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COX RING OF THE GENERIC FIBER

ANTONIO LAFACE AND LUCA UGAGLIA

Abstract. Given a surjective morphism π : X → Y of normal varieties sat-
isfying some regularity hypotheses we prove how to recover a Cox ring of the
generic fiber of π from the Cox ring of X. As a corollary we show that in
some cases it is also possible to recover the Cox ring of a very general fiber,
and finally we give an application in the case of the blowing-up of a toric fiber
space.

Introduction

Let X be a normal variety defined over an algebraically closed field K of char-
acteristic zero. If the divisor class group Cl(X) of X is finitely generated and
K[X ]∗ = K

∗, i.e. the only global regular invertible functions of X are constants,
the Cox sheaf of X can be defined as (see [2])

R :=
⊕

[D]∈Cl(X)

OX(D),

while its Cox ring R(X) is the ring of global sections Γ(X,R). Given a morphism
π : X → Y of normal varieties defined over K, possible relations between the Cox
rings of X and Y have been recently studied in many cases (see for instance [1,
3, 11, 12, 17]). On the contrary, to our knowledge there are no results concerning
relations with the Cox ring of the fibers of π. Trying to fill this gap, in the present
paper we consider the problem of determining the Cox ring of the generic fiber Xη

(and in some cases also the Cox ring of the very general fiber) of π from the Cox
ring of X and from the vertical classes of π, i.e. classes of divisors whose image in
Y is not dense. Observe that since Xη is defined over a non closed field (isomorphic
to the function field K(Y )), we need to define a Cox ring for Xη following [6].

In order to describe our results let us denote by Clπ(X) the subgroup of Cl(X)
generated by classes of vertical divisors, or equivalently the kernel of the surjection
Cl(X) → Cl(Xη), induced by the pull-back of the natural morphism ı : Xη → X .
If we denote by Rπ(X) the localization of R(X) by the multiplicative subsystem
generated by the non-zero homogeneous elements f ∈ R(X)w, with w ∈ Clπ(X),
and by Frac0(R(X)) the field of degree zero homogeneous fractions on R(X), the
following holds.

Proposition 1. The image of the homomorphism K(Y ) → Frac0(R(X)) induced by
the pullback is Rπ(X)0, the subset of degree zero homogeneous elements of Rπ(X).

2010 Mathematics Subject Classification. Primary 14C20, Secondary14M25 .
Key words and phrases. Cox rings, fiber spaces.
The first author was partially supported by Proyecto FONDECYT Regular N. 1190777. The

second author is member of INdAM - GNSAGA. Both authors have been partially supported by
project Anillo ACT 1415 PIA Conicyt.

1

http://arxiv.org/abs/1708.02797v2


2 A. LAFACE AND L. UGAGLIA

One consequence of the proposition above is that Rπ(X) has a structure of
K(Y )-algebra. On the other hand, since the generic fiber Xη is defined over a field
k, isomorphic to K(Y ), following [6] we can construct a Cox ring R(Xη) which has
the structure of K(Y )-algebra too. Our main result is a description of the relation
existing between these two algebras. In particular the latter turns out to be a
quotient of the former, and the precise result is the content of the following.

Theorem 1. Let π : X → Y be a proper surjective morphism of normal varieties
having only constant invertible global sections, such that Cl(X) is finitely generated,
Clπ(X) torsion free, and the very general fiber of π is irreducible. Then there
exists a Cox ring R(Xη) of the generic fiber Xη such that the canonical morphism
ı : Xη → X induces an isomorphism of Cl(Xη)-graded K(Y )-algebras

Rπ(X)/〈1− u(w) : w ∈ Clπ(X)〉 → R(Xη),

where u : Clπ(X) → Rπ(X)∗ is any homomorphism satisfying u(w) ∈ Rπ(X)∗−w

for each w.

Let us suppose in addition that the class group of the geometric generic fiber
Xη ×k k̄ is isomorphic to Cl(Xη). We will show (see Corollary 5.2) that in this
case it is possible to combine the theorem above with the results of [19] in order to
recover the Cox ring of a very general fiber of π from the Cox ring of X . A direct
consequence is that finite generation for the Cox ring of X implies finite generation
for the Cox ring of the very general fiber. Applying these results to the blowing-
up of a toric fiber space along a section, we will finally produce new examples of
varieties with non-finitely generated Cox ring.

The paper is structured as follows. In Section 1 we first recall the definition of
Cox sheaf and Cox ring for a variety defined over a closed field, and then, after
remembering some facts about varieties defined over a (not necessarily closed) per-
fect field, following [6] we construct a Cox sheaf for such varieties. In Section 2
we collect some results about the generic fiber Xη of a proper surjective morphism
π : X → Y , whose very general fiber is irreducible. Section 3 contains the proof of
Proposition 1 and some lemmas that we are going to use in Section 4, where we
prove Theorem 1. In Section 5 we consider the very general fiber and in the last
section we apply the results above to the blowing up of toric fiber spaces along a
section.

Acknowledgements. We would like to thank Prof. Ulrich Derenthal for many
useful comments.

1. Preliminaries

In this section we first recall the definition of Cox sheaf and Cox ring in the case
of a variety defined over an algebraically closed field (see [2]). Then, after recalling
some known facts about algebraic varieties defined over a (non necessarily closed)
perfect field we construct a suitable Cox sheaf of type λ for such varieties, according
to [6, Definition 2.2].

1.1. Algebraically closed fields.

Construction 1.1. (see [2]) Let X be a normal variety defined over a closed field
K, such that K[X ]∗ = K

∗ and Cl(X) is finitely generated. Let K be a finitely
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generated subgroup of WDiv(X) such that the class map cl : K → Cl(X) is onto.
The sheaf of divisorial algebras associated to K and its global sections are

S =
⊕

D∈K

OX(D) and Γ(X,S) =
⊕

D∈K

Γ(X,OX(D))

respectively. In the rest of the paper, when we need to keep trace of the group K,
we will use the notation SK instead of S. We will also denote by Γ(X,S)D the
degree D part of the ring of global sections of S. Let us consider now the kernel
K0 ⊆ K of the class map and let X : K0 → K(X)∗ be a homomorphism of groups
such that div ◦X = id. Let I be the ideal sheaf of S, locally generated by sections
of the form 1 − X (D), where D ∈ K0. The quotient R := S/I turns out to be
a sheaf (see [2, Lemma 1.4.3.5]) and it is called a Cox sheaf for X . The Cox ring
R(X) of X can be defined as the ring of global sections of R(X), or equivalently

(1.1) R(X) =
Γ(X,S)

Γ(X, I)
.

1.2. Non closed fields. Let us recall now some facts about an algebraic variety
X , defined over a perfect field k (see for instance [14, § A.1 and § A.2]). In what
follows we will denote by Xk̄ the base change of X over the algebraic closure k̄ of
k. From now on we assume that any variety X has only constant invertible global
sections, i.e.

(1.2) k̄[X ]∗ = k̄∗,

where k̄[X ] denotes the ring of global sections of the structure sheaf of X . Let us
denote by G = Gal(k̄/k) the absolute Galois group of k and let

WDiv(X) := {D ∈ WDiv(Xk̄) : σ(D) = D for any σ ∈ G}

be the group of G-invariant Weil divisors of Xk̄. We will denote by PDiv(X)
the subgroup of WDiv(X) consisting of principal divisors of the form div(f), with
f ∈ k(X). By [14, Proposition A.2.2.10 (ii)] the equality PDiv(X) = WDiv(X) ∩
PDiv(Xk̄) holds (observe that the hypothesis in the cited proposition asks for X to
be projective, but it actually only makes use of the weaker condition (1.2)). Thus,
if we denote by Cl(X) the quotient group WDiv(X)/PDiv(X), we get inclusions

(1.3) Cl(X) ⊆ Cl(Xk̄)
G ⊆ Cl(Xk̄).

Given a divisor D ∈ WDiv(X) and a Zariski open subset U of X , the space of
sections OXk̄

(D)(Uk̄) is a k̄ vector space acted by G, since both U and X are
defined over k, and thus it is a G-module. Observe that a G-invariant element
f ∈ OXk̄

(D)(Uk̄)
G is a rational function of Xk̄, which is defined over k (see for

instance [18, Exercise 1.12]). If we set

(1.4) OX(D)(U) := OXk̄
(D)(Uk̄)

G,

by [14, Proposition A.2.2.10 (i)] we have that the k̄ vector space OX(D)(U) ⊗k k̄
is isomorphic to OXk̄

(D)(Uk̄).
We are now able to construct a sheaf R of OX -algebras which turns out to be a

Cox sheaf of type λ according to [6, Definitions 2.2 and 3.3].

Construction 1.2. Let X be a variety defined over a perfect field k, satisfy-
ing (1.2). Let us suppose that Cl(X) is finitely generated and let K be a finitely
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generated subgroup of WDiv(X) whose image via the class map cl : K → Cl(Xk̄)
is Cl(X). Let us consider the K-graded sheaf of OX -algebras

S =
⊕

D∈K

OX(D),

whereOX(D) is the sheaf defined in (1.4). Denote byK0 ⊆ K the kernel of the class
map and let X : K0 → k(X)∗ be a homomorphism of groups such that div ◦X = id
(such a X exists again by [14, Proposition A.2.2.10 (ii)]). Let I be the ideal sheaf
of S locally generated by sections of the form 1 − X (D), where D ∈ K0. Denote
by R the presheaf S/I and by π : S → R the quotient map.

Proposition 1.3. The presheaf R defined above is a Cox sheaf of type λ (see [6,
Definition 3.3]) where λ : Cl(X) → Cl(Xk̄) is the inclusion.

Proof. By construction K/K0 is isomorphic to the group Cl(X), so that grading
over the former is equivalent to grading over the latter. Consider the sheaf of
divisorial algebras

S̄ =
⊕

D∈K

OXk̄
(D)

together with the G-invariant character X : K0 → k(X)∗ ⊆ k̄(X)∗, where G =
Gal(k̄/k) as before, and let Ī be the ideal sheaf of S̄ defined by X . Let us denote
by φ : Xk̄ → X the base change map. According to the proof of [6, Proposition
3.19] the quotient sheaf R̄ = S̄/Ī is a G-equivariant Cox sheaf of type λ and the
push forward of the sheaf of invariants φ∗R̄

G is a Cox sheaf of X of type λ. Given
an open subset U ⊆ X and a divisor D ∈ K the following holds

(φ∗R̄
G
[D])(U) = (R̄[D](Uk̄))

G

= ((S̄/Ī)[D](Uk̄))
G

≃ (S̄D(Uk̄)/ĪD(Uk̄))
G

≃ SD(U)/ID(U),

where the first isomorphism is by [6, Construction 2.7], while the second one is by
Lemma 1.5 and equality (1.4). Therefore R = S/I is isomorphic to φ∗R̄

G, and in
particular it is a Cox sheaf of type λ. �

Remark 1.4. We remark that by [6, Definition 3.3], the ring of global sections
R(X) = Γ(X,S)/Γ(X, I) is a Cox ring of type λ, and in particular this implies
that a Cox ring of type λ for Xk̄ can be obtained from R(X) by a base change. In
particular, if λ = idCl(Xk̄)

, we get the usual Cox ring for Xk̄.

Lemma 1.5. Let L/k be a Galois extension of fields with Galois group G. Let
V1 ⊆ V2 be k vector spaces and let V i = Vi ⊗k L. Then V 1 is G-invariant and the
homomorphism

j : V2/V1 → (V 2/V 1)
G v + V1 7→ v + V 1

is an isomorphism.

Proof. By hypothesis there is a G-equivariant isomorphism V 2 ≃ V 1 ⊕ T of G-
invariant vector spaces, where T is obtained by completing a basis of V1 to a basis
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of V2. Since V 1 ∩ V2 = V
G

1 = V1, the map j is injective. To prove the surjectivity
of j let v+V 1 ∈ (V 2/V 1)

G, that is gv+V 1 = v+V 1 for any g ∈ G, or equivalently

gv − v ∈ V 1.

Write v = v1 + t with v1 ∈ V 1 and t ∈ T and observe that gv − v ∈ V 1 implies
gt− t ∈ V 1 ∩ T = 0, so that t is G-invariant, that is t ∈ V2. Thus

v + V 1 = t+ V 1 = j(t+ V1).

�

2. Divisors on the generic fiber

Let X and Y be normal varieties defined over an algebraically closed field K of
characteristic zero and satisfying (1.2), and let η be the generic point of Y . In this
section we are going to summarise some results about the generic fiberXη := X×Y η
of a proper surjective morphism π : X → Y , whose very general fiber is irreducible.

First of all observe that the morphism ı : Xη → X induces a pullback isomor-
phism ı∗ : K(X) → k(Xη), where k = (π ◦ ı)∗(K(Y )) ≃ K(Y ). We remark that the
complementary of the smooth locus Xsm has codimension at least two in X and
the same holds for the generic fiber of the restriction π|Xsm in Xη. Therefore ı∗

induces a surjective homomorphism

(2.1) WDiv(X) → WDiv(Xη).

In what follows, by abuse of notation, we will use the same symbol ı∗ for the above
homomorphism, and we will denote by WDivπ(X) its kernel.

Proposition 2.1. The following hold:

(i) the diagram

K(X)
ı∗

//

div

��

k(Xη)

div

��

WDiv(X)
ı∗

// WDiv(Xη)

is commutative;
(ii) if D ∈ WDiv(X) is effective on an open subset U ⊆ X then ı∗(D) is

effective on the corresponding open subset Uη ⊆ Xη;
(iii) the group WDivπ(X) is freely generated by the prime divisors that do not

dominate Y ;
(iv) the map (2.1) induces a surjective homomorphism Cl(X) → Cl(Xη), whose

kernel Clπ(X) is generated by the classes of divisors in WDivπ(X);
(v) for any D ∈ WDiv(X) the pullback induces a map ı∗ : OX(D) → ı∗OXη

(ı∗D).

Proof. Recall that the generic fiber Xη is limit of the family of open subsets
π−1(V ) ⊆ X , where V varies through the open subsets of Y . Let us consider
V = Spec(B), and let U = Spec(A) be an affine open subset of π−1(V ). The
morphism π|U : U → V is induced by an injective homomorphism of K-algebras,
B → A. Identifying B with a subalgebra of A we have that the affine open subset
Uη ⊆ Xη, obtained by base change over U , is the spectrum of the localization S−1

B A,
whose multiplicative system is SB = B \ {0}. The pullback

ı∗ : OX(U) → ı∗OXη
(Uη)
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is thus defined on U by the injection A → S−1
B A. This shows that a prime divisorD

defined by a prime ideal p ⊆ A survives in the generic fiber if and only if p∩B = 0,
that is D has non-empty intersection with π−1(V ). This proves (ii) and (iii). In
order to prove (i) recall that the order of a rational function f ∈ K(X) at D is
the length of the OX,p-module OX,p/〈f〉, but the local rings OX,p and OXη ,p are
isomorphic if p∩B = 0. In order to prove (iv), observe first that the omomorphism

Cl(X) → Cl(Xη), [D] 7→ [ı∗(D)]

is well defined by (i). Let us fix a divisorD ∈ WDiv(X) such that [D] is in the kernel
Clπ(X) of the above map. By definition this implies that ı∗(D) is principal on Xη,
so that we can write ı∗(D) = div(g), with g ∈ k(Xη). Since ı∗ : K(X) → k(Xη) is
an isomorphism we have g = ı∗(f), with f ∈ K(X). We conclude that

0 = ı∗(D)− div(g) = ı∗(D − div(f))

and in particular D − div(f) is a divisor of WDivπ(X), linearly equivalent to D.
Finally, to prove (v) let f ∈ OX(D)(U) so that the divisor div(f)+D is effective

on U . Then
div(ı∗(f)) + ı∗(D) = ı∗(div(f) +D)

is effective on Uη by (ii). �

In what follows we will refer to the elements of WDivπ(X) as vertical divisors
and similarly to the elements of Clπ(X) as vertical classes.

Let us remark that every pull-back divisor in WDiv(X) is vertical. In the next
lemma we are going to prove that in the case of principal divisor, also the converse
is true. In order to do that, let us denote by PDivπ(X) the subgroup of WDivπ(X)
consisting of the principal vertical divisors of X .

Lemma 2.2. Under the hypotheses above, the equality PDivπ(X) = π∗ PDiv(Y )
holds.

Proof. The inclusion π∗ PDiv(Y ) ⊆ PDivπ(X) is obvious. In order to prove the
opposite inclusion, let D ∈ PDivπ(X) be a principal vertical divisor and let f ∈
K(X) be a rational function such that div(f) = D. By Proposition 2.1 we have

div(ı∗(f)) = ı∗(D) = 0,

and thus ı∗(f) must be constant, being Xη complete by the properness hypothesis
on π. In particular ı∗(f) is an element of k̄∩k(Xη), where k̄ is the algebraic closure
of k. By [15, Example 2.1.12] the following equality

k̄ ∩ k(Xη) = k

holds, so that ı∗(f) ∈ k. In particular f ∈ π∗(K(Y )) and thus D = div(f) lies in
π∗ PDiv(Y ), which proves the second inclusion.

�

3. Proof of Proposition 1

In this section we are going to prove Proposition 1 together with some related
results.

Let X be a normal variety defined over a closed field K, such that Cl(X) is
finitely generated and K[X ]∗ = K

∗. Let K and SK be as in Construction 1.1.
In what follows, whenever we need to keep trace of the degree of an element in
Γ(X,SK)D, we will use the notation ftD, where f is in the Riemann Roch space of



COX RING OF THE GENERIC FIBER 7

D. If we denote by Frac0(Γ(X,SK)) the field of fractions of homogeneous sections
having the same degree, we have the following.

Lemma 3.1. The map µK : Frac0(Γ(X,SK)) → K(X), defined by ftD/gtD 7→ f/g
is an isomorphism.

Proof. Since µK is a homomorphism of fields, we only need to show that it is
surjective. To this purpose, let us fix h ∈ K(X). We can write div(h) = A − B,
with A and B effective divisors in WDiv(X) without common support. Since the
class map cl : K → Cl(X) is surjective, there exist D ∈ K and g ∈ Γ(X,SK)D such
that div(g)+D = B. The fraction hgtD/gtD is then an element in Frac0(Γ(X,SK))
whose image via µK is h. �

Let us suppose now that X and Y are normal varieties having only constant
invertible global sections and let π : X → Y be a proper surjective morphism whose
very general fiber is irreducible. LetK be a finitely generated subgroup of WDiv(X)
such that the class map K → Cl(X) is surjective. In order to prove Proposition 1
we are going to define the localization

Γπ(X,SK) = S−1
π Γ(X,SK),

where Sπ is the multiplicative system consisting of the non-zero homogeneous ele-
ments whose degree D ∈ K is such that [D] ∈ Clπ(X).

Proof of Proposition 1. Let us denote by ηK : K(Y ) → Frac0(Γ(X,SK)) the com-
position µ−1

K ◦ π∗. We claim that it suffices to prove that

im(ηK) = Γπ(X,SK)0.

Indeed, by (1.1), Γπ(X,SK)0 surjects onto Rπ(X)0 and moreover the composition
K(Y ) → Rπ(X)0 is injective because the domain is a field.

In order to prove the inclusion im(ηK) ⊆ Γπ(X,SK)0, let s ∈ K(Y ) and let
h := π∗(s) ∈ K(X). Write div(h) = A − B, with A and B vertical, effective, with
no common support. Arguing as we did in the proof of Lemma 3.1 we have that

ηK(s) = µ−1
K (h) = hgtD/gtD

where D ∈ K is linearly equivalent to the vertical divisor B, so that the above
quotient is in Γπ(X,SK)0.

Viceversa let ftD/gtD ∈ Γπ(X,SK)0 be a degree zero homogeneous fraction.
The divisor ı∗(div(f) +D) is effective by Proposition 2.1 and it is principal, being
[D] ∈ Clπ(X). Since Xη is complete, ı∗(div(f)+D) = 0 or equivalently div(f)+D
is vertical. In the same way one shows that also div(g)+D is vertical, so that their
difference div(f/g) is vertical and principal. By Lemma 2.2 the latter divisor is a
pullback so that f/g = π∗(s) for some s ∈ K(Y ), which proves the claim. �

Given K as before and the map ı∗ : WDiv(X) → WDiv(Xη), from now on for
simplicity of notation we will set Kη := ı∗(K) ⊆ WDiv(Xη). By Proposition 2.1 (v)
we have a morphism of sheaves of divisorial algebras ı∗ : SK → ı∗SKη

and passing
to global sections we obtain a homomorphism of rings

(3.1) ı∗ : Γ(X,SK) → Γ(Xη,SKη
).

Remark 3.2. If the subgroup K does not contain vertical divisors, that is K ∩
WDivπ(X) = 0, then the restriction of ı∗ : WDiv(X) → WDiv(Xη) gives an iso-
morphism betweenK andKη. In this case the map ı∗ defined in (3.1) is an injection
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since we have seen that ı∗ induces also an isomorphism between the fields of rational
functions.

Proposition 3.3. If the subgroup K does not contain vertical divisors, then the
map ı∗ defined in (3.1) extends to an isomorphism of K(Y )-algebras

ı∗ : Γπ(X,SK) → Γ(Xη,SKη
),

f

g
7→

ı∗(f)

ı∗(g)
.

Proof. By Remark 3.2 we already know that the map (3.1) is injective. We are
now going to prove that the image of an element in the multiplicative system Sπ

is invertible. Let us fix g ∈ Sπ, i.e. g ∈ Γ(X,SK)D, and [D] ∈ Clπ(X). Then
ı∗(g) ∈ Γ(Xη,SKη

)ı∗(D), where ı∗(D) is a principal divisor, being its class trivial.
Thus

ı∗(div(g) +D) = div(ı∗(g)) + ı∗(D) = 0,

where the first equality is by Lemma 2.1 and the second is due to the fact that
the generic fiber Xη is complete, being π proper by hypothesis. In particular ı∗(g)
is invertible with inverse ı∗(g−1) ∈ Γ(Xη,SKη

)ı∗(−D). This shows that the map
defined in the statement is an injective homomorphism of K(Y )-algebras.

In order to prove the surjectivity, it suffices to show that any homogeneous
s ∈ Γ(Xη,SKη

)ı∗(D), with D ∈ K, is in the image. At the level of rational functions
we have s = ı∗(f), where f ∈ K(X), with

ı∗(div(f) +D) = div(ı∗(f)) + ı∗(D) = Eη, effective on Xη.

If we denote by E the Zariski closure of Eη in X , we have that E is effective too
and ı∗(E) = Eη. Then the above formula implies that div(f) +D = E + V , where
V ∈ WDivπ(X). Write V = A − B, with A and B effective. Let B′ ∈ K linearly
equivalent to B and let h ∈ Γ(X,SK)B′ be such that div(h) + B′ = B. By the
equality

div(fh) +D +B′ = E +A

we deduce that fh ∈ Γ(X,SK)D+B′ and thus fh
h

∈ Γπ(X,SK) is a preimage of
s. �

4. Proof of Theorem 1

In this section we are going to give the proof of Theorem 1. In order to do that
we first state and prove a couple of lemmas. Throughout the section π : X → Y will
be a proper surjection of normal varieties whose very general fiber is irreducible.
From now on we also suppose that the subgroup K ⊆ WDiv(X) does not contain
vertical divisors, so that, by Lemma 3.2, it is isomorphic to Kη.

Lemma 4.1. If we denote by K0
η the kernel of the surjection Kη → Cl(Xη), we

have an isomorphism between K0
η/ı

∗(K0) and Clπ(X).
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Proof. A diagram chasing in the following commutative diagram with exact rows
and columns establishes the claimed isomorphism

0

��

0

��

0

��

Clπ(X)

��

0 // K0 //

��

K

��

// Cl(X)

��

// 0

0 // K0
η

//

��

Kη
//

��

Cl(Xη)

��

// 0.

K0
η/ı

∗(K0)

��

0 0

0

�

From now on we assume the group Clπ(X) to be torsion-free. Let us consider the
following set of characters (which are sections of the map div : K(X) → WDiv(X))

SecDiv(K0,K(X)∗) := {X : K0 → K(X)∗ | div ◦X = id},

and define SecDiv(K0
η , k(Xη)

∗) in a similar way. Let us define the map

Φ: SecDiv(K0
η , k(Xη)

∗) → SecDiv(K0,K(X)∗), Xη 7→ ı∗−1 ◦ Xη ◦ ı∗|K0
,

and observe that the group Hom(Clπ(X), k∗) acts on SecDiv(K0
η , k(Xη)

∗) by mul-
tiplication.

Lemma 4.2. The following hold:

(i) Φ is the quotient map by the action of Hom(Clπ(X), k∗);
(ii) the pulback ı∗ : SK → SKη

maps the ideal sheaf I to Iη.

Proof. We prove (i). We first claim that Φ is surjective. Indeed, let us fix a character
X ∈ SecDiv(K0,K(X)∗). Observe that since ı∗|K0

is an isomorphism on its image,

there exists a unique homomorphism of groups ϕ : ı∗(K0) → k(Xη)
∗ which makes

the following diagram commute

K0 X
//

ı∗|K0

��

K(X)∗

ı∗

��

ı∗(K0)
ϕ

// k(Xη)
∗.

Therefore for any divisor D ∈ K0 we have

div(ϕ(ı∗(D))) = div(ı∗(X (D))) = ı∗(div(X (D))) = ı∗(D),
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where the second equality follows from Proposition 2.1. Now, by Lemma 4.1 and
the assumption that Clπ(X) is torsion free, we deduce that the subgroup ı∗(K0)
is primitive in K0

η , and in particular ϕ can be extended to a homomorphism

Xη : K
0
η → k(Xη)

∗. Moreover the extension can be chosen in such a way that

the equality div ◦Xη = id holds, so that Xη is an element of SecDiv(K0
η , k(Xη)

∗).
By construction, Φ(Xη) = X , which proves the claim.

The map Φ is invariant for the group action. Indeed, given γ ∈ Hom(Clπ(X), k∗)
and Xη ∈ SecDiv(K0

η , k(Xη)
∗) we have Φ(Xη) = Φ(γ · Xη) because γ([D]) = 1 for

any D ∈ ı∗(K0). Since the group action is clearly free, in order to conclude the
proof of (i) we only need to show that the group Hom(Clπ(X), k∗) acts transitively
on the fibers of Φ. Given two elements Xη and X ′

η in the same fiber of Φ, the
homomorphism

K0
η → k(Xη)

∗, D 7→ Xη(D)/X ′
η(D)

is trivial on ı∗(K0), and thus by Lemma 4.1 it descends to a homomorphism
γ : Clπ(X) → k(Xη)

∗. Since

div(Xη(D)/X ′
η(D)) = div(Xη(D))− div(X ′

η(D)) = D −D = 0

andXη is complete, we deduce that Xη(D)/X ′
η(D) ∈ k̄∗∩k(Xη)

∗. Moreover, by [15,

Example 2.1.12], we have that k̄∗ ∩ k(Xη)
∗ = k∗, so that γ ∈ Hom(Clπ(X), k∗).

We now prove (ii). Given a character X ∈ SecDiv(K0,K(X)∗), by Construc-
tion 1.1 we know that I is locally generated by the sections 1−X (D), for D ∈ K0.
By the surjectivity of Φ there exists a character Xη ∈ SecDiv(K0

η , k(Xη)
∗) that

makes the following diagram commute:

K0 X
//

ı∗|K0

��

K(X)∗

ı∗

��

K0
η

Xη
// k(Xη)

∗.

Since ı∗(K0) ⊆ K0
η and, by Construction 1.2, Iη is locally generated by the sections

1−Xη(D
′), for D′ ∈ K0

η , we get the statement. �

Proof of Theorem 1. By Proposition 3.3, Lemma 4.2, the characterization of Cox
rings in [2, Lemma 1.4.3.5] and [6, Construction 2.7], we have a commutative dia-
gram with exact rows

0 // Γπ(X, I) //

��

Γπ(X,SK) //

≃ı∗

��

Rπ(X) //

ıR

��

0

0 // Γ(Xη, Iη) // Γ(Xη,SKη
) // R(Xη) // 0

where Γπ(X, I) is the localization of the ideal Γ(X, I). In particular the morphism
ıR : Rπ(X) → R(Xη) is surjective, while the restriction of ı∗ to Γπ(X, I) is injective.

Define the homomorphism of groups

(4.1) u : Clπ(X) → Rπ(X)∗, [D] → ı∗−1(Xη(D)) + Γπ(X, I),

where D ∈ K0
η and Xη(D) ∈ Γ(Xη,SKη

)−D. Let us show that u is well defined.

Indeed, if D′ ∈ K0
η is another representative of the same class [D], by Lemma 4.2
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we have D′ −D = ı∗(L) with L ∈ K0, so that

ı∗−1(Xη(D + i∗(L))) = ı∗−1(Xη(D) · Xη(ı
∗(L)))

= ı∗−1(Xη(D)) · X (L)

≡ ı∗−1(Xη(D)) mod Γπ(X, I).

Observe that the homomorphism u satisfies the condition u(w) ∈ Rπ(X)∗−w for
each w ∈ Clπ(X). Moreover, given another morphism u′ : Clπ(X) → Rπ(X)∗

satisfying the same condition, reasoning as in the proof of Lemma 4.2 we see that
u′/u ∈ Hom(Clπ(X), k∗), since Rπ(X)∗0 ≃ k∗. Thus, by the same Lemma 4.2, u′

can be defined as in (4.1) by taking the character X ′
η = (u′/u) · Xη. We can now

describe the kernel of ıR as follows

ker(ıR) = {s+ Γπ(X, I) : ı∗(s) ∈ Γ(Xη, Iη)}

= {ı∗−1(sη) + Γπ(X, I) : sη ∈ Γ(Xη, Iη)}

= 〈1 − ı∗−1(Xη(D)) + Γπ(X, I) : D ∈ K0
η〉

= 〈1 − u([D]) : [D] ∈ Clπ(X)〉,

which gives the claim.
�

Remark 4.3. Observe that if π : X → Y admits a rational section σ and Cl(Y )
is torsion free, then Clπ(X) is torsion free as well. Indeed we can identify Clπ(X)
with the quotient WDivπ(X)/PDivπ(X). So let us take a divisor V ∈ WDivπ(X)
such that nV belongs to PDivπ(X) for some integer n > 1. Since PDivπ(X) =
π∗ PDiv(Y ) we can write nV = π∗D, with D ∈ PDiv(Y ) and hence

D = (π ◦ σ)∗(D) = σ∗(π∗D) = σ∗(nV ) = nσ∗(V ).

In particular nσ∗(V ) ∈ PDiv(Y ) and since we are assuming that Cl(Y ) is tor-
sion free we conclude that σ∗(V ) ∈ PDiv(Y ). By applying π∗ to both sides of
the equation above we deduce nV = nπ∗(σ∗(V )) so that V = π∗(σ∗(V )) holds
since WDiv(X) is free abelian. In particular we conclude that V ∈ π∗ PDiv(Y ) =
PDivπ(X), which proves the statement.

5. Very general fibers

In this section we are going to apply the results of Theorem 1 in order to prove
that, under an extra hypothesis, it is indeed possible to recover the Cox ring of a
very general fiber of π : X → Y from the Cox ring of X and the vertical classes (see
Corollary 5.2). In order to do that we need the following lemma.

Lemma 5.1. Let Xi, with i ∈ {1, 2} be a normal variety defined over an alge-
braically closed field ki of characteristic 0. Assume that Cl(Xi) is finitely generated
and that ki[Xi]

∗ = k∗i , for any i ∈ {1, 2}. If there is an isomorphism of fields
ϕ : k2 → k1 and an isomorphism of schemes f : X1 → X2 such that the following
diagram commutes

X1
f

//

��

X2

��

Spec(k1)
ϕ∗

// Spec(k2)
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then f induces an isomorphism of graded rings f∗ : R(X2) → R(X1), such that
f∗|k2

= ϕ.

Proof. Observe that f induces the pullback isomorphism on the fields of rational
functions k2(X2) → k1(X1). Given a prime divisor D of X2, the restriction D∩X◦

2

to the smooth locus X◦
2 of X2 is a Cartier non-trivial divisor, because X2 \ X◦

2

has codimension at least two by the normality of X2. Since f is an isomorphism
the pullback f∗(D ∩ X◦

2 ) is contained in the smooth locus X◦
1 of X1 and it has a

unique closure by the normality of X1. By linearity the pullback map extends to
an isomorphism f∗ : WDiv(X2) → WDiv(X1) of the groups of Weil divisors, which
maps principal divisors to principal divisors and thus gives also an isomorphism
of divisor class groups Cl(X2) → Cl(X1). By the above discussion, given a Weil
divisor D of X2 and an open subset U ⊆ X2, the pullback induces an isomorphism
of Riemann-Roch spaces Γ(U,OX2

(D)) → Γ(f−1(U),OX1
(f∗D)). Thus, given a

finitely generated subgroup K ⊆ WDiv(X2) which surjects onto Cl(X2), the pull-
back gives an isomorphism of sheaves of divisorial algebras SK → f∗Sf∗K , which
induces an isomorphism of Cox sheaves. By taking global sections we get an isomor-
phism of Cox rings f∗ : R(X2) → R(X1), Finally observe that the last isomorphism
restricted to k2 equals the restriction of the isomorphism k2(X2) → k1(X1) and thus
it coincides with ϕ. �

Let us go back to a morphism π : X → Y satisfying the hypotheses of Theorem 1
and let Xη be the generic fiber of π. If we denote by X̄η the base change Xη ×k k̄,
we have the following.

Corollary 5.2. Let π : X → Y satisfy the hypotheses of Theorem 1 and suppose
in addition that the geometric divisor class group Cl(X̄η) is isomorphic to Cl(Xη).
Then the Cox ring of a very general fiber of π is isomorphic (as a graded ring) to

Rπ(X)/〈1− u(w) : w ∈ Clπ(X)〉 ⊗k k̄

where u : Clπ(X) → Rπ(X)∗ is any homomorphism satisfying u(w) ∈ Rπ(X)∗−w

for each w.

Proof. By [19, Lemma 2.1] there exists a subset W ⊆ Y which is a countable
intersection of non empty Zariski open subsets such that for each b ∈ W there is an
isomorphism of rings K → k̄ which induces an isomorphism of schemes Xb → X̄η.
Therefore by Lemma 5.1 the Cox ring of the very general fiber Xb is isomorphic
to the Cox ring R(X̄η) of the geometric generic fiber. The isomorphism between
Cl(X̄η) and Cl(Xη) implies that the former can be generated by classes of divisors
in WDivk(Xη). By Remark 1.4, the Cox ring R(X̄η) is obtained from R(Xη) by a
base change, and hence we can conclude by means of Theorem 1. �

Remark 5.3. We remark that the isomorphism of the corollary above is not an
isomorphism of graded algebras, since one of them is defined over K while the other
one over k̄.

Remark 5.4. Since by Corollary 5.2 the Cox ring of a very general fiber can
be described as a quotient of a localization of the Cox ring of X , if the latter is
finitely generated, then the former is finitely generated too. In particular, if we can
construct a morphism π : X → Y satisfying the hypotheses of the above corollary
and such that the Cox ring of a very general fiber is not finitely generated, then we
can conclude that the Cox ring of X is not finitely generated.
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6. Blowing-ups of toric fiber spaces

In this last section we apply our results to the blowing-up of a toric fiber space
along a section, with the purpose of producing new examples of varieties with non-
finitely generated Cox ring (see e.g. [7, 8, 13, 16]).

Construction 6.1. Let π : X → Y be a surjective toric morphism of normal toric
varieties which has connected fibers and such that the induced homomorphism
of tori π|TX

: TX → TY is surjective and Cl(Y ) is torsion free. If we denote by
X0 ⊆ X the Zariski closure of the kernel of π|TX

, by [5, Eq. 3.3.6] we have that

π−1(TY ) ≃ X0 × TY . Let x0 ∈ X0 be a general point and let φ : X̃ → X be the
blowing-up of X along the Zariski closure of {x0}×TY via the above isomorphism.

Let X̃0 be the preimage of X0 via φ, so that the restriction φ|X̃0

: X̃0 → X0 is the

blowing-up at x0. We have a commutative diagram

X̃0
//

��

X̃

π̃

��

1TY
// Y

where the horizontal arrows are inclusions and π̃ denotes the composition π ◦ φ.

Proposition 6.2. If the Cox ring of X̃0 is not finitely generated then the same
holds for the Cox ring of X̃.

Proof. By Remark 5.4, it is enough to show that the toric morphism π̃ : X̃ → Y
satisfies the hypotheses of Corollary 5.2. By construction, the varieties X̃ and Y are
both normal, complete and π̃ is surjective. The divisor class group Cl(X̃) is finitely

generated, being X toric. All the fibers of π̃ over TY are isomorphic to X̃0 because
the point x0 ∈ X0 is general, and in particular they are connected and irreducible.
We now claim that the group of vertical classes Clπ̃(X̃) is torsion free. Indeed, first
of all observe that the restriction π|TX

: TX → TY is a surjective homomorphism
of tori and thus it admits a section, which gives a rational section of π : X → Y .
Therefore, by Remark 4.3 (and the assumption Cl(Y ) free), we deduce that Clπ(X)

is torsion-free. Moreover, if we denote by X̃η the generic fiber of π̃, we have that

the exceptional divisor of φ restricts to the exceptional divisor of X̃η → Xη. This

gives an isomorphism Clπ̃(X̃) ≃ Clπ(X), and hence the claim. Finally the pullback

homomorphism Cl(X̃) → Cl(X̃0) is surjective by Lemma 6.3, and this implies that
the divisor class group of the generic geometric fiber is isomorphic to the divisor
class group of X̃0. �

Lemma 6.3. With the notation of Construction 6.1, the pullback homomorphism
Cl(X̃) → Cl(X̃0) is surjective.

Proof. It suffices to show that the pullback Cl(X) → Cl(X0) is surjective. To
this end, let NX and NY be the lattices of one-parameter subgroups of X and Y
respectively and let ΣX and ΣY be their defining fans. The morphism π : X → Y
induces a surjective homomorphism α : NX → NY and, by [5, §3.3], the fiber X0 is
the toric variety whose defining fan is

Σ0 := {σ ∈ ΣX : σ ⊆ ker(α)Q}.
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Each torus invariant prime divisor D0 of X0 corresponds to a one-dimensional cone
τ0 ∈ Σ0. Since Σ0 is a subfan of ΣX , τ0 belongs also to ΣX and thus D0 is the
restriction of a torus invariant prime divisor of X , which proves the statement. �

We conclude with an example involving weighted projective spaces.

Example 6.4. Let P(a) be a weighted projective space whose blowing-up at a
general point has non-finitely generated Cox ring (see for instance [7,8,13,16]), and
let Σ0 ⊆ (N0)Q be a defining fan for P(a). Let N := N0 ⊕ Z. Given v ∈ N0 define
the fan Σ ⊆ NQ whose maximal cones are

{cone(σ, (0, 1)), cone(σ, (v,−1)) : σ ∈ Σmax
0 }.

The projection N → Z induces a morphism π : X(Σ) → P
1, whose general fiber is

P(a). Let X̃ be the blowing-up of X(Σ) along the image of a rational section of
π passing through a general point of X0. By Proposition 6.2 we conclude that the
Cox ring of X̃ is not finitely generated.
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Boston, Boston, MA, 2004, pp. 149–173.

[11] Jürgen Hausen, Simon Keicher, and Antonio Laface, Computing Cox rings, Math. Comp. 85
(2016), no. 297, 467–502.

[12] Jürgen Hausen and Hendrik Süss, The Cox ring of an algebraic variety with torus action,
Adv. Math. 225 (2010), no. 2, 977–1012.

[13] Zhuang He, Mori dream spaces and blow-ups of weighted projective spaces, arXiv:1803.11536,
available at https://arxiv.org/pdf/1708.09064.pdf.

[14] Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathe-
matics, vol. 201, Springer-Verlag, New York, 2000. An introduction.

[15] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-
Verlag, Berlin, 2004. Classical setting: line bundles and linear series.

[16] Antonio Laface and Luca Ugaglia, On base loci of higher fundamental forms of toric varieties,
arXiv:1904.01511 (2019), available at https://arxiv.org/pdf/1904.01511.pdf.

[17] Shinnosuke Okawa, On images of Mori dream spaces, Math. Ann. 364 (2016), no. 3-4, 1315–
1342.

https://arxiv.org/pdf/1708.09064.pdf
https://arxiv.org/pdf/1708.09064.pdf
https://arxiv.org/pdf/1904.01511.pdf


COX RING OF THE GENERIC FIBER 15

[18] Joseph H. Silverman, The arithmetic of elliptic curves, Second, Graduate Texts in Mathe-
matics, vol. 106, Springer, Dordrecht, 2009.

[19] Charles Vial, Algebraic cycles and fibrations, Documenta Mathematica 18 (2013), 1521–1553.
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