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Simple Summary: Cell–cell communication mechanisms are gathering growing scientific interest,
particularly in the context of cancer cells and the tumor microenvironment. Extracellular vesicles are
gaining increased interest due to their relevance in tumor molecular characterization, classification,
diagnosis, prognosis evaluation, and response to treatment. Many advances have been made in the
clinical and therapeutic fields, exploiting increasingly precise biomolecular engineering strategies.
This review aims to focus on the role of extracellular vesicles (EVs) as diagnostic and therapeutic
tools in lung cancer.

Abstract: Lung cancer represents the leading cause of cancer-related mortality worldwide, with
around 1.8 million deaths in 2020. For this reason, there is an enormous interest in finding early
diagnostic tools and novel therapeutic approaches, one of which is extracellular vesicles (EVs). EVs
are nanoscale membranous particles that can carry proteins, lipids, and nucleic acids (DNA and
RNA), mediating various biological processes, especially in cell–cell communication. As such, they
represent an interesting biomarker for diagnostic analysis that can be performed easily by liquid
biopsy. Moreover, their growing dataset shows promising results as drug delivery cargo. The aim of
our work is to summarize the recent advances in and possible implications of EVs for early diagnosis
and innovative therapies for lung cancer.

Keywords: lung cancer; NSCLC; SCLC; EVs; BALF; liquid biopsy; personalized medicine; organ failure

1. Introduction

Cancer is the leading cause of mortality globally [1], and a massive effort is being
focused on finding novel therapeutic approaches and standardizing methods that can
contribute to early neoplastic detection. Non-invasive techniques that do not involve
radiation analysis represent a crucial goal. Among different tumors, the principal cause of
death is lung cancer [1]. Lung cancer can be classified into two main histological subtypes:
Small-Cell Lung Carcinoma (SCLC) and Non-Small Cell Lung Carcinoma (NSCLC), with
a higher prevalence of NSCLC (about 80–85%) [2]. In the last decade, the high level of
mortality due to lung cancer has prompted the onset of many multicenter studies seeking
to improve early tumor detection by consolidated analysis (imaging by X-ray, PET, and
PET/CT) and blood tests correlation. The 2004 COSMOS study (Continuous Observation
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of Smoking Subject) (ClinicalTrials.gov ID NCT01248806) enrolled more than 5000 asymp-
tomatic smoker volunteers from the population because of their higher risk of developing
lung cancer. Subjects were followed for 5 years with blood tests, spirometry, and annual
low-dose spiral CT radiological examinations for nodules, alongside an evaluation of the
correlation between COPD and lung cancer. Furthermore, many more studies comprising
thousands of healthy patients have evaluated circulating biomarkers and radiomic analy-
ses. For example, the CLEARLY study (Circulating and Imaging Biomarkers to Improve
Lung Cancer EARLY Detection) (ClinicalTrials.gov ID NCT04323579), which started in
2018, is a multifactorial “bio-radiomic” protocol designed to detect early lung cancer in
association with circulating biomarkers and radiomic data. Prognostic radiomic profiles
for early detection have been correlated with molecular and cellular biomarkers such as
microRNAs (miRNAs), proteins, circulating tumor cells (CTCs), and extracellular vesicles
(EVs). EVs are involved in various processes, such as cell proliferation, differentiation, and
the inflammatory response.

During the last ten years, circulating EVs have gained growing attention not only as
biomarkers, but also for their ability to mediate cell–cell regulation and be manipulated
for therapeutic purposes [3]. EV components have been implicated in many biological
processes, and among them, a clear involvement in cancer invasion and metastasis has
been observed [4]. Particularly noteworthy are the modulatory effects of EVs released from
tumors and non-tumor cells such as mesenchymal stromal cells (MSCs) [5,6]. Many studies
have been carried out to evaluate the effects and compositions of different EVs in tumor
progression. The presence of regulatory messenger RNA (mRNA), which can modulate
cancer cell proliferation, has been found within EVs [7]. Additionally, EV analysis has
revealed the presence of controller proteins from neighboring cells [8], such as from the
tumoral counterpart. Released EVs shuttle molecules involved in cell adhesion, migration,
aggressiveness, and resistance to chemotherapeutic treatments [9]. The most remarkable
molecules carried by EVs are miRNAs, which modulate multiple processes (growth, dif-
ferentiation, apoptosis, migration, and drug/radioresistance) by their interaction with
non-coding RNAs (ncRNAs), such as mRNAs, long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs) [10]. Through these interactions, a single miRNA strand can
control multiple genes, inhibiting their translation. This uniqueness gives relevance both to
regulation processes and diagnosis and therapy. Engineering EVs with specific ncRNAs
represents a promising outcome of the last few years, whereas the identification of an
miRNA-specific signature from onset tumors still represents a challenging target. This
review focuses on the role of EVs in diagnosis as components of liquid biopsy and in
therapies for lung cancer, exploiting their use as theranostic agents. Despite many groups
in the past describing the relationship between EVs and lung cancer, we hope that our
work can help to suggest future diagnostic and therapeutic directions, improving their
applications in fighting lung cancer [11–13].

2. Extracellular Vesicles

Extracellular vesicles (EVs) represent a crucial functional component of intercellular
communication, acting as important mediators in both physiological and pathological
processes in different organs and pathologies [14,15]. The classification of EVs reveals a
complex landscape characterized by several factors. EVs were originally isolated from
blood cells and showed significant variability in terms of their cellular origin, molecular con-
tent, size, and therapeutic efficacy [16,17]. Their classification based on size categorizes EVs
into apoptotic bodies (1–5 µm), microvesicles (0.1–1 µm), and exosomes (30–150 nm) [18].
However, alternative classifications have been proposed, introducing considerations such
as tissue of origin (e.g., prostasomes and oncosomes) and functional parameters [19]. EV
proteins constitute a key aspect of their classification, reflecting both the cellular origin
and the contents of the originating compartments. Exosomes (Exo) are generated by the
endocytic pathway through the interaction between the endocytic vesicles and the endo-
somal sorting complex required for transport (ESCRT) system, and afterwards, they are
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released by the fusion of multivesicular bodies (MVBs) with the plasma membrane [20].
ESCRTs are involved in Exo production regulation also through the autophagy system.
Autophagy-related genes (Atg) represent key factors for Exo release and their expression
has been found to be deregulated in cancer cells, promoting proliferation and metasta-
sis [21]. The complex network between autophagy and Exo trafficking includes many
regulatory proteins and was recently revised by Zubkova and coworkers [22]. Conversely,
microvesicles (MV) and apoptotic bodies arise directly from the plasma membrane [22]. In
particular, MVs derive from membrane budding, whereas apoptotic bodies form from the
blebbing of cells that undergo apoptosis. Cancer cells promote EV release to induce cancer
development, proliferation, and metastasis. Among the EVs derived from cancer cells are
oncosomes, which differ by size and composition from other EVs (Figure 1, Table 1).
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Table 1. EV classification.

Characteristics of Extracellular Vesicles (EVs) Subtypes

EV Subtypes Origin Markers Cargo Reference

Exosomes MVBs fuse with plasma
membrane

CD63, CD81, CD9,
HSP60, HSP70,
Alix, TSG101

Genomic DNA, mRNA,
miRNA, circRNA, lncRNA,

MHC class I and II
[23–25]

Microvesicles Outward budding of plasma
membrane

Anneximìn A1, Integrins,
CD62, CD40 ligand

mRNA, miRNA, circRNA,
lncRNA, Lipids,

Adesion proteins
[26–28]

Oncosomes
Exclusively shed by cancer
cells;Outward budding of

plasma membrane

CAV-1, Keratin 18, ARF6,
GAPDH

Genomic DNA, mRNA,
miRNA, circRNA, lncRNA,

MHC calss I and II
[29–32]

Apoptotic bodies Outward blebbing from cells
in apoptosis

Caspase 3, Annexin V,
CD63, CD81

miRNA, mRNA, Fragmented
DNA, Histones [33–35]

Integral membrane proteins, specifically tetraspanins like CD9, CD63, and CD81,
stand out as important markers. Furthermore, EVs may contain membrane and cytoskeletal
proteins, lysosomal enzymes, cytokines, chemokines, antigen presentation-related proteins
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(MHC class I and II complexes), and nucleic acids such as DNA, mRNAs, and miRNAs,
all of which contribute significantly to EV classification [23,36]. The existence of DNA in
EVs demonstrated in the past decade adds an intriguing dimension to their molecular
composition. DNA in EVs, different in type (single- or double-stranded, mitochondrial)
and form (fragment or chromatin-bound), may aid in discriminating EVs based on their
cell of origin [37,38]. However, due to a lack of sufficient biomarkers and an overlap in size
range, it is difficult to discriminate between the various types of vesicles.

EVs function as messengers and can be involved in key physiological conditions
such as coagulation, pregnancy, metabolism, immunity, and apoptosis [39–43]. Under
pathological or stress conditions induced by various stimuli, EVs show dynamic responses
by altering both their quantity and molecular composition [44–48]. These altered vesicles
hold promise as prospective biomarkers for various diseases, serving as reservoirs for
potentially dangerous molecules. The pivotal role of EVs extends to their involvement
in neurodegenerative diseases [47], blood disorders [49], metabolic processes [50], and
cancer progression [51], where they act as intercellular communicators between cells and
distant organs. EVs carry functional biomolecules, such as mRNA, proteins, miRNA, and
metabolites, and can deliver them to cells across short and long distances, using the blood
as a transport medium. The growing interest in EVs as disease biomarkers is reflected in
their detectability across various body fluids.

The innate targeting capacity of EVs has shown considerable potential in cancer ther-
apy [52–54], where, to mitigate challenges such as rapid clearance, low uptake rates, and
off-target effects, researchers have explored EV engineering strategies that involve the
modification of the EV surface and internal cargos [55]. Recent studies have demonstrated
that EV surface cargos significantly influence their uptake, providing a basis for engineer-
ing strategies. The surface markers, including integrins, CD63, and tetraspanin 8 [56,57],
contribute to EV tropism and are susceptible to engineering to improve their uptake effi-
ciency [58]. EVs’ potential in cancer therapy extends to artificial targeting strategies, where
specific surface molecules are designed to bind to molecules expressed on the surface of
the desired recipient cells. This approach includes receptor–ligand interactions, enzymatic
modifications, and antigen–antibody combinations [55]. In particular, engineered EVs with
ankyrin repeat proteins expressed on the surface of the cell membrane exhibited specific
binding to HER2-positive breast cancer cells, showing the potential of the receptor–ligand
interaction strategy [59]. Antibody-mediated strategies involve engineering EV surfaces
with anti-CD3 and anti-EGFR antibodies, leading to the T-cell-mediated elimination of
EGFR-positive cancer cells [60]. Enzymatic strategies using hyaluronidase on the EV surface
aim to increase EV uptake by degrading the tumor extracellular matrix, improving perme-
ability for both tumor-specific CD8 T cells and drugs in the tumor microenvironment [61].

Upon uptake, the EV cargo modulates the activity of recipient cells [62,63], and, in this
context, EVs secreted by MSCs (MSC-EVs) are a promising therapeutic component of the
MSC secretome. Most preclinical studies involving MSC-EV therapy are based on vesicles
produced by MSCs [3,64,65]. Moreover, to potentiate the functional activity of MSC-EVs, the
strategy of priming/preconditioning their cells of origin was explored by using chemicals,
cytokines, and growth factors, as well as specific culture conditions [3,64,66–69]. For instance,
human MSC-EVs produced after stimulation with dimethyloxaloylglycine further stimulated
angiogenesis through the Akt/mTOR pathway to enhance bone healing [70]. Tumor necrosis
factor-alpha (TNF-α) was able to prime MSCs and improve the bone regenerative properties of
MSC-derived EVs, as evidenced by the increased proliferation and osteogenic differentiation of
osteoblastic cells in vitro [71]. Furthermore, several studies explored the effects of inflammatory
priming on MSC-EVs, revealing distinct EV functions compared to other priming conditions.
For instance, it was recently demonstrated that EVs derived from IFN-γ-primed MSCs have
improved immunomodulatory properties compared to the 3D culture priming of MSC-EVs,
which instead showed enhanced angiogenic properties [66]. In this scenario, the yield, size,
and surface marker composition of MSC-derived EVs exhibited substantial variations with
various priming treatments, and it is intriguing to understand how the EV content and their
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beneficial properties can be modulated. These studies will no doubt lay the foundation for
potential advancements in MSC-EV therapeutics.

3. EVs in Diagnosis

While lung cancer represents, in most cases, a very inoperable disease with a low
response to radiation therapy or chemotherapy and a low survival rate (with <17% for
NSCLC and <7% for SCLC), the most important factor contributing to an increase in
survival rate is early diagnosis and the selection of specific targeted therapeutic procedures.
The identification of tumor characteristics based on molecular markers plays a key role in
treatment effectiveness. Recently, a minimally invasive approach known as liquid biopsy
was introduced, which involves sampling a small portion of body fluids to search for
circulating tumor cells (CTCs), circulating proteins, and nucleic acids [72]. In this scenario,
EVs, and particularly Exo, contain mediators influencing tumor progression as components
of carcinogenesis that can help to identify and classify tumor onset and prevent its diffusion.

Several methods can be used to isolate EVs, such as differential ultracentrifugation,
size exclusion chromatography, gradient centrifugation, the co-precipitation method, and
microfluidic devices [73]. Yet, this represents a major challenge for EV application, since
the development of high-throughput methodologies to allow for the rapid isolation of EVs
from many samples would enhance their use in diagnosis [74].

EVs are known to participate in intercellular communication, immune responses,
metabolism, and tumor progression, as they are capable of horizontally transmitting a wide
range of biomolecules to target cells, making them important biomarkers for diagnosis,
as well as promising molecular carriers for targeted therapies. The information they
carry can influence the behavior of target cells in multiple ways. In particular, they can
act as indicators, transferring membrane proteins and receptors to target cells, or even
altering their phenotype through the horizontal transfer of genetic information. It has
been demonstrated that EVs can deliver not only proteins or lipids, but also miRNAs,
other ncRNAs, and mRNAs [75]. The analysis of EV miRNA levels in lung cancer patients
showed a significant difference compared to control samples, suggesting that circulating
EV miRNAs might represent a useful screening tool [76]. Compared to other circulating
biomarkers such as cell-free DNA (cfDNA) and CTC, EVs have the advantage of being
more abundant and more stable, given their lipid layer, which also protects the transported
cargo. These characteristics are very important in order to establish sensitive and easily
repeatable protocols for the early diagnosis of disease. Their role is central in certain
pathological phenomena; for instance, it is now widely demonstrated that a tumor cell can
release more than 20,000 of these vesicles in 48 h [77], with a role in conditioning the tumor
microenvironment (TME). The TME includes several components such as the extracellular
matrix (ECM), endothelial cells, cancer-associated fibroblasts (CAFs), and a strong immune
component such as tumor-associated macrophages (TAMs), natural killer cells (NK), and T
and B lymphocytes. Sanchez and coworkers examined the involvement of EVs and their
miRNA cargo in the TME, demonstrating how they stimulate the formation of the neointima
by activating macrophages within the TME, thus generating a niche for inflammation [78].
The analysis of EVs can represent a low-impact source for lung cancer characterization;
notably, it has been demonstrated that EVs derived from bronchoalveolar lavage fluid
(BALF) liquid biopsy can be used proficiently for epidermal growth factor receptor (EGFR)
genotyping and the evaluation of EGFR mutations [79]. This method, together with the digital
droplet PCR (ddPCR) and next-generation sequencing (NGS) techniques, can allow for the
stratification of patients for TKI treatment without invasive methods such as tissue biopsy [79].
In this way, it is possible to quantify (copies/mL) and identify, if present, variants relating to
the mutated EGFR, perhaps due to targetable resistance mechanisms involved in resistance to
cancer therapy [80]. In this regard, a prospective phase 2 study was carried out to promote EGFR
genotyping for subsequent therapeutic interventions through the analysis of EV-BALF liquid
biopsy obtained from advanced NSCLC patients [81]. The study, for the first time, established
that this platform represents a valid tool for immediate genotyping and allows for rapid results
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for therapeutic initiation in advanced NSCLC patients [81]. Moving forward, genotyping the
miRNA content in EVs has been widely investigated. A recent study evaluated, with low-
dose computed tomography (LDCT), the presence of indeterminate pulmonary nodules (IPNs)
in association with circulating EV miRNAs [82]. The NGS analysis demonstrated a specific
miRNA signature associated with the patient’s prognostic survival [82]. Similarly, another study
described an miRNA signature (hsa-miR-106b-3p, hsa-miR-125a-5p, hsa-miR-3615, and hsa-
miR-450b-5p) from plasma-circulating EVs with the identification of early-stage lung cancer [83].
An analogous result was obtained with the RT-PCR analysis of six miRNAs (miR-7, miR-21,
miR-126, Let-7a, miR-17, and miR-19) in EV-BALF. Despite the limited number of patients, the
study suggested a correlation between the expression of the analyzed miRNAs and early-stage
lung cancer [84]. High-throughput transcriptomic analyses allowed for the identification of
circular RNAs (circRNAs), resulting from the back-splicing of pre-mRNA, among numerous
RNA strands. Although first described in the early 1970s, circRNAs were, until very recently,
regarded as byproducts of splicing without any important biological function. The main function
of circRNAs is the inhibition of miRNAs. They act as miRNA sponges, establishing a complex
and precise system in the interaction with RNA-binding proteins and in the regulation of
gene expression [85]. Recently, circRNAs were found to be enriched and stable in cancer EVs,
suggesting their potential use as cancer biomarkers or therapeutic targets. It has been supposed
that EVs could represent a mechanism for the release of circRNAs [86,87].

Cancer patients show circRNA expression levels in the ratio of 2:1 vs healthy con-
trols [88]. A valid example of the role of EVs in prognosis is given by the Hongya et al.
study on circVMP1, which was found to be correlated with the progression of NSCLC and
resistance to cisplatin therapy [89].

Indeed, there is much evidence for circRNAs being involved in promoting tumor
migration, NSCLC development, resistance to therapies, and tumorigenesis, with different
pathways of molecular interaction. Through the miR377-5p/NOVA2 axis, circ_007288
promotes the development of NSCLC [90], while circ_0000376 stimulates tumorigenesis
and promotes drug resistance by positively modulating the action of KPNA4 and sponging
miR1298-5p [91].

Circ_0020123 is particularly interesting for the multiple interaction pathways in which
it is involved in lung cancer and appears to be capable of promoting cell proliferation and
migration on tumor growth in vivo, acting on the THBS2/miR590-5p axis [92] and favoring
cisplatin resistance in NSCLC cells by targeting miR-14-3p [93].

In the study conducted by Wei et al., circ_0020123 acts as a competitive endogenous
RNA (ceRNA) to interact with miR-1283, thus promoting the expression levels of PDZD8,
a cytoskeletal regulatory protein involved in tumor migration and proliferation [94], also
involved in the LARP1/miR-330-5p tumor axis mechanism with the homonymous CircRNA
(circ_PDZD8) [95] or suppressing tumor growth either if not expressed [96] or through
sponging miR-1299, regulating HMGB3 [97]. Many studies on circRNA in lung cancer
have demonstrated a repressive role in the disease. The relevance of circRNAs and their
RNA splice variants for tumor progression and therapy response has been demonstrated in
preclinical models [98]. Given the plethora of pathways in which circRNAs are involved,
the use of a specific database is fundamental to shed light on the many possible pathways,
and this is one of the objectives with which CircInteractome was born [99].

Recent studies have explored the role of circRNAs derived from the lung and carried
by EVs [100], and most of them are focused on their expression and role in lung cancer [101]
(Table 2).

In a pioneering work in this field, Zhu and coworkers identified the presence of
circHIPK3 in lung cancer released EVs [102]. This circRNA has been proposed as a novel EV-
derived biomarker for lung cancer, whose action is connected with miR-637 reduction and
acts as a tumor suppressor on cellular migration, invasion, and proliferation in NSLC [102].

Moreover, it was reported that the circRNAs contained in EVs act as novel genetic
information molecules, mediating the interactions between cancer cells and other cells of
the TME and regulating key steps in cancer progression [10,103,104]. Nowadays, the use of
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EV-circRNAs as biomarkers for cancer diagnosis and prognosis shows various limitations
for sample sizes and a lack of standardized evaluation systems, so further analysis will
support their specific application as early diagnostic markers.

On the other side, engineering strategies for EV-circRNAs could solve the limitations
due to the size of circRNAs for efficient packaging and delivery systems, overcoming
pharmacodynamics, pharmacokinetics, and safety considerations [105].

Table 2. circRNA effects on lung cancer.

CircRNA # Function Pathway Reference

Circ_0012673 Promote cell proliferation Sponge miR-22; upregulate ErbB3 [106]

Circ_0067934 Promote cell proliferation, migration, and
invasion

Modulate markers of
epithelial-to-mesenchymal transition

(EMT)
[107]

Circ_007288 Promote cell proliferation Sponge miR-377-5p/NOVA2 [90]

Circ_0000376 To induce resistance to cisplatin and
promote tumorigenesis Sponge miR-1298-5p/KPNA4 [91]

Circ_PDZD8 Promote cell proliferation Sponge miR330-5p/LARP1 [95]

Circ_0072309 To promote tumor progression and
invasion Sponge miR607/FTO [108]

Circ_ATAD1 Enhance cancer progression Sponge miR-191-5p [109]

Circ_0092887 Induce resistance to taxane Sponge miR490-5p/UBE2T [110]

Circ_0007385 Promote cell proliferation, migration,
tumourigenesis, and invasion Sponge miR-181 [111]

Circ_0013958 Promote cell proliferation and invasion
and prevent apoptosis Sponge miR-134/cyclin D1 [112]

Circ_0020123 Inhibit proliferation and invasion Sponge miR1299/HMGB3 [97]

Circ_008305 Inhibit tumor metastasis Sponge miR-429/miR-200b-3p/PTK2 [113]

Circ_CRIM1 Inhibit tumor metastasis and invasion Sponge miR-93 and miR-182; [114]

Circ_RNF13 Inhibit tumor proliferation and metastasis Sponge miR-93-5p [115]

CircSH3PXD2A Inhibit tumor chemoresistance miR-375-3p/YAP1 [116]

In addition to nucleic acid evaluation, recent progress in EV analysis has been im-
plemented by looking at the protein content by proteomic profiling. Lung cancer EVs
contain several tumor-associated proteins, such as EGFR, KRAS, inducer of extracellular
matrix metalloproteinase, claudins, and RAB family proteins. In NSCLC, other proteins
have been found such as exo markers like CD91, CD317, and EGFR. CD151, CD171, and
tetraspanin 8 represent very reliable markers for lung cancer characterization and iden-
tification. Furthermore, METTL1 and the HIST family of proteins have been found to be
overexpressed mostly in tumor samples [117]. Many studies are focusing on identifying
the protein profiles of EVs from different stages and histologies of lung cancer, which
is very important as a potential diagnostic tool [118,119]. A good example is given by
Hoshino et al., who were able to characterize the complete proteomic profile of EVs from
the plasma of 16 different cancer types and identified the proteins up- or down-regulated in
cancer-associated EVs. Notably, the study revealed that cancer-derived proteins were not
potential tumor tissue biomarkers and that approximately 50% of them arose from distant
organs. Tumor-specific proteins were detected only in plasma, supporting the systemic
nature of cancer and strengthening the potential use of EVs as liquid biopsy markers for
early cancer diagnosis [117]. It has been reported that NSCLC-EVs shuttle specific proteins
capable of inducing metastasis. Taverna et al. demonstrated that Amphiregulin, a ligand of
EGFR contained in NSCLC-EVs, could induce metastasis, activating the EGFR pathway in
pre-osteoclasts with an enhanced activity of proteolytic enzymes, leading to bone metastasis
formation [120]. NSCLC EVs show an increased expression of FAM3C, a gene encoding
for interleukin-like EMT inducer (ILEI). This results in an enhanced detection of FAM3C
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from lung tumor patients vs healthy subjects [121]. Furthermore, Du and coworkers identi-
fied that SCLC tumor-cell-derived EVs expressing PD-L1 play an important role in EVs
and immune system crosstalk, suggesting a potential use of EV PD-L1 in the design of
anticancer strategies [122]. From a prognostic point of view, the expression proteins of
the A549 cell line (NSCLC) were analyzed before and after cisplatin treatment [123] by
mass spectrometry (LC–MS/MS analysis). The results define a protein profile enriched
for cholesterol metabolism pathway activation, indicating the role of EVs in lipogenesis
activation and cell proliferation after chemotherapeutic treatment [123]. Nonetheless, a
uniform consensus on protein markers from EVs is still missing for the restricted human
sample datasets to drive interpretations of data analyses. To date, various resources have
deposited the contents of EVs, especially regarding miRNAs, which can be consulted
online: EVpedia [124,125] and Exocarta [126]. While the observation of new diagnostic
information is strongly promoted, ctDNA represents an interesting target for liquid biopsy
investigations in lung cancer detection [127]. However, the study of EVs and their protein
cargo or CTCs has not yet entered clinical practice, and their application is limited to
research studies (Table 3).

Table 3. Diagnostic application of EVs from different body fluids in lung cancer.

Disease Body Fluid Samples Source Description Reference

Lung Cancer BALF
LC-MS analysis of proteome profile.

DNMT3B protein complex as potential
therapeutic target.

[128]

Early-Stage Lung
Adenocarcinoma BALF

Quantitative analysis of miRNAs with
diagnostic value.

miR-126 and Let-7a possible diagnostic
biomarkers: higher levels in lung

adenocarcinoma than in control subjects.

[84]

Early-Stage Lung
Adenocarcinoma/Invasive Stage

Lung Adenocarcinoma
Plasma

A signature drawn up with four miRNAs
(hsa-miR-106b-3p, hsa-miR-125a-5p,

hsa-miR-3615, and hsa-miR-450b-5p) for
early diagnosis.

[83]

Advanced-Stage Lung
Adenocarcinoma BALF

Next-Generation Sequencing (NGS) of EV DNA
content to identify genetic alterations, suitable

for a clinical approach.
[129]

(Advanced) NSCLC BALF
EGFR mutation analysis on BALF EVs as

method more accurate, specific and rapid than
cfDNA evaluation.

[79]

(Advanced) NSCLC Plasma and BALF

BALF EV DNA analysis as alternative diagnostic
method in accordance with tissue biopsy and
greater efficiency for detecting the p.T790 M

mutation in the patients resistant to EGFR-TKIs.

[130]

(Advanced) NSCLC BALF
A phase 2 study on BALF EV as platform for

EGFR genotyping and rapid
therapeutic intervention.

[81]

Adenocarcinoma,
Squamous Cell Carcinoma,

NSCLC
Bronchial Washing Detection of EGFR mutation and evaluation of

its prognostic value. [131]

Early-Stage Malignant Pleural
Mesothelioma (MPM)

vs Benign Conditions and
Metastatic Adenocarcinomas

Pleural Effusions Characterization of surface marker or proteins
differentially expressed as diagnostic markers. [132]

Indeterminate Pulmonary
Nodules (IPNs) Plasma

CircEV-miR profile as a molecular model to
distinguish the benign and malignant IPNs.

miR-30c-5p, miR-30e-5p, miR-500a-3p,
miR-125a-5p, and miR-99a-5p: five miRNAs
differentially expressed and associated to an

overall survival.

[82]
Chinese Clinical Trials:

ChiCTR1800019877
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4. EVs in Lung Cancer Therapy

Until a few years ago, the most common lung cancer treatment was chemotherapy.
Recent progress in oncology has prompted the use of immune-checkpoint monoclonal
antibody blockades in association with chemotherapeutic treatment [133] or as a single
agent, depending on PD-1 IHC expression. On the other hand, next-generation sequencing
technologies allow for the identification of the most recurrent mutations in lung cancers,
providing a unique tool for evaluating oncogene addiction and the role of targeted therapy.
Some of the identified mutations include epidermal growth factor receptor (EGFR), where
mutations occur in 15% of NSCLC adenocarcinoma cases [134]. This allows for the targeting
of these tumors by specific tyrosine kinase inhibitors (TKIs) and/or monoclonal antibodies,
as recommended by current guidelines [135]. Different TKIs have been employed in several
clinical trials, which have demonstrated a positive effect on progression-free survival (PFS)
and fewer side effects compared to standard chemotherapy (platinum) [136]. Unfortunately,
many patients have shown resistance to the specific EGFR inhibitor treatment. To overcome
this problem, TKI treatment can be associated with anti-EGFR monoclonal antibodies
(cetuximab, necitumumab, and panitumumab), as supported by numerous clinical trials
reviewed by Ciardiello and colleagues [137]. Another therapeutic target identified in lung
cancers is anaplastic lymphoma kinase (ALK), whose translocation with the EML4 gene
affects 5% of NSCLC patients [138]. Specific TKI inhibitors have been identified: crizo-
tinib, second-generation ceritinib and alectinib, and the new-generation lorlatinib, recently
preferred for resistance mutations [139]. Interestingly, crizotinib has also been employed
as a treatment for NSCLC patients positive for ROS-1 chromosomal rearrangements with
clinical signs similar to ALK mutations [140,141]. Similar to NSCLC cancers, some muta-
tions have been identified in mainly SCLC patients. In particular, these alterations concern
the suppressor genes TP53 and RB1 [142]. Despite their identification, SCLC tumors do
not show targetable mutations, and recently, researchers have been focusing their atten-
tion on RB1 as a potential therapy target, as demonstrated by in vivo studies [143,144].
Innovative therapeutic approaches have been studied in the last few years, revealing that
EVs play a relevant role in physiological and pathological conditions, such as cancer and
cardiovascular and neurodegenerative diseases. Over the last ten years, EV research has
focused on their potential application as therapeutic agents. As already underlined, EVs can
carry molecules, particularly non-coding RNAs, influencing cancer growth, progression,
metastasis, or drug resistance [145]. Therefore, non-coding RNA has gained importance
as a therapeutic tool and has been employed in several clinical studies (Table 4). Among
the ncRNAs, a pivotal role is played by miRNA, which can be easily carried and delivered
by EVs or other vectors. Specifically, miR34 has been widely studied in different tumors.
Recently two different phase I multicenter trials were conducted to study by dose escala-
tion the safety, pharmacokinetics, and pharmacodynamics of an miR-34 mimic (MRX34),
administered by liposomal injection in patients with melanoma (NCT02862145) and other
selected solid tumors: primary liver cancer SCLC, NSCLC, lymphoma, melanoma, multiple
myeloma, and renal cell carcinoma (NCT01829971). The melanoma trial was withdrawn
due to high toxicity, and the other study on solid tumors showed stable disease (SD) in
6 out of 47 patients [146]. This study represented the first miRNA-based clinical trial on
cancer [147]. The capacity of miR-34 to inhibit tumor growth has been demonstrated by
various studies, and the ability of EVs to carry this miRNA and inhibit tumor growth
in a paracrine way has been assessed [148]. EVs can be considered a peculiar vector for
anti-cancer delivery systems due to their natural and advantageous properties, such as
their high biocompatibility and limited systemic toxicity. Specific nanocarrier-targeted
action can be improved by engineering and functionalizing their surface, for example, by
inducing the expression of specific proteins on the EV membrane or through the loading of
miRNA, which can be inserted exogenously on isolated EVs (electroporation, sonication,
and RNA cholesterol conjugation), or indirectly by genetic modification of the donor cells
before EV isolation (RNA transfection, RNA encoding plasmid transfection, and virus
transfection) [145]. For example, EVs isolated from mesenchymal stem cells have been
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demonstrated to transfer miRNA efficiently in different kinds of tumors. This observa-
tion has raised the possibility of engineering cells such as MSCs for miR-34 delivery to
inhibit tumor growth by EV release [149]. Notable for their ability to migrate towards
inflammation or tumoral regions, MSCs have the peculiar characteristic of being able to
be genetically modified, and when employed for this purpose, they act as living delivery
vectors [150,151]. It was observed recently that engineered bone marrow MSCs (BMSCs)
can deliver miR-193a, reducing the cisplatin resistance of NSCLCs by targeting leucine-rich
repeat-containing protein 1 (LRRC1) [152]. In the same way, BMSC-derived EVs carrying
miR-126-3p suppressed the viability, migration, and invasion of NSCLC cells by targeting
protein tyrosine phosphatase non-receptor type 9 (PTPN9) [153]. Similarly, another group
showed that engineered BMSCs with miR-598 inhibited cell proliferation, migration, and
invasion in NSCLC. They demonstrated that miR-598-loaded EVs acted in lung cells by
down-regulating Derlin-1, the zinc finger E-box-binding homeobox 2 (ZEB2), and also
Thrombospondin-2 (THBS2), in this way inhibiting growth and metastasis [154]. The same
effect was obtained with exosomal miR-338-3p through the inhibition of MAPK signaling,
reducing the cell adhesion molecule L1-like protein (CHL1) activity and the subsequent
down-regulation of NSCLC proliferation and apoptosis [155]. Engineered exosomes loaded
with miR-449a selectively inhibit the growth of homologous NSCLC [156]. Among them,
Zhou and colleagues focused their attention on miR-449-a, which affects the migration and
invasion of human NSCLC cells. They isolated exosomes from A549 cells and engineered
them (miR-449a exo) to allow for the transfer of this miRNA, thereby demonstrating its
anti-tumor activity both in in vitro and in vivo models [156]. Similarly, another group used
MDA-MB-231 breast cancer cells as a source of engineered lung-targeted exosomes with
miRNA-126, which reduced proliferation and migration through the PTEN/PI3K/AKT
pathway in A549 cells and an in vivo lung metastasis mouse model [157].

Besides their application as miRNA carriers, EVs have been used for tumor RNA
interference (RNAi) therapy through siRNA targeted against specific oncogenes. For
example, KRAS, whose mutations account for 90% of pancreatic cancers and 20–25% of
lung adenocarcinomas, represents an area of great interest for tumor-targeted gene therapy.
Recently, lipid nanoparticles carrying KRAS siRNAs reduced its expression in several lung
cancer cell lines, including human (A549 and H441) and mouse (CMT-167 and Lacun3)
cells, and proliferation was observed through colony-forming assays [158].

During the last few years, various approaches have been studied and pursued to employ
EVs as therapeutic applications or targets in lung cancer. It is well known that the EVs re-
leased by tumor cells can promote the spread and diffusion of the tumor and also counteract
the immune response by inhibiting CD-positive T cells with anti-tumor functions [159] or
favoring immune escape, attenuating cytotoxic CD8+ T cells through the expression of PD-L1,
considered as a target for monoclonal therapy in NSCLC patients [160]. Because of these char-
acteristics, EVs have been considered as target therapeutic strategies. Some pharmacological
agents act on EV trafficking or lipid membrane metabolism and are extremely important for
membrane fluidity and, as a consequence, for EV shedding/release. For example, GW4869
inhibits the membrane-neutral sphingomyelinase (nSMase) and exosome/EV biogenesis; it
has been tested in PC9 lung adenocarcinoma cells, counteracting the antagonistic effects of
gefitinib and cisplatin, which are widely used for NSCLC patient treatment [161].

Among the numerous molecular partners involved in membrane trafficking is Rab27A,
a protein expressed in numerous cell types, including A549, which could regulate EV release.
One research group demonstrated that specific shRNA against Rab27A carries a lower release
of EVs and a reduction in tumor growth in an in vitro model of human lung adenocarcinoma
cells [162].

Considering the impact of EVs on immune escape, over the years, clinical trials have
been undertaken to apply them as a cancer vaccine [163–167] The EVs released by tumor cells
proficiently trigger anti-tumor immunity; for example, in a study focused on EVs in vitro isolated
from 3LL lung tumor cells, the activation of dendritic cells and T cells after being subjected to
heat stress was induced through EV inflammatory chemokine contents [163]. Similarly, dendritic
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cells release vesicles (termed dexosomes) that have been demonstrated to prime T cells and
present antigens to T CD8+ and CD4+ cells [168,169]. These cells and their secretome are of great
scientific interest; indeed, dendritic cells were tested as autologous vaccinations in a clinical
trial involving NSCLC patients, providing interesting immunologic responses [164]. A phase
I clinical trial demonstrated the tolerance of engineering dexosomes with MAGE antigens in
NSCLC patients’ MAGE+ [167]. These dexosomes were also used in a phase II trial on NSCLC
patients, resulting in the stabilization of 32% of the recruited patients [166].

In a similar way to miRNA delivery, researchers are attempting to use EVs for
drug/chemotherapy delivery. EVs loaded with paclitaxel were administered to a metastatic
mouse model of NSCLC [170]. In particular, this research group demonstrated that exo-
somes efficiently vehicle the paclitaxel [171] and subsequently improved the formulation
of these exosomes, demonstrating that this new delivery system exerts a higher ability to
reach cancer cells with a better therapeutic effect [170]. Recently, exosomes isolated from
M1 macrophages were evaluated as a drug vehicle for cisplatin, both in in vitro (Lewis
lung cancer cells) and in vivo mouse models. The study demonstrated that the exosomes
from M1 macrophages as chemotherapy carriers improved the anti-lung cancer effect of
cisplatin and induced tumor cell death; specifically, in vitro experiments demonstrated
the involvement of apoptosis through Bax and Caspase-3 [172]. In another in vitro study
with two NSCLC cell lines (H1299 and A549), researchers used exosomes loaded with gold
nanoparticles conjugated with doxorubicin, obtaining a greater particle uptake by target
cells and drug release and more specific cytotoxicity with fewer side effects [173].

Table 4. Therapeutic in vitro and in vivo application of EVs in lung cancers.

Target/Study Models Subject Description Reference

(Advanced) NSCLC
Vaccination trial with tumor

antigen-loaded dendritic
cell-derived exosomes

Maintenance immunotherapy in 47 patients with
dexosomes to improve their PFS. NCT01159288

Solid tumors: primary liver cancer,
SCLC, lymphoma,

melanoma, multiple myeloma, renal
cell carcinoma, NSCLC

Multicenter phase I study of MRX34,
microRNA miR-RX34

liposomal injection

Phase I, open-label, multicenter, dose escalation study
to investigate the safety, pharmacokinetics, and

pharmacodynamics of the micro ribonucleic acid
(microRNA) MRX34 in patients with unresectable

primary liver cancer or advanced or metastatic cancer
with or without liver involvement or

hematologic malignancies.

NCT01829971
[147]

(Advanced) NSCLC Phase I study of dexosome
immunotherapy

Phase I study to evaluate safety and efficacy of
autologous dexosomes loaded with tumor antigens

(MAGE-A3, -A4, -A10, and MAGE-3DPO4),
administered in 4 doses. Measurement of the

immunologic responses and monitoring the clinical
outcomes in 13 patients at different stages.

[167]

H1299 and A549 (NSCLC)
Nanosomes carrying doxorubicin

anticancer activity against human lung
cancer cells

In vitro analysis of gold nanoparticles (GNPs) loaded
with doxorubicin to evaluate the release kinetics and

the cytotoxic activity.
[173]

Mice injected with B16F10 cells to
produce lung metastasis

EVs melanoma gold conjugated
nanoparticle targeting lung tumors

The study provided an application system where
exosomes isolated from cancer cells incorporated gold
nanoparticles were tested in a mouse model to improve

targeting system in metastatic foci.

[174]

In vitro: murine carcinoma cell
line‘(3LL-M27);

in vivo: mouse model with
pulmonary metastases

Paclitaxel-loaded EVs against
cancer cells

In vitro and in vivo study aims to introduce a new
formulation for Paclitaxel distribution through
exosomes (PTX-exo, fom RAW 264.7 cell line),

providing high stability in tumor environment and a
better effectiveness in vivo murine model.

[171]

In vitro: A549 and H1299 (NSCLC);
In vivo: mouse model with lung

cancer xenograft

Celastrol EVs formulation against
lung cancer

Study focused on the effect of the natural compound
celastrol loaded into exosomes, a new delivery system

improved efficacy and reduced dose toxicity.
[175]

In vitro: A549 and H1299 (NSCLC);
In vivo: nude mice with xenograft

Anthocyanidins EVs against multiple
cancer types

The study aimed to obtain a nano-formulation of the
natural derived compound, anthos, with exosomes.

Exosomes enhanced the anti-proliferative and
anti-inflammatory activity of anthos (vs the free

compound) and the therapeutic affect toward
lung cancer.

[176]

Nude mice with lung tumor xenografts Milk-derived exosomes for oral
delivery of paclitaxel

A study on chemotherapeutic paclitaxel delivery
through exosomes in a formulation for oral

administration, which exhibited greater therapeutic
efficacy and lower systemic toxicity.

[177]
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5. Conclusions and Remarks

The potential applications of EVs in therapeutic and diagnostic approaches are far
from being fully achieved. Over the last decade, the EV cancer field has experienced signifi-
cant advancements that have fundamentally changed our understanding of intercellular
communication and cancer biology.

However, a deeper knowledge of EV’s role in lung cancer is crucial in order to define
biomarkers for prognosis and diagnosis, as well as to develop new therapeutic strategies for
such deadly tumors [1]. So, to transfer this knowledge from bench to bedside, other studies
need to be conducted to clarify and confirm the potential role of EVs in lung cancer and
beyond. Tumor heterogeneity, in particular looking at EGFR mutations, is currently under
investigation to further correlate cellular modifications with therapeutic response [81].

Their utility as delivery vehicles for various drugs, proteins, and nucleic acids has
been evaluated by many laboratories. Their lipid composition contributes to their stability
in body fluids and provides, at the same time, valid support for their cellular delivery by
cell membrane fusion [178]. Moreover, the immunological properties of MSC offer a unique
tool for EV secretion, combining their specific transfer ability aptitude (drugs, nucleic acids,
and proteins) with immunomodulatory pharmacological effects [179] or new therapeutic
approaches in numerous diseases, including lung cancer (Table 4). Despite MSCs’ natural
tropism against tumors, which can represent a valid site-specific EV throughput tool,
dendritic cell-derived exosomes can support the targeted tumor delivery of EVs and
represent a promising example of vaccination due to their immunostimulatory capability
(NCT01159288). On the other hand, from a diagnostic point of view and given the important
role for cancer biology, the use of circulating EVs has gained a growing interest primarily
for their availability. Conversely, one of the main challenges is represented from EVs’ origin,
because their release is not exclusively related to the disease but can arise from any tissue.
A wider analysis of EVs’ composition can support fast stratification and early detection.
In this regard, a substantial analysis of EV circRNA signatures can identify lung-cancer-
regulated miRNA [100,102]. Furthermore, a proteomic analysis of EV content offers the
opportunity to acquire more information about EV biology and identify new biomarkers,
contributing to early diagnosis and the design of valid treatments [180] (Figure 2). There
are many difficulties and limitations, but the multi-omics approach has a very bright future
and will undoubtedly provide much more information on these nano-sized biological
entities. Despite numerous studies on experimental models and various pathologies, there
are still many points that can be improved, for example, identifying cellular sources safe
for immunogenicity and sources that can guarantee significant quantities, as well as trying
to introduce standardized procedures to improve the workflow throughput. We hope that
groundbreaking tests on the diagnostic and prognostic meaning of EV evaluation can draw
new routine procedures for dissecting tumor heterogeneity and narrowing therapeutic
intervention protocols.

Last, but not least, scientists must investigate EVs’ structure deeply to maximize their
engineering and applications as carrier systems (Figure 2). Another area to be further ex-
plored is related to their turnover. Studies have already focused on their release inhibition,
and, considering the importance of the uptake step, it could be interesting to try to selec-
tively reduce uptake mechanisms, although the pathways involved are numerous [181,182].
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Figure 2. EVs in lung cancer diagnosis and therapy. EVs are important players in intercellular com-
munication, released through the endosomal pathway by the plasma membrane as exosomes (30–
150 nm), microvesicles (0.1–1 μm), and apoptotic bodies (1–5 µm). Tumor-derived EVs are good 
candidates for liquid biopsy since they contain many components such as tumor-derived DNA, 
mRNA, miRNAs, and proteins. Their analysis from plasma or body fluids (BALF) offers significant 
information about tumor diagnosis through biomarkers crucial for early detection or prognosis and 
treatment response. The potential application of EV in therapy comprises their application in tar-
geted therapy through the delivery of specific miRNAs, drug delivery of chemotherapy agents, or 
their employment as anti-cancer vaccines. 
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employment as anti-cancer vaccines.
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