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Abstract

In recent works we have used quantum tools in the analysis of the time evolution

of several macroscopic systems. The main ingredient in our approach is the self-adjoint

Hamiltonian H of the system S. This Hamiltonian quite often, and in particular for

systems with a finite number of degrees of freedom, gives rise to reversible and oscillatory

dynamics. Sometimes this is not what physical reasons suggest. We discuss here how

to use non self-adjoint Hamiltonians to overcome this difficulty: the time evolution we

obtain out of them show a preferable arrow of time, and it is not reversible. Several

applications are constructed, in particular in connection to information dynamics.
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I Introduction

In a series of papers and books quantum mechanical tools and ideas have been used in con-

nection with systems which are not apparently connected with quantum mechanics at all. For

instance, biology, economy, psychology, are realms of the research which have been considered,

and still are considered, using this strategy. We refer to [1]-[14] for some recent books and few

recent papers, where several other references can be found.

Some of the applications considered in the literature are related to the dynamics of certain

macroscopic systems. And, in many applications, the interest is focused on the asymptotic

limit of some function describing the time evolution of the system under analysis. This is,

for instance, often the case in Decision Making, where people are generally interested in the

derivation of the final decision of the agents of the system. For instance, in [15] and [16], we

have analyzed the long time behaviour of a love story between two lovers and, as a rather

different application, what has been called the decision function of three political parties,

describing their attitude to form, or not, some political alliance. Again, our main interest was

on the asymptotic limits of these decision functions. The model was refined in [17], while more

applications of the same kind are described in [18] and [19]. The main technique used in all

these papers is based on the use of some self-adjoint Hamiltonian H constructed in terms of

suitable ladder operators, like creation and annihilation operators satisfying canonical (anti-)

commutation relations. H is used in order to deduce the time evolution of some observables

of the system S. These observables are self-adjoint (number) operators with some relevance

for the description of S. This strategy has been used several times along the years, in many

different contexts, some of them described in detail in [3] and [4]. The limitation of this

strategy is the following: using a standard Heisenberg dynamics, or its dual Schrödinger

counterpart, the dynamics we can get is quite often periodic or quasi-periodic, so that, but

for trivial situations in which the system does not evolve at all, no asymptotic limit can be

found. This can be, in fact, rigorously derived if S lives in a finite dimensional Hilbert space

and H = H†. If the Hilbert space is infinite dimensional, then this is not so obvious, but it

happens quite often for several systems. This suggests that our quantum-like strategy should

be somehow enriched, if we are interested in describing systems for which some equilibrium

is expected, after some time. And in fact, several proposals have been considered along the

years to achieve this aim. An equilibrium for S can be found, for instance, if S is open, i.e., if

it interacts with some external infinite-dimensional reservoir. This is the approach proposed,

for instance, in [15]-[19]. In this case the Hamiltonian of the system is self-adjoint, H = H†,

but it includes, in particular, the interaction between S and its reservoir (the environment) R.

This approach is interesting, and physically motivated, since in all the examples considered
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so far R is not just a mathematical trick to obtain some stable asymptotic behaviour of the

observables of S, but it has an explicit meaning relevant for the model.

A completely different approach, still producing some equilibrium for large time, was in-

troduced in [20] and then analyzed in a series of papers, [21, 22, 23]. In this case, the system S
is again described by a self-adjoint Hamiltonian H, but S does not interact with any reservoir.

However, periodically, S is subjected to some sort of (external or internal) check which can

slightly modify some of the aspects of S, depending on the output of the check. This is what

we have called (H, ρ)–induced dynamics, to stress the fact that the time evolution of S is

driven by both H and by the check (the rule) ρ. For instance, in [20] the rule ρ was used

to propose a quantum-like version of the game of life. At fixed time intervals, ρ checked the

densities of the populations in the cells surrounding a given cell C0 in the lattice where S lives.

The values of these densities decide if, in the next generation, C0 is dead or alive. We have

seen in [21] how the presence of ρ in the analysis of the time evolution of some systems can

produce an asymptotic limit for their observables.

Another possibility to get an asymptotic limit for S has also been considered in the past

years. The idea is to replace some of the real parameters of the Hamiltonian H of S with other,

complex valued ones. The signs of these complex parameters are connected with their meaning,

and with the effective result of their presence in H. For instance, in [24], a negative imaginary

part of some parameter of the (free) Hamiltonian H0 of the system (soil+seeds+plants) was

used to model the presence of stress factors, while a positive imaginary part of other parameters

of H0 was used to model some positive effect acting continuously on the system. Playing with

the parameters, we were able to produce an equilibrium for the system far from desertification.

A similar idea was also used in the description of closed ecosystems, [25], to model systems

whose efficiency in recycling garbage into nutrients is not perfect. It is clear that, in this way,

we are giving up the hypothesis that the full Hamiltonian of the system should be self-adjoint.

However, the kind of non-hermitianity that we have considered in [24] and [25] is of a very

special kind: if the parameters used in the definition of H are taken to be real, then H = H†.

More recently, [26], we have considered a different choice of non self-adjointness for H,

in the biological context of cells proliferation. The Hamiltonian ceases to be self-adjoint not

because of the presence of some complex parameters, but because some operator in H is not

paired to its adjoint counterpart: if A and B are (ladder) operators used in the analysis of

the cells, H contains terms like A†B, but not its adjoint, B†A. This makes of H a non self-

adjoint Hamiltonian, with all the problems, and the possibilities, that this choice produces. In

particular, the time evolution appears to be one-directional: some fluxes seem more preferable

than others. In particular, if we have no medical treatment acting on the cells, it is natural

to expect that the healthy cells become sick, but not viceversa. This effect was well described

3



with our choice of H in [26], which is the first time, in our knowledge, in which the time

evolution of a biological system is given in terms of such an Hamiltonian operator. Something

along the same lines, but in an economical context, can be found in [6], where, however, ladder

operators play no role. Creation and annihilation operators appear again, in constructing non

self-adjoint Hamiltonians used in Finance, in [27] and in [28]. Going back to biology, our

conclusions in [26] suggest that non self-adjoint Hamiltonians of the kind considered there

works well, and this would open many possible lines of research in the future. However,

before considering more complicated (and useful) applications, we prefer to study in details

what happens when our system S is attached to some special non self-adjoint Hamiltonian,

to understand the basic mechanisms which then we can try to adapt in the analysis of more

complicated and more realistic systems. This is exactly what we will discuss in some details

in this paper, which is organized as follows: in the next section we begin our analysis and we

discuss different approaches, discussing their pros and cons at a general level. In Section III

we will show that only one, among all the possibilities, is in agreement with what one could

expect. In Section IV we use this particular choice to model a simple system of information

dynamics. The model is simple enough to allow for an almost entirely analytical treatment,

which makes it possible to understand well the details of our framework. Section V contains

our conclusions.

II Comparing strategies: theory

In the first part of this section we will briefly describe the dynamics of a quantum-like system

when this is described by a self-adjoint Hamiltonian H0, H0 = H†0, and, to keep the treatment

simple, time independent. This information can be found in any book in quantum mechanics,

see [29, 30] for instance, or, more in line with our particular situation, in [3, 4]. In view of

our particular interest in this paper, we will also assume that the system S is closed. At

t = 0 S is described by a wave function Ψ(0), whose time evolution satisfies the Schrödinger

equation iΨ̇(t) = H0Ψ(t). Its (formal) solution is Ψ(t) = e−iH0tΨ(0). The reason why this

solution is formal is because, in general, computing e−iH0t is an hard technical problem, mainly

if S lives in an infinite-dimensional Hilbert space H. On the other hand, if dim(H) is small

enough, this computation could be easy or, at least, reasonably simple. We call observable

of the system every self-adjoint operator X which correspond to some measurable quantity

of S. Following our general strategy, see [3, 4], our main aim is to compute the mean value

x(t) = 〈Ψ(t), XΨ(t)〉 or, equivalently,

x(t) = 〈Ψ(t), XΨ(t)〉 = 〈Ψ(0), X(t)Ψ(0)〉 , where X(t) = eiH0tXe−iH0t. (2.1)
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Notice that Ẋ(t) = i[H0, X(t)], which is known as the Heisenberg equation of motion for X(t).

The two mean values in (2.1) are respectively connected to the so-called Schrödinger and

Heisenberg representations, depending on the fact that we are attaching the time dependence

of the system to the state Ψ, as in Ψ(t) = e−iH0tΨ(0) or to the observable X, as in X(t) =

eiH0tXe−iH0t. The equality in (2.1) is a simple consequence of the unitarity of the operator

e−iH0t, which follows from the self-adjointness of H0.

What is interesting for us is to see what happens if we consider an Hamiltonian which

is no longer self-adjoint. In other words, we assume that the system S, described at t = 0

by a normalized vector Ψ(0) in the Hilbert space H, has a dynamics which is driven by a

non self-adjoint Hamiltonian H: H 6= H†. Our particular interest is in finding the analogous

of x(t) in (2.1), for some observable X. Incidentally we can safely assume that, for t = 0,

X = X†. This relation could be maintained or not during the time evolution. This depends on

how we describe the evolution of S, using the Schrödinger or the Heisenberg representation.

The main output of our analysis will be that there is only one possibility which gives rise to

solutions which are in agreement with the general strategies proposed and analyzed in [3, 4], if

H 6= H†. Here we only mention how the different possibilities look like, while we will see later

which one among these should be chosen. This choice will be shown to be in agreement with

the one in [26], and will be used to deduce more results on a simple model for information

dynamics.

1. Our first choice is a minimal displacement from the one in (2.1). We assume that the

wave function for S, Ψ(t), evolves according to the same Schrödinger equation as if H

were self-adjoint. Hence, calling Ψ(0) the initial value of Ψ(t), we have

iΨ̇(t) = HΨ(t), and Ψ(t) = U(t)Ψ(0), (2.2)

where U(t) = e−iHt. Then we can introduce the following function:

x(1)(t) = 〈Ψ(t), XΨ(t)〉 . (2.3)

Here the suffix (1) stands for ’first choice’. We stress that the essential difference with

respect to (2.1) is that U(t) is not an unitary operator. In fact, U−1(t) = eiHt, while

U †(t) = eiH
†t. Hence, if we want to extend formula (2.1), it is clear that we have

x(1)(t) = 〈Ψ(t), XΨ(t)〉 =
〈
Ψ(0), X(1)(t)Ψ(0)

〉
, (2.4)

where X(1)(t) = eiH
†tXe−iHt, which would coincide with its standard Heisenberg dy-

namics if H = H†, but not in general.
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2. If we insist with the choice of X(1)(t) as the tentative time evolution of X in the present

situation, we immediately see that this time evolution is not an automorphism: given

two observables of S, X and Y , we have in general (XY )(1)(t) 6= X(1)(t)Y (1)(t). This

creates, among other problems, several technical difficulties. In particular, it is quite hard

in concrete, and even simple systems, to produce a closed set of differential equations

which describe the dynamics. For this reason, it makes sense to consider a dual approach

with respect to that in (2.2)-(2.4): rather that taking the Schrödinger equation as the

starting point of our procedure, we take now the standard Heisenberg equation for X as

the first step. In other words, we assume that the time evolution of the observable X,

which we now call X(2)(t), obeys the equation

dX(2)(t)

dt
= i[H,X(2)(t)], (2.5)

even if H 6= H†. This equation can be easily solved (again, formally), and the result is

X(2)(t) = eiHtXe−iHt. (2.6)

It is clear that (XY )(2)(t) = X(2)(t)Y (2)(t), but is is also clear that〈
Ψ(0), X(2)(t)Ψ(0)

〉
6= 〈Ψ(t), XΨ(t)〉 ,

where, as usual, Ψ(t) = U(t)Ψ(0). With this choice the relevant quantity to compute is

x(2)(t) =
〈
Ψ(0), X(2)(t)Ψ(0)

〉
, (2.7)

which replace x(1)(t) above. Therefore, x(1)(t) 6= x(2)(t), in general.

3. A third possibility arises from a simple consideration: when U(t) is not unitary, the norm

of Ψ(t) is not preserved, in general. This is a problem which is widely discussed in some

literature on PT-quantum mechanics, for instance, where the probabilistic interpretation

of the wave function is recovered only when Ψ(t) is replaced by Ψ(t)
‖Ψ(t)‖ . We refer to

[31, 32] for many considerations on this aspect for quantum mechanical systems. Then

we introduce x(3)(t) as a simple normalized version of (2.3):

x(3)(t) =
〈

Ψ̂(t), XΨ̂(t)
〉
, where Ψ̂(t) =

Ψ(t)

‖Ψ(t)‖
=

U(t)Ψ(0)

‖U(t)Ψ(0)‖
. (2.8)

Of course, there is no analogous natural way to introduce a normalized version of x(2)(t),

even if we could think to replace X(2)(t) with

X(2)(t)

‖U(t)‖‖U(t)†‖
.
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However, in many relevant cases, H is unbounded and, being non self-adjoint, it would

give rise to an operator U(t) which, most likely, is unbounded as well. Hence the de-

nominator in this fraction diverges for some (or many) t, and the definition would make

no sense. This is not the case in (2.8), since Ψ(0) belongs to the domain of U(t) for all

t.

In the next section we will compare these three strategies and, based on the role and the

meaning of the ladder operators in concrete systems, we will see that the correct choice (for

us) is the one in (2.8). To clarify this point, we will consider three simple systems with a finite

(and small) number of degrees of freedom, with two or three agents and obeying different

commutation relations, to cover different situations, so to make our conclusions more robust.

III Comparing strategies: applications

In this section we will consider three different models and discuss for them x(j)(t), j = 1, 2, 3,

to understand which is the correct way to introduce a time evolution for systems driven by

non self-adjoint Hamiltonians. As already stated, we will conclude that formula (2.8) gives

the correct recipe to use, in this situation.

III.1 Model 1: two agents and two levels

The first model we want to describe is defined by a manifestly non self-adjoint Hamiltonian

H = λa†2a1, where λ > 0 is the coupling constant1 between agents τ1 and τ2, which define

the system S. a1 and a†2 are ladder operators for τ1 and τ2 respectively, obeying the following

canonical anti-commutation relations:

{ak, a†j} = δk,j11, a2
j = 0, (3.1)

j, k = 1, 2, and 11 is the identity operator on the Hilbert space of the system, H = C4.

Following our standard approach, [3, 4], we introduce an orthonormal basis of H as follow:

Fϕ = {ϕkj, k, j = 0, 1}, where

a1ϕ00 = a2ϕ00 = 0, ϕ10 = a†1ϕ00, ϕ01 = a†2ϕ00, ϕ11 = a†1a
†
2ϕ00.

1Working with positive λ is useful just to fix the details. We do not expect serious changes for λ < 0.
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An explicit expression for these operators and vectors is easily found:

a1 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , a2 =


0 0 1 0

0 0 0 −1

0 0 0 0

0 0 0 0

 ,

and

ϕ00 =


1

0

0

0

 , ϕ10 =


0

1

0

0

 , ϕ01 =


0

0

1

0

 , ϕ11 =


0

0

0

1

 .

Hence

H = λ


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 , and U(t) = e−iHt =


1 0 0 0

0 1 0 0

0 −itλ 1 0

0 0 0 1

 .

We see that both H and U(t) have very simple expressions, which also makes clear the fact

that H 6= H† and that U(t) is not unitary. The observables of the system are the number

operators Nj = a†jaj, j = 1, 2. They are both diagonal matrices with N1 = diag(0, 1, 0, 1) and

N2 = diag(0, 0, 1, 1). What we expect from our H is that it increases the eigenvalue of N2

(because of a†2) and simultaneously decreases the eigenvalue of N1 (because of a1). And, more

important, we expect this process is irreversible, since the Hamiltonian does not contain the

adjoint term a†1a2. We begin our analysis computing the time evolution of the mean values of

Nj as in (2.3), choosing first Ψ(0) = ϕ10. This is because this state corresponds to an initial

value of eigenvalues of N1 and N2 equal to 1 and 0, which is the only case in which the first

number can decrease and the second can increase2. Simple computations show that

n
(1)
1 (t) = 〈Ψ(t), N1Ψ(t)〉 = 1, n

(1)
2 (t) = 〈Ψ(t), N2Ψ(t)〉 = (λt)2.

This is not what we expect, for two reasons: (i) n
(1)
1 (t) does not decrease, as expected because

of the presence of a1 in H, and (ii) n
(1)
2 (t) increases above the maximum allowed (we should

always have nj(t) ∈ [0, 1], for all realistic expression for nj(t)). Henceforth, the choice x(1)(t)

for the dynamics of a system driven by a non self-adjoint Hamiltonian does not work already

for this quite simple model, and will not be considered further in this paper.

2Recall that fermionic number operators, like N1 and N2, can only have 0 and 1 as eigenvalues.

8



Let us now check if the second choice works better. For that, it is convenient to observe

that N
(2)
j (t), j = 1, 2, obey the following standard Heisenberg equations of motion,

dN
(2)
j (t)

dt
= ieiHt[H,Nj]e

−iHt = i[H,N
(2)
j (t)],

with the initial condition N
(2)
j (0) = Nj, j = 1, 2. Now, since [H,N1] = H and [H,N2] = −H,

we conclude that N
(2)
1 (t) = N1+iHt and N

(2)
2 (t) = N2−iHt. Hence, recalling that Ψ(0) = ϕ10,

n
(2)
1 (t) =

〈
Ψ(0), N

(2)
1 (t)Ψ(0)

〉
= 1, n

(2)
2 (t) =

〈
Ψ(0), N

(2)
2 (t)Ψ(0)

〉
= 0.

This case is, in a sense, even worse than the previous one: both mean values stay constant, as

if there was no dynamics at all.

We are left with the third possibility, the one in (2.8). We see that x(3)(t) is related to

x(1)(t) by a simple time-dependent normalization factor:

x(3)(t) =
x(1)(t)

‖Ψ(t)‖2
.

Then, what we have to do is to compute ‖Ψ(t)‖. We have

Ψ(t) = U(t)ϕ10 =


1 0 0 0

0 1 0 0

0 −itλ 1 0

0 0 0 1




0

1

0

0

 =


0

1

−itλ
0

 ,

so that ‖Ψ(t)‖2 = 1 + (λt)2. Hence we find

n
(3)
1 (t) =

n
(1)
1 (t)

1 + (λt)2
=

1

1 + (λt)2
, n

(3)
2 (t) =

n
(1)
2 (t)

1 + (λt)2
=

(λt)2

1 + (λt)2
.

We see that these functions behave exactly as we expect: n
(3)
1 (t) decrease from its original

value, 1, to the value 0. This is the effect of a1 in H. Also, n
(3)
2 (t) increases from 0 to 1, as

an effect of the presence of a†2 in H. Hence the conclusion of this preliminary example is the

following: if we want to describe a one-directional time evolution using some H 6= H†, the

only possibility which seems to work so far is the one in (2.8). From now on we will focus our

attention on this formula, and remove the suffix (3) since the other two will not be considered

any more in this paper: they simply do not work! Hence we will restrict to the following

definition:

Definition 1 Let S be a system driven by an Hamiltonian H, not necessarily self-adjoint.

Suppose that, at t = 0, S is in the normalized state Ψ(0). Let X be an observable for S, i.e.
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a self-adjoint operator relevant for the description of S. Hence the classical dynamics of the

operator X on the initial state Ψ(0) is

x(t) =
〈

Ψ̂(t), XΨ̂(t)
〉
, where Ψ̂(t) =

Ψ(t)

‖Ψ(t)‖
=

U(t)Ψ(0)

‖U(t)Ψ(0)‖
. (3.2)

It is clear that, if H = H†, ‖Ψ(t)‖ = ‖Ψ(0)‖ = 1, and we go back to (2.1). Otherwise we

get something different. It is also clear that there is no immediate Heisenberg counterpart for

(3.2).

Needless to say, the analysis above suggests that Definition 1 is reasonable, but it is far

from proving that it is the correct one, for our systems. For this reason, to make the definition

more robust, we will now check what happens with different choices of Ψ(0) and then, in the

next sections, we will use (3.2) in the analysis of other, more complicated systems.

For the present system it is quite easy to check that U(t)ϕjk = ϕjk, if jk 6= 10. Then, if

Ψ(0) = ϕjk, jk 6= 10, Ψ(t) = Ψ(0), ‖Ψ(t)‖ = 1 and from (3.2) we conclude that nj(t) = nj(0).

In other words: the Hamiltonian considered here is only able to modify S when this is in

the state ϕ10. Otherwise, it leaves the system unchanged. This is due to the fact that, since

H2 = H3 = . . . = 0,

U(t) = e−iHt = 11− iHt,

and that H destroys all the states different from ϕ10.

III.2 Model 2: two agents and three levels

The model we consider here has the same number of agents, τ1 and τ2 and the same formal

Hamiltonian, which we call again H: H = λA†2A1, with some λ > 0. The difference is in

the nature of A1 and A2, which are no longer assumed here to be fermionic operators. The

rationale for this is that, with this choice, we will show that our Definition 1 works well also

for other kind of ladder operators, at least in this situation with two agents. This suggests

that our results are not linked to the commutation relations assumed for the model.
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The operators Aj are constructed as in [26]. We have

A1 =



0 1 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0
√

2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0
√

2

0 0 0 0 0 0 0 0 0


, A2 =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0
√

2 0 0

0 0 0 0 0 0 0
√

2 0

0 0 0 0 0 0 0 0
√

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.

These operators commute, [A]1, A
]
2] = 0, where A]j is either Aj or A†j, and satisfy the equalities

A3
1 = A3

2 = 0. Moreover,

[A1, A
†
1] = diag(1, 1,−2, 1, 1,−2, 1, 1,−2), [A2, A

†
2] = diag(1, 1, 1, 1, 1, 1,−2,−2,−2).

We can use A†1 and A†2, together with the vacuum of A1 and A2, Φ00 = (1 0 0 0 0 0 0 0 0)T ,

(here T is the transpose), to construct an orthonormal basis FΦ of the Hilbert space for this

model, H = C9. The vectors of FΦ are constructed as follows:

Φ10 = A†1Φ00, Φ01 = A†2Φ00, Φ11 = A†1A
†
2Φ00, Φ20 =

1√
2
A†1

2
Φ00, Φ02 =

1√
2
A†2

2
Φ00,

Φ21 =
1√
2
A†1

2
A†2Φ00, Φ12 =

1√
2
A†1A

†
2

2
Φ00, Φ22 =

1

2
A†1

2
A†2

2
Φ00.

Now, N1 = A†1A1 and N2 = A†2A2 are the following diagonal matrices:

N1 = diag(0, 1, 2, 0, 1, 2, 0, 1, 2), N2 = diag(0, 0, 0, 1, 1, 1, 2, 2, 2),

while H can be written as the following sparse matrix:

H = λ



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0


,
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clearly non self-adjoint, which produces

U(t) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −iλt 0 1 0 0 0 0 0

0 0 −iλ
√

2 t 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 −λ2t2 0 −iλ
√

2 t 0 1 0 0

0 0 0 0 0 −2iλt 0 1 0

0 0 0 0 0 0 0 0 1


Let us now consider, as initial state, the vector Ψ(0) = Φ11. Using U(t) as above, and formula

(3.2) we get

n1(t) =
〈

Ψ̂(t), N1Ψ̂(t)
〉

=
1

1 + 2λ2t2
, n2(t) =

〈
Ψ̂(t), N2Ψ̂(t)

〉
=

1 + 4λ2t2

1 + 2λ2t2
.

Hence we see that n1(t) decreases from its original value, n1(0) = 1, to zero, while n2(t)

increases from its original value, n2(0) = 1, to the maximum value allowed by our model, 2.

This result is in full agreement with the expression of H = λA†2A1. As in the previous model,

λ determines the speed of convergence of nj(t) to its asymptotic value: the higher its value,

the faster the convergence.

Another interesting choice for Ψ(0) is the following: Ψ(0) = Φ21. Repeating the same

computations as before, we conclude that

n1(t) =
2 + 4λ2t2

1 + 4λ2t2
, n2(t) =

1 + 8λ2t2

1 + 4λ2t2
.

In this case, n1(t) decreases from 2 to 1, while n2(t) increases from 1 to 2, in agreement with

our interpretation. Other choices of Ψ(0) can be considered, and they all support our idea.

III.3 Model 3: three agents and two levels

The last model we want to consider in this section is a 3 fermionic agents system. This means

that each agent has only two allowed levels. For that we consider the following three 8 × 8

12



matrices:

b1 =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


, b2 =



0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

and

b3 =



0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

which satisfy the following CAR:

{bk, b†j} = δk,j11, b2
j = 0, (3.3)

j, k = 1, 2, 3, where 11 is the identity operator on the Hilbert space of the system, H = C8.

Next we use these operators, and their adjoints, to construct an o.n. basis for H. We start

with ϕ000 = (1 0 0 0 0 0 0 0)T , (here T is the transpose, as before). It is clear that bjϕ000 = 0,

j = 1, 2, 3. Then we introduce

ϕ100 = b†1ϕ000, ϕ010 = b†2ϕ000, ϕ001 = b†3ϕ000, ϕ110 = b†1b
†
2ϕ000,

ϕ101 = b†1b
†
3ϕ000, ϕ011 = b†2b

†
3ϕ000, ϕ111 = b†1b

†
2b
†
3ϕ000,

The set Fϕ = {ϕijk, i, j, k = 0, 1} is an o.n. basis of H. We now consider the dynamics as

driven by two different Hamiltonians, H1 = b†1(λb2 + µb3) and H2 = λb†1b2 + µb†2b3, with λ and

µ positive quantities. The meaning of H1 is easily understood: we claim that the action of

H1 increases n1(t) while decreasing both n2(t) and n3(t), where Nj = b†jbj and nj(t) is found

as in (3.2). The effect of H2 is less evident: it is clear that its action should lower n3(t) and

increase n1(t), but not much can be said a priori on n2(t), since H2 has two competing terms.

13



However, we can imagine that the asymptotic value of n2(t) will be related to the relative

magnitude of λ and µ.

The matrix form of H1 and of U1(t) = e−iH1t is the following:

H1 =



0 0 0 0 0 0 0 0

0 0 λ 0 µ 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −µ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 λ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, U1(t) =



1 0 0 0 0 0 0 0

0 1 −iλt 0 −iµt 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 iµt 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 −iλt 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


.

Let us put Ψ(0) = ϕ011. This vector corresponds to n1(0) = 0 and n2(0) = n3(0) = 1. If we

now use formula (3.2) we find

n1(t) =
(µ2 + λ2)t2

1 + (µ2 + λ2)t2
, n2(t) =

1 + µ2t2

1 + (µ2 + λ2)t2
, n3(t) =

1 + λ2t2

1 + (µ2 + λ2)t2
,

which exhibit the desired behaviour: n1(t) increases from 0 to 1, n2(t) decreases from 1 to
µ2

µ2+λ2
and n3(t) decreases from 1 to λ2

µ2+λ2
. The sum of n1(t) + n2(t) + n3(t) is always equal to

2. Hence, also in presence of a non self-adjoint Hamiltonian, the sum of the number operators

can stay constant in time: n1(t) + n2(t) + n3(t) = 2 = n1(0) + n2(0) + n3(0), which is an

interesting feature of the framework, especially if can be generalized to other systems.

If we start with a vector Ψ(0) = ϕ010, repeating the same computations we get

n1(t) =
λ2t2

1 + λ2t2
, n2(t) =

1

1 + λ2t2
, n3(t) = 0,

which are again in agreement with the fact that n1(0) = n3(0) = 0 and n2(0) = 1, and

with the property of H1 to destroy a state with n3(0) = 0, because of b3, to increase n1(t)

and to decrease n2(t). Similar considerations can be repeated with other choices of Ψ(0). In

particular, for some of them (ϕ000, ϕ110 or ϕ101), the action of U1(t) is trivial: nothing change.

14



Let us now see what happens if we use H2 rather than H1. In this case we have

H2 =



0 0 0 0 0 0 0 0

0 0 λ 0 0 0 0 0

0 0 0 0 µ 0 0 0

0 0 0 0 0 µ 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 λ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, U2(t) =



1 0 0 0 0 0 0 0

0 1 −iλt 0 −λµt2

2
0 0 0

0 0 1 0 −iµt 0 0 0

0 0 0 1 0 −iµt −λµt2

2
0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 −iλt 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


.

It is easy to check that, if Ψ(0) = ϕ000, ϕ100, ϕ110 or Ψ(0) = ϕ111, then nj(t) = nj(0) for

all t ≥ 0 and j = 1, 2, 3. This is because Ψ(t) = U2(t)Ψ(0) = Ψ(0) with each one of these

choices. This, in turns, is in agreement with our interpretation of the model: in fact, H2

destroys all these initial states. Let us now take an initial state which is not annihilated by

H2: Ψ(0) = ϕ010. With this choice the usual computations give

n1(t) =
λ2t2

1 + λ2t2
, n2(t) =

1

1 + λ2t2
, n3(t) = 0.

We see that no dependence on µ appears in these formulas: in agreement with our interpre-

tation of H2, starting from ϕ010, the term µb†2b3 in H2 does not contribute, since it destroys

ϕ010, while the term λb†1b1 is responsible of the dynamics above: n1(t) increases from 0 to 1,

while n2(t) decreases from 1 to 0. n3(t) stays constantly equal to 0. Similar conclusions can

be deduced if we fix, for instance, Ψ(0) = ϕ001, with obvious replacements. More interesting

is the situation if we consider Ψ(0) = ϕ001, since both terms in H2 act non trivially. In this

case we find that

n1(t) =
λ2µ2t4/4

1 + µ2t2 + λ2µ2t4/4
, n2(t) =

µ2t2

1 + µ2t2 + λ2µ2t4/4
, n3(t) =

1

1 + µ2t2 + λ2µ2t4/4
.

We see that both µ and λ appear in these formulas. In particular we observe that n1(t)

increases from 0 to 1, while n3(t) decreases from 1 to 0, as they should because of the form

of H2. As for n2(t), H2 contains two competing terms, and in fact n2(t) increases from zero

to its maximum value, n2,max = µ
µ+λ

, and then it decreases back to 0. Also, we observe that

n2,max ' 1 if λ� µ, while n2,max ' 0 if λ� µ. This is because, if λ� µ, H2 ' µb†2b3, so that

n2(t) tends to increases to its maximum value, while if λ� µ, H2 ' λb†1b2, so that n2(t) does

not change much from its original value, which is zero.

15



IV An application to information dynamics

The analysis carried out in Section III allows us to conclude that the use of non self-adjoint

Hamiltonians of the kind discussed so far is relevant, other than useful, if we are interested

in describing fluxes of quanta3 going in one specific direction. This is possible, however, only

if we use formula (3.2) as the definition of the classical counterpart of the time evolution of

the observable X of the system. This is in agreement with the results in [26], where a similar

strategy was already efficiently used in the description of cells proliferation. In this section

we will consider an application of formula (3.2), and of non self-adjoint Hamiltonians, to a

simple model of information dynamics. We imagine a system S made of three agents, τ1, τ2

and τ3, which exchange some kind of (binary) information among them following two different

schemes. The first case is ruled by the Hamiltonian

Ha = b†2b1 + b†3b2 + b†1b3,

which describes a one-directional flow of what we call information from τ1 to τ2, from τ2 to τ3

and then from τ3 back to τ1. Here the bj’s are the same fermionic ladder operators satisfying

(3.3). If we take Ψ(0) = ϕ100, it is possible to check that ‖Ψ(t)‖2 = 1
3
(1 + 2 cosh(

√
3 t)) and,

for instance

n1(t) =
1

3(1 + 2 cosh(
√

3 t))

(
3 + 4 cosh

(√
3 t

2

)
cos

(
3t

2

)
+ 2 cosh(

√
3 t)

)
.

Similar formulas are deduced for n2(t) and n3(t). In Figure 1 we plot these functions.

We see that they all tend to a common asymptotic value, nj(∞) ' 1
3
, which is already

reached for relatively small values of t, t ' 7 (in our units). The same value is reached

if we consider different initial conditions, like Ψ(0) = ϕ010 or Ψ(0) = ϕ001. Analogously,

if Ψ(0) = ϕ110, ϕ011 or Ψ(0) = ϕ101, we find nj(∞) ' 2
3

while, if Ψ(0) = ϕ000 or Ψ(0) =

ϕ111, nj(t) = nj(0) for j = 1, 2, 3. The conclusion is the following: Ha describes a sort of

homogenization of S: the information, independently of how it was originally distributed, is

spread uniformly among the three agents, which after some time are equally informed. Of

course, this result implies that the dynamics produced by Ha, and possibly the dynamics

deduced from all the Hamiltonians considered so far in this paper, is not reversible: once we

arrive to the stationary state nj(∞) ' 1
3
, for instance, there is no way to understand if our

original state was ϕ100, ϕ010 or ϕ001, since they all produce the same nj(∞). This irreversibility

is not surprising, since Ha 6= H†a.

3A flux of quanta is what we observe when the mean value of one number operator, Nj , decreases while

the mean value of Nk, k 6= j, increases: there is a flux of quanta from agent j to agent k.
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Figure 1: n1(t) (continuos line), n2(t) (dotted line), and n3(t) (dashed line) for Ψ(0) = ϕ100.

Of course, we do not expect that each Hamiltonian gives rise to such an homogenization.

This is what we will show now using the following operator

Hb = λ1b
†
2b1 + λ2b

†
3b2 + λ3b

†
1b3,

which is an anisotropic version of Ha, where the strength of the various interactions, fixed by

the various λj’s, can now be different. The computations follow the same steps as above, and

will not be repeated. The plots in Figure 2 show the time evolution of n1(t), n2(t) and n3(t)

for three different choices of the λj’s and for Ψ(0) = ϕ101 (i.e., for n1(0) = n3(0) = 1 and

n2(0) = 0). In particular, in Figure 2 (a) we have taken (λ1, λ2, λ3) = (1, 2, 3), in Figure 2 (b)

we have (λ1, λ2, λ3) = (1, 2, 30), and in Figure 2 (c) we have (λ1, λ2, λ3) = (1, 28, 30). This is

to consider the case of slightly or quite different λj’s.

In all cases we see that an asymptotic value is reached by each nj(t), and the speed increases

for larger values of the λj’s. Also, when the numerical values of λj increase, the functions nj(t)

change less and less during the time evolution. It is evident that there is no homogenization

here. This is easily understood, since the three λj’s are all different. Hence, Hb produces

differences in the information of the agents, during the time evolution and in their asymptotic

values. For instance, when (λ1, λ2, λ3) = (1, 2, 30), we see that even if n2(0) < n3(0), after a

short time the inequality is reversed, and stay reversed for the rest of the time evolution: the

originally better informed agent becomes soon worst informed, in fact. Similar conclusions
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Figure 2: n1(t) (continuous line), n2(t) (dotted line) and n3(t) (dashed line) for Ψ(0) = ϕ101 and (λ1, λ2, λ3) =

(1, 2, 3), upper left (a), (λ1, λ2, λ3) = (1, 2, 30), upper right (b), and (λ1, λ2, λ3) = (1, 28, 30), down (c).

can be deduced for other choices of Ψ(0). In particular, in all cases the system reach an

equilibrium after some time, and this time is smaller when some of the λj’s is large.

V Conclusions

In this paper we have discussed the role of non self-adjoint Hamiltonians in the analysis of

macroscopic systems, when uni-directional fluxes of some quanta-like quantities is expected.

We have seen that, extending the general procedure proposed in [3, 4], it is possible to use

some H 6= H† to describe quantities which goes from one agent to another, and do not go

back. The minor price to pay is that the state of the system looses normalization when t

grows, and it must be restored by hand as in (3.2), which becomes the key equation for us.

As we have already noticed, this equation returns the standard formula for mean values of

operators when H = H†.

We have applied our strategy to a series of preliminary simple closed systems, i.e. to
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system which, contrarily to what is done in other papers, [15, 17, 18], do not interact with

any reservoir. In this way, we have checked the self-consistency of the technique. Afterwards

we have applied the same strategy to a simple model of information exchanged among agents,

and we have found mechanisms which homogenize the agents, and mechanisms which keep

them differently informed. The analysis here is further confirmed by a recent application to

tumour growth, [26]. More applications will be considered soon.
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