 → B
i2−→ E2

π2−→ A → 0
be two elements of E(A, B). Consider the maps △A : A → A ⊕ A such that
△A(a) = (a, a) and ▽B : B ⊕ B → B such that ▽B(b1, b2) = b1 + b2. We
define the sum operation on E(A, B) by setting

ξ1 + ξ2 := △∗
A ▽B∗ (0 → B ⊕ B

(i1,i2)−−−→ E1 ⊕ E2
(π1,π2)−−−−→ A ⊕ A → 0).

Firstly, we apply △∗
A by doing the pull-back of ((π1, π2),△A)

((E1 ⊕ E2)×A⊕A A) A

0 B ⊕ B E1 ⊕ E1 A ⊕ A 0

△A

(π1,π2)

Notice that (E1 ⊕E2)
△A := ((E1 ⊕E2)×A⊕A A) = {((e1, e2), a) | (π1(e1), π2(e2)) =

(a, a)} = {((e1, e2), a) | π1(e1) = π2(e2) = a} ∼= E1 ×A E2, since the map
E1 ×A E2 → (E1 ⊕ E2)

△A , which sends (e1, e2) to ((e1, e2), a), where a is the
element of A such that π1(e1) = π2(e2) = a, is bijective. Thus we obtain

0 → B ⊕ B −→ E1 ×A E2 −→ A → 0

Now we apply ▽B∗ by considering the push-out

0 B ⊕ B E1 ×A E1 A 0

B (E1×AE2)⊕B
C

▽B

where C = {((i1(b1), i2(b2)),−▽B (b1, b2)) | b1, b2 ∈ B}. An easy calculation
shows that the map

E1 ×A E2
φ−→ (E1 ×A E2)⊕ B

C
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(e1, e2) 7→ ((e1, e2), 0)

is surjective. Moreover, since ker(φ) = {(i1(b),−i2(b)) | b ∈ B} := N, we
have

(E1 ×A E2)⊕ B
C

∼=
E1 ×A E2

N
.

This shows that

ξ1 + ξ2 = 0 → B −→ E1 ×A E2

N
−→ A → 0

is an element of E(A, B), known as the Baer sum of the two classes of es-
tensions. This operation gives to E(A, B) the structure of abelian group; in
particular, the zero element is the class of split extensions (see Corollary 3.4.5
of Weibel, 1994).

Theorem 3.29 (Corollary 3.4.5, Weibel, 1994). E(A, B) is isomorphic to Ext1
R(A, B)

as abelian groups.

Since Ext1
R(A, B) is in particular an R-module, the previous isomorphism

of abelian groups induces to E(A, B) the structure of R-module with the fol-
lowing external product. Let r ∈ R and consider the map r· : A → A, which

is the multiplication by r and let ξ : 0 → B i−→ E π−→ A → 0 be an element of
E(A, B); the external product is defined by setting r · ξ := (r·)∗(ξ), which is
the class of

0 → B −→ Er· −→ A → 0

where Er· is the pull-back of (π, r·).
The following results, stated for E(A, B) endowed with the structure of

R-module, can be proved following the proofs given by Walker, 1964, in the
case of abelian groups.

Definition 3.30. Let A be an R-module and r ∈ R. We denote by

A[r] := {a ∈ A | ra = 0}

Proposition 3.31 (Theorem 1, Walker, 1964). An exact sequence ξ : 0 → B i−→
E π−→ A → 0 is a torsion element for E(A, B) if and only if

0 → B/B[r] −→ (B + rE)/B[r] π′
−→ rA → 0

is splitting exact for some r ∈ R, where π′(x + B[r]) = π(x).

Proof. Let ξ be the class of 0 → B i−→ E π−→ A → 0; if ξ is a torsion element of

E(A, B), there exists r ∈ R such that the sequence r · ξ : 0 → B
j−→ Er· s−→ A →

0 is splitting exact, where Er· = {(e, a) ∈ E ⊕ A | π(e) = a}, j(b) = (i(b), 0)
and s((e, a)) = a. Thus there exists s′ : A → Er· such that ss′ = 1A. Consider
h : Er· → E such that h((e, a)) = e. If a ∈ A[r], then s′(a) = (x, a) such that
rx = 0 and π(x) = ra = 0, so x = h(s′(a)) ∈ A[r]. Let g : rA → E/B[r], such
that g(ra) = h(s′(a)) + B[r]. Take (e, a) ∈ Er·, since π(e) = ra ∈ rA, then
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e ∈ B + rE, so g : rA → (B + rE)/B[r]. Finally, for all a ∈ A, π′(g(ra)) =
π′(h(s′(a)) + B[r]) = π(h(s′(a))) = ra, then π′g = 1rA, so the sequence is
splitting exact.
Conversely, suppose that

0 → B/B[r] −→ (B + rE)/B[r] π′
−→ rA → 0

is splitting exact for some r ∈ R and let v : rA → (B + rE)/B[r] such that

π′v = 1rA. Let ξ : 0 → B i−→ E π−→ A → 0 be an element of E(A, B) and
consider the class of r2 · ξ represented by

0 → B k−→ K u−→ A → 0,

where K = {(e, a) | e ∈ E, a ∈ A, π(e) = r2a} and k, u are the natu-
ral maps. Let r′ : (B + rE)/B[r] → E such that r′(x + B[r]) = rx. No-
tice that π(r′(x + B[r])) = r(π′(x + B[r])) for all x ∈ (B + rE)/B[r], then
π(r′(v(ra))) = r(π′(v(ra))) = r(r(a)) = r2a for all a ∈ A. Consider the map
w : A → K such that w(a) = (r′(v(ra)), a), we have that uw = 1A then the

sequence 0 → B k−→ K u−→ A → 0 is splitting exact.

Corollary 3.32 (Theorem 3, Walker, 1964). Let A, B be two torsion-free R-modules.

The sequence ξ : 0 → B i−→ E π−→ A → 0 is a torsion element for E(A, B) if and
only if the sequence

0 → B −→ (B + rE) −→ rA → 0

is splitting exact, for some r ∈ R.

3.4.2 Homological approach for R(I)a,b divisoriality

Consider the same diagram of Remark 2.10

0 0 0

0 Ec E E/Ec 0

0 (Ec∗)∗ (E∗)∗ (E∗)∗/(Ec∗)∗

0 0

ρEc

i

ρE

π

ρE/Ec

i∗∗ π∗∗

.

The hypothesis that every regular ideal E of R(I)a,b is I-reflexive in Theo-
rem 2.12 is necessary since we are not sure about the exactness of the above
diagram. In particular, the exactness holds if in the following sequence

0 → HomR(E/Ec, I) π∗
−→ HomR(E, I) i∗−→ HomR(Ec, I)
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the map i∗ was surjective. Following an argument similar to the proof of
Bazzoni and Salce, 1996, Theorem 3.6, consider the following diagram

0 0 0

0 HomR(E/Ec, I) HomR(E, I) HomR(Ec, I)

0 HomR(E/Ec, Q) HomR(E, Q) HomR(Ec, Q) 0

0 tHomR(E/Ec, Q/I) tHomR(E, Q/I) tHomR(Ec, Q/I)

C1 C2 C3

0 0 0

π∗ i∗

v

u′

The third line contains the torsion part of the corresponding Hom; C1, C2, C3
are the cokernels of the respective columns.

Since v is surjective and u′ is injective, by the Snake Lemma there exists
τ : HomR(Ec, I) → C1 such that the sequence

HomR(E/Ec, I) → HomR(E, I) → HomR(Ec, I) τ−→ C1 → C2 → C3

is exact. Since C1 is a torsion submodule of Ext1
R(E/Ec, I), if the latter is

torsion-free, then C1 = 0, and thus i∗ is surjective.
This moves our attention to trying to understand when Ext1

R(J, I) is torsion-
free, when J is an ideal of a domain R with m-canonical ideal I. By Theorem
3.29 Ext1

R(J, I) is isomorphic to E(J, I), then as consequence of Corollary 3.32
we have the following.

Corollary 3.33. Let R be a domain with m-canonical ideal I. Ext1
R(J, I) is torsion-

free if and only if every sequence 0 → I −→ H −→ J → 0 is splitting exact when
there exists r ∈ R such that 0 → I −→ I + rH −→ rJ → 0 is splitting exact.

In an attempt to understand when a sequence of the type 0 → I −→ H −→
J → 0 is such as in Corollary 3.33, the next proposition shows that we need
to investigate the case when H is not I-reflexive.

Proposition 3.34. Let R be a domain with an m-canonical ideal I. An R-module H
is I-riflexive if and only if every sequence of the type 0 → I −→ H −→ J → 0, where
J is an ideal of R, is splitting exact.

Proof. Let H be a reflexive R-module. Consider the dual sequence

0 → HomR(J, I) −→ HomR(H, I) −→ K → 0
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where K is the appropriate cokernel. Since rk(HomR(H, I)) = rk(H) = 2,
then rk(K) = 1. Applying the functor (−)∗ := HomR(−, I), we get

0 I H J 0

0 K∗ (H∗)∗ (J∗)∗
Φ ρH ρJ

β

.

By our assumption the maps ρJ e ρH are isomorphisms, then β is surjective,
so, induces an isomorphism Φ. Since HomR(K, I) has rank 1, by Bazzoni and
Salce, 1996, Lemma 3.1 K is I-torsionless, and then K ∼= HomR(HomR(K, I), I) ∼=
HomR(I, I) = R. Since R is projective as R-module, the sequence

0 → HomR(J, I) −→ HomR(H, I) −→ R → 0

is splitting exact, then the I-dual

0 → K∗ −→ (H∗)∗ −→ (J∗)∗ → 0

is also splitting exact. The isomorphisms make the sequence 0 → I −→ H −→
J → 0 splitting exact.

Conversely, if 0 → I −→ H −→ J → 0 is splitting exact, then H ∼= I ⊕ J, so,
HomR(HomR(H, I), I) ∼= HomR(HomR(I ⊕ J, I), I) ∼= HomR(HomR(I, I), I)⊕
HomR(HomR(J, I), I) ∼= I ⊕ J ∼= H.
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3.5 Open problems

In remark (4), p. 22 of Matlis, 1968, the author formulates a conjecture by
suspecting the existence of reflexive domains where not all maximal ideals
are 2-generated. This suspicion it has been confirmed by Goeters, 1999 and
Proposition 3.12 could be used to provide other examples.

Example 3.35. D = Z[i
√

5], is a Dedekind domain not PID. Consider I = 2Z[i
√

5],
b = 2, since t2 − 2 is irreducible in Q(i

√
5), then Z∗ := Z[i

√
5](2Z[i

√
5])0,−2 is

a domain. Notice that

Ĩ = {x ∈ Q(i
√

5) | 2x2 ∈ Z[i
√

5]} ⊇ Z[i
√

5],

so Z∗ ⊇ Z[i
√

5] + Z[i
√

5]t ⊃ Z∗, then Z∗ is not integrally closed. Consider the
maximal ideal m = (2, 1 + i

√
5)D; in (Z[i

√
5]/m)[t] the polynomial t2 − 2 has 0

as double root, so there exists exactly one prime ideal lying over m, which is

m̃ := m+ 2Z[i
√

5]t = (2, 1 + i
√

5, 2t)Z∗.

Since 2 = −(1 + i
√

5)(1 − i
√

5) + 2t(2t), then m̃ = (1 + i
√

5, 2t)Z∗ is 2-
generated.

If m = (7, 3 + i
√

5)D, since t2 − 2 = (t − 3)(t − 4) in (Z[i
√

5]/m)[t] there
are two prime ideals lying over m:

m1 = {h1 + 2h2t | h1 ∈ Z[i
√

5], h2 ∈ 2Z[i
√

5], h1 + 3(2h2) ∈ (7, 3 + i
√

5)D}

m2 = {h1 + 2h2t | h1 ∈ Z[i
√

5], h2 ∈ 2Z[i
√

5], h1 + 4(2h2) ∈ (7, 3 + i
√

5)D}
Let h1 + 2h2t an element of m1. Since h1 + 3h2 ∈ (7, 3+ i

√
5)D we have that h1 +

3h2 = 7l + (3+ i
√

5)m for some m ∈ m, then h1 = 7l + (3+ i
√

5)m− 3h2. Since
h1 + h2t = 7l + (3 + i

√
5)m + (−3 + t)2h′2 = 7l + (3 + i

√
5)m + (−6 + 2t)h′2,

then m1 = (7, 3 + i
√

5,−6 + 2t)Z∗. We have the suspicion that m1 is minimally
generated by these three elements.

In order to find a counterexample in the non-Noetherian case of a domain
R that admits an m-canonical ideal but have a quotient R(I)a,b not divisorial,
we provide another construction that we conjecture it could be a solution of
the problem.

Example 3.36. Let K be a field and X an indeterminate on K. For all n ∈ N we
define Yn := X

1
2n . We denote with Dn := K[Yn] and with Vn : (Dn)YnDn . The

ring V∞ :=
⋃

n∈N Vn is a valuation domain with non principal maximal ideal m
and L := K({Yn | n ∈ N}) is its fractions field. If K = Q, the polynomial
f (T) := T2 + XT − 1 ∈ V∞[T] is irreducible in L[T] but admits two distinct
factors in (V∞/m)[T]. So the ring V∞(m)X,−1 is a domain and V∞ + V∞T has
exactly two distinct maximal ideal:

m1 := {a + bT | a, b ∈ V∞ and a + b ∈ m},

m2 := {a + bT | a, b ∈ V∞ and a − b ∈ m}.
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We claim that m1/(m+mT) is not simple as V∞ + V∞T-module.
To prove this, we look for a principal ideal (λ + µT) ⊊ m1/(m+ mT), with

λ, µ ∈ V∞/m and λ + µ ∈ m, such that

(α + βT)(λ + µT) +m+mT ⊊ m1

for all α + βT ∈ V∞ + V∞T.
Fix (λ + µT) ⊊ m1/(m+ mT), the question is: pick a + bT ∈ m1/(m+ mT),
with a, b ∈ V∞/m and a + b ∈ m, is it possible to find α + βT ∈ V∞ + V∞T such
that

a + bT = (α + βT)(λ + µT) + σ + τT

for any σ, τ ∈ m? If such an element exists, it can be proved that:

α =
aλ − Xaµ − σλ + Xσµ − µb + µτ

λ2 − Xλµ − µ2 ∈ V∞

β =
λb − λτ − aµ + µσ

λ2 − Xλµ − µ2 ∈ V∞

In particular, λb − λτ − aµ + µσ ∈ (λ2 − Xλµ − µ2) = ((λ − µ)(λ + µ) −
Xλµ) ⊆ m. If we chose a, b, λ, µ ∈ V∞ such that λb − µa /∈ m, we have an absurd.
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