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Abstract 
The Mindlin-Reissner’s formulation of shear deformable plate is addressed through the Symmetric Galerkin Boundary 

Element Method (SGBEM). The thick plate’s elastic problem is resolved and fundamental solutions matrix is obtained. 

The application of Betti's theorem in the unlimited domain allows obtaining the Somigliana’s Identities (S.I.s). The 

solving system is obtained by an indirect approach, i.e., through the “progenitor matrix”. The “progenitor matrix” allows 

simulating all possible plate’s load conditions and is the starting point for an automatic calculation code.  The coefficients 

are calculated through the theory of distributions, using double integrals without resorting to regularization techniques 

but by exploiting the expansion in power series of the Bessel functions present in the fundamental solutions.  

Particular attention is paid to the presence of domain loads, whose domain integral is transformed into a boundary one 

using the Radial Integral Method technique (RIM).  

These strategies lead to a robust procedure that allows obtaining good results even in the presence of boundary sparse 

discretization. This is demonstrated by the results of the examples carried out which, compared with the analytical 

solutions present in the literature, show very a good convergence. 
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1. Introduction 
The present work is based on the SGBEM that has shown its big potentiality in the last decades. SGBEM, introduced by 

the pioneering work of Sirtori [1], is formulated in Polizzotto [2] through the Hu-Washizu theorem. An extensive 

dissertation on the topics treated with SGBEM can be found in the paper of Bonnet et. al. [3]. 

The SGBEM approach shows advantages that can be summarized as follows: it provides an energetic meaning to the 

formulation of boundary integral equations; the symmetry and definiteness of the operators allows demonstrating the 

existence and uniqueness of the solution; the load vector reflects the real distribution of external actions; moreover, as in 

the classic BEM, the use of fundamental solutions guarantees compatibility and equilibrium at any point on the boundary 

and in the domain.  

The disadvantages of the method are related to the computational aspects due to the presence of double integrals with 

divergent kernels; an exhaustive discussion of these topics can be found in Terravecchia [4]. Other are: presence of 

domains with different physical and mechanical characteristics and computational difficulties in handling domain loads; 

an exhaustive bibliography of these problems can be found in Panzeca [5, 6] where solutions are provided. 

In the area of shear deformable plates, Reissner [7-8] and Mindlin [9] have developed a general theory which can be used 

for both thin and thick plates; in this way the problems associated with Kirchhoff's theory, leading in some cases to 

inadequate results, can be avoided. 

Shear deformable plates have received considerable attention in the field of collocation BEM. The first applications to 

the Reissner’s model are due to Vander Weeën [10] who derives the fundamental solutions through the Hörmander’s 

method [11] and the loads distributed on the plate’s surface are integrated on the boundary both through the application 

of the divergence theorem and the use of particular solutions. El Zafrany [12] obtains the fundamental solutions using the 

integral Hankel transform and in [13] provides fundamental solutions valid for thick and thin plates; the terms representing 

the shear effects are provided separately and their exclusion allows analyzing the thin plates. Westphal et al [14] study 

the fundamental solutions of the Mindlin-Reissner’s model and the relationships with Kirchhoff's classical model; they 

show that Mindlin Reissner's general model solution includes that of Kirchhoff's classical model. Always for the 

Reissner’s model, Long et al [15] propose a formulation involving three integral equations, which can be applied not only 

to moderately thick plates, but also to plates usually analysed by classical Kirchhoff’s theory. Rashed [16] presents the 

hypersingular boundary element formulation and use rigid body considerations together with the Taylor expansion 

(Aliabadi [17]) to compute the hypersingular kernels; the results obtained through the S.I.s of the displacements and 

tractions are compared with the analytical solution. The most recent developments in plate bending, together with an 

adequate bibliography may be found in Aliabadi [18, 19]. 

In the area of the SGBEM, the topic of the shear deformable plate receives little attention. Perez-Gavilan and Aliabadi 

[20] provide one of the main contributions. In [20] a different treatment of the S.I.s is carried out based on the singularities 

present in them. All S.I.s are subject to a regularization process which consists, depending on the singularity, in the 

subtraction of one or more terms of the Taylor series expansion around the source point and the added back-term are re-

interpreted: in the displacement equations using the known kernel properties obtained using rigid body translation and 

rotation modes; in the moment equations using known kernel properties or as Cauchy principal value; in the shear equation 
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using new kernel identies obtained from a constant shear mode of deformation. Regularized forms of the S.I.s are obtained 

except for the shear’s S.I, which shows a strong singularity on the corners. The same authors [21] develop a SGBEM 

formulation for shear deformable plate bending in dynamics using the static fundamental solutions.  

In this paper, the solving system is obtained through an indirect approach called for "progenitor matrix".  The latter is a 

generalized approach that considers the solid object of analysis imbedded in an unlimited domain that must remain 

unstressed and not deformed when the solution is obtained. The set of displacement and traction S.I.s is written for the 

entire solid without taking into account the effective boundary conditions; the generation of the "progenitor matrix" is 

controlled by exploiting rigid motion techniques (rotation and translation) [5]. The approach has advantage of making 

available, for given physical and mechanical plate's characteristics, a matrix of coefficients. The reordering and 

subsequent partitioning of this matrix, based on the kinematic and mechanical conditions of the boundary, allows 

determining the matrix of the solution system and the boundary load vectors for all possible conditions (traction and 

displacement imposed on the boundary).This approach, like the direct approach, within the SGBEM, presents 

computational difficulties due to the presence in the "progenitor matrix" of double integrals with divergent nuclei.   

In this paper, the computation of the double integral having hypersingular kernels, does not apply any consolidated 

technique in the context of SGBEM. The approach, here proposed, is based in interpreting the integral nucleus as 

distribution [4, 22]. Differently from other methods, it involves that the calculus of the coefficient may be made by 

considering the effect point directly on the boundary. This way of interpreting the function of the hypersingular nucleus 

permits to compute the integral, independently of the asymptotic behaviour of the function. In order to apply the technique 

it is necessary to isolate, in the fundamental solutions, expressed through the Bessel’s functions of the second kind and 

n th  order, the hypersingular part. This goal is achieved through the expansion in power series of the Bessel functions 

[Appendix 1]; this makes it possible to distinguish a singular part and a regular part in the integrals kernel. The 

coefficient's hypersingular part, of small dimensions, is calculated analytically by applying the theory of distributions; the 

coefficient's regular part, whose size is related to the number of terms of the series expansion, is calculated through 

numerical integration techniques. The optimal terms number of the coefficient’s regular part that are considered in the 

calculation is determined through rigid motion techniques, being known the internal field of displacements and tractions. 

This makes the procedure particularly robust and the solution's convergence depends both on the discretization of the 

boundary and on the type of shape functions. 

The “progenitor matrix” approach can also be applied in the collocation BEM and give rise to two distinct methods. An 

outline of this approach is already present in Brebbia et al. [23]. The collocation BEM with respect to the SGBEM uses a 

reduced number of fundamental solutions. It consists in the writing of the S.I.s. of displacements (displacement method) 

or that of tractions (tractions method); the boundary quantities of the problem are modelling through appropriate shape 

functions and the S.I.s are not subject to the weighting process as in the SGBEM approach with the consequence that the 

“progenitor matrix” is not symmetric. Even in this case, appropriate partitions and reorders allow obtaining the solving 

system matrix and the load vectors. In calculating the influence coefficients, the following are taken into account: the 

singularities present in the fundamental solutions used and the techniques necessary for their removal; the fact that the 

free term matrices are different from those used in the SGBEM. 

In this paper, particular attention is paid to the vertical domain load vector that is generated separately through a RIM 

technique, Gao [24], Panzeca [6], valid for any variation law of domain load. The domain integrals are transformed into 

ones to be performed on the boundary, through a unified procedure, without introducing particular solutions or divergence 

theorem application. Fundamental modified solutions are obtained which are suitable to be integrated on the boundary 

and provide regular displacement and traction fields on the domain and on the boundary. The main feature of modified 

solutions, very important for the computational aspects, is that they are null when source point and effect point coincide. 

The RIM technique is applied directly to the domain integrals present in the displacements S.I. characterized by strong 

singularity. 

In case of hypersingularity, as happens in the tractions S.I., the fundamental solutions are treated through regularization 

techniques and RIM technique. These combined techniques make it is possible to obtain the tractions S.I. with a  

regularized domain integral to which is added a boundary integral and a vector called Bui Free Term. The RIM technique 

allows considering the domain loads in their effective distribution, without approximations as happens in Wen [25] 

through the Radial Basis Functions (RBF).  

This work presents: a general approach called “progenitor matrix” and the computation of its hypersingular coefficients 

through the application of distribution theory and the expansion in power series of the Bessel functions; the calculation 

of domain vertical load vector through the RIM technique, the latter being a general technique applicable to any load 

distribution. 

This study constitutes the starting point for the implementation of an automatic calculation code operating in the field of 

plate substructuring approach, as already done for flat two-dimensional structures subject to actions acting in its plane 

[26]. This will allow proceed with the plate-to-plate coupling avoiding the very difficult treatment of the fundamental 3D 

solutions in the context of the SGBEM.  

2. Elastostatic problem solution: the matrix of fundamental solutions.  
Let us consider the plate of Fig. 1 referred to the general Cartesian reference system ( , , )O x y z ; the medium surface 

coincides with the plane ( , )x y and the mechanical quantities are evaluated on the element dS , whose position is identified 

by the normal vector n and the counter clockwise tangent vector t ; in this reference system one writes: 
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The traction vectors nm nt  are referred to the unit of length evaluated on dS and to the thickness h of the plate. 

 

Fig. 1. General Cartesian reference system ( , , )O x y z : vectors
nm nt u . 

The moments and shears generalized vectors are  
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in which the stress vectors 
T

xx yy xy     σ  and 
T

xz yz    τ  have respectively linear and parabolic 

distribution along plate’s height. 

If we define a traction vector 
T T T

n n
   t m t and a generalized stress vector 

T T T   s � � through the Cauchy’s relation 

one writes 

 xt N s    (3) 

in which xN is a matrix of director cosines. 

The plate of domain , boundary 1 2  , made of homogeneous and isotropic material (Fig. 2) is subject to the 

following actions:  

 

 

Fig. 2. Plate of domain   and boundary 1 2   subject to boundary and domain loading conditions. 

 tractions [ ]T T

nx ny n
M M Tf  on the free boundary 2 ; 

 imposed displacements  [ ]T T

x y z
u u  on the constrained boundary 1 ; 

 surface tractions ( , ) [ ( , ) ( , ) ( , )]T T

nx ny z
x y m x y m x y f x yp  on . 



4 

 

The stress z , not considered in the Mindlin's model, in Reissner’s model depends on the surface load ( , )
z

f x y according 

to the law 

 
3

3

( , ) ( , ) 3 4
( , , )

2 2

z z

z

f x y f x y z z
x y z

h h


 
   

 
 . (4) 

The solution of the Mindlin-Reissner’s plate elastic problem is obtained through the system of equations: 

 q Cu   (5) 

 ( , )
z

H f x y s Dq c   (6) 

  B s p 0   (7) 

In the compatibility Eq. (5), q  is the vector of generalized bending, torsion and shear strains, C is a matrix of differential 

operators and u is the displacement vector of the kinematic model highlighted in Fig. 1. In the constitutive Eq. (6), s  is 

the generalized stress vector previously defined, D is the diagonal stiffness matrix of plate containing bending stiffness 

and the shear stiffness coefficients, 
2= / (1 )H    the Reissner’s model factor, 2 210 / h  the shear factor and c  an 

influence vector. In the equilibrium Eq. (7), B  is a matrix of differential operators and p  the surface tractions vector 

previously defined. 

The Eqs. (5-7), replaced progressively, allow determining the Navier’s differential equations of the problem in the form 

  Lu f  (8) 

where L B DC is a matrix of differential operators   
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and f  the obtaing load term. 

In the matrix L , 3 2/12(1 )h     is the bending stiffness coefficient with  Young modulus, h  height of the plate,

  Poisson’s coefficient,  0 /Gh   is the shear stiffness of a rectangular section with G  shear modulus and  shear 

factor of rectangular section. 

 

 

Fig. 3. Source point ξ with singular applied vector ( )f ξ , effect point with vector displacement ( )u x , vector distance r . 

If in Eq. (8) set ( ) f I Δ x ξ  in which I is an identity matrix of order 3 3 and ( )Δ x ξ  a Dirac Delta vector, it is 

possible to get, through the method of Hörmander [11] and introduced by Weeën [10], the matrix ( , )uuG x ξ of 

fundamental solutions valid in   Fig. 3. This matrix allows determining at the effect point ( , )x yx  the displacements 
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( ) [ ]
T T

x y zu u x  due to a singularity vector  ( )
TT

nx nx zm m ff ξ  applied at the source point ( , ) ξ  with 

2 2 r x ξ that is: 

 ( ) ( ; ) ( )uuu x G x ξ f ξ   (10) 

The matrix of fundamental solutions ( , )uuG x ξ , allows finding [2] the complete matrix of fundamental solutions ( ; )G x ξ  

used in the context of the SGBEM approach (Table 1); the latter provide the plate response in  to the different applied 

actions. 

 
 

Causes at x 

 
 f  -u  q  s  

E
ff

e
c
ts

  
a

t 
x

 u  ( ; )uuG x ξ  ( ; , )utG x ξ n  ( ; )usG x ξ  ( ; )uqG x ξ  

t  ( , ; )tuG x ν ξ  ( , ; , )ttG x ν ξ n  ( , ; )tsG x ν ξ  ( , ; )tqG x ν ξ  

s  ( ; )suG x ξ  ( ; , )stG x ξ n  ( ; )ssG x ξ  ( ; )sqG x ξ  

q  ( ; )quG x ξ  ( ; , )qtG x ξ n  ( ; )qsG x ξ  ( ; )qqG x ξ  

Table 1. Fundamental solutions for Mindlin-Reissner’s plate. 

 

The fundamental solutions matrix hkG  in Table 1 is characterized by two subscripts: the first indicates the effects in x , 

i.e. displacement for h u , traction for  h t , generalized stress for h s , generalized strain for h q ; the second 

subscript indicates, through a work-coniugate rule, the cause applied at ξ , i.e. a unit concentrated force k u , a unit 

surface relative displacement for k t , a unit imposed generalized strain for k s , a unit imposed generalized stress for 

k q . 

The matrix of the fundamental solutions exhibits symmetries 

 

 ( ; ) ( ; )hh hhG x ξ G ξ x  , , ,h u t s q  (11) 

 

 ( ; ) ( ; )T

hk khG x ξ G ξ x ,     = , , ,h k h,k u t s q  (12) 

 

which can be proved through energy theorems (Maxwell, Colonnetti, Volterra). 

The fundamental solutions present in Table.1 show orders of singularity, up to 
2r   in the column related to u  and in 

the row related to t ; these solutions all derive from ( ; )uuG x ξ . The fundamental solutions of  Tab.1 are characterized by 

the presence of Bessel functions ( )nK z  of second kind and n th order, with z r , which present singularities starting 

from the maximum order 
nz 

and
(1 )( 1)!/ 2 nn    as evidenced by their expansion in power series (Magno [30]) given 

in Appendix 1. 

Appendix 2 provides ( ; )uuG x ξ fundamental solution in such a way that it is possible to identify his order of singularity: 

in fact, within parentheses to the present singularities of order 
nz 

, the Bessel functions ( )nK z  having the same 

singularity are subtracted.  

3. Somigliana's Identities and boundary integral equations. 

 

Fig. 4. Plate imbedded in the unlimited domain, a, b) system I and 
*I  with boundary and domain actions.  
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While the fundamental solutions provide the response in a point of the unlimited domain  , the response to the 

distributed actions is provided by the S.I.s that are obtained by generalized Betti’s theorem for elastic materials. Let us 

consider plate B imbedded in the unlimited domain  (Fig. 4) and two material systems: I and 
*I  systems. 

The material system I is subject to: 

- surface tractions p  in  ; 

- volumetric distortions q  in  ; 

- double-layered displacements ( ) ( ) v x u x  in 1 ; 

- layered forces ( )f x  in 2 .  

The response to such actions are the vectors: ( );    ( );    ( )u x q x s x . 

The material system *I  is subject to: 

- surface tractions *p  in  ; 

- volumetric distortions *q  in  ; 

- double-layered displacements * *( ) ( ) v x u x  in 1 ; 

- layered forces * ( )f x  in 2 . 

The response to such actions are the vectors: * * *( );    ( );    ( )u x q x s x . 

The generalized Betti theorem valid for the unlimited domain /  , with 1 2    , is written: 

            * * * * * *d d d ( )d d d
T T T T T T

     

            p u q s u f f u u p s q   (13) 

From Eq. (13) we obtain the S.I.s that provide the plate response subjected to actions distributed on the boundary 

1 2    and on the domain ; keeping in mind the constitutive law Eq. (6) one can write: 

 S.I of displacements 

If in Eq. (13) is set, 
* *( ) ( );       p x I x ξ q 0 , the S.I of the displacements ( )u x is obtained: 

 

( ) ( ; ) d ( ; , ) ( ) d ( ; ) d

( ; ) d ( ; ) ( , ) d

uu ut us

uu uq zH f 
  

 

    

  

  

 

u x G x ξ f G x ξ n u G x ξ q

G x ξ p G x ξ c ξ
 (14) 

 

 S.I of generalized strains 

If in Eq. (13) is set, 
* * 1 * *( ) ;    ;    ( )   p x 0 q D s s x ξ , the S.I. of the generalized strain ( )q x is obtained: 

 

 

( ) ( ; ) d ( ; , ) ( ) d ( ; ) d

( ; ) d ( ; ) ( , ) d

qu qt qs

qu qq zH f 
  

 

    

  

  

 

q x G x ξ f G x ξ n u G x ξ q

G x ξ p G x ξ c ξ
 (15) 

 

 S.I of generalized stresses 

If in Eq. (13) is set, 
* *( ) ;     ( ) ( )   p x 0 q x I x ξ , the S.I. of the generalized stress ( )s x is obtained:  

 

 

( ) ( ; ) d ( ; , ) ( ) d ( ; ) d

( ; ) d ( ; ) ( , )d ( , )

su st ss

su sq z zH f f 
  

 

      

  

  

 

s x G x ξ f G x ξ n u G x ξ q

G x ξ p G x ξ c cξ ξ
 (16) 

 

 S.I of tractions 

If in Eq. (13) is set, 
* *( ) ;    ( )   p x 0 q N x ξ , the S.I. of tractions ( )t x is obtained: 

 

 

( , , ) ( , ; ) d ( , ; , ) ( ) d ( , ; ) d

( , ; ) d ( , ; ) ( , )d ( , )

tu tt ts

tu tq z x zH f f 
  

 

      

  

  

 

t x ν G x ν ξ f G x ν ξ n u G x ν ξ q

G x ν ξ p G x ν ξ c N cξ ξ
 (17) 
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The S.I.s of the displacements (14) and tractions (17) used in the SGBEM approach, in the absence of inelastic actions

q , are re-written considering the only component ( , )
z

f ξ of the vector p .  

  ,3 ,

discontinous on 

( ) ( ; ) d ( ; , ) ( ) d ( ; ) ( ; ) ( , ) d
uu ut uu uq z

H f   
  



       u x G x ξ f G x ξ n u G x ξ G x ξ

���������

ξ  (18) 

 

 ,3 ,

discontinous on 

( , ) ( , ; ) d ( , ; , ) ( ) d ( , ; ) ( , ; ) ( , )d ( , )
tu tt tu tq z x z

H f f    
  



       t x ν G x ν ξ f G x ν ξ n u G x ν ξ G x ν ξ N c

�������

ξ ξ   (19) 

in which 1,2,3;   1, 2   .  

If the plate B  is imbedded in the unlimited domain  (Fig. 5), the boundary can be considered both as a boundary 

   of   or boundary 
 of the complementary domain /  ;  this allows introducing vectors f  and v  defined 

respectively as “layered forces” and “double-layered displacement jumps” (Fig. 5) (Polizzotto [2]). 

 

 Fig. 5. Plate imbedded in the unlimited domain; boundaries  of complementary domain /   and    of the real one. 

 ;              f t t v u u  (20a, b)  

In Eqs. (20a, b), t , u are traction and displacement vector evaluated on the boundary 
 , while t , u are the respective 

vectors on 
   . 

The S.I.s of displacements and tractions (18, 19) show discontinuity when x ; if the latter are re-written in symbolic 

form on the boundary 
 (Fig. 5) it turns out:  

 
1 1

[ ] [ ] [ ];       [ ] [ ] [ ]
2 2

PV PV

z zf f        u u f u v u u t t f f t v t        (21a, b) 

In the Eqs. (21a, b) the terms having the apex PV specify that the singular integrals is evaluated as Cauchy Principal 

Value while the one containing the constant 1/ 2 is the associated free terms. 

Once the deformation has taken place, the complementary domain /   must be unstressed and undeformed; this 

means that all strain energy is stored in the plate solid and we write the following conditions, valid at every point of the 

boundary
 : 

 ;        u 0 t 0    (22a, b) 

Eqs. (22a, b) implie that, when the solution is obtained: 

 ;        f t t 0    (23a, b) 

This means that, depending on the constraint conditions, the tractions and displacements must coincide with those 

originally assigned or with those determined by the analysis. 

 

4. Surface tractions: the RIM technique. 
The domain integral in the S.I.s of displacements and tractions (18, 19) are re-written 

  , ,[ ] ( ; ) ( ; ) ( , ) d3

z uu uq zf H f   


  u G x ξ G x ξ ξ  (24) 

  , ,[ ] ( , ; ) ( , ; ) ( , ) d ( , )3

z tu tq z x zf H f f    


   t G x ξ G x ξ N cν ν ξ ξ       (25) 

If we put: 
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, ,ˆ( ; ) ( ; ) ;

1,1 1,2

uu uu

2,1 2,2

1 uu uu

uq uu

3,1 3,2

uu uu

G G

G G

G G

  

 

 

 

  
   

  
   

  
   
   

G x ξ G x ξ   
, ,ˆ( , ; ) ( , ; )

1,1 1,2

tu tu

2,1 2,2

1 tu tu

tq tu

3,1 3,2

tu tu

G G

G G

G G

  

 

 

 

  
   

  
   

  
   
   

G x ξ G x ξν ν       (26a, b) 

the Eqs. (24, 25) can be written in the form: 

  , ,ˆ[ ] ( ; ) ( ; ) ( , ) d
3 1

z uu uu zf H f
  



  u G x ξ G x ξ ξ  (27) 

  , ,ˆ[ ] ( , ; ) ( , ; ) ( , ) d ( , )
3 1

z tu tu z x zf H f f
   



   t G x ξ G x ξ N cν ν ξ ξ       (28) 

with 1,2,3  . 

In the literature, for ( , ) const
z

f  ξ , domain integrals in Eq. (27) involving matrices 
, ( ; )3

uu

G x ξ and ,ˆ ( ; )1

uu

G x ξ  are 

transformed into boundary integrals, the first one through the use of particular solutions and the second through the 

divergence theorem (see Weeën [10]); the matrices 
, ( , ; )3

tu

G x ξν e 
,ˆ ( , ; )1

tu

G x ξν  in Eq. (28), suitable for boundary 

integrals, are obtained through the relationship  xt N DC u . The drawback of these operations consists in the fact that 

any singularity present in the kernel of domain integral reappears in the boundary one; that is, a field of displacements 

and tractions is obtained continuous within the domain but singular on the boundary  (Panzeca [6]).  

In order to overcome this drawback, in the present paper, all the domain integrals are transformed into integrals to be 

performed on the boundary through a general technique. This, valid for any type of law characterizing the surface traction 

distribution ( , )
z

f ξ , provides displacement and traction fields continuous in the domain   and without singularities on 

the boundary  . 

 

 Fig. 6. Scheme for the RIM technique; ξ  source point, x effect point  

The technique named Radial Integral Method (RIM), introduced by Gao [24], has been reformulated by Panzeca et al. in 

[6]; however, in this paper, a simplified formulation of the RIM technique is proposed for domain loads. 
The RIM technique (Fig. 6) is applied through the following stages: 

 transformation of the integral kernel  from the Cartesian coordinate system to a polar one; 

 integration with respect to the distance vector r  being d d dr r    and {0, }r R ; this operation shifts the 

source point on the boundary; 

 transformation to obtain a line integral: 

 

 
2 ;      ,nS S r        R R R R  (29a, b) 

 

 inverse transformation from polar coordinates to Cartesian one. 
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4.1 RIM technique: fundamental solutions with weak singularities. 
The application of the RIM technique to the domain integral present in the S.I. of displacements in Eq. (27) is shown. 

Let we consider the fundamental solution ( ; )1,3

uuG x ξ , which exhibits ( )ln r  singularity; the solution (Appendix 2) is:  

 ,
( ; ) (1 2 ( ))

8

x1,3

uu

r r
G ln r

A



 x ξ   (30) 

The phases of the RIM technique for ( , ) const
z

f  ξ allow writing: 

 

2 2 2

2

0 0 0 0 0

( ) ( )(5 6 ( ))
( ) dr d  = (1 2 ( )) dr d  = d  =

8 72

(5 6 ( )) (5 6 ( ))
= dS  = d

72 72
s

R R

1,3

uu z z z

x x

z ,n z

r cos r cos ln r
G r f ln r r f r f

A A

r ln r r ln r
r f r r f

A A

    
    

 

 
  

   
   

   

    
   

   

    

 
 (31) 

It turns out 

 
(5 6 ( ))

( ; )
72

1,3-B x
uu ,n

r ln r
G r r

A





x ξ   (32) 

where the apex B characterizes that the solution is suitable for boundary integration. 

It is important to note that the normal derivative ,nr  present in Eq. (32) implies that ( ; ) 01,3-B

uuG x ξ when x ξ  inasmuch 

as  n r  on the boundary  ; we obtain a regular field of displacements inside the domain and null on the boundary.  

In the same way, the technique also applies to fundamental solutions 
, ( , ; )3

tu

G x ξν and ˆ ( ; ),1

uu

G x ξ which show singularities 

of order
1r .  The fundamental solutions matrices 

, ( ; )3 B

uu

 G x ξ , 
, ( , ; )3 B

tu

 G x ξν , 
,ˆ ( ; )1 B

uu

 G x ξ  suitable for integrations on 

the boundar y for ( , ) const
z

f  ξ  are given in Appendix 2. 

4.2 RIM technique: fundamental solutions with hypersingularities. 

 

Fig. 7. Zenith view of the plate subjected to the force f z  applied at P : a) domain  , b) circular domain   of exclusion with radius   and 

boundary   for the Bui Free Term evaluation.  

The application of the RIM technique to the domain integral present in the S.I. of tractions (28), since the fundamental 

solution ,ˆ ( , ; )1

tu

G x ξν exhibits hypersingularity of order
2r  , applies through a regularization strategy (see Panzeca [6]). 

The regularization technique begins from the S.I. of the displacements Eq. (27) here re-written for ( , ) const
z

f  ξ : 

 ,ˆ[ ] ( ; ) d1

z uu z
f H f



  u G x ξ   (33) 

Starting from Eq. (33) and applying  xt N DC u we write: 

 ,ˆ[ ] ( ; ) d1

z x x uu z x zf H f H f



   t N D C G x ξ N c  (34) 

With reference to Fig. 7a the domain integral in Eq. (34) may be rewritten as follows: 
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, , ,

0 0

ˆ ˆ ˆ( ; )d lim ( ; ) d lim ( ; )d1 1 1

x x uu z x x uu z x x uu zH f H f f

 

  

  
  

 
      

 
 

  N DC G x ξ N D C G x ξ N D C G x ξ  (35) 

The first integral to the right in Eq. (35) is evaluated as CPV and can be written as 

 

 
, , ,

0 0

ˆ ˆ ˆlim ( ; ) d ( , ; )( ) d lim ( , ; )d1 1 1

x x uu z tu z z tu zf f f f

 

  

  
  

     N D C G x ξ G x ξ G x ξν ν   (36) 

where a singularity arises in the second integral of the right of the previous expression Eq. (36).  

This latter domain singular integral is transformed into an integral to be computed on the boundary through the application 

of the RIM technique. We obtain: 

 
, ,

0

ˆ ˆlim ( , ; ) d ( , ; , ) d1 1 B

tu z tu zf f



 






 

   G x ν ξ G x ν ξ n  (37) 

The second integral on the right of Eq. (35), through the condition ( ) ( )x    C C and the use of the Gauss Theorem, is 

transformed into an integral defined on the boundary   (Fig. 7b), thus making it possible to define the Bui Free Term. 

After the transformation of the variable from Cartesian into polar ones, the latter integral is evaluated in closed form as 

follows: 

 

,

, , ,

0 0

( ) 1ˆ ˆ ˆlim ( ; )d lim ( ; )d ) ( ; )d d   
2

1

1 1 1 uu

x uu z uu uu

   


  

     




  
   

             
Ψ

J C G x ξ C G x ξ N G x ξ N w
ɶ

 (38) 

where [1,1,0]T Tw . The vector J  is the Bui Free Term for the Reissner’s model. 

Finally, the regularized S.I. of traction is obtained: 

 

 

,

, ,

ˆ( , ; , ) ( , ; ) d ( , ; , ) ( ) d ( , ; )( ) d

ˆ( , ; , ) ( , ; , ) d ( )

1

tu tt tu z z

3 B 1 B

tu tu z x z

H f f

H f H f



 

  

 



     

   

  



t x ν ξ η G x ν ξ f G x ν ξ n u G x ξ

G x ν ξ n G x ν ξ n N DJ g

ν

 (39) 

where  

 
1 1

0 0 0
2 2

T      
DJ   (40) 

 
1 1

( ) 0 0 0
2 2

T        
DJ g  (41) 

 
1 1

( ) 0 0 0
2 2

T

x x y

 
 

             
    

N DJ g . (42) 

and  1,1,0,0,0
T g . 

The RIM technique provides also the transformed regularized domain integral in Eq. (39); this results is null since 
zf  is 

constant on the entire domain;  we obtain a regular field of tractions inside the domain and null on the boundary.   

Appendix 2 provide the matrix ,ˆ ( , ; )1 B

tu

 G x ξν . 

5. Solving system by the "progenitor matrix" 
The solving system within the SGBEM is obtained through an indirect approach based on the generation of a matrix 

called “progenitor matrix” introduced by Terravecchia [27] in order to operate a generalization of the analysis method   

without distinguishing initially the effective boundary conditions. The "progenitor matrix" allows obtaining all the 

coefficients of the solving system and the boundary load vectors. 

The stages of the approach are: 

 

 the plate is imbedded in an unlimited domain having the same physical and mechanical characteristics; this 

allows recognizing a complementary domain \   of boundary 
  and a real domain   of boundary 

  
(Fig. 5); 
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 imposition on the boundary 
  of the conditions (22a, b) here re-written: 

 

 ( ) ;      ( , )  u x 0 t x 0v    (43a, b) 

 

 boundary discretization and modelling of the quantities u and f  as a function of the nodal quantities F  and 

 V U :  

 ;      t u f ψ F u ψ V   (44a, b) 

 

where tψ and uψ  are suitable diagonal matrices of shape functions; 

 

 introduction of modelling (44a, b) in the S.I.s (18, 19) written on the boundary 
  with const

z
f  : 

 

  , ,1
d d d

2

3 B 1 B

uu t ut u u uu uq zH f 

  

  

  

        u G ψ F G ψ V I ψ V G Gɶ�   (45) 

  , ,1
   d d d ( )

2

3 B 1 B

tu t t tt u tu tq z x zH f H f 

  

  

  

           t G ψ F I ψ F G ψ V G G N DJ gɶ�  (46) 

 

 weighing, according to the Galerkin strategy, of the boundary conditions (43a, b) using dual shape functions in 

an energetic sense: 

 

 d ;      dt u
 

   

 

      W ψ u 0 P ψ t 0  (47a, b) 

 

 replacement of S.I.s Eqs. (45, 46) in Eqs. (47a, b) and generation of the matrix relation: 

 

 
uu ut ut

z

tu tu tt

f




 


        
                     

WA A CW F 0

A C A V 0P P
 (48) 

 

where 

 

 

( d )d ;     ( d )d

( d )d ;     ( d )d

1 1
d ;                    d

2 2

( [ ])d ;               ( [

uu t uu t ut t ut u

tu u tu t tt u tt u

tu u t ut t u

t z uf

   

   

 

 

   



   

 

 
 

 

     

     

   

  

   

   

 

 

A ψ G ψ A ψ G ψ

A ψ G ψ A ψ G ψ

C ψ ψ C ψ ψ

W ψ u P ψ u

�

�

])dzf 

 (49a-h) 

 

Since the symmetry properties Eqs. (11, 12) are valid, it turns out: 

 

 ;     ;    ;    .T T T T

uu uu tt tt tu ut tu ut   A A A A A A C C  (50a-d) 

 

Eq. (48), with obvious meaning of symbols, is rewritten in the form: 

 

 
uu ut

z

tu tt

f




 


        
           

          

WB BW F 0

B B V 0P P
 (51) 

 

in which B is the “progenitor matrix” of the analysed plate and it is non-symmetric and non-invertible. It is 

possible to check coefficient blocks utB , ttB  through rigid body motion techniques and check coefficient block  

uuB  through a technique of superimposing effects (Terravecchia [27]). 
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 imposition of the effective boundary conditions on 1 2    and distinction of known and unknown quantities 

 

 2 1 ;
TT    F F F    2 1 2 1

T TT          V V V U U  (52a, b) 

 

resulting in the reordering and partitioning of the progenitor matrix and of the domain load vector: 

 

 

2 2 2 1 2 2 2 1 22 2

1 2 1 1 1 2 1 1 11 1

2 2 2 1 2 2 2 1 22 2

1 2 1 2 1 2 1 1 21 1

u u u u u t u t

u u u u u t u t

t u t u t t t t

t u t u t t t t

 


 


 


 


      
                 
     

           

B B B B FW 0 W

B B B B FW 0 W

B B B B VP 0 P

B B B B VP 0 P

 (53) 

 

 taking the matrix of the solving system and the load vectors: 

 

 
1 1 1 2 1 2 1 11 1

2 2

2 1 2 2 2 2 2 22 2

u u u t u u u t

z

t u t t t u t u

f






       
             
        

B B B BF W
F V

B B B BV P
 (54) 

 

Eq. (54) is re-written in the form: 

 

 2 1t u    Κ X L F L V L 0   (55)  

 

where Κ  is the symmetric and defined pseudostiffness matrix of the system and tL , uL , L  are respectively the load 

vectors of boundary traction 2F ,  boundary double-layered displacements 2V  and  domain tractions 
z

f . 

Basically, the indirect approach makes available a matrix of coefficients on which it is possible to impose the actual 

boundary conditions thus being able to consider a wide range of loading possibilities.  In Eq. (53) the rows of weighted 

displacements and tractions 2

 W 0  and 1

 P 0 , not verified by solution, are available for further post-analysis steps 

such as: improvement of discretization on the boundary through the evaluation of weighted residuals or energy 

considerations [28]; energy evaluation in the body domain  and in the unlimited domain [29].  

5.1 Hypersingular coefficient calculation. 

The matrix ttA , when x ξ  , is characterized by double integrals with 
2r 

order of singularity.  In this paper, the kernel 

of the hypersingular integral is interpreted as a distribution (Terravecchia [4]); this allows computing the integral, 

independently of asymptotic behaviour of the function. This operation take on a strong physical meaning: the inner 

integral permits to obtain a function defining the response at every point of the infinite domain  , the external one 

performs the weighting of the effect on the body boundary; the technique is applied through a decomposition of the causes 

and a superimposition of the effects. 

Let's calculate (Fig. 8) coefficient showing hypersingularity in the case of two aligned boundary elements a and b the 

length of which is indicated respectively with a  and b . It takes into account the fundamental solution 
1,1

ttG  provided in 

the Appendix 2; the latter permits to obtain, in the unlimited domain  , the moments nxM  caused by double-layered 

rotations vx x   both referred to the general system introduced in Fig. 1; in this case, the above quantities assume 

respectively the meaning of moments and distortions of torsional type. By using the power series expansion of the Bessel 

function (Appendix 1), we divide the 1,1

ttG  fundamental solution into a singular part 1,1 S

ttG   and a regular part 1,1 R

ttG  . The 

regular part does not require particular treatments and the double integral is performed through numerical integration 

techniques; the singular part is treated through the theory of distributions. 

If we apply the power series expansion of the Bessel functions, the singular part 1,1 S

ttG  takes the form: 

 

 
2

2

, , , , , , , , , , , ,

( ) ( )
( ) (2 ( ) ( , ) 4

2

1,1 S

tt n t x y t ,n , ,n , t , x n2

1- n z 2 1 n
G r r r r ln r r r r r r r r r r r r r

8 z
      

 





           
  

 (56) 

 

Eq. (56), simplified through the data that characterize the position of the boundary elements a  and b  (Fig. 8) i.e. 

 

 { 0, 0, 1, 0, 0, 1}x y x yy v v n n       (57) 

turns out: 
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2
*

2 2

( ) ( )

2

1,1 S x
tt nx

x

rA 1- n 2 1 n
G m ln

8 r


 

    
    

  
 (58) 

Into the Eq. (58) it is noted that the weak singularity and hypersingularity concern all the support of the boundary elements.  

The shape functions used for cause modelling and effect weighting, indicated by subscripts respectively c  and e  are of 

linear type: 

 

 1 ;    1 ;    1 ;    1ac ae bc be

x x

a a b b

 
            (59a-d) 

 

and the nodal value of the cause in the common node N is 1xV  .  

 

 
Fig. 8. Scheme of hypersingular coefficient calculation. 

By decomposing the causes and superimposing the effects, we write: 

 

 
* * * *( d d )d ( d d )d

ae ac bc ae ac bc

aa ab ba bb
nx nx nx nx

a b
nx nx

N aN bN

nx nx nx ae nx ac ac nx bc bc ae be nx ac ac nx bc bc be

m m m m

m m

P P P m m m m     
     

                
������� ��������� ������� �������

����������������� ���������������

 (60) 

 

In Eq. (60) the terms 
aa

nxm  and 
ab

nxm , defining the response 
a

nxm at every point of boundary element a  for applied causes 

respectively to a  and b , show singularities 
1r  of opposite sign which cancel each other out in the sum;  logarithmic 

singularities add up and in the weighing process will be eliminated through an integration by parts (Terravecchia [4]).  

This leads to the calculation of the 
a

nxP  part of the coefficient.  Similar considerations concern the part 
b

nxP . 

The total value 
N

nxP of the weighted moment associated with the node N is: 

 

 
2

2

3 2 2

4( ) 5
(( ) ( ) ( ) ( )) ( ) 3 ( )( ) ( )

4 2
12

( ( ) ( )) ( ) ( ) ( ) ( ( ) ( ))

N

nx

2 1 n 2 ab
a+b ln a+b aln a bln b a b ab a b lnA 1- n a+b

P
8 ab

ab a ln a bln b a+b ln a+b a+b a ln a b ln b







              
      

 (61)  

 

6. Post analysis phase. 
The calculated response on the boundary , in terms of nodal traction 1F  and nodal displacements 2U , allows obtaining 

the distribution of tractions and displacements on the boundary by modelling them through nodal values: 

 1 1tt ψ F ;       2 2uu ψ U   (62) 

The displacements and tractions at the internal points of the domain are obtained through S.I.s (18, 19) where all quantities 

are now known. 

The internal stress, since the bending and shear stresses are assumed to vary linearly and quadratic respectively, are 

achieved through relationships 

 

2

3

12 3
; 1 4

2

z z z

h hh

      
   

σ τ�;     � ;   (63a, b) 

with �, �  evaluated through the S.I.s. (16); the stress z  is given by the Eq. (4). 

The plate's  equilibrium subjected to vertical loads is: 

 d d d

i i

t n i t n i z

i i

f
  

       ψ T ψ T   (64) 
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where nT , nT  are the reactive and active vertical nodal forces, respectively and 
z

f  the domain vertical loads. 

The check of Eq. (64) is index of the goodness of the solution. 

7. Numerical examples. 
The numerical examples deal with problems for which the analytical solution is known. Examples are solved using the 

“progenitor matrix” approach. For certain physical and geometric characteristics, a matrix of coefficients is made 

available which, reordered on the basis of the effective boundary conditions, allows simulating a multiplicity of load 

conditions. Rigid body motion techniques, since the internal displacement and traction fields are known, allowing 

determine the optimal number of terms in the series expansion of the Bessel functions (see Appendix 1) to be considered 

in the coefficients calculation of the progenitor matrix. For the following examples, thirty terms of the power series 

expansion give very good results; in fact, the internal displacement and traction fields expected from rigid body motion 

techniques are well approximated and allow the numerical precision of the machine to be achieved. 

The results of the examples are provided in both tables and graphs. In the table, the tractions on the constrained nodes 

and the displacements of the free nodes, obtained in the analysis phase, are compared with the analytical solution. The 

dashed lines in the tables indicate that the solution cannot be provided either by the analytical solution or by the solution 

through SGBEM: i.e. displacements of the constrained nodes or tractions of the free nodes. This avoids the proliferation 

of results tables. 

 

7.1 Example 1: square plate in pure torsion, with angle of torsion 1  . 

Let us consider the square plate of Fig. 9a having dimensions, 2 2L L   , 1h  and 10  ; to simplify the 

calculations, the adopted physical characteristics are, Young’s modulus 12E  , Poisson ratio 0n   which results in a 

bending stiffness 1  . 

The plate is discretized by 8 quadratic boundary elements for a total of 16 nodes on the boundary; lowercase letters 

indicate the sides of the plate on which the boundary conditions are imposed. The entire "progenitor matrix" is calculated 

which, in order to show the potential of the approach, will also be used for Example 2. 

The results obtained are also compared with those obtained in [20] introduced in suitable tables. 

  

Fig. 9. Square plate a) discretized by 8 quadratic boundary elements, b) boundary load in pure torsion.  

The plate (Fig. 9b), simply supported on sides c, d with boundary conditions  

 0, 0, 0x z nyu M      on c;    0, 0, 0y z nxu M      on d  (65a, b) 

is subjected on the free side a, b to a distribution of twisting moments which take on a unitary value i.e. 

 (1 ) 1
nx ny

M M n       (66a, b) 

The analytical solution of this problem is [20] 

 ( / 2),    ,    x y zy L x u xy         .   (67a-c) 
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Present approach 

Node Analytical solution SGBEM – 8 quadratic elements 

 ��� ��� �� ��� ��� �� 

9 −1.00000 −−− 0 −1.00000 −−− 1 × 10�
 

10 −1.00000 −−− 0 −0.99997 −−− −5 × 10�� 

11 −1.00000 −−− 0 −1.00002 −−− 8 × 10�� 

12 −1.00000 −−− 0 −0.99997 −−− −4 × 10�� 

13 −1.00000 −1.00000 0 −1.00002 −1.00002 8 × 10�� 

14 −−− −1.00000 0 −−− −0.99997 −4 × 10�� 

15 −−− −1.00000 0 −−− −1.00002 8 × 10�� 

16 −−− −1.00000 0 −−− −0.99997 −5 × 10�� 

1 −−− −1.00000 0 −−− −1.00000 1 × 10�
 

  Table EI a. Example 1: tractions, analytical and SGBEM solution.  

 

Reference [20] 

 
Analytical solution 

SGBEM - 16 quadratic 

elements 

SGBEM - 32 quadratic 

elements 

 ��� �� ��� �� ��� �� 

9 −1.000 0.0 −1.191 −0.025 −1.148 −0.025 

10 −1.000 0.0 −1.045 0.019 −1.015 0.007 

11 −1.000 0.0 −1.055 −0.024 −1.017 0.001 

12 −1.000 0.0 −1.028 0.017 −1.032 −0.014 

13 −1.000 0.0 −1.104 −0.165 −1.071 −0.128 

  Table EI b. Example 1: tractions, analytical and SGBEM solution in reference [20]. 

 

Present approach 

Node Analytical solution SGBEM – 8 quadratic elements 

 �� �� �� �� �� �� 

1 2 0 0 2.00001 −−− −−− 

2 2 0.5 −1 2.00001 0.50008 −1.00001 

3 2 1 −2 2.00001 1.00001 −2.00001 

4 2 1.5 −3 2.00001 1.50001 −3.00001 

5 2 2 −4 2.00001 2.00001 −4.00002 

6 1.5 2 −3 1.50001 2.00001 −3.00001 

7 1 2 −2 1.00001 2.00001 −2.00001 

8 0.5 2 −1 0.50008 2.00001 −1.00001 

9 0 2 0 −−− 2.00001 −−− 

10 0 1.5 0 −−− 1.50001 −−− 

11 0 1 0 −−− 1.00001 −−− 

12 0 0.5 0 −−− 0.50008 −−− 

13 0 0 0 −−− −−− −−− 

14 0.5 0 0 0.50008 −−− −−− 

15 1 0 0 1.00001 −−− −−− 

16 1.5 0 0 1.50001 −−− −−− 

  Table EI c. Example 1: displacements, analytical and SGBEM solution. 

 

Reference[20] 

Node 
Analytical solution 

SGBEM - 16 quadratic 

elements 

SGBEM - 32 quadratic 

elements 

 �� �� �� �� �� �� �� �� �� 

4 2.000 1.500 −3.000 2.010 1.492 −3.043 2.009 1.503 −3.022 

5 2.000 2.000 −4.000 2.074 2.074 −4.056 2.047 2.047 −4.029 

6 1.500 2.000 −3.000 1.492 2.010 −3.043 1.503 2.009 −3.022 

7 1.000 2.000 −2.000 0.994 2.021 −2.034 0.993 2.006 −2.017 

8 0.500 2.000 −1.000 0.469 2.015 −1.020 0.489 2.013 −1.010 

9 0.000 2.000 0.000 0.000 2.103 0.000 0.000 2.063 0.000 
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  Table EI d. Example 1: displacements, analytical and SGBEM solution in reference [20]. 

7.2 Example 2: square plate subjected to different loading conditions and compared with the 

Timoshenko’s beam. 
The "progenitor matrix" of the previous example allows performing with simple reorders and partitions, which depend 

on the boundary conditions, various examples whose results are compared with those obtained for the Timoshenko’s 

beam. It is necessary to define a plate (Fig. 10a) whose sides b and d coincide with the ends 1 and 2 of the Timoshenko 

beam (Fig. 10b) having the same physical and geometric characteristics. In order to carry out the comparison it is 

necessary that on the sides a and c of the plate the boundary conditions will always be 0
nx ny n

M M T   while on sides 

d 1 and b 2  the boundary conditions will vary according to the constraint. Equivalence entails nxM M , nT T . 

 

Fig. 10. a) Square plate of example 1 with 7 internal point where the response is evaluated, b) equivalent Timoskenko’s beam of extremes 1,2.  

The examples, from 2a to 2e, concern different load and constraint conditions. The analytical solution is a function of

f E I , /t A   of known meaning. The load vector is calculated considering the fundamental solutions modified 

provided in the Appendix 2 for const
z

f  , otherwise the RIM technique is applied to the case to be addressed. 

Tables E IIa-e, as the plate is symmetric about the x  axis, provides the results for nodes from 7 to 15 compared with the 

analytical solutions; diagrams are also provided. These provide the comparison between the analytical flexural curve and 

the values of ( )zu x  evaluated at 7 points inside the plate equally spaced along the axis  0y   (Fig. 10a) through the S.I. 

of the vertical displacements. 

7.2.1. Example 2a: Cantilever beam with linear distributed load  0

x
q q

l
 . 

 

Fig. 11. Equivalent Timoskenko’s beam: load conditions. 

 

Timoshenko’s beam solution:  

 

  

 

2 2 3 2 3 2 3 2 3

0 0 0

(3 ) (20 10 ) (8 6 )
( ) ;       ( )

2 120 24
z x

l x x l l x x x l l x x x
u x q q x q

l t lf lf


         
        
     
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2 2 2

0 0

1 1
( ) ( ) ;       ( ) ( ) (2 ) .

2 6
T x l x q M x l x l x q

l l
       (68a-d) 

   

  

Node Analytical solution SGBEM – 8 quadratic elements 

 �� �� ��� �� �� �� ��� �� 

7 −1.00000 1.73333 −−− −−− −0.99985 1.73282 −−− −−− 

8 −1.00000 1.73333 −−− −−− −1.00116 1.73229 −−− −−− 

9 −1.00000 1.73333 −−− −−− −0.99928 1.73549 −−− −−− 

10 −0.98047 1.21289 −−− −−− −0.98011 1.21186 −−− −−− 

11 −0.85412 0.68750 −−− −−− −0.85379 0.68927 −−− −−− 

12 −0.54297 0.24389 −−− −−− −0.54098 0.24476 −−− −−− 

13 0.00000 0.00000 1.33333 −1.00000 −−− −−− 1.33770 −1.00633 

14 0.00000 0.00000 1.33333 −1.00000 −−− −−− 1.33556 −1.00417 

15 0.00000 0.00000 1.33333 −1.00000 −−− −−− 1.33387 −0.99241 

Table EII a. Example 2a: displacements, tractions, analytical and SGBEM solution. 

 

 

 

 

Fig. 12. Example 2a:  analytical displacements ( )zu x of Timoshenko’s beam,  

displacements ( )zu x along the line 0y   evaluated at 7 internal points by S.I. 

 

 

7.2.2. Example 2b: Beam fixed at first extreme and simply supported at second extreme with 

uniformly distributed load 0 1q   . 

 

 

Fig. 13. Equivalent Timoskenko’s beam: load conditions. 

 

Timoshenko’s beam solution:   

 

 

 

2 2 2 2 2

0 0 0 02 2

(24 10 )( ) (3 5 2 ) 3 (2 ) (6 15 8 )
( ) ;     ( )

48 4816 (3 ) 16(3 )
z x

f l t ltx l x x l lx x l l x x l lx x x
u x q q x q q

f ft f l t f l t


             
                
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2 2

0 0 0 02 2

3 5 8 3 ( ) 5 4
( ) ;       ( )

8 88(3 ) 8(3 )

f l l x f l l x l lx x
T x q q M x q q

f l t f l t

                          
 (69a-d) 

 

 

Node Analytical solution SGBEM – 8 quadratic elements 

 �� �� ��� �� �� �� ��� �� 

7 0.231884 0.00000 0.00000 −0.78261 0.23174 −−− −−− −0.77835 

8 0.231884 0.00000 0.00000 −0.78261 0.22978 −−− −−− −0.78663 

9 0.231884 0.00000 0.00000 −0.78261 0.23502 −−− −−− −0.77487 

10 0.154891 0.15550 −−− −−− 0.15429 0.15486 −−− −−− 

11 0.007246 0.19964 −−− −−− 0.00754 0.20272 −−− −−− 

12 −0.08605 0.12833 −−− −−− −0.08494 0.12817 −−− −−− 

13 0.00000 0.00000 0.43478 −1.21739 −−− −−− 0.43237 −1.22804 

14 0.00000 0.00000 0.43478 −1.21739 −−− −−− 0.43689 −1.21853 

15 0.00000 0.00000 0.43478 −1.21739 −−− −−− 0.43475 −1.21319 

Table EII b Example 2b: displacements, tractions, analytical and SGBEM solution. 

 

 

  

 

Fig. 14. Example 2c: analytical displacements ( )zu x of Timoshenko’s beam,  

displacement ( )zu x along the line 0y   evaluated at 7 internal points by S.I. 

 

 

7.2.3. Example 2c: Simply supported beam with parabolic load 04
1

q x x
q

l l

   
 

 and 0 1q  . 

 

Fig. 15. Equivalent Timoskenko’s beam: load conditions. 

 

Timoshenko’s beam solution:   

 

 

 

2 2 4 3 2 2 3 4 2 2 2

0 0 02 2 2

( ) ( ) ( ) (3 3 2 2 ) (2 ) ( )
( ) ;     ( )

3 90 30
z x

l x l lx x x l x l l x l x lx x x x l l lx x
u x q q x q

l t fl f l


               
       
     
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3 2 3 3 2 3

0 02 2

1 1
( ) ( 6 4 ) ;        ( ) ( 2 )

3 3
T x l lx x q M x l lx x q

l l
        (70a-d) 

 

 

  

Node Analytical solution SGBEM – 8 quadratic elements 

 �� �� ��� �� �� �� ��� �� 

7 0.26666 0.00000 0.00000 −0.66666 0.26608 −−− −−− −0.65969 

8 0.26666 0.00000 0.00000 −0.66666 0.26492 −−− −−− −0.67139 

9 0.26666 0.00000 0.00000 −0.66666 0.26888 −−− −−− −0.65818 

10 0.18802 0.17929 −−− −−− 0.18687 0.17950 −−− −−− 

11 0.00000 0.25273 −−− −−− 0.00000 0.25749 −−− −−− 

12 −0.18802 0.17929 −−− −−− −0.18687 0.17950 −−− −−− 

13 −0.26666 0.00000 0.00000 −0.66666 −0.26888 −−− −−− −0.65818 

14 −0.26666 0.00000 0.00000 −0.66666 −0.26492 −−− −−− −0.67139 

15 −0.26666 0.00000 0.00000 −0.66666 −0.26608 −−− −−− −0.65969 

Table EII c. Example 2d: displacements, tractions, analytical and SGBEM solution. 

 

 

 

 

Fig. 16. Example 2c: analytical displacements ( )zu x of Timoshenko’s beam,  

displacements ( )zu x along the line 0y   evaluated at 7 internal points by S.I. 

 

7.2.4. Example 2d: Simply supported beam with sinusoidal load 0 2
x

q q sin
l

   
 

and 0 1q  . 

 

Fig. 17. Equivalent Timoskenko’s beam: load conditions. 

 

Timoshenko’s beam solution: 

  

 
2 4 3

4 3
( ) 2 2 ;     ( ) 2

4 16 8
z x

l x l x l x
u x sin sin x cos

t l l lf f
   

  
             
     

  

 (71 a-d) 
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2

2
( ) 2 ;        ( ) 2

2 4

l x l x
T x cos M x sin

l l
 

 
       
   

 (71a-d) 

 

  

Node Analytical solution SGBEM – 8 quadratic elements 

 �� �� ��� �� �� �� ��� �� 

7 −0.03225 0.00000 0.00000 0.31831 −0.03358 −−− −−− 0.31764 

8 −0.03225 0.00000 0.00000 0.31831 −0.03241 −−−− −−− 0.31884 

9 −0.03225 0.00000 0.00000 0.31831 −0.03522 −−−− −−− 0.32282 

10 0.00000 −0.03053 −−− −−− −0.00067 −0.02944 −−− −−− 

11 0.03225 0.00000 −−− −−− 0.03891 0.0000 −−− −−− 

12 0.00000 0.03053 −−− −−− −0.0067 0.02944 −−− −−− 

13 −0.03225 0.00000 0.00000 −0.31831 −0.03522 −−− −−− −0.32282 

14 −0.03225 0.00000 0.00000 −0.31831 −0.03241 −−− −−− −0.31884 

15 −0.03225 0.00000 0.00000 −0.31831 −0.03358 −−− −−− −0.31764 

Table EII d. Example 2d: displacements, tractions, analytical and SGBEM solution. 

 

 

 

Fig. 18. Example 2d:  analytical displacements ( )zu x of Timoshenko’s beam,   

displacement ( )zu x along the line 0y   evaluated at 7 internal points by S.I. 

 

 

7.3. Example 3: Clamped circular plate with uniformly distributed load 1q  . 

 

 

Fig. 19. Local reference system { , }n t : vectors m ,
nt ,

nu .  

The plate is referred to the local reference system { , }n t  of Fig. 19 with respect to which is written 
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x y nxnn

n

x y nynt

n n MM

t t MM

    
       
     

m Gm , 

0

0

0 0 1

n x y x

n n x y y

z z

n n

t t

u u

 
 
     
              
          

u H u    (72a, b) 

and nt  unchanged. 

The data of the circular plate of Fig. 20, discretized by 16 quadratic boundary elements are: radius 1a  , height 1h  , 

shear factor 10   , Young's modulus 12E  , Poisson's ratio 0.3n  . The following kinematic conditions are valid 

on the boundary: 0,  0,  0n t zu    . 

 

 

Fig. 20. Clamped circular plate with uniformly distributed load: a) discretization with 16 quadratic boundary elemnts, generic boundary element b and 

17 internal point where the response is evaluated, b) cross section. 

The assumption of the reference system of Fig. 19 entails radial bending moments rr nnM M and diametral torsional 

moments ttM M  . For this problem the analytical solution is [10]: 

 

2 22

1 1 2
64

z

q a r r
u C

A a a

                
         

;         
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= 1
16

r

q a r r

A a a


         
     

 

 

2 22 2

(1 ) (3 ) ;    (1 ) (1 3 ) ;    
16 16 2

rr nn tt n n

q a r q a r q a r
M M n n M M n n Q T

a a a


                            
           

  (73a-e) 

  

where  

 
1.6

C =
1

h

n a

 
   

  (74) 

Computational reasons lead to the calculation of the entire plate even if symmetries exist; consequently, the diametral 

moments ttM M   are zero both on the boundary and inside the plate. After calculating the “progenitor matrix”, for this 

constraint condition on the boundary it results uuK B ; the domain load vector L  for 1q   it calculated using the RIM 

technique. Tractions or displacements imposed on the contour could also be considered, but the relative analytical 

solutions for making a comparison do not exist. 

In the following table, the analytic solution is compared with the obtained results; as the results are identical on the whole 

boundary, these are only provided for boundary element b (Fig. 20). 

 

Node Analytical solution 
SGBEM  

16 quadratic elements 

 ��� �� ��� �� 

3 −0.125 −0.500 −0.125005 −0.500019 

4 −0.125 −0.500 −0.124998 −0.499991 

5 −0.125 −0.500 −0.125005 −0.500019 

Table EIII. Example 3: tractions, analytical and SGBEM solution. 



22 

 

Now let's calculate the vertical balance of the plate: 

- resulting applied load on the domain aR  

 2 3.14159
a z z

R A f a f        (75) 

- resulting tractions on the boundary  cR  

 

2 2 2

8 8 8
3 3 4 4 5 5

8 8 8

16 3.14159c n b n b n bR T d T d T d
  

    
 

       
 
     (76) 

In the Eq. (76) niT  and bi  , i 3,4,5  are the reactive tractions and shape functions associated with the nodes i related 

to the boundary element b ; for obtain the total reactive traction it is necessary to consider the total 16 boundary elements. 

It results to be a cR R and therefore the system is balanced. It is useful to compare this result with the one in [10] where 

vertical equilibrium is not achieved. 

The diagrams of  Fig. 21-23 provide the comparison between the analytical solutions (Eqs. (73a-e)) and the results 

obtained through the S.I. at 15 point along the x  axis (Fig. 20a) 

 

Fig. 21. Example 3:  analytical solution ( )zu x , displacements ( )zu x along the line 0y   evaluated at 15 points by S. I 

 

  Fig. 22. Example 3:  analytical solution ( )r x , rotations ( )r x along the line 0y   evaluated at 15 points by S. I. 

 

Fig. 23. Example 3:  analytical solution ( )nM x , circumferential bending moment ( )nM x  along the line 0y   evaluated at 15 points by S. I. 
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8. Conclusions. 
The SGBEM is applied to shear deformable plates. The "progenitor matrix" approach considers the total range of 

boundary conditions of structures having certain physical and geometric characteristics; its coefficients are calculated 

without using regularization techniques and referring to the theory of distributions. Various distribution laws of the 

vertical load on the domain are considered and the integrals has been transformed into a boundary integrals through the 

RIM technique. The use of the "progenitor matrix" and the RIM technique allows obtaining a robust resolving system 

that does not present problems of numerical instability and obtains excellent results in the analysis even in the presence 

of a sparse discretization as demonstrated by the examples. 

 

Appendix 1: Power series expansion of Bessel functions in ℝ . 
The fundamental solutions of the Mindlin-Reissner plate BEM present the functions ( )nK z denoting the modified Bessel 

functions of the second kind and order n th . These functions, defined for nℝ , exhibit asymptotic behaviour, i.e.: 

 

 
0

( ) 0;      ( )n n
z z
lim K z lim K z
 

    (A1.1, 2) 

in addition, manifest singularities from the weakest up ( )ln z  to the highest order hypersingularity nz . 

The presence of logarithmic terms confines the graphs of these functions to the positive real Cartesian half-plane. For a 

complete discussion of these functions (Magno [30]). 

For the purposes of this publication, in order to carry out the necessary simplifications of the fundamental solutions, the 

recursive identity has been used, i.e. 

 1 1

2
( ) ( ) ( )n n n

n
K z K z K z

z
    (A1.3) 

The series expansion of the Bessel functions allows calculating the coefficients of the solving system; this expansion 

depends on the order n of the functions through the following formulas: 

 

- if 0n  : 

 
2

0 2
1 1

singular

1 1
( )

2 2(2 !)

q k
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k
k p

z z
K z ln ln z

pk
 



 

               
      

 
���

 (A1.4) 

 

 

- if 1, 2,3,.....n  : 
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d regular terms
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 (A1.5) 

 

where  is the Euler constant and z  r . 

From the expressions (A1.4, 5) it turns out that, 0 ( )K z  exhibits logarithmic singularities ( )ln z , ( )nK z  exhibits a 

highlighted term that generates singular terms starting from the highest order 
nz 

 and regular terms. In the highlighted 

term of the expression (A1. 5), the summation counter p  depends only on the order n  of the Bessel function and 

therefore the terms generated are limited when compared to the others in the series expansion. The highest order of 

singularity is obtained setting 

 
(1 )

( 1)!

2 n

n





   (A1.6) 

The summation counter {0, }k q   for q    gives the exact approximation of the Bessel function.  

The distinction of singular S and regular R contributions in Bessel functions, with obvious meaning of symbols leads to 

writing: 



24 

 

 
0 0 0
( ) ( ) ( );       ( ) ( ) ( )R S R S

n n nK z K z K z K z K z K z     (A1.7, 8) 

 

Appendix 2: Fundamental solutions. 

The fundamental solutions are functions of  z r where  
2 2 r x ξ  is the distance vector between effect point 

( , )x yx and source point ( , ) ξ , 10 / h   shear factor, h  height of the plate.  

 

 
Fig. 24: Geometric definitions between the positions of the source point ( , ) ξ and effect ( , )x yx   

both placed on the boundary   

 

In Fig. 24 vectors ,n t , , τv  represent the normal vector and the tangent vector to the boundary at the respective points 

and derivatives are taken with respect to the same points: 

  ,i i ir x       
1/ 2( )i ir r r  

 , ,= x
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rr
r r
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
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 (A2.1-8) 
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First, the fundamental solution ( ; )uuG x ξ  for the generation of the "progenitor matrix" is provided, and then the 

fundamental solutions modified through the R.I.M technique that allow obtaining the domain loads vector by replacing 

the domain integral with a boundary one in the case of const
z

f  .  

 

A2.1 Fundamental solutions ( ; )uuG x ξ for the generation of the "progenitor matrix". 

 

 

, , ,

, , ,

, , ,

( ; )

1 1 1 2 1 3

uu uu uu

2 1 2 2 2 3

uu uu uu uu

3 1 3 2 3 3

uu uu uu

G G G

G G G

G G G

 
 

  
 
 

G x ξ  (A2.9) 

 

, 2 2 2

, ,( ; ) { ( ) (1 2 ) ( ) ( )((1 2 ) ( ))}
(1 )

1 1

uu 0 x 2q x

1
G 4K z 4 r K z 1- n r ln z

8 n 
     


x ξ  (A2.10-18) 
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, ,, ( ; ) { ( ) ( )}
(1 )

x y1 2

uu 2q

r r
G 4K z 1- n

4 n 
 


x ξ  

,, 2( ; ) (1 ( ))
x1 3

uu

r r
G ln z

8 
 x ξ

  

, ,( ; ) ( ; )2 1 1 2

uu uuG Gx ξ ξ x  

, 2 2 2

, ,( ; ) { ( ) (1 2 ) ( ) ( )((1 2 ) ( ))}
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2 2

uu 0 y 2q y

1
G 4K z 4 - r K z 1- n - r ln z

8 n 
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,, 2( ; ) (1 ( ))
y2 3

uu

r r
G log z

8 
 x ξ  

, ,( ; ) ( ; )3 1 1 3

uu uuG Gx ξ ξ x  

, ,( ; ) ( ; )3 2 2 3

uu uuG Gx ξ ξ x  

, 2

2
( ; ) {(1 ) ( ( ) 1) ( )}

8 (1 )

3 3

uu

1
G n z log z 8 ln z

n  
   


x ξ  

where (A1.4, 5) ( )0K z  has a singularity of type ( )ln z  and 22

2
( ) ( )2qK z K z

z
   is regular since 

 
0

1
( )

2
2q

z
lim K z


  (A2.19) 

The fundamental solutions ( , )uuG x ξ allows finding the complete matrix of fundamental solutions ( , )G x ξ (Table 1)  

through the procedure adopted in [2] and therefore the fundamental solutions for the generation of “progenitor matrix”. 

As an example the fundamental solution ( ; , )1,1

ttG x ξ n , that provides the traction nxM  on an element with normal vector  

placed at the effect point ( , )x yx  caused by double-layered rotations v x   which acts on an element with normal 

vector n  placed at the source point ( , ) ξ , is derived.  

After a series of simplifications, involving the application of the recursive identity of Bessel function (A1. 3) and of the 

technique adopted by Katsikadelis [31] that exploits the existing trigonometric relationships between derivatives, easily 

deducible from Fig. 24, the fundamental solution is expressed in a compact form using only the derivatives 
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x ξ n

,
)}r

 (A2.20) 

 

where  

 4 44

48
( )qK K z

z
   (A2.21) 

Taking into account Eq. (A1.5), and in particular, the last part that generates singular and regular terms, it results: 

 
2

4 4 4 4 44 2

48 1 48
( )

4 48

R S R

q q q q

z
K K z K K K

z z
          (A2.22) 

where the apex R an S identify the singular and regular parts. In the Eq. (A2.22), the singularity 
4z 
is removed and a 

singularity 
2z 
remains. 

These operations make it possible to distinguish between a regular part and a singular part in the fundamental solution, 

i.e.: 

 ( ; , ) ( ; , ) ( ; , )1,1 1,1 R 1,1 S

tt tt ttG G G  x ξ n x ξ n x ξ n  (A2.23) 
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A2.2 Fundamental solutions which allow obtaining the domain load vector replacing the 

domain integral with a boundary one in the case of zf const . 

In the expressions that follow, the superscript B  indicates that that the given fundamental solution is suitable for 

boundary integration. 

Matrix , ( ; , )3 B

uu

 G x ξ n  with 1, 2,3   

,

,

(5 6 ( ))
( ; , )

72
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x ξ n  (A2.24-26) 
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,

,
ˆ ( ; , )

2

y2,1 B

uu n

r
G r

 
 x ξ n  

2

,

(1 ( ))ˆ ( ; , )
8

3,1 B

uu n

ln z
G r r

 
 

x ξ n  

Matrix , ( , ; , )3 B

tu

 G x v ξ n  with 1, 2,3   

 2

, , , , , , , , ,

1
( , ; , ) (1 )( ) (1 ) ( ) (1 ( )

16

1,3 B

tu x y x y nG r r r r r r r r ln z r r    


        x v ξ n  (A2.30-32) 
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