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Abstract

Machine Learning Techniques, properly combined with Data Struc-
tures, have resulted in Learned Static Indexes, innovative and powerful
tools that speed-up Binary Search, with the use of additional space with
respect to the table being searched into. Such space is devoted to the
ML model. Although in their infancy, they are methodologically and
practically important, due to the pervasiveness of Sorted Table Search
procedures. In modern applications, model space is a key factor and, in
fact, a major open question concerning this area is to assess to what ex-
tent one can enjoy the speed-up of Learned Indexes while using constant
or nearly constant space models. We address it here by (a) introducing
two new models, i.e., denoted KO-BFS and SY-RMI, respectively; (b)
by systematically exploring, for the first time, the time-space trade-offs of
a hierarchy of existing models, i.e., the ones in SOSD, together with the
new ones. We document a novel and rather complex time-space trade-
off picture, which is very informative for users. We experimentally show
that the KO-BFS can speed-up Interpolation Search and Uniform Binary
Search in constant space. For other versions of Binary Search, our second
model, together with the bi-criteria PGM index, can achieve a speed-up
with a model space of 0.05% more than the one taken by the table, be-
ing competitive in terms of time-space trade-off with existing proposals.
The SY-RMI and the bi-criteria PGM complement each other quite
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well across the various levels of the internal memory hierarchy. Finally,
our findings are of interest to designers, since they highlight the need of
further studies regarding the time-space relation in Learned Indexes.

1 Introduction

With the aim of obtaining time/space improvements in classic Data Structures,
an emerging trend is to combine Machine Learning techniques with the ones
proper of Data Structures. This new area goes under the name of Learned Data
Structures. It was initiated by [15], it has grown very rapidly [8] and now it
has been extended to include also Learned Algorithms [20], while the number of
Learned Data Structures grows [4]. In particular, the theme common to those
new approaches to Data Structures Design and Engineering is that a query to
a data structure is either intermixed with or preceded by a query to a Classifier
[6] or a Regression Model [10], those two being the learned part of the data
structure. Learned Bloom Filters [15, 19] are an example of the first type, while
Learned Indexes are examples of the second one [8, 15]. Those latter are also
the object of this research.

1.1 Learned Searching in Sorted Sets

With reference to Figure 1, a generic paradigm for learned searching in sorted
sets consists of a model, trained over the data in a sorted table. As described in
Section 3.2, such a model may be as simple as a straight line or more complex,
with a tree-like structure. It is used to make a prediction regarding where
a query element may be in the sorted table. Then, the search is limited to
the interval so identified and, for the sake of exposition, performed via Binary
Search.

All of the available current contributions to this area have provided Learned
Indexes, i.e., models more complex than straight lines and that occupy space in
addition to the one taken by table. Such a space occupancy cannot be considered
a constant, since it depends on various parameters characterizing the model.

But the use of more space to speed-up Binary Search in important Data
Base tasks is not new, e.g., [22]. Consider the mapping of elements in the table
to their relative position within the table. Since such a function is reminiscent
the of Cumulative Ditribution Function over the universe U of elements from
which the ones in the table are drawn, as pointed out by Markus et al. [17],
we refer to it as CDF. Now, for the same speed-up task, the fact that one can
derive a CDF from the table and approximate that curve via a regression line
to make a prediction is not new, e.g., [3].

It is quite remarkable then that the novel model proposals, sustaining Learned
Indexes, are quite effective at speeding up Binary Search at an unprecedented
scale and be competitive with respect to even more complex indexing struc-
tures, i.e., B+-Tree [5]. Indeed, a recent benchmarking study [17] (see also
[12]) shows quite well how competitive those Learned Data Structures are, in
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addition to providing an entire experimental environment designed to be useful
for the consistent evaluation of current Learned Indexes proposals and hopefully
future ones. Another, more recent, study offers an in-depth analysis of Learned
Indexes and provides recommendations on when to use them as opposed to other
data structures [16]. Relevant for the research presented here are the Recursive
Model Index paradigm (RMI, for short) [15], the Radix-Spline index (RS, for
short) [13], and the Piecewise Geometric Model index (PGM, for short) [9, 7].
For the convenience of the reader, they are briefly described in Section 3.2.

As already mentioned, all those models use non-constant additional space
with respect to the original table. In fact, experimental studies show a time-
space trade-off, which has not been investigated consistently and coherently with
respect to the time-honored methodology coming from Classic Data Structures
[14]. Moreover, it is missing an assessment of how good would be constant
space models at speeding-up classic Sorted Table Search Procedures, i.e., Binary,
Interpolation Search and their variants.

Indeed, two related fundamental questions have been overlooked. The first
consists of assessing to what extend one can enjoy the speed-up of Binary Search
provided by Learned Indexes with respect to the additional space one needs to
use. The second consists of assessing how space-demanding should be a predic-
tive model in order to speed-up Sorted Table Search Procedures, In particular,
a constant space model would yield Learned Sorted Table Search Procedures,
rather than indexes: a point of methodological importance and that has been
overlooked so far. Indeed, answer to this question would put the Learned Search-
ing in Sorted Sets Methodology at a par with respect to the classic purely Al-
gorithmic Methodology: first, constant space algorithms and then more space
demanding data structures, such as Search Trees (see [14]).

1.2 Our Contributions

To shed light on the posed related questions, we systematically analyse a hier-
archy of representative models, without the pretence to be exhaustive. They
range from very simple ones to State of the Art ones. We consider two scenar-
ios. The simple one, which can be referred to as “textbook code”, that uses
nearly standard implementations of search methods and models. The second,
much more advanced, uses the Learned Indexing methods and the highly tuned
software supporting their execution, i.e. CDFShop [18] and Search on Sorted
Data (SOSD for short) [17] (see also [12]). For our experimental evaluation, we
generalize the one adopted in the benchmarking study, by extending the sizes
of the datasets to fit in all the internal memory levels (see Section 3.4). Other
than that, we adhere completely to the mentioned study.

Our findings, outlined in Sections 4-6, and in full in [2], reveal a rather com-
plex scenario, in which it is possible to obtain speed-ups of Sorted Table Search
procedures via Learned procedures that use small space, but the achievement
of such a methodologically and practically important result is not so immediate
from the State of the Art. Indeed, we need to introduce two new models.
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• the KO-BFS, which is a constant space model and that can be used,
in the simple scenario, to consistently speed-up Interpolation Search and
Uniform Binary Search [14], this latter also referred to as branch-free
Binary Search [11].

• The SY-RMI, which is a parametric space model that succinctly repre-
sents a set of models in the RMI family. In the second scenario, with as
little as 0.05% additional space, it can speed-up branchy Binary Search,
Eyzinger layout Binary Search [11] and be competitive in query time with
respect to more space demanding Learned Indexes instances.

Finally, as a whole, our investigation systematically highlights, for the first
time, the time-space trade-offs involved in the use of Learned Searching in Sorted
Data, including indexes, which can be of use to users and stimulating for de-
signers. Indeed, our findings call for further study of the time-space relation of
Learned Indexes. In order to make our results replicable, we provide datasets
and software used for this research in [1], in addition to the already available
CDFShop and SOSD.
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Figure 1: A general paradigm of Learned Searching in a Sorted Set [17].
The model is trained on the data in the table. Then, given a query element, it
is used to predict the interval in the table where to search (included in brackets
in the figure).

2 A Simple View of Learned Searching in Sorted
Sets

Consider a sorted table A of n keys, taken from a universe U . It is well known
that Sorted Table Search can be phrased as the Predecessor Search Problem: for
a given query element x, return the A[j] such that A[j] ≤ x < A[j + 1]. Kraska
et al. [15] have proposed an approach that transforms such a problem into a
learning-prediction one. With reference to Figure 1, the model learned from the
data is used as a predictor of where a query element may be in the table. To
fix ideas, Binary Search is then performed only on the interval returned by the
model.
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We now outline the basic technique that one can use to build a model for
A. It relies on Linear Regression, with Mean Square Error Minimization [10].
With reference to the example in Figure 2, and assuming that one wants a linear
model, i.e., F (x) = ax + b, Kraska et al. note that they can fit a straight line
to the CDF and then use it to predict where a point x may fall in terms of
rank and accounting also for approximation errors. More in general, in order
to perform a query, the model is consulted and an interval in which to search
for is returned. Then, to fix ideas, Binary Search on that interval is performed.
Different models may use different schemes to determine the required range, as
outlined in Section 3.2. The reader interested in a rigorous presentation of those
ideas can consult Markus et al..

(a) (b) (c)
e

Figure 2: The Process of Learning a Simple Model via Linear Regres-
sion. Let A be [47, 105, 140, 289, 316, 358, 386, 398, 819, 939]. (a) The CDF of
A. In the diagram, the abscissa indicates the value of an element in the table,
while the ordinate is its rank. (b) The straight line F (x) = ax+b is obtained by
determining a and b via Linear Regression, with Mean Square Error Minimiza-
tion. (c) The maximum error ε one can incur in using F is also important. In
this case, it is ε = 3, i.e., accounting for rounding, it is the maximum distance
between the rank of a point in the table and its rank as predicted by F . In
this case, the interval to search into, for a given query element x, is given by
[F (x) − ε, F (x) + ε].

For this research, it is important to know how much of the table is discarded
once the model makes a prediction on a query element. For instance, Binary
Search, after the first test, discards 50% of the table. Because of the diversity
across models to determine the search interval, and in order to place all models
on a par, we estimate the reduction factor of a model, i.e., the percentage of the
table that is no longer considered for searching after a prediction, empirically.
That is, with the use of the model and over a batch of queries, we determine the
length of the interval to search into for each query. Based on it, it is immediate
to compute the reduction factor for that query. Then, we take the average of
those reduction factors over the entire set of queries as the reduction factor of
the model for the given table.

3 Experimental Methodology

Our experimental set-up follows closely the one outlined in the already men-
tioned benchmarking study by Marcus et al. regarding Learned Indexes, with
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some variations. Namely, in agreement with the main intent of our study, we
concentrate on Sorted Table Search methods that use O(1) additional space
with respect to the table size. We also include the three Learned Indexes that
have been extensively benchmarked in [17], in order to possibly derive versions
of them that use only a fraction of additional space, granting better query times
with respect to the basic Sorted Table Search procedures query times. Moreover,
since an additional intent of this study is to gain deeper insights regarding the
circumstances in which Learned versions of the Sorted Table Search procedure
and Indexes are profitable, as a function of the main memory hierarchy and in
small space, we derive our own benchmark datasets from the ones in [17].

3.1 Sorted Table Search and Classic Indexes

For this research, we use the methods and relative implementations listed and
outlined below (additional technical details, as well as more literature references,
are provided in [2]). The setting we consider is static, i.e., the sorted table is
not modified during its lifetime.

• Binary Search. In addition to a standard Binary Search method, we
use the best ones that come out of the work by Khuong and Morin [11]
and by Shutz et al. [23]. As for terminology, we follow the one in [11].
Indeed, we refer to standard Binary Search as Branchy Binary Search
(BBS, for short). Moreover, we refer to Uniform Binary Search [14] and its
homologous routines as branch-free. Those routines diffentiate themselves
from the standard one because there is no test for exit within the main loop
and the remaining test is transformed into a conditional move at compile
time (see [11] for details). We also include in this research, a branch-
free version of Binary Search (BFS, for short), the branch-free Eytzinger
layout (BFE, for short) from the study in [11], branch-free k-ary search
(K-BFS, for short) and its branchy version (K-BBS, for short). We use
k in [3, 20], although the recommendation in that study is to use k = 3.

• Interpolation Search. As a baseline of this method, introduced by
Peterson [21], we use our own textbook implementation (denoted IBS,
for short) and TIP by VanSandt et al. [24]. However, we do not report
results regarding this procedure due to its poor performance.

• Classic Indexes:B-Trees [5], in particular B+-Tree [15].

3.2 Model Classes Characterizing Model Space

With the exception of the ones operating on table layouts different than sorted
and the B-Trees, all procedures mentioned in Section 3.1 have a natural Learned
version. For each, its time and space performances depend critically on the
model used to predict the interval to search into. Here we consider four classes
of models. The first two classes consist of models that use constant space, while
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Figure 3: Examples of various Learned Indexes (see also [17]). (a) an
Atomic Model, where the box linear means that the CDF of the entire dataset
is estimated by a linear function via Regression, as exemplified in Figure 2. (b)
An example of a KO-BFS, with k = 3. The top part divides the table into
three segments and it is used to determine the model to pick at the second stage.
Each box indicates which Atomic Model is used for prediction on the relevant
portion of the table. (c) An example of an RMI with two layers and branching
factor equal to b. The top box indicates that the lower models are selected via
a linear function. As for the leaf boxes, each indicates which Atomic Model is
used for prediction on the relevant portion of the table. (d) An example of a
PGM Index. At the bottom, the table is divided into three parts. A new
table is so constructed and the process is iterated. (e) An example of an RS
Index. At the top, the buckets where elements fall, based on their three most
significant digits. At the bottom, a linear spline approximating the CDF of the
data, with suitably chosen spline points. Each bucket points to a spline point so
that, if a query element falls in a bucket (say six), the search interval is limited
by the spline points pointed to by that bucket and the one preceding it (five in
our case).

the other two consist of models that use space as a function of some model
parameters. For each of those models, the reduction factor is determined as
described in Section 2. Moreover, as already pointed out, the KO-BFS and
the SY-RMI models are new and fit quite naturally in the hierarchy that we
present.

Atomic Models: One Level and no Branching Factor

• Simple Regression[10]. We use linear, quadratic and cubic regression
models. Each can be thought of as an atomic model in the sense that it
cannot be divided into “sub-models”. Figure 3(a) provides an example. In
particular, The corresponding learned methods are prefixed by L, Q, or
C. That is, L-BFS denotes the branch-free version of branch-free Binary
Search with a linear model to restrict the search interval.

A Two-Level Hybrid Model, with Constant Branching Factor

• A Natural Generalization of K-BFS and K-BBS. This model parti-
tions the table into a fixed number of segments. For each, Atomic Models

7



are computed to approximate the CDF of the table elements in that seg-
ment. Finally, we assign to each segment the model that guarantees the
best reduction factor. We denote such a model as KO-BFS or KO-
BBS, depending on the base Binary Search routine that is being used.
An example is provided in Figure 3(b). As for the prediction, we per-
form a sequential search for the second level segment to pick and use the
corresponding model for the prediction, followed by Binary Search. The
number of segments is independent of the input and bounded by a small
constant, i.e., at most 20 in this study.

Two-Level RMIs with Parametric Branching Factor

• Heuristically Optimized RMIs. Informally, an RMI is a multi-level,
directed graph, with Atomic Models at its nodes. When searching for a
given key and starting with the first level, a prediction at each level identi-
fies the model of the next level to use for the next prediction. This process
continues until a final level model is reached. This latter is used to predict
the interval to search into. As pointed out in the benchmarking study, in
most applications, a generic RMI with two layers, a tree-like structure
and a branching factor b suffices. An example is provided in Figure 3(c).
It is to be noted that Atomic Models are RMIs. Moreover, the difference
between KO-BFS and RMIs is that the first level in the former parti-
tions the table, while that same level in the latter partitions the Universe
of the elements. Following the benchmarking study, we use two-layers
RMIs and verbatim the optimization software provided in CDFShop to
obtain up to ten versions of the generic model, for a given table. That is,
for each model, the optimization software picks an appropriate branching
factor and the type of regression to use within each part of the model,
those latter quantities being the parameters that control the precision of
the prediction as well as its space occupancy. It is also to be remarked,
as pointed out in [18], that the optimization process provides only ap-
proximations to the real optimum and it is heuristic in nature, with no
theoretic approximation performance guarantees. The problem of finding
an optimal model in polynomial time is open.

• Synoptic RMI. For a given set of tables of approximately the same size,
we use CDFShop as above to obtain a set of models (at most 10 for
each table). For the entire set of models so obtained and each model in
it, we compute the ratio (branching factor)/(model space) and we take
the median of those ratios as a measure of branching factor per unit of
model space, denoted UB. Among the RMIs returned by CDFShop,
we pick the relative majority winner, i.e., the one that provides the best
query time, averaged over a set of simulations. When one uses such a
model on tables of approximately the same size as the ones used as input
to CDFShop, we set the branching factor to be a multiple of UB, that
depends on how much space the model is expected to use relative to the
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input table size. Since this model can be intuitively considered as the one
that best summarizes the output of CDFShop in terms of query time,
for the given set of tables, we refer to it as synoptic and denote it as
SY-RMI.

CDF Approximation-Controlled Models

• PGM [9]. It is also a multi-stage model, built bottom-up and queried
top down. It uses a user-defined approximation parameter ε, that controls
the prediction error at each stage. With reference to Figure 3(d), the
table is subdivided into three pieces. A prediction in each piece can be
done via a linear model guaranteeing an error of ε. A new table is formed
by selecting the minimum values in each of the three pieces. This new
table is possibly again partitioned into pieces, in which a linear model can
make a prediction within the given error. The process is iterated until
only one linear model suffices, as in the case in the Figure. A query is
processed via a series of predictions, starting at the root of the tree. Also
in this case, for a given table, we have built models, i.e., ten, as prescribed
in the benchmarking study and with the use of the parameters, software
and methods provided there, i.e, SOSD. It is to be noted that the PGM
index, in its bi-criteria version, is able to return the best query time index,
within a given amount of space the model is supposed to use. We refer to
this version of PGM as PGM M.

• RS [13]. It is a two-stage model. It also uses a user-defined approximation
parameter ε. With reference to Figure 3(e), a spline curve approximating
the CDF of the data is built. Then, the radix table is used to identify
spline points to use to refine the search interval. Also in this case, we have
performed the training as described in the benchmarking study.

In what follows, for ease of reference, we refer to the models in the first two
classes as constant space models, while to the ones in the remaining classes as
parametric space models.

3.3 Hardware

All the experiments have been performed on a workstation equipped with an
Intel Core i7-8700 3.2GHz CPU with three levels of cache memory: (a) 64kb of
L1 cache; (b) 256kb of L2 cache; (c)12Mb of shared L3 cache. The total amount
of system memory is 32 Gbyte of DDR4. The operating system is Ubuntu LTS
20.04.

3.4 Datasets

We use the same real datasets of the benchmarking study. In particular, we
restrict attention to integers only, each represented with 64 bits unless otherwise
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specified. For the convenience of the reader, a list of those datasets, with an
outline of their content, is provided next.

• amzn: book popularity data from Amazon. Each key represents the
popularity of a particular book. We have two versions of this dataset,
one where each item is represented with 64 and another with 32 bits,
respectively.

• face: randomly sampled Facebook user IDs. Each key uniquely identifies
a user.

• osm: cell IDs from Open Street Map. Each key represents an embedded
location.

• wiki: timestamps of edits from Wikipedia. Each key represents the time
an edit was committed.

Moreover, we adapt those datasets for our research, as follows. Starting from
them, we produce sorted tables of varying sizes and that preserve the CDF of
the original dataset, so that each fits in a level of the internal memory hierarchy.
Our choice provides a wider spectrum of experimentation with respect to the
one provided in all of the Learned Indexes studies, including the benchmarking
one. Given the four level memory hierarchy, each table is referred to with the
suffix of that level, i.e. amzn-L1 refers to the L1 level cache. As for query
dataset generation, for each of the tables built as described above, we extract
uniformly and at random (with replacement) one million elements.

4 Learning the CDF of a Sorted Table and Min-
ing SODS Output for the Synoptic RMI: Out-
line of Experiments and Findings

Models need to learn the CDF function of the table to be searched into. Re-
garding this point, the full set of experiments, across tables, memory levels and
models, are reported in full in Section 4 of the main manuscript [2]. Due to
space constraints, here we limit ourselves to report only the time required to
obtain the synoptic RMI from the output of CDFShop (see Figure 4). Such a
construction is performed as described in Section 3.2. The simulation to iden-
tify the relative majority RMIs is performed on query datasets extracted as
described in the previous section, but using only 1% of the number of query
elements specified there.

A full discussion of our experiments is available in Section 4 of the main
manuscript [2]. Here we limit ourselves to report that the construction of the
SY-RMI is in line with the CDFShop training and therefore can be profitably
used as a post-processor to it. Moreover, regarding the Learning time of the RS
and PGM indexes, they can be both built in one pass, which is important for
Database applications [13]. According to the study just mentioned and results
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Figure 4: Time and UB for the identification of SY-RMIs. For each mem-
ory level, only the top layer of the various models is indicated in the abscissa,
while the ordinate indicates the number of times, in percentage, the given model
is the best in terms of query performance on a table. The branching factor per
unit of space as well as the time it took to identify the proper SY-RMI (average
time per element, over all RMIs returned by CDFShop) are reported on top
of each figure. For comparison, we also report the same time for the output of
CDFShop.

in [17], the RS is faster to build than the PGM index for tables fitting in main
memory. Our experiments show that the PGM is faster to build for tables
fitting each level of the cache. This is an important addition to the current
State of the Art.

5 Constant Space Models: Outline of Query Ex-
periments

This is the elementary scenario, in which we use nearly standard textbook code.
In particular, the models considered in this section use constant space. The
full set of experiments regarding the procedures described in Sections 3.1 and
3.2 (constant space models) have been performed on all tables considered for
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Figure 5: Query times for the amzn64 dataset on Sorted Table Search
Procedures. The methods are the ones in the legend (middle of the four panels,
the notation is as in the main text and each method has a distinct colour). For
each memory level, the abscissa reports methods are grouped by model. From
left to right, no model, linear, quadratic, cubic and KO-, with k = 15, and with
BFS and BBS as search methods. K-BFS is reported with k = 6. For each
model, the reduction factor corresponding to the table is also reported on the
abscissa. On the ordinate, it is reported the average query time, in seconds. For
memory level L4, IBS, L-IBS and Q-IBS have been excluded, since inclusion
of their query time values (3.1e-06, 2.1e-06, 1.2e-06, respectively) would make
the histograms poorly legible.

this research and reported in Section 5 of the main manuscript [2], where a
detailed discussion is also present. Among all the figures documenting our query
experiments, here we provide only one representative case, i.e., Figure 5.

The learned versions of Interpolation Search, together with the variants con-
sidered here, can profitably use constant space models to consistently obtain a
speed-up with respect to the standard counterparts, across memory levels, and
in particular with the simple models based on simple linear regression (see Sec-
tion 2). As for branch-free Uniform Binary Search [11, 14] and the corresponding
variant of k-ary Search [23], the speed-up can be achieved in constant space with
a slightly more complex model, i.e., the KO-BFS introduced here (see Section
3.2). As for classic branchy Binary Search, speed-up with constant space seems
to be problematic with simple regression models.

In summary, Learned Searching in a Sorted Set, with Interpolation Search or
Uniform Binary Search, is fully analogous to the classic approach, with benefits
in the practical performance of the former over the latter.

We also consider array layouts other than sorted, a point completely over-
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looked in the research conducted in Learned Indexes. Quite surprisingly, our
experiments show that none of the constant space models used in this research
is able to “beat” Binary Search with an Eytzinger layout [11]. This finding has
important methodological implications: it points out the need to devise Models
able to speed up Binary Search with array layouts other than sorted.

6 Parametric Space Models: Outline of Query
Experiments

This is the advanced scenario. In particular, the models considered here have a
space occupancy that depends on parameters specific to the models. Moreover,
all the experiments are supported by a highly effective software environment
such as SOSD.

The full set of experiments is described in Section 6 of the main manuscript
[2]. For the bi-criteria PGM and for SY-RMI, we have considered three space-
bound: 0.05%, 0.7%, 2%. For each percentage, this is the amount of additional
space the model can use with respect to the table size. As for the remaining
models, including the PGM, we use the output of SODS. However, we do not
consider models that use a percentage of space higher than 10% of each table
size. For the remaining models, we report the one with the best query time.
Moreover, we take as a baseline the SOSD version of BBS, which is imple-
mented via vectors rather than arrays (as in the elementary case). All models
use that version of BBS and, for consistency with the benchmarking study,
we use those “branchy” models. For completeness and as a further baseline,
we also include our own vector implementation of BFS, executed within the
SOSD software.

The full set of results are reported in Section 6 of the main manuscript [2].
For completeness, we report in Figure 6 the same representative dataset, as
for the constant space case. Query times are again averages over one million
queries. Moreover, in order to gain a synoptic quantitative evaluation of the
relationships among space, query time and prediction accuracy, Table 6 in the
Supplementary Material of [2] (omitted here for brevity) reports the average
space, query time and reduction factor computed on all experiments performed
in this study, normalized with respect to the best query time model coming out
of SOSD.

Our experiments show that both SY-RMI and the bi-criteria PGM are
able to perform better than BBS and BFS across datasets and memory levels,
with very little additional space.

That is, as far those two Binary Search Routines are concerned and within
the SOSD software environment, one can enjoy the speed of Learned Indexes
with very little of a space penalty.

Our study also provides additional useful insights into the relation time-space
in Learned Indexes.

• The Models Provided by SOSD with at Most 10% of Additional
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Figure 6: Query times for the amzn64 dataset on Learned Indexes in
Small Space. The methods are the ones in the legend (middle of the four
panels, the notation is as in the main text and each method has a distinct
color). For each memory level, the abscissa reports methods grouped by space
occupancy, as specified in the main text. When no model in a class output by
SOSD takes at most 10% of additional space, that class is absent. The ordinate
reports the average query time, with BBS and BFS executed in SOSD as
baseline (horizontal lines).

Space. Both the RS and the B-tree are not competitive with respect to
the other Learned Indexes. Those latter consistently use less space and
time, across datasets and memory levels. As for the RMIs coming out of
SOSD, they are not able to operate in small space at the L1 memory
level. On the other memory levels, they are competitive with respect to
PGM M and SY-RMI, but seem to require more space compared to
them.

• The PGM M and SY-RMI. Except for the L1 memory level, it is pos-
sible to obtain models that take space very close to a user-defined bound.
The L1 memory level is an exception since the table size is really small. As
for query time, the PGM M performs better on the L1 and L4 memory
levels, while the SY-RMI on the remaining two. This complementarity
and good control of space make those two models quite useful in practice.

• Space, Time, Accuracy of Models. The benchmarking study pro-
vides evidence that a small model with good accuracy may not provide
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the best query time. Table 6 in the Supplementary Material of [2] provides
a more detailed and somewhat more articulate picture. It reports the av-
erage space, query time and reduction factor computed on all experiments
performed in this study, normalized with respect to the best query time
model coming out of SOSD. First, it can be observed that, even in small
space, it is possible to obtain very good , if not nearly perfect, prediction.
However, prediction power is somewhat marginal to assess performance.
Indeed, across memory levels, we see a space hierarchy of model config-
urations. The most striking feature of this hierarchy is that the gain in
query time between the best model and the others is within small constant
factors, while the difference in space occupancy may be several orders of
magnitude. That is, space is the key to efficiency.

7 Conclusions and Future Directions

In this research, we have provided a systematic experimental analysis regarding
the ability of Learned Model Indexes to perform better than Binary and Inter-
polation Search in small space. Although not as simple as it seems, we show
that this is indeed possible. However, our results also indicate that there is a big
gap between the best performing methods and the others we have considered
and that operate in small space. Indeed, the query time performance of the
latter with respect to the former is bounded by small constants, while the space
usage may differ even by five orders of magnitude. This brings to light the acute
need to investigate the existence of “small space” models that should close the
time gap mentioned earlier. Another important aspect, with potential practical
impact, is to devise models that can work on layouts other than Sorted, i.e.,
Eytzinger. Finally, given that BFE within SOSD is consistently faster than
BBS for datasets fitting in main memory, an investigation of SOSD “branchy”
models (the actual ones) with respect to “branch-free” new models also deserves
to be investigated.
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