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Abstract

A novel mixed finite element formulation for the layerwise analysis of nonlocal multilayered composite

plates is presented. The finite elements are formulated starting from the weak form of a set of govern-

ing equations for the laminate layers that were deduced via the Reissner Mixed Variational Theorem.

The primary variables, namely displacements and out-of-plane stresses, are expressed at layer level

as through-the-thickness expansions of suitable selected functions with coefficients approximated by

the finite element scheme. The through-the-thickness expansion order is considered as a free param-

eter. This way, finite elements for different refined higher order plate theories can be systematically

developed by assembling the layers contributions associated with the variable expansion terms. These

contributions are called fundamental nuclei and their definition is formally unique whatever the con-

sidered expansion order. The obtained finite elements inherently ensure stresses and displacements

continuity at the layer interfaces and they allow to associate different values of the nonlocal parameter

to the laminate layers. Standard 9-node and 16-node isoparametric, quadrilateral finite elements have

been implemented to verify the viability of the proposed formulation. The obtained results compare

favourably with literature solutions and highlights the characteristics of the approach. Original results

are proposed also to serve as benchmarking data.

Keywords: Nonlocal elasticity, Refined plate theories, Reissner Mixed Variational Theorem, Mixed

finite element, Laminated composites

1. Introduction

Small scale effects are observed in many engineering structural applications, which require careful

modelling to avoid misjudgements in behaviour prediction and to ensure correct functionality. The
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continuum theories based on hyperelastic constitutive relations does not account the small-scale effects

and are generally unsuitable for the mechanical analysis of the micro and nanostructures. To over-

come this scenario, modified continuum-based theories have been developed considering the small-scale

effect[1, 2]. Among the approaches proposed in the literature, the Eringen’s nonlocal elasticity model

[3–5] has been recognized as very promising and then widely applied. It assumes that the stress at a

point is a function of strains at all points in the continuum; this way, the small-scale effects are intro-

duced through the constitutive equations, which involve a scale parameter depending on the material

microstructure [6].

Based on the Eringen’s nonlocal elasticity theory, several papers have been published for its ap-

plication to beam-like structures (e.g. [7–10] and the reference cited therein). As regard modelling of

plates, nonlocal Kirchhoff and Mindlin theories were formulated by Lu et al. [11] whereas the nonlocal

third order shear deformation plate theory was proposed by Aghababei and Reddy [12]. Starting from

these pioneering works, nonlocal plate theories have been applied to multilayered [13, 14] and smart

plates [15–18]. The proposed two-dimensional theories for multilayered plates are usually formulated

via the equivalent single layer (ESL) approach, which is not able to capture accurately the structural

response characteristics associated with the variability in the material properties along the plate thick-

ness. Additionally, the proposed nonlocal ESL theories consider a common value of the characteristic

length for all the layers, despite this parameter can considerably vary for different materials [6]. Re-

cently, in view of these observations, Milazzo et al. [19] proposed a layerwise formulation for nonlocal

plates based on the Reissner Mixed Variational Theorem coupled with the primary variable expression

axiomatically assumed according to the Carrera Unified Formulation [20, 21]. Accordingly, different

higher order nonlocal multilayered plate theories have been systematically formulated and analysed.

However, the above-mentioned works are devoted to the theory development and assessment

via closed form solutions for simple plates geometries, boundary conditions and loads. To deal with

complex configurations, more general numerical methods are necessary. Therefore, finite element for-

mulations for nonlocal behaviour of structures have then been proposed for beams [22–24], Kirchhoff’s

plates [22], Mindlin plates [25] and third order plate theories [14, 26, 27]. To the best of the author’s

knowledge finite elements for non local layerwise, high order plate theories have not been formulated

yet.

In the present work, mixed finite elements for layerwise models of nonlocal multilayered plates

are formulated resting on the approach proposed in Ref. [19]. To assess the approach features, 9-node
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Figure 1: Plate scheme and geometrical definitions.

and 16-node isoparametric finite elements have been implemented for plate theories up to the fourth

order. These have been studied and validated by comparison with closed form solutions available in

the literature. Finally, an original configuration has been analysed to illustrate the proposed finite

element potentiality and to provide possible benchmark solutions for future studies.

2. Multilayered plate models

Consider a multilayered plate with N layers, see Fig. 1. The plate is referred to a cartesian

coordinate system with the x3 axis directed along the thickness. The plate is subjected to the prescribed

surface loads qt and qb applied on its top and bottom surfaces and to the prescribed tractions t applied

on its lateral surface.

In the following, the superscript 〈k〉 is used to label quantities referring to the k-th layer. The

k-th layer has planform occupying the domain Ω〈k〉 ≡Ω with boundary ∂Ω〈k〉 ≡ ∂Ω in the x1x2 plane

and has constant thickness hk = zk − zk−1 being zk−1 and zk the x3 coordinates of its bottom and top

faces, respectively.

2.1. Layers constitutive law

The layers material behaviour is described via the Eringen’s nonlocal elasticity model, which

relates the local stresses σ̃ij , to the nonlocal stresses σij via the following differential relationship[5]

Lσij = σ̃ij (1)
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In the Eq. (1), the nonlocality operator L is defined as

L=1− ℓ

(
∂2

∂x2
1

+
∂2

∂x2
2

)
(2)

where ℓ is the so-called nonlocal parameter, which depends on the material characteristic length [6].

The k-th layer constitutive equations are then suitably written as



Lσ

Lτ



=


 Cpp Cpn

Cnp Cnn






ε

γ



 (3)

where the stresses and strain have been collected as σ=
{
σ11 σ22 σ12

}T

, τ =
{
σ32 σ31 σ33

}T

,

ε=
{
ε11 ε22 ε12

}T

, γ=
{
γ32 γ31 γ33

}T

and the Crs matrices contain the stiffness elastic coef-

ficients stemming from the classic Hooke’s law.

2.2. Layer governing equations

According to the Carrera Unified Formulation [21], the displacements u=
{
u1 u2 u3

}T

and

the out-of-plane stresses τ =
{
σ32 σ31 σ33

}T

are expressed at layer level as series expansions along

the thickness:

u〈k〉(x1, x2, x3)=
M∑

α=0

u〈k〉
α (x1, x2) F

〈k〉
α (x3) (4a)

τ 〈k〉(x1, x2, x3)=

M∑

η=0

τ 〈κ〉
η (x1, x2) F

〈k〉
η (x3) (4b)

where the definition of the thickness functions F 〈k〉
α is given in Appendix A.

Considering u and τ as primary variables and assuming that the essential boundary conditions,

the gradient equations and the constitutive law are fulfilled, the governing equations for a layer within

the laminate are obtained from the Reissner Mixed Variational Theorem (RMVT) [28–30]. Here, for

the sake of conciseness, only the resulting governing equations are reported referring the reader to Ref.

[19] for the derivation details. The k − th layer governing equations for α, η=1, 2, . . . , M read as

M∑

β=0

[
I
〈k〉
αβ ∂

T
p D

〈k〉
pp ∂p

]
u
〈k〉
β +

M∑

λ=0

[
I
〈k〉
αλ ∂

T
p D

〈k〉
pn + I

〈k〉
αλ ∂

T
n − I

〈k〉
α,3λ

]
∂
〈k〉
ℓ τ

〈k〉
λ +

δαM ∂
〈k〉
ℓ τ

〈k〉
M − δα0 ∂

〈k〉
ℓ τ

〈k〉
0 = 0

in Ω〈k〉 (5a)

M∑

β=0

[
I
〈k〉
ηβ D〈k〉

np ∂p − I
〈k〉
ηβ ∂n − I

〈k〉
ηβ,3

]
u
〈k〉
β +

M∑

λ=0

[
I
〈k〉
ηλ D〈k〉

nn

]
∂
〈k〉
ℓ τ

〈k〉
λ = 0 in Ω〈k〉 (5b)
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M∑

β=0

[
I
〈k〉
αβ ∂̂pD

〈k〉
pp ∂p

]
u
〈k〉
β +

M∑

λ=0

[
I
〈k〉
αλ ∂̂pD

〈k〉
pn + I

〈k〉
αλ ∂̂n

]
∂
〈k〉
ℓ τ

〈k〉
λ − p〈k〉

α = 0 in ∂Ω〈k〉 (5c)

where δrs denotes the Kronecker’s delta. In Eqs. (5), the quantities inside square brackets are known

as fundamental nuclei ; they can be algorithmically evaluated with the same formal statements for

any order of primary variables expansion. This allows to generate different high order layerwise plate

theories systematically and straightforwardly [21]. The differential operators, coefficients and the

material properties matrices appearing in the Eq. (5) are defined in Appendix B. Some remarks

are appropriate in relation to Eq. (5). Observing that ∂
〈k〉
ℓ τ

〈k〉
λ = τ̃

〈k〉
λ , it appears that the layer

governing equations could be written using the displacements u
〈k〉
β and local out-of-plane stresses τ̃

〈k〉
λ

as primary variables. However, this option complicates the derivation of multilayered plate models,

which are based on the coupling of the layers governing equations via the displacements and stresses

continuity conditions at the layers interfaces (see Sec 2.3). Indeed, interface stress continuity physically

involves the nonlocal stresses and not the local ones. So, assuming the nonlocal out-of-plane stresses

as primary variables makes straightforward the enforcement of interface continuity especially when the

layers exhibit different values of the nonlocal parameter ℓ. Moreover, because of the properties of the

selected thickness functions (see Appendix A), τ
〈k〉
0 and τ

〈k〉
M are the interlaminar stresses acting on

the bottom and top face of the ply. Additionally, for the first and last layer, τ
〈1〉
0 and τ

〈N〉
M correspond

to the prescribed loads qb and qt applied on the plate bottom and top surfaces.

2.3. Multilayered plate governing equations

The governing equations for the multilayered plate are obtained by coupling the governing equa-

tions of the isolated layers, namely Eqs. (5) for k=1, 2, ..., N . This is accomplished through the

enforcement of the interface continuity conditions. According to the properties of the selected thick-

ness functions, they reduce to

u
〈k〉
M =u

〈k+1〉
0 k=1, 2, . . . , (N − 1) (6a)

τ
〈k〉
M = τ

〈k+1〉
0 k=1, 2, . . . , (N − 1) (6b)
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3. FEM formulation

3.1. Finite element primary variable approximations

The in-plane behaviour of the primary variables is approximated by using two-dimensional finite

elements [31]. For the k-th layer of the considered finite element, one writes

u〈k〉
α (x1, x2)=N

〈k〉
α δ〈k〉α (7a)

τ 〈k〉
η (x1, x2)=N 〈k〉

η ϑ〈k〉
η (7b)

where the vectors δ〈k〉
α and ϑ〈k〉

η contains the nodal values of u〈k〉
α and τ 〈k〉

η , respectively, and N
〈k〉 and

N 〈k〉
η are matrices whose elements are the element shape functions.

The gradient relationships associated with Eqs (7), needed in the following to infer the finite

element formulation, are written as

∂pu
〈k〉
β =

(
∂p N

〈k〉
β

)
δ
〈k〉
β =Bp

〈k〉
β δ

〈k〉
β (8a)

∂nu
〈k〉
β =

(
∂n N

〈k〉
β

)
δ
〈k〉
β =Bn

〈k〉
α δ

〈k〉
β (8b)

∂
〈k〉
ℓ u

〈k〉
β =

(
∂
〈k〉
ℓ N

〈k〉
β

)
δ
〈k〉
β =Bℓ

〈k〉
β δ

〈k〉
β (8c)

∂
〈k〉
ℓ τ 〈k〉

η =
(
∂
〈k〉
ℓ N 〈k〉

η

)
ϑ〈k〉
η =H〈k〉

η ϑ〈k〉
η (8d)

3.2. Finite element layer governing equations

The weak form of the layer governing equations, Eq (5), is obtained as

∫

Ω〈k〉

{
M∑

α=0

δu〈k〉
α

T

[
M∑

β=0

I
〈k〉
αβ D

〈k〉
pp ∂pu

〈k〉
β +

M∑

λ=0

(
I
〈k〉
αλ D

〈k〉
pp + I

〈k〉
αλ ∂

T
n − I

〈k〉
α,3λ

)
∂
〈k〉
ℓ τ

〈k〉
λ

]
+

M∑

α=0

δu〈k〉
α

T

[
δαM ∂

〈k〉
ℓ τ

〈k〉
M − δα0 ∂

〈k〉
ℓ τ

〈k〉
0

]
+

M∑

η=0

δτ 〈k〉
η

T

[
M∑

β=0

(
I
〈k〉
ηβ D〈k〉

np ∂p − I
〈k〉
ηβ ∂n − I

〈k〉
ηβ,3

)
u
〈k〉
β +

M∑

λ=0

I
〈k〉
ηλ D〈k〉

nn∂
〈k〉
ℓ τ

〈k〉
λ

]}
dΩ−

∫

∂Ω〈k〉

{
M∑

α=0

δu〈k〉
α

T

[
M∑

β=0

I
〈k〉
αβ ∂̂pD

〈k〉
pp ∂pu

〈k〉
β +

M∑

λ=0

(
I
〈k〉
αλ ∂̂pD

〈k〉
pn + I

〈k〉
αλ ∂̂n

)
∂
〈k〉
ℓ τ

〈k〉
λ − p〈k〉

α

]}
d∂Ω=0

(9)
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Integrating by parts, Eq. (9) becomes

∫

Ω〈k〉

M∑

α=0

M∑

β=0

(
∂pδu

〈k〉
α

)T

I
〈k〉
αβ D

〈k〉
pp ∂pu

〈k〉
β dΩ+

∫

Ω〈k〉

M∑

α=0

M∑

λ=0

[(
∂pδu

〈k〉
α

)T

I
〈k〉
αλ D

〈k〉
pn +

(
∂nδu

〈k〉
α

)T

I
〈k〉
αλ + δu〈k〉

α

T
I
〈k〉
α,3λ

]
∂
〈k〉
ℓ τ

〈k〉
λ dΩ−

∫

Ω〈k〉

δu
〈k〉
M

T
∂
〈k〉
ℓ τ

〈k〉
M dΩ +

∫

Ω〈k〉

δu
〈k〉
0

T
∂
〈k〉
ℓ τ

〈k〉
0 dΩ−

∫

Ω〈k〉

M∑

η=0

M∑

β=0

δτ 〈k〉
η

[
I
〈k〉
ηβ D〈k〉

np ∂p − I
〈k〉
ηβ ∂n − I

〈k〉
ηβ,3

]
u
〈k〉
β dΩ−

∫

Ω〈k〉

M∑

η=0

M∑

λ=0

I
〈k〉
ηλ δτ 〈k〉

η D〈k〉
nn∂

〈k〉
ℓ τ

〈k〉
λ dΩ−

∫

∂Ω〈k〉

M∑

α=0

δu〈k〉
α

T
p〈k〉
α d∂Ω=0

(10)

By substituting the finite element approximations Eqs (7) and (8) into Eq. (10) and taking the

stationarity condition of the resulting statement, the finite element governing equations for the k-th

layer are inferred as

M∑

β=0

u
uk

〈k〉
αβ δ

〈k〉
β +

M∑

λ=0

u
τk

〈k〉
αλϑ

〈k〉
λ − δαM k

〈k〉

MMϑ
〈k〉
M + δα0 k

〈k〉

00 ϑ
〈k〉
0 − f 〈k〉

α = 0 α=0, . . . , M (11a)

M∑

β=0

τ
uk

〈k〉
ηβ δ

〈k〉
β +

M∑

λ=0

τ
τk

〈k〉
ηλ ϑ

〈k〉
λ = 0 η=0, . . . , M (11b)

In Eq. (11) the finite element fundamental nuclei are defined as

u
uk

〈k〉
αβ = I

〈k〉
αβ

∫

Ω〈k〉

Bp
〈k〉
α

T
D〈k〉

pp Bp
〈k〉
β dΩ (12a)

u
τk

〈k〉
αλ =

∫ 〈k〉

Ω

[
I
〈k〉
αλ Bp

〈k〉
α

T
D〈k〉

pn + I
〈k〉
αλ Bn

〈k〉
α

T
+ I

〈k〉
α,3λ

N 〈k〉
α

T
]
H

〈k〉
λ dΩ (12b)

τ
uk

〈k〉
ηβ =

∫

Ω〈k〉

N 〈k〉
η

T
[
I
〈k〉
ηβ D〈k〉

np Bp
〈k〉
β − I

〈k〉
ηβ Bn

〈k〉
β − I

〈k〉
ηβ,3

N β

]
dΩ (12c)

τ
τk

〈k〉
ηλ = I

〈k〉
ηλ

∫

Ω

N
〈k〉
η

T
D〈k〉

nnH
〈k〉
λ dΩ (12d)

k
〈k〉

MM =

∫

Ω〈k〉

N
〈k〉
M

T
H

〈k〉
M dΩ (12e)
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k
〈k〉

00 =

∫

Ω〈k〉

N
〈k〉
0

T
H

〈k〉
0 dΩ (12f)

f 〈k〉
α =

∫

∂Ω〈k〉

N 〈k〉
α

T
p〈k〉
α d∂Ω (12g)

It is remarked that the fundamental nuclei k
〈k〉

MM and k
〈k〉

00 account for the tractions applied on the

top and bottom faces of the layer, which correspond to the interlaminar stresses. For the layers with

external faces (k=1 and k=N) the fundamental nuclei k
〈N〉

MM and k
〈1〉

00 provide the contribution of the

prescribed loads qt and qb applied on the plate top and bottom surfaces, respectively.

3.3. Multilayered plate finite elements: along thickness assembly

The finite element equations for the multilayered plates are obtained by coupling those of the

isolated layers via the interface displacements and stresses continuity, whose discretized form stems

from Eq. (6) and read as

δ
〈k〉
M = δ

〈k+1〉
0 k=1, 2, . . . , (N − 1) (13a)

ϑ
〈k〉
M =ϑ

〈k+1〉
0 k=1, 2, . . . , (N − 1) (13b)

Additionally, for the applied surface loads the following relationships hold

ϑ
〈1〉
0 = qb (14a)

ϑ
〈N〉
M = qt (14b)

Introducing the element nodal unknowns vectors as

∆T =
{

∆0 = δ
〈1〉
0

T
· · · ∆α+M(k−1)

T = δ〈k〉α

T
· · · ∆T

NM+1 = δ
〈N〉
M

T
}

(15a)

ΘT =
{

Θ0 =ϑ
〈1〉
0

T
· · · Θη+M(k−1)

T =ϑ〈k〉
η

T
· · · ΘT

NM+1 =ϑ
〈N〉
M

T
}

(15b)

the plate finite element equations, namely Eqs. (11) and (13), are recast in the standard form as




u
uK

u
τK

τ
uK

τ
τK






∆

Θ



=




F

0



 (16)
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The matrices involved in Eq. (16) are obtained from the fundamental nuclei via an assembly procedure

stemming from Eqs (13). In particular the assembly follows the scheme described in the following

relationship

r
sK =




r
sk

〈1〉
00 . . .
...

. . .

. . .

[
r
sk

〈k−2〉
MM + r

sk
〈k−1〉
00 −

χ
(
k
〈k−2〉

MM − k
〈k−1〉

00

)] . . . rsk
〈k−1〉
0β . . . r

sk
〈k−1〉
0M

...
. . .

...
...

. . .

r
sk

〈k−1〉
α0 . . . rsk

〈k−1〉
αβ . . . r

sk
〈k−1〉
αM

...
. . .

...
. . .

...

r
sk

〈k−1〉
M0 . . . rsk

〈k−1〉
Mβ . . .

[
r
sk

〈k−1〉
MM + r

sk
〈k〉
00 −

χ
(
k
〈k−1〉

MM − k
〈k〉

00

)] . . . r
sk

〈k〉
0β . . . r

sk
〈k〉
0M

...
. . .

...
. . .

...

r
sk

〈k〉
α0 . . . r

sk
〈k〉
αβ . . . r

sk
〈k〉
αM

...
. . .

...
. . .

...

r
sk

〈k〉
M0 . . . rsk

〈k〉
Mβ . . .

[
r
sk

〈k〉
MM + r

sk
〈k+1〉
00 −

χ
(
k
〈k〉

MM − k
〈k+1〉

00

)] . . .

. . .
...

. . . rsk
〈N〉
MM




(17)

where χ=1 for r= u and s= τ and χ=0 otherwise. Eventually, the right-hand-side vector is obtained

as follows

F T =

{(
f
〈1〉
0 + k

〈1〉

00 qb

)T

. . . f
〈k−1〉
M

T
f
〈k〉
0

T
. . .

(
f
〈N〉
M + k

〈N〉

MMqt

)T
}

(18)

Once the element equations have been established, standard assembly procedures are used to obtain

the resolving system for the finite element discretized structures.

4. Results

To illustrate the capabilities of the proposed formulation and its characteristics, the 9-node

and the 16-node isoparametric finite elements have been implemented. According to the established

literature on isoparametric finite elements for plates [31], the element matrices have been computed

using the selective reduced integration technique to contrast locking phenomena [32].

A [0/90/90/0] symmetric cross-ply, simply supported, square plate with side length a=10 units

and thickness h is considered. The plate undergoes a transverse bisinusoidal load applied on its top
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surface with amplitude q0. The layers exhibit the following material properties

E1

E2
=25;

G12

E2
=

G13

E2
=0.5;

G23

E2
=0.2; ν12 = ν13= ν23 =0.25 (19)

being Ei, Gij and νij the Young’s moduli, the shear moduli and the Poisson’s coefficients, respectively.

Analyses have been carried out assuming the same nonlocal parameter ℓ for all the layers and varying

its value from 0 (local behaviour) to 5. Different plate theories are considered varying the order of

the primary variables thickness expansion up to the fourth. Each theory is labelled by the acronym

LWnℓ where n denotes the order of the employed expansion and ℓ indicates the value of the nonlocal

parameter.

First, convergence studies have been performed by using m × m regular meshes of the 9-node

and 16-node elements. The selective reduced integration technique was used to compute the elements

matrices. Tables 1 and 2 illustrates the convergence study for the 9-node and 16-node finite elements,

respectively. They list the results for the nondimensional transverse displacement ū3 =100u3E2h
3/q0a

4

at the plate center and their comparison with literature solutions [14, 19]. Two different plate thickness

ratio a/h have been investigated. The results evidence good convergence characteristics for all the

considered plate theories and for the different values of the nonlocal parameter ℓ.

To assess the formulation accuracy, the through-the-thickness distributions of displacements and

stresses at the point with in-plane coordinates (a/4, a/4) have been investigated by using an 8×8 finite

element mesh. Figs. 2 and 3 show the through-the-thickness distributions of the u1 and u3 displacement

components obtained using the 9-node and 16-node elements, respectively. They evidence a very good

agreement with the closed form solution of Ref. [19] suggesting that the displacement field is captured

with high accuracy.
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Table 1: Convergence analysis for the 9-node isoparametric finite element: nondimensional transverse displacement

ū3 =100u3E2h
3/q0a

4 at the plate center.

Mesh

a/h µ Plate theory 4× 4 6× 6 8× 8 10× 10 Ref. [19] Ref. [14]

10

0

LW1 0.744 0.742 0.742 0.741 0.740

0.715
LW2 0.739 0.737 0.737 0.736 0.736
LW3 0.739 0.737 0.737 0.736 0.736
LW4 0.739 0.737 0.737 0.736 0.736

1

LW1 0.889 0.887 0.887 0.887 0.887

0.856
LW2 0.883 0.881 0.881 0.881 0.881
LW3 0.883 0.881 0.881 0.881 0.881
LW4 0.883 0.881 0.881 0.881 0.881

3

LW1 1.181 1.179 1.179 1.179 1.179

1.139
LW2 1.173 1.172 1.172 1.171 1.171
LW3 1.173 1.172 1.172 1.171 1.171
LW4 1.173 1.172 1.172 1.171 1.171

5

LW1 1.473 1.472 1.471 1.471 1.471

1.421
LW2 1.464 1.462 1.462 1.462 1.462
LW3 1.464 1.462 1.462 1.462 1.462
LW4 1.464 1.462 1.462 1.462 1.462

20

0

LW1 0.515 0.514 0.514 0.514 0.514

0.506
LW2 0.514 0.513 0.513 0.513 0.513
LW3 0.514 0.513 0.513 0.513 0.513
LW4 0.514 0.513 0.513 0.513 0.513

1

LW1 0.616 0.615 0.615 0.615 0.615

0.606
LW2 0.615 0.614 0.614 0.614 0.614
LW3 0.615 0.614 0.614 0.614 0.614
LW4 0.615 0.614 0.614 0.614 0.614

3

LW1 0.819 0.818 0.818 0.818 0.818

0.806
LW2 0.817 0.817 0.816 0.816 0.816
LW3 0.817 0.817 0.816 0.816 0.816
LW4 0.817 0.817 0.816 0.816 0.816

5

LW1 1.022 1.021 1.021 1.021 1.021

1.006
LW2 1.020 1.019 1.019 1.019 1.019
LW3 1.020 1.019 1.019 1.019 1.019
LW4 1.020 1.019 1.019 1.019 1.019
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Table 2: Convergence analysis for the 16-node isoparametric finite element: nondimensional transverse displacement

ū3 =100u3E2h
3/q0a

4 at the plate center.

Mesh

a/h µ Plate theory 4× 4 6× 6 8× 8 Ref. [19] Ref. [14]

10

0

LW1 0.740 0.740 0.740 0.740

0.715
LW2 0.736 0.736 0.736 0.736
LW3 0.736 0.736 0.736 0.736
LW4 0.736 0.736 0.736 0.736

1

LW1 0.887 0.887 0.887 0.887

0.856
LW2 0.881 0.881 0.881 0.881
LW3 0.881 0.881 0.881 0.881
LW4 0.881 0.881 0.881 0.881

3

LW1 1.179 1.179 1.179 1.179

1.139
LW2 1.171 1.171 1.171 1.171
LW3 1.171 1.171 1.171 1.171
LW4 1.171 1.171 1.171 1.171

5

LW1 1.471 1.471 1.471 1.471

1.421
LW2 1.462 1.462 1.462 1.462
LW3 1.462 1.462 1.462 1.462
LW4 1.462 1.462 1.462 1.462

20

0

LW1 0.514 0.514 0.514 0.514

0.506
LW2 0.513 0.513 0.513 0.513
LW3 0.513 0.513 0.513 0.513
LW4 0.513 0.513 0.513 0.513

1

LW1 0.615 0.615 0.615 0.615

0.606
LW2 0.614 0.614 0.614 0.614
LW3 0.614 0.614 0.614 0.614
LW4 0.614 0.614 0.614 0.614

3

LW1 0.818 0.818 0.818 0.818

0.806
LW2 0.816 0.816 0.816 0.816
LW3 0.816 0.816 0.816 0.816
LW4 0.816 0.816 0.816 0.816

5

LW1 1.021 1.021 1.021 1.021

1.006
LW2 1.019 1.019 1.019 1.019
LW3 1.019 1.019 1.019 1.019
LW4 1.019 1.019 1.019 1.019
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Figure 3: Through-the-thickness distribution of displacement components at the point of in-plane coordinates (a/4, a/4).

Results for the 8× 8 mesh of 16-node isoparametric elements.
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Figure 2: Through-the-thickness distribution of displacement components at the point of in-plane coordinates (a/4, a/4).

Results for the 8× 8 mesh of 9-node isoparametric elements.

Figs. 4 and 5 show the through-the-thickness distributions of the out-of-plane stresses σ13 and

σ33 and their local counterparts σ̃13 and σ̃33 for the 9-node and 16-node element case, respectively.

For both the element types very good agreement is achieved for the local stresses when compared
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Figure 4: Through-the-thickness distribution of out of plane stress components at the point of in-plane coordinates

(a/4, a/4). Results for the 8× 8 mesh of 9-node isoparametric elements.
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Figure 5: Through-the-thickness distribution of out of plane stress components at the point of in-plane coordinates

(a/4, a/4). Results for the 8× 8 mesh of 16-node isoparametric elements.
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to the closed form solution of Ref [19]. However, the 9-node elements appear not able to capture the

nonlocal stresses behaviour, whereas the 16-node elements describe adequately the nonlocal stresses

that do not depend on the nonlocal parameter. This is ascribed to the numerical approximation of the

∂
〈k〉
ℓ operator (matrix H〈k〉

η in Eq. (8d)), which involves the second derivatives of the shape functions.

Thus, it is reasoned out that in the framework of the isoparametric formulation higher order elements

are required for reliable solutions. In view of this finding, it seems that more efficient finite elements

be based on improved approximations of H〈k〉
η , for example by using the concepts underlying assumed

natural strains and mixed interpolation of tensorial components formulations; this is out of the scope

of the present work that only aims to demonstrate the feasibility of the proposed approach.

As usual, a locking analysis was performed to verify that the use of the selective/reduced in-

tegration is able to manage this phenomenon. Tables 3 and 4 list the nondimensional transverse

displacement u3 at the plate center for different thickness ratios a/h. and different nonlocal param-

eters ℓ. The present results have been obtained with 8 × 8 meshes of 9-node and 16-node elements,

computing the involved matrices by using both full (FI) and selective reduced integration (SRI). The

comparison of the results with the closed form solution of Ref. [19] demonstrates that the locking

phenomena are adequately contrasted by the use of selective/reduced integration.

Table 3: Locking analysis for the 9-node isoparametric finite element. Nondimensional transverse displacement ū3 =

100u3E2h
3/q0a

4 at the plate center computed with full (FI) and selective reduced (SRI) integration.

LW1 LW3 LW4

µ a/h FI SRI Ref. [19] FI SRI Ref. [19] FI SRI Ref. [19]

0

10 0.744 0.742 0.740 0.739 0.737 0.736 0.741 0.739 0.736

100 0.437 0.435 0.435 0.437 0.435 0.435 0.437 0.437 0.435

1000 0.434 0.431 0.431 0.434 0.431 0.431 0.433 0.433 0.431

1

10 0.890 0.887 0.887 0.885 0.881 0.881 0.886 0.885 0.881

100 0.523 0.520 0.520 0.523 0.520 0.520 0.523 0.523 0.520

1000 0.519 0.516 0.516 0.519 0.516 0.516 0.519 0.519 0.516

3

10 1.183 1.179 1.179 1.176 1.172 1.171 1.178 1.176 1.171

100 0.696 0.692 0.692 0.695 0.692 0.692 0.696 0.695 0.692

1000 0.690 0.687 0.687 0.690 0.687 0.687 0.690 0.690 0.687

3

10 1.477 1.471 1.471 1.468 1.462 1.462 1.470 1.468 1.462

100 0.868 0.864 0.864 0.868 0.864 0.864 0.868 0.868 0.864

1000 0.861 0.857 0.857 0.861 0.857 0.857 0.862 0.861 0.857
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Table 4: Locking analysis for the 16-node isoparametric finite element. Nondimensional transverse displacement ū3 =

100u3E2h
3/q0a

4 at the plate center computed with full (FI) and selective reduced (SRI) integration.

LW1 LW3 LW4

µ a/h FI SRI Ref. [19] FI SRI Ref. [19] FI SRI Ref. [19]

0

10 0.740 0.740 0.740 0.736 0.736 0.736 0.736 0.736 0.736

100 0.435 0.435 0.435 0.435 0.435 0.435 0.435 0.435 0.435

1000 0.431 0.431 0.431 0.431 0.431 0.431 0.431 0.431 0.431

1

10 0.887 0.887 0.887 0.881 0.881 0.881 0.881 0.881 0.881

100 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520

1000 0.517 0.516 0.516 0.517 0.516 0.516 0.517 0.516 0.516

3

10 1.179 1.179 1.179 1.171 1.171 1.171 1.171 1.171 1.171

100 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692

1000 0.691 0.689 0.687 0.711 0.691 0.687 0.694 0.690 0.687

3

10 1.471 1.471 1.471 1.462 1.462 1.462 1.462 1.462 1.462

100 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864

1000 0.859 0.852 0.857 0.852 0.852 0.857 0.852 0.852 0.857

The proposed finite elements are employed to carry out original results for a clamped, three-

layered, square nanoplate with side length a=10 nm. The plate external layers are graphene sheets

with 0.34 nm thickness, modeled as nonlocal isotropic material with Young modulus EG =1.6 TPa and

Poisson’s ratio νG=0.3 [33]. The graphene nonlocal parameter is assumed varying in the range ℓG =

0.5÷1.5 nm. The internal layer has thickness 0.34nm and is made of epoxy resin modeled as an isotropic

material with Young modulus EE =3.5GPa and Poisson’s ratio νE =0.33; local behaviour(ℓE =0) is

assumed for the epoxy resin. Fig. 6 shows the through-the-thickness distribution of displacement,

stresses and local stresses at the point of in-plane coordinates (a/3, a/3). The presented solution

has been obtained with the LW3 expansion. These original results aim to illustrate the formulation

capability to deal with layers exhibiting different nonlocal parameter and to provide benchmarking

data for the problem.

5. Conclusions

A novel mixed finite element formulation for the layerwise analysis of nonlocal multilayered

composite plates has been presented. The formulation starting point is the weak form of the layers

governing equations obtained via the Reissner Mixed Variational Theorem in which the displacements

and out-of-plane stresses are assumed as primary variables. These primary variables are expressed
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Figure 6: Through-the-thickness distribution of displacement components at the point of in-plane coordinates

(0.25L, 0.25L). 8× 8 mesh of 16-node isoparametric elements
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at layer level as through-the-thickness expansions of suitable selected functions whose coefficients are

approximated by the finite element scheme. The through-the-thickness expansion order is considered as

a free parameter, so that different refined higher order plate theories are systematically developed. The

contributions to the finite element equations associated with the variable expansion terms, the so-called

fundamental nuclei, are firstly deduced for the laminate layers and then used in a layerwise assembly

procedure to obtain the plate finite element matrices. The developed formulation inherently ensures

the interface continuity. Moreover, it allows to consider different values of the nonlocal parameter for

the layers.

To demonstrate the feasibility of the proposed formulation, 9-node and 16-node isoparametric,

quadrilateral finite elements have been implemented and used to analyze plates by different order

theories. The approach has been validated and its features assessed by comparison of the obtained

results with closed-form solutions available in the literature. In the context of the isoparametric

formulation, it is turned out the need to use higher order finite elements to capture reliably the nonlocal

stress behaviour. This is related to the involvement in the formulation of the second order derivatives

of the stresses that are poorly modeled by low order shape functions. The last observation suggests for

future alternative finite element formulations with improved approximation schemes for the primary

variable second derivatives, for example exploiting the principles underlying the assumed natural strain

and mixed interpolation of tensorial components approaches. Finally, original results have been also

presented to better illustrate the proposed formulation potentiality and provide benchmarking data.
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Appendix A. Thickness functions

The thickness functions F 〈k〉
r are selected as a linear combination of Legendre polynomials Pi(ζk)

of i-th order as follows

F
〈k〉
0 =

P0(ζk)− P1(ζk)

2
(A.1a)

F 〈k〉
r = Pr+1(ζk)− Pr−1(ζk) r=1, ...(M − 1) (A.1b)
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F
〈k〉
M =

P0(ζk) + P1(ζk)

2
(A.1c)

where ζk =(2x3 − zk − zk−1)/ (zk − zk−1) is the layer normalized thickness coordinate.

It is worth to remark that

F 〈k〉
r (−1)=





1 for r=0

0 for r 6=0
; (A.2a)

F 〈k〉
r (1)=





1 for r=M

0 for r 6=M
; (A.2b)

Appendix B. Definitions

The differential operators involved in the fundamental nuclei definitions, see Eqs.(5), are given

by

∂p =




∂

∂x1
0 0

0
∂

∂x2
0

∂

∂x2

∂

∂x1
0




(B.1a)

∂n =




0 0
∂

∂x2

0 0
∂

∂x1

0 0 0




(B.1b)

∂
〈k〉
ℓ =




L〈k〉 0 0

0 L〈k〉 0

0 0 L〈k〉


 (B.1c)

Accordingly, the operators ∂̂p and ∂̂n are obtained from the differential operators ∂p and ∂n by

substituting the partial derivatives with the corresponding boundary normal direction cosines. The

layer constitutive matrices are defined as

D〈k〉
pp =C〈k〉

pp −C〈k〉
pn C〈k〉

nn

−1
C〈k〉

np (B.2a)

D〈k〉
pn =C〈k〉

pn C〈k〉
nn

−1
(B.2b)
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D〈k〉
np =−C〈k〉

nn

−1
C〈k〉

np (B.2c)

D〈k〉
nn =C〈k〉

nn

−1
(B.2d)

The coefficients I〈k〉
rs are

〈I〈k〉
rs ; I〈k〉

r,3s
; I〈k〉

rs,3
〉=

∫ zk

zk−1

〈FrFs;
∂Fr

∂x3
Fs; Fr

∂Fs

∂x3
〉dx3 (B.3)

Finally, the pα terms are given by

pα =

∫ zk

zk−1

F 〈k〉
α L t

〈k〉
dx3 (B.4)
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