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A B S T R A C T

The development of technologies for reliable tracking of pedestrian trajectories in public spaces
has recently enabled collecting large data sets and real-time information about the usage of
urban space and indoor facilities by human crowds. Such an information, nevertheless, may be
properly used only with the aid of theoretical and computational tools to assess the state of
the crowd. As shown in this work, traditional assessment metrics such as density and flow may
provide only a partial information, since it is also important to understand how ‘‘regular’’ these
flows are, as spatially uniform flows are arguably less problematic than strongly fluctuating
ones.

Recently, the Congestion Level (𝐶𝐿), based on the computation of spatial variation of the
rotor of the crowd velocity field, has been proposed as an assessment metric to evaluate the state
of the crowd. Nevertheless, the 𝐶𝐿 definition was lacking sound theoretical foundations and,
more importantly, was of very difficult interpretation (it was difficult to understand ‘‘what’’
𝐶𝐿 was measuring). As we believe that such theoretical shortcomings were limiting also its
relevance to applied studies, in this work we clarify some aspects concerning the 𝐶𝐿 definition,
and we show that such an assessment metric may be improved by defining a dimensionless
Congestion Number (𝐶𝑁).

As a first application of the newly defined 𝐶𝑁 indicator we first focus on the cross-flow
scenario and, by using discrete and continuous toy models, idealised ‘‘limit scenarios’’, more
realistic simulations and finally data from experiments with human participants, we show that
𝐶𝑁 ≪ 1 corresponds to a crowd with a regular and safe motion (even in high density and high
flow settings), while 𝐶𝑁 ≈ 1 indicates the emergence of a congested and possibly dangerous
condition. We finally use the 𝐶𝑁 indicator to analyse and discuss different settings such as
bottlenecks, uni-, bi- and multi-directional flows, and real-world data concerning the movement
of pedestrians in the world’s busiest railway station.

1. Introduction

During the last few centuries, world population has experienced an exponential increase and the steady transition towards urban
centres has contributed in further concentrating human population in few densely inhabited areas of the globe. As a consequence,
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planning and management of human flows within and between urban centres became an increasingly important aspect to ensure
both safety and comfort of cities’ inhabitants.

While the study of crowds and their dynamics is not a new topic (for example, the Colosseum of the Roman Empire was
upposedly built to also take into account crowd motion during evacuations (Elliott and Smith, 1993; Vendelø, 2019)), the approach
aken in regard to pedestrian traffic has been greatly influenced by available knowledge and technologies. In the 19th century,
edestrian facilities, such as train stations or stadia were mostly built based on previous experience on pedestrian traffic and
utting focus on structural stability, functionality or appearance. During the 20th century, accidents occurring due to poor crowd
anagement or related to the failure in considering occupants as an integral part during the design process led to the necessity to

reate clear standards in relation to pedestrian traffic (Elliott and Smith, 1993; Rogsch et al., 2010; Illiyas et al., 2013).
In the second half of the 20th century, with the appearance of numerical computing, building structural calculations were greatly

implified by the availability of architectural software. Nowadays, it is also possible to simulate smoke spread in case of fire and
redict people movements using commercial software (Munirajulu, 2018; Lovreglio et al., 2019), thus allowing to verify whether a
tructure will be able to ensure safety standards in case of evacuation. At the same time, the appearance of video cameras allowed
o collect recordings of pedestrian flows to be later analysed in detail (Weidmann, 1993; Cheung and Lam, 1998; Lam and Cheung,
000). This increased amount of data allowed to define better and more accurate standards, and quantities such as the Level of
ervice (LOS) (Fruin, 1971) started to emerge as potential indicators in regard to the quality of public spaces from the point of view
f its pedestrian users.

As a consequence of the knowledge gained from past accidents and the norms implemented to avoid their re-occurrence, crowd
ccidents are now rare in facilities specifically designed to accommodate large crowds, yet they still occur (e.g. the Love Parade
ccident or the several tragedies which occurred during Hajj). This shows that constant monitoring during mass events is necessary to
ill planning gaps or to deal with unexpected/unpredicted conditions. However, simply employing a large number of cameras makes
t difficult to have an overall view on the situation and, therefore, developing indicators helping security personnel to identify risky
ocations should be an important goal of crowd research. In 2015, 27 pilgrims were killed in a dense crowd during a religious event
n India, despite the fact that 15’000 policemen and 171 cameras were reportedly used to monitor the event (Ravishankar et al.,
015). This also shows the challenges posed by events held over a short time in temporary facilities, where simulation conditions
re difficult to be set up and the possibility of structural modifications is limited or absent (Illiyas et al., 2013; Wikipedia, 2020).

Over the last few decades, technology has made big progresses and it is now possible to detect and track pedestrian positions
n real-time (Masoud and Papanikolopoulos, 2001; Szarvas et al., 2006; Zanlungo et al., 2015; Corbetta et al., 2018) (although
or dense crowds this is still a challenging task) and also to gain additional information such as height (Brščić et al., 2013), body
emperature (Lin et al., 2019), gender (Cai et al., 2018), the presence of a luggage (Atienza-Vanacloig et al., 2008), groups and their
ocial relation (Yücel et al., 2013, 2019). Such sensors and algorithms provide information on crowd features which are known
o affect the microscopic pedestrian behaviour, although their influence on macroscopic crowd dynamics is still not completely
nderstood (Brščić et al., 2014; Zanlungo et al., 2017, 2019b)

Under this perspective, the collection of data to define new norms to be used for pedestrian traffic is slowly playing an
ncreasingly less important role within crowd management studies (Haghani, 2020a,b). The decreasing number of accidents in
ertified and well-managed facilities show that existing norms are possibly already satisfactory. On the other hand, the availability
f real-time data on crowd motion has posed new challenges in regard to the assessment of crowd dynamics in real-time, with
efinitions like the LOS becoming inadequate for a real-time flexible use (remember that LOS is defined for specific structures and
t may not always be easy to find a match in complex facilities).

The increased amount of data is also changing the approach on crowd management. Although, until recently, a continuous check
f multiple surveillance cameras by security staff was the only means to evaluate crowd motion, as already mentioned, now tracking
echnologies also allow to extract pedestrian position, with additional technologies (GPS, Bluetooth scanners, inertial sensors, etc.)
roviding complementary information (Van der Spek et al., 2009; Schauer et al., 2014; Boltes, 2015; Feliciani and Nishinari, 2018a).
ow to use such information to quantitatively measure properties related to crowd dynamics is now of utmost importance, since a

uccessful evaluation of crowd conditions would allow a real-time assessment, thus potentially preventing accidents also in case of
npredicted behaviours.

Despite the importance attributed to the numerical assessment of crowd conditions, little research has been addressed on this
opic. Speed and density are still the most broadly employed quantities to estimate the state of the crowd and although they are
ufficient and adequate in most of the cases, they also have limitations given by the fact that they are simple adaptations of physical
rinciples to crowd motion, thus not taking into account the human peculiarities of pedestrian dynamics. Several studies have tried
o provide a quantitative estimator for the state of the crowd, but in most of the cases the measures introduced were intended to
escribe a particular aspect related to a specific experimental configuration (like the order parameter (Nowak and Schadschneider,
012) or the band index (Yamori, 1998)) and only few were aiming towards a universal application to real pedestrian environments.

Among the quantities introduced to describe crowd motion, two types can be distinguished: physical approach and data-driven
pproach. Physical approaches are based on physical laws, which are adapted to take into account peculiarities of human motion
such as the ‘‘crowd turbulence’’ (Helbing et al., 2007) or the ‘‘velocity entropy’’ (Huang et al., 2015)), while data-driven approaches
mploy machine learning algorithms to assess videos or data set based on training data. In this work, we focus on the former
pproach as it allows to gain knowledge on pedestrian motion, it is computationally more efficient and more suited for a general
uantification of crowd motion. We nonetheless recognise the importance and relevance of machine learning approaches to detect
or example violence (Nievas et al., 2011; Hassner et al., 2012) or specific features of human behaviour (Kratz and Nishino, 2009;
2

ok et al., 2016).
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In an attempt to define a universal indicator for the ‘‘smoothness’’ of crowd motion1 solely based on the velocity vector field
which can be easily obtained for crowds of different densities with little computational cost), the so-called congestion level (𝐶𝐿)
as introduced by Feliciani and Nishinari (2018b). However, despite having proved being a useful and valid method to evaluate
ifferent types of pedestrian motions Feliciani et al. (2018), Fujita et al. (2019), Feliciani and Nishinari (2020), Feliciani et al.
2020b), Ye et al. (2020, 2021) and Hosseini et al. (2021), the original formulation lacked in theoretical integrity, mostly with
espect to three important issues:

• The 𝐶𝐿, which is defined as the ratio of the difference between the maximum and minimum value of the velocity rotor
magnitude in a given ‘‘region of interest’’ to the average speed in the same region (see Eq. (1) for a formal definition), takes
the unit of m−1. Universal quantities used in physics are however typically dimensionless (consider for example the Reynolds
or the Mach number), thus hindering the physical validity of the 𝐶𝐿 in its original definition. Furthermore, as we discuss
below, the 𝐶𝐿 has an explicit dependence on the choice of a computational parameter, namely the size of the grid used for
the computation of the velocity field.

• In the original work (Feliciani and Nishinari, 2018b), it is argued that a crowd moving in normal conditions (i.e., not in a
state of fear or emergency, such as when trying to escape a fire) would never exceed a 𝐶𝐿 of 15 m−1. Although this value was
obtained by extrapolation from experimental data, it remains a hypothesis and it would be difficult to demonstrate the existence
of a limit experimentally due to safety and ethical limitations. As such, a general, universal and preferentially theoretical
argument is required to demonstrate such a limit and quantify it numerically.

• Since the 𝐶𝐿 was originally conceived to be used on discrete experimental data, a continuous definition has not been provided.
Although a continuous definition is not strictly necessary, its existence would allow to better investigate the properties and
the limitations of the 𝐶𝐿 without the need of experimental data.

In this work, we attempt to solve the issues discussed above and present a pure (dimensionless) number, which we define as
‘‘congestion number’’ (𝐶𝑁), based on accepted physical and mathematical principles, while taking into account the properties of
humans and their collective dynamics inside a crowd. We normalise 𝐶𝑁 in such a way that, in normal conditions, it takes positive
values smaller than 1; the value 1 being approached or exceeded only in emergencies or extraordinary events.

To better study the properties of the newly defined 𝐶𝑁 , we first focus on a cross-flow scenario, which we believe, for the
reasons explained in Appendix A, to be the most appropriate to study the features of the proposed indicator. To this purpose, we
first use numerical simulations to investigate, on one hand, conditions in which the pedestrian flows are basically non-interacting
and thus for which we expect very low 𝐶𝑁 values (as the flow is by definition ‘‘non-disrupted’’) and, on the other hand, conditions
in which the flows are critically disrupted and thus we expect 𝐶𝑁 ≈ 1. Simulations are necessary to attain this goal, since in order
to have high density but not interacting flows we need to introduce artificial pedestrian motion rules; furthermore, simulations are
also necessary to create extremely disrupted conditions without affecting the safety of human subjects. We also analyse a controlled
cross-flow experiment with human participants under challenging but safe conditions, for which we expect intermediate 𝐶𝑁 values.

After the main properties of the 𝐶𝑁 indicator have been analysed on the cross-flow scenarios, we briefly show how it can be
pplied to various settings, such as bottlenecks, uni-, bi- and multi-directional flows, and real-world data concerning the movement
f pedestrians in a large scale railway station. A final example, focusing on a bi-directional flow over a loop, is used to highlight
he ability of the 𝐶𝑁 indicator to differentiate ‘‘regular’’ (self-organised) crowd movements from less organised ones even when
ensity and velocity patterns are very similar.

.1. Outline of this article

In Section 2 we review the original definition of 𝐶𝐿, while in Section 3 we define our new indicator, 𝐶𝑁 . Section 4 focuses on
the numerical study of the cross-flow scenario, while in Section 5 we analyse the controlled cross-flow experiment. In Section 6 we
use the 𝐶𝑁 crowd indicator to analyse a variety of experimental and real-world settings.

Finally, the Appendices focus on subjects such as the reason to analyse mainly the cross-flow scenario A, the reason to use the
erm ‘‘congestion’’ in the name of the indicator B, the choice of computational parameters C, and finally a discussion of discrete
nd continuous toy models of high 𝐶𝑁 settings D.

. Definition of congestion level and related issues

.1. Definition

Let us first recall the definition of Congestion Level: assuming a field of pedestrian (crowd) velocity 𝐯 is given, we may define
on a point 𝐱 = (𝑥, 𝑦) of planar space

𝐶𝐿(𝐱) =
max𝑅(𝐱)(∇ × 𝐯)𝑧(𝐱) − min𝑅(𝐱)(∇ × 𝐯)𝑧(𝐱)

⟨𝑣⟩𝑅(𝐱)
. (1)

1 By smoothness here we roughly mean the ability of pedestrians to follow their preferred path without strong local deviations from it; since such individual
3

aths are unknown, we try to recover this information from an analysis of the velocity vector field at the crowd level.
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In this equation, 𝑣 stands for the magnitude of the velocity field, extrema and averages are computed over a Region Of Interest
(ROI) centred around 𝐱, and denoted as 𝑅(𝐱), while (∇× 𝐯)𝑧 denotes the 𝑧 component of the rotor of the velocity field (i.e., the only
non-zero component). We remind the readers that the numerator is defined as ‘‘Rotation Range’’, while ‘‘Crowd Danger’’ is defined
as the product of 𝐶𝐿 and crowd density (Feliciani and Nishinari, 2018b), although we do not consider these important assessment
metrics in this work.

Obviously, defining a velocity field for a crowd is not a trivial issue, as it involves problems related to the characteristic scales of
crowd dynamics. Indeed, any ‘‘fluid dynamics’’ approach to crowd dynamics involves nontrivial problems, since often the interesting
scale of the problem (e.g., corridor width) is very similar to that of the basic component of the crowd (humans), and in general the
conditions usually required for using a continuous physics approach (Lautrup, 2011) are not satisfied. Although these problems are
extremely relevant to the following discussion, for technical details such as choosing the correct time and space smoothing tools to
define the velocity field from tracking trajectories, we refer the reader to the original work (Feliciani and Nishinari, 2018b).

2.2. Issues

In this work, we are interested in two possible problems with this definition, and namely:

1. 𝐶𝐿 is not a pure number, and for this reason it does not have an easy to interpret scale (its dimension is [𝐿]−1, i.e. the inverse
of a length),

2. The definition mixes local (differential) quantities such as the rotor with global ones (extrema, averages), which, along with
the original problems in definition of a velocity field (or, equivalently, of a density field), makes again its interpretation
difficult.

Concerning the physical dimension aspect, it should be noticed that, being the ratio between the variation of the velocity rotor
and the average velocity, 𝐶𝐿 is left unchanged by a re-scaling of the velocity field. As a result, changing the time units does not
change the 𝐶𝐿 value (since both the numerator and denominator are scaled by the same factor, or, in an equivalent way, since
𝐶𝐿 has no dimensional dependence on time). This also means that a high velocity field and a low velocity field have the same 𝐶𝐿
value, if they are just obtained through a constant (over space) scaling. This may seem counter-intuitive, but it is actually a nice
property of the 𝐶𝐿 concept, as we discuss in our analysis of simulated data in Section 4. This does not, obviously, imply that crowd
velocity is not relevant to crowd risk. It has to be expected that relatively simple measures may not fully take in consideration every
aspect of crowd risk, and 𝐶𝐿 should be always used along other measures that may take velocity in consideration.

On the other hand, 𝐶𝐿 changes if we change the spatial units, or, in an analogous way, if the spatial properties of the field are
scaled. As the original definition introduces a spatial scale, i.e. the grid size 𝑅, the dimensionless product 𝑅 ⋅𝐶𝐿 should be expected
to be related to a meaningful definition of a crowd assessment metric. Let us see how to formalise this idea.

3. Definition of a congestion number

3.1. Relation to the rotor gradient (differential congestion)

As stated above, Feliciani and Nishinari (2018b) provide a detailed discussion on the scales at which the grid for the velocity
field and the ROI should be computed to obtain results that are significant and useful from a crowd management point of view (for
a further discussion, see Appendix C). It seems reasonable that the ROI should be large enough to be able to assess the change in
the 𝑧 component of the rotor, but not too large, as this would lead to an underestimate of the rate of change. Namely, assuming 𝐿
to be the linear scale of the ROI, we may use a linear approximation

max
𝑅(𝐱)

(∇ × 𝐯)𝑧(𝐱) − min
𝑅(𝐱)

(∇ × 𝐯)𝑧(𝐱) ≈ 𝐿‖∇[(∇ × 𝐯)𝑧(𝐱)]‖. (2)

We may now see that the 𝐶𝐿 numerator is proportional, according to the proposed approximation and interpretation, to the
magnitude of a differential operator applied on the velocity field, namely the gradient of the only non-zero component of the
rotor of the velocity field. We may call the latter Differential Congestion (𝐷𝐶), namely

𝐷𝐶(𝐱) = ‖∇[(∇ × 𝐯)𝑧(𝐱)]‖. (3)

3.2. Congestion number as a ratio with an extreme differential congestion

We still need to explain the remaining terms. The proposed explanation is that congestion is indeed related to 𝐷𝐶, but the
remaining terms arise by taking a ratio between the measured 𝐷𝐶 and a reference value, that we may call Extreme Differential
Congestion, or 𝐸𝐷𝐶. Such a ratio is obviously a pure number, which we may call Congestion Number (𝐶𝑁)

𝐶𝑁(𝐱) = 𝐷𝐶(𝐱)
𝐸𝐷𝐶(𝐱)

. (4)

In the following, we are going to define 𝐸𝐷𝐶 (which still depends on 𝐱, as it is related to the local magnitude of the velocity) and
derive the relation between 𝐶𝐿 and 𝐶𝑁 .
4
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3.3. Definition of extreme differential congestion

To introduce a ‘‘maximally rotating field’’, let us first recall the usual ‘‘elementary’’ definition of Stokes’ theorem in classical
ector analysis2

∫𝑆
(∇ × 𝐯) ⋅ 𝐝𝐧 = ∫𝐶

𝐯 ⋅ 𝐝𝐥, (5)

where the 1-D path 𝐶 is the boundary of the 2-D region 𝑆. For a circular path of radius 𝑅, denoted as 𝐶𝑅, over which the magnitude
of the velocity field is fixed to a constant value, 𝑣𝑅, the maximum value for the integrals defined above is given by a field exactly
directed along the tangent to the path

𝐯(𝑅,𝜑) = 𝑣𝑅𝐞𝜑, (6)

where 𝐞𝜑 is the angular versor whose Cartesian components are (− sin𝜑, cos𝜑) or (−𝑦∕𝑟, 𝑥∕𝑟). For this field, we have

∫𝐷𝑅

(∇ × 𝐯) ⋅ 𝐝𝐧 = ∫𝐶𝑅

𝐯 ⋅ 𝐝𝐥 = 2𝜋𝑣𝑅𝑅, (7)

regardless of the value attained inside the disc 𝐷𝑅. Obviously, the reversed field −𝑣𝑅𝐞𝜑 assumes the minimum value −2𝜋𝑣𝑅𝑅.
We may choose the values assumed inside 𝐷𝑅 by requiring the field to go continuously and linearly to 0 towards the centre

𝐯(𝑟, 𝜑) = 𝑣𝑅
𝑟
𝑅
𝐞𝜑. (8)

For this field, the non-zero component of the rotor is given by the cylindrical coordinate formula

(∇ × 𝐯)𝑧 =
1
𝑟
𝜕𝑟

(

𝑟𝑣𝑅
𝑟
𝑅

)

=
2𝑣𝑅
𝑅

, (9)

or, equivalently, by

𝜕𝑥𝑣𝑦 − 𝜕𝑦𝑣𝑥 = (𝜕𝑥𝑥 − 𝜕𝑦(−𝑦))𝑣𝑅∕𝑅 = 2𝑣𝑅∕𝑅. (10)

The original formula for 𝐶𝐿 includes the average value of 𝑣 over the ROI, and for this reason it may be useful to compute the
verage value of 𝑣 over 𝐷𝑅, which is

⟨𝑣⟩𝐷𝑅
=

∫𝐷𝑅
𝑣

𝜋𝑅2
=

∫𝐷𝑅
𝑣𝑅

𝑟
𝑅

𝜋𝑅2
=

∫ 2𝜋
0 d𝜑 ∫ 𝑅

0 𝑟𝑣𝑅
𝑟
𝑅 d𝑟

𝜋𝑅2
=

2𝜋 𝑣𝑅
𝑅 ∫ 𝑅

0 𝑟2 d𝑟

𝜋𝑅2
=

2𝑣𝑅
𝑅3

𝑅3

3
= 2

3
𝑣𝑅, (11)

or

𝑣𝑅 = 3
2
⟨𝑣⟩𝐷𝑅

. (12)

Substituting in Eq. (9) we obtain

(∇ × 𝐯)𝑧 =
2𝑣𝑅
𝑅

=
3⟨𝑣⟩𝐷𝑅

𝑅
. (13)

These considerations on vector analysis are obviously independent of pedestrian dynamics. Let us now assume that the maximum
alue for the rotor in a pedestrian velocity field is given when a maximally rotating field, as defined above, occurs on a scale
omparable to the pedestrian body size, 𝑅 ≈ 0.2 m, which is incidentally the value chosen by Feliciani and Nishinari (2018b) for

the size of the cell grid.3
We now define the 𝐸𝐷𝐶 as a gradient corresponding to a change from two different but opposite maximally rotating fields

ocated at a distance 𝐿, which corresponds to the linear size of the ROI. Namely,

𝐸𝐷𝐶 =

3⟨𝑣⟩𝐷𝑅
𝑅 − (−

3⟨𝑣⟩𝐷𝑅
𝑅 )

𝐿
=

6⟨𝑣⟩𝐷𝑅

𝑅𝐿
. (14)

We will again consider later the relation between this ‘‘approximated macroscopic gradient’’ and the actual local gradient defined
on a continuous field, see in particular Appendix D.

Furthermore, we are going to assume that the average of the magnitude of vector field on the ROI is equivalent to that of the
average over the maximally rotating area, which leads to

𝐸𝐷𝐶(𝐱) ≈
6⟨𝑣⟩𝑅(𝐱)
𝑅𝐿

. (15)

Again, we discuss this approximation in Appendix D.

2 This result is a special case of the more general differential geometry theorem due to Cartan, see for example (Frankel, 2011).
3 Readers may notice that for defining the maximally rotating vector field we used a continuous field defined obviously at a scale much smaller than 𝑅; we

will come back on this issue in Appendix D.
5
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3.4. Operational definition of 𝐶𝑁

Recalling our definition of 𝐶𝑁 , Eq. (4), and the approximation Eq. (2), we have

𝐶𝑁(𝐱) ≈
(max𝑅(𝐱)(∇ × 𝐯)𝑧(𝐱) − min𝑅(𝐱)(∇ × 𝐯)𝑧(𝐱))𝑅𝐿

6⟨𝑣⟩𝑅(𝐱)𝐿
, (16)

or

𝐶𝑁(𝐱) ≈ 𝐶𝐿(𝐱)𝑅
6
, (17)

which may be also considered as the operational definition of 𝐶𝑁 . Eq. (17) thus implies that the operational definition of 𝐶𝑁
simply boils down to an 𝑅-dependent linear scaling of 𝐶𝐿.

According to this derivation, in the experiments reported by Feliciani and Nishinari (2018b), maximum registered values of 𝐶𝑁
would be around 0.5. It looks clear that values of 𝐶𝑁 ≪ 1 should correspond to non-congested crowds, while as 𝐶𝑁 gets comparable
to 1, the crowd should be extremely congested. Nevertheless, it should be noticed, as we discuss in detail in Appendix D, that values
of 𝐶𝑁 > 1 are attainable, since it is possible to define fields for which the 𝐷𝐶 is larger than the proposed 𝐸𝐷𝐶. Anyway, as the
maximum possible 𝐷𝐶 depends on the discretisation and numerical scheme, and corresponds to highly artificial settings, we do not
try to define 𝐶𝑁 in such a way that 0 ≤ 𝐶𝑁 ≤ 1 always holds.

For a better clarification of the meaning of these definitions through explicit (discrete and continuous) models, along with a
discussion of numerical computation details, the reader is referred to Appendix D. The appendix provides also a justification for the
choice of the ROI size used in this work and by Feliciani and Nishinari (2018b) and Feliciani and Nishinari (2020).

4. Simulations

Let us now study some interesting properties of this assessment metric when applied to a crowd system. As a first step, we want
to test the 𝐶𝑁 indicator under some extreme conditions which may be better attained by using simulations. Here we decided to
compute 𝐶𝑁 in each cell, including those that do not present non-zero velocity and/or do not have a defined rotor field; obviously
such cells have a non-zero 𝐶𝑁 only if in their ROI there is a non-zero rotor cell. The ROI was chosen as a Euclidean 𝐷7∕2𝑅, refer
to Appendix D for details. All the computations reported in this work have been obtained using the code accessible at Zanlungo
(2020).

The studied problem is the intersection of two corridors (width of 3 m), each one with a high density/high flux uni-directional
flow in it. We use three approaches for ‘‘simulating’’ this system

• ‘‘Centralised marching rule’’: the velocity and position of the pedestrians are decided in advance in a centralised way, such
that even at a density as high as 9 pedestrians per squared metre the pedestrians do not need to slow down (an example for
such a marching line-up is given in Rokko High School (2017)). Two uni-directional flow densities are proposed: ≈ 2 and ≈
4.5 (Fig. 1) ped/m2, while the walking velocity is fixed to 1 m/s, using respectively 408 and 816 pedestrians.4 A similar rule,
‘‘stripe formation’’, may also be used by self-organising agents (Zanlungo, 2007), but in realistic settings the resulting patterns
would be unstable and emerge as the result of continuous interaction between the pedestrians. On the other hand, when the
relative positions and velocities are fixed in advance, there is no actual interaction and by definition no disruption; we thus
expect to attain low 𝐶𝑁 values despite the high density flow. We refer to this simulation setting as ‘‘Marching’’.

• ‘‘Non-interacting particles drifted random walk’’: each pedestrian has a different velocity (from a Gaussian distribution centred
on 1 m/s with 𝜎 = 0.1 m∕s) and performs a ‘‘drifted random walk’’ towards its goal. Nevertheless, physical dynamics is
performed in the zero body size limit (collisions happen only with the walls) and pedestrians do not perform collision
avoidance. Two uni-directional flow densities are proposed: 2 and 4 (Fig. 2) ped/m2, using respectively 408 and 816
pedestrians. Also in this simulation setting there is, by definition, no interaction and we thus expect a low 𝐶𝑁 . We introduce
it to verify whether we can have low 𝐶𝑁 also in presence of random noise. We refer to this simulation setting as ‘‘zero body
size’’.

• ‘‘Finite body size’’: simulated pedestrians have rigid bodies with a fairly realistic size and shape (ellipses with axis 𝑎 = 0.45
m and 𝑏 = 0.2 m) and perform collision avoidance according to the model described by Zanlungo et al. (2019a). Two uni-
directional flow densities are proposed: 1 (Fig. 3) and 2 (Fig. 4) ped/m2, using respectively 128 and 256 pedestrians. The
initial density conditions for ‘‘finite body size’’ pedestrians are thus lower than those used for ‘‘marching’’ and ‘‘zero body
size’’ ones, but since the ‘‘finite body size’’ case involves an actual congestion problem, density values similar to those of the
‘‘marching’’ and ‘‘zero body size’’ settings are assumed in the crossing area. Velocities are drawn from a Gaussian distribution
with mean 1 m/s and 𝜎 = 0.1 m∕s.
In this setting pedestrians perform some level of collision avoidance, nevertheless their behaviour should not be considered as
particularly realistic since the model parameters had not been calibrated on actual pedestrian dynamics, and the purpose of
the ‘‘finite body size’’ simulation is not to reproduce realistic human behaviour (realistic human behaviour is studied in Section 5
by analysing directly human pedestrian data without relying on simulations). On the other hand, this simulation approach is

5

6

used to artificially create an extremely ‘‘congested’’ crowd setting, and study the properties of 𝐶𝑁 in such a condition.



Transportation Research Part C 148 (2023) 104041F. Zanlungo et al.
Fig. 1. Snapshots (time increasing from left to right) for ‘‘marching’’ pedestrians, uni-directional flows with 4.5 ped/m2 initial density.

Fig. 2. Snapshots (time increasing from left to right) for ‘‘zero body size’’ pedestrians, uni-directional flows with 4 ped/m2 initial density.

Fig. 3. Snapshots (time increasing from left to right) for ‘‘finite body size’’ pedestrians, uni-directional flows with 1 ped/m2 initial density.

Fig. 4. Snapshots (time increasing from left to right) for ‘‘finite body size’’ pedestrians, uni-directional flows with 2 ped/m2 initial density.

𝐶𝑁 is a local indicator (i.e., defined at a given time and point in space), nevertheless crowd phenomena develop over a finite
area and time interval. To better assess the relation between the 𝐶𝑁 indicator and crowd dynamics, we are going to study the time
dependence of the following variables:

1. ⟨𝜌⟩(𝑡), the (spatial) average pedestrian density in the crossing area, computed as a function of time. We consider this
𝐶𝑁-unrelated variable due to its practical and historical relevance in pedestrian studies.6

4 These specific numbers were chosen based on the geometry of the problem in order to ‘‘fill’’ the diagonal lanes visible in Fig. 1.
5 We refer readers interested in reproduction of crowd dynamics in a cross-flow scenario through computational models to Zanlungo et al. (2023b).
6

⟨𝜌⟩ is simply defined by counting the number of pedestrians in the crossing zone and dividing by the area. Details of the computational method may be
found in the code accessible at Zanlungo (2020). The same observable is also analysed by Zanlungo et al. (2023a), which provides a detailed definition.
7
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Fig. 5. Average density ⟨𝜌⟩(𝑡) in the crossing area as a function of time for all density scenarios ((A): lower density initial conditions; (B): higher density
initial conditions). Densities are averaged over 10 different randomly chosen initial conditions (excluding for the deterministic ‘‘marching’’ settings) and on time
intervals of 2.5 s. Dashed lines provide standard error intervals.

Fig. 6. 𝐶𝑁𝑀 (𝑡) (maximum 𝐶𝑁 over all cells, averaged over 10 different randomly chosen initial conditions) as a function of time for all density scenarios ((A):
lower density initial conditions; (B): higher density initial conditions). Dashed lines provide standard error intervals.

Fig. 7. ⟨𝐶𝑁⟩(𝑡) (computed as an average over non-zero 𝐶𝑁 cells, and averaged over 10 different randomly chosen initial conditions) as a function of time for
all density scenarios ((A): lower density initial conditions; (B): higher density initial conditions). Dashed lines provide standard error intervals.

2. 𝐶𝑁𝑀 (𝑡), the maximum value attained by 𝐶𝑁 (maximum over all cells, computed as a function of time).
3. ⟨𝐶𝑁⟩(𝑡), the average value of 𝐶𝑁 over cells with non-zero 𝐶𝑁 value (computed again as a function of time).

⟨𝜌⟩(𝑡) is shown for each setting and model in Fig. 5. Unidirectional flows and conditions have been chosen in such a way to have
similar density peak values, and similar crossing time scales in each one of the ‘‘lower density’’ and ‘‘higher density’’ settings for
all models. Anyway, since 128 ‘‘finite body size’’ pedestrians need roughly the same time to clear the crossing area as 408 ‘‘zero
body size’’ ones, and 256 ‘‘finite body size’’ ones double the time needed by 816 ‘‘zero body size’’ ones, it is clear that the flux (and
velocity) is significantly decreased in the ‘‘finite body size’’ case. Despite this, as shown in Fig. 6, 𝐶𝑁𝑀 (𝑡) attains a higher value
in ‘‘finite body size’’. In this (recognising the crowd congestion regardless of a slower velocity/lower flux) clearly the velocity scale
independence of 𝐶𝑁 plays an important role. Fig. 7 shows results concerning ⟨𝐶𝑁⟩(𝑡).
8
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Let us better analyse the results. The 𝐶𝑁 for the lower density ‘‘marching’’ setting is constantly zero. This is due to the fact that
the velocity grid has many empty spaces, and the few points in which the rotor may be computed present the same local structure,
and thus the same rotor (furthermore, the rotor field is actually zero everywhere). The high density case is more interesting. The
maximum attained 𝐶𝑁𝑀 value is constant at ≈ 0.2, reaching slightly higher values at the times in which the flows start and finish
crossing.

Since 𝐶𝑁𝑀 (𝑡) and ⟨𝐶𝑁⟩(𝑡) appear to be qualitatively similar, we may focus on density and maximum 𝐶𝑁 , and analyse the
density, rotor and 𝐶𝑁 fields at times in which high 𝜌 and 𝐶𝑁 values are attained. Let us define the maximum density as

𝜌𝑀 = max
𝑡,𝑟

⟨𝜌⟩𝑟(𝑡), (18)

where ⟨𝜌⟩𝑟(𝑡) is the average density in the crossing area at time 𝑡 and repetition 𝑟, and the time and repetition of maximum density as

{𝑡, 𝑟} = argmax
𝑡,𝑟

⟨𝜌⟩𝑟(𝑡). (19)

Furthermore we may define the highest 𝐶𝑁 as

𝐶𝑁𝑀∗ = max
𝑡,𝑟

𝐶𝑁𝑀
𝑟 (𝑡), (20)

where 𝐶𝑁𝑀
𝑟 (𝑡) is the maximum 𝐶𝑁 over all cells at time 𝑡 and repetition 𝑟, and the time and repetition of highest 𝐶𝑁 as

{𝑡∗, 𝑟∗} = argmax
𝑡,𝑟

𝐶𝑁𝑀
𝑟 (𝑡). (21)

The ‘‘marching’’ velocity 𝐯, density 𝜌, rotor (∇×𝐯)𝑧 and 𝐶𝑁 fields at {𝑡∗, 𝑟∗}, the time and repetition in which the maximum (over
cells) 𝐶𝑁 attains its highest value 𝐶𝑁𝑀∗, are shown in Fig. 8, while those at {𝑡, 𝑟}, the time and repetition of maximum density
𝜌𝑀 , are shown in Fig. 9. At maximum density, the velocity patterns are regular over the central crossing area and in the corridors,
and as a result in these areas we have low 𝐶𝑁 . 𝐶𝑁 reaches higher values in the ‘‘corners’’ where flows meet and separate. This
effect is stronger when almost all pedestrians in the flows have passed the crossing area, as the velocity and rotor fields are less
uniform.

An interesting result concerning the ‘‘zero body size’’ case is that the 𝐶𝑁 time evolution is basically independent of flow intensity.
This is to be expected, since for non-interacting ‘‘particles’’ the increase in flow only changes the statistical sample, with no other
effect on the vector fields. It is nevertheless important to see that the 𝐶𝑁 assessment metric is not ‘‘tricked’’ by the increased flow.

Fig. 10 (highest 𝐶𝑁𝑀∗) and Fig. 11 (maximum density 𝜌𝑀 ) concerning ‘‘zero body size’’ appear to be qualitatively similar to
the marching ones, although they are more noisy. This is due to the fact that a constant velocity movement as the one of the
‘‘marching’’ pedestrians corresponds to the asymptotic state (in the zero noise limit) of the drifted walk performed by ‘‘zero body
size’’ pedestrians.

For ‘‘finite body size’’ pedestrians, the crossing of the flows causes an actual congestion problem, due to the limited space and
to the corresponding stopping/deviating behaviour. This is properly indicated by the higher (with respect to the ‘‘marching’’ and
‘‘zero body size’’ cases) value of 𝐶𝑁 , and by the fact that 𝐶𝑁 assumes higher values when a higher initial density is used. It is
interesting to notice that when the 𝜌 = 2 ped/m2 initial condition is used, 𝐶𝑁 attains values ≈ 1. Fig. 12 shows the higher density
setting 𝐯, density, rotor and 𝐶𝑁 fields when 𝐶𝑁𝑀∗ (which resulted to be as high as 1.26) is attained, while Fig. 13 shows the same
fields when 𝜌𝑀 is attained.

An interesting feature is that in the higher density setting, 𝐶𝑁 reaches (locally) extremely high values also when almost all
pedestrians have passed and the density in the crossing area is decreasing. This is due to the situation depicted on the right in
Fig. 4: some pedestrians are ‘‘dragged’’ in the wrong direction and high pressure/collision/congestion happens in the areas where
they try to ‘‘go back’’. Around the bottom-right corner, such behaviour continues even when the majority of pedestrians has crossed
(the occurrence of such a dynamics may be related to the simplicity in the pedestrians’ local behaviour, and could be absent or
reduced in actual pedestrians or in a more realistic model; anyway here we are not judging the pedestrian model but the ability
of the assessment metric to recognise congestion and dangerous areas). The occurrence of such conditions is correctly identified by
𝐶𝑁 (Fig. 12).

5. 𝑪𝑵 In a crossing scenario experiment

We now present some data from controlled experiments in which 56 participants (28 for each flow) were asked to move in
two different flows, using the same geometry as in the simulation settings (details concerning these experiments are described in
(Zanlungo et al., 2023a); the experimental data are available at Feliciani et al., 2022). Although experiments and simulations share
the same ‘‘crossing corridors’’ geometry, tracking in the experiments was performed only in the very proximity of the 3 by 3 m
crossing area; and in order to minimise border effects we just cropped out the few data tracked outside the crossing space (the
crossing area was then surrounded by empty cells when performing the 𝐶𝑁 computations). Results corresponding to two different
initial conditions (1 and 2 ped/m2) are shown (6 independent experiments were performed for each initial condition).

In Fig. 14, we report the time evolution of density in the crossing area ⟨𝜌⟩(𝑡), maximum 𝐶𝑁𝑀 (𝑡) and average ⟨𝐶𝑁⟩(𝑡) over
on-zero cells for both settings. Finally, for the 2 ped/m2 condition, we show in Fig. 15 the 𝐯, density, rotor and 𝐶𝑁 fields at the
ime and repetition in which 𝐶𝑁𝑀∗ is attained, while those at the time and repetition in which maximum density 𝜌𝑀 is attained
9

re shown in Fig. 16.
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Fig. 8. Higher density ‘‘marching’’ pedestrians at the time in which the highest maximum 𝐶𝑁 , i.e. 𝐶𝑁𝑀∗, is attained (𝐶𝑁𝑀∗ = 0.264 at 𝑡∗ = [35, 37.5) s). (A): 𝐯
field (m/s); (B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude
(full length 𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average
over the Moore neighbourhood.

We may notice that 𝐶𝑁 assumes considerably lower values in the controlled experiment with respect to the ‘‘finite body size’’
simulation. Indeed, the potentially dangerous situation shown in Fig. 4, and to a smaller extent in Fig. 3 (pedestrians being pushed
in the wrong corridor, or against walls), did not emerge for human subjects, due probably to a combination of smarter collision
avoidance and smaller overall crowd size (furthermore, in the experimental settings we did not use actual walls, and corridors were
delimited by ropes at leg height, see Zanlungo et al., 2023a for details). Nevertheless, the 𝐶𝑁 assessment metric appears to provide
further information over what can be obtained by using just pedestrian density and flux, since higher values of 𝐶𝑁 are attained for
human subjects with respect to ‘‘marching’’ and ‘‘zero body size’’ agents, although the initial density conditions are considerably
lower.

Referring to the maximum value assumed by 𝐶𝑁 , we could thus say that 𝐶𝑁𝑀 ≈ 0.5 appears to relate to an ‘‘intermediate’’
congestion state, in which the crowd is facing a ‘‘challenging’’ condition but it is not in a critically congested one. Such a value is
also similar to the one reported for the data analysed by Feliciani and Nishinari (2018b). We nevertheless notice that the 𝐶𝑁 values
attained in the controlled experiment with human participants are higher but not extremely higher than those attained, for example,
in the ‘‘zero body size’’ simulation. The difference between the two situations can be assessed only when also the density is taken
in consideration (namely, by considering how such relatively low 𝐶𝑁 values are attained by ‘‘zero body size’’ even at extremely
high density). This should remind us of the dangers and limitations of using a single, although useful, indicator to assess the state
of a crowd.

6. 𝑪𝑵 In other experimental settings and ecological environments

In the previous sections, theoretical aspects of the 𝐶𝑁 were presented and its properties were discussed taking a single geometry
as example. In this section, we will consider a wider range of geometries and experimental conditions to better present the properties
of the 𝐶𝑁 and also show applications in an ecological context in which the daily traffic of passengers in a train station is investigated.
10
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Fig. 9. Higher density ‘‘marching’’ pedestrians at the time in which the maximum density 𝜌𝑀 is attained (𝜌𝑀 = 8.78 ped/m2 at 𝑡 = [27.5, 30) s). (A): 𝐯 field
(m/s); (B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude (full
length 𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average over
the Moore neighbourhood.

Most of the works shown here were originally presented in other studies. So, readers interested in details are addressed to those
studies. Nonetheless, we believe the results shown here should be sufficient to provide a practical understanding of applications of
the 𝐶𝑁 in pedestrian facilities.

6.1. Pedestrian evacuation from a bottleneck

The bottleneck scenario is probably among the most studied in evacuation and pedestrian dynamics. Experiments were carried
out by a large number of researchers also comparing the behaviour of people to that of animals or granular matter (Shiwakoti
et al., 2019). Also, whether an obstacle placed in front of the exit will make evacuation faster or not has been the subject to a large
debate and an agreement among researchers was not found. For the above reasons, we will start by presenting how the 𝐶𝑁 can
help understanding the features found in bottlenecks. Fig. 17 shows the distribution of density and 𝐶𝑁 in a bottleneck scenario in
presence and absence of an obstacle.

Some differences may be observed between the density and 𝐶𝑁 distributions, in particular concerning the location of the
maximum value. In the case without the obstacle, high density values are observed close to the exit, where people are most packed.
However, the maximum 𝐶𝑁 is found slightly in front of the bottleneck where multiple directions converge and motion becomes
unstable. When the obstacle is introduced, maxima for both the density and 𝐶𝑁 distributions are found on the sides of the obstacles,
although in this case the 𝐶𝑁 maxima tend to be closer to the exit than the density ones.

6.2. Dimensionality of motion and relationship with the 𝐶𝑁

One of the characteristics of the 𝐶𝑁 lies in its ability to clearly distinguish the degree of self-organisation in crowds of
people (as discussed using the ‘‘marching’’ scenario in the cross-flow setting, and below in Section 6.4). This aspect may be better
11



Transportation Research Part C 148 (2023) 104041F. Zanlungo et al.
Fig. 10. Higher density ‘‘zero body size’’ pedestrians at the time in which 𝐶𝑁𝑀∗ is attained (𝐶𝑁𝑀∗ = 0.370 at 𝑡∗ = [42.5, 45) s, 𝑟∗ = 6). (A): 𝐯 field (m/s);
(B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude (full length
𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average over the
Moore neighbourhood.

investigated by considering experiments carried out having participants moving in multiple directions. The most simple case is the
one represented by people moving in a corridor in a single direction. In such a case collision avoidance is not needed and regulating
the distance with the person in front may be sufficient to keep a stable motion. On the other hand, the so-called bi-directional flow
can be created by using the same corridor while having two groups of people moving in opposite directions. This creates non-trivial
collision avoidance situations, typically leading to the deterioration of people flow (with respect to the uni-directional case) already
at moderate densities (although this deterioration is limited by self-organisation phenomena, i.e. the splitting of the crowd in two
spatially separated flows). The most complex scenario is the one represented by people moving randomly in a confined space. Several
people may approach from different directions, making it difficult to predict which detour manoeuvre is the most appropriate to
prevent collisions. We call the latter a ‘‘multi-directional’’ scenario.

Fig. 18 shows the 𝐶𝑁 evaluated at different densities for the three scenarios discussed above: uni-directional, bi-directional and
multi-directional flows. As the graphs show, when the complexity of motion increases, higher values of 𝐶𝑁 are found for similar
densities. Such an increase in 𝐶𝑁 is probably due to the detour manoeuvres needed to perform collision avoidance when different
flows mix.

A comparison of the median 𝐶𝑁 value for the three scenarios at each density is shown in Fig. 19.
The profile observed in the multi-directional case may hint on the fact that a maximum 𝐶𝑁 is reached for asymptotically high

densities. It is therefore possible to fit the multi-directional profile using an exponential function given as:

𝐶𝑁(𝜌) = 𝐶𝑁𝑚𝑎𝑥 ⋅
(

1 − 𝑒−𝜅(𝜌−𝜌0)
)

(22)

where 𝜅 is a fitting parameter, 𝐶𝑁𝑚𝑎𝑥 the maximum 𝐶𝑁 and 𝜌0 the minimum density needed to take into account that 𝐶𝑁 cannot
be computed at very low densities (or at least not by using the computational parameters defined in this work), since the density and
velocity fields would present many empty cells. Specifically, a value of 𝐶𝑁𝑚𝑎𝑥 = 0.523 was found. The fact that such value is smaller
12
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Fig. 11. Higher density ‘‘zero body size’’ pedestrians at the time in which the maximum density 𝜌𝑀 is attained (𝜌𝑀 = 9.5 ped/m2 at 𝑡 = [25, 27.5) s, 𝑟 = 6). (A):
𝐯 field (m/s); (B): density 𝜌 field (ped/m2); (C): (∇× 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude
(full length 𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average
over the Moore neighbourhood.

slow down as density increases (i.e., they avoid, if possible, to behave in such a way to create dangerous conditions). Furthermore,
a value of 𝜌0 = 0.426 ped/m2 was found, hinting that calculation of the 𝐶𝑁 is suitable for densities over 0.5 ped/m2.

6.3. Application of the 𝐶𝑁 to an ecological context

We also present an application of the 𝐶𝑁 to a (real-world) ecological context in order to clarify its ability to provide information
different from the one obtained by using only density, and in order to discus practical aspects related to its use for the purpose of
crowd management. Here, trajectory data collected at the 2nd floor of JR Shinjuku station (Tokyo, Japan) are analysed. This floor
is a concourse layer that connects to platforms and ticket gates, and its characteristics allow investigating the motion of a crowd
in a complex structure. In the specific, the motion of people was collected over a 121 × 47 m2 area managed by the East Japan
Railway Company from 6:00 to 24:00 on December 15th 2020. Details on the layout, along with density and 𝐶𝑁 distributions, are
presented in Fig. 20.

The most important feature in Fig. 20 is represented by the different shapes of the density and 𝐶𝑁 distributions, and in detail
by the different location of maxima. More specifically, maximum density is found in corridors (the upper part of Fig. 20), a finding
that can be explained considering the importance that these structures play by connecting several parts of the station. However, 𝐶𝑁
in corridors is relatively low, since, as explained above, motion is mostly limited to two directions. On the other hand, the maxima
of the 𝐶𝑁 distributions are found in locations where different flows get mixed, leading more easily to collisions (or at least stronger
collision avoidance).

We observe also that the maximum observed 𝐶𝑁 value is around 0.35, showing that in a real context, even when fairly crowded,
values well below 1 are to be expected if the crowd is properly managed. On the other hand, it is worth mentioning that density is
relatively low because values are averaged over 18 h, although much higher densities are observed during peak hours.
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Fig. 12. Higher density ‘‘finite body size’’ pedestrians at the time in which 𝐶𝑁𝑀∗ is attained (𝐶𝑁𝑀∗ = 1.258 at 𝑡∗ = [55, 57.5) s, 𝑟∗ = 9). (A): 𝐯 field (m/s);
(B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude (full length
𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average over the
Moore neighbourhood.

6.4. 𝐶𝑁 In a transient context (bi-directional flow in a ring)

So far, only plots showing the spatial distribution of density and 𝐶𝑁 were presented. However, the 𝐶𝑁 can also be used to
detect changes in the collective organisation of crowds, regardless of density or speed.7 In this section we discuss an experiment in
which participants are asked to walk in opposite directions a circular path (a ‘‘ring’’ creating periodic boundary conditions and thus
facilitating the emergence of self-organisation).

As shown in Fig. 21, participants were initially randomly distributed over the course and different ‘‘structures’’ (small groups of
co-moving people) rapidly formed as they walked in opposite directions. In one case, a stable configuration having two distinguished
lanes emerged, with the transition to such a self-organised structure clearly depicted by a sudden drop in 𝐶𝑁 . In another condition,
a sort of spiral configuration was formed with groups constantly moving from the inner to the outer portion and creating conflict
situations. In this case, the 𝐶𝑁 constantly oscillates taking higher values during conflict situations and decreasing when lanes are
almost non-interacting (separated).

This example clearly shows a difference between the information provided by the 𝐶𝑁 with respect to an analysis based only on
speed and density. Indeed, in this scenario, density is constant by definition and speed presents only slight changes. On the other
hand, variations in 𝐶𝑁 appear to represent the emergence of collective organisation within the crowd, showing the potential of
𝐶𝑁 in identifying risky locations in a real context.

7 This aspect was also partially considered while discussing the cross-flow, but mainly from a theoretical perspective.
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Fig. 13. Higher density ‘‘finite body size’’ pedestrians at the time in which the maximum density 𝜌𝑀 is attained (𝜌𝑀 = 8.79 ped/m2 at 𝑡 = [37.5, 40) s, 𝑟 = 4). (A):
𝐯 field (m/s); (B): density 𝜌 field (ped/m2); (C): (∇× 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude
(full length 𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average
over the Moore neighbourhood.

Fig. 14. (A) Density in the crossing area ⟨𝜌⟩(𝑡); (B) maximum 𝐶𝑁𝑀 (𝑡); and (C) average ⟨𝐶𝑁⟩(𝑡) over non-zero cells; as a function of time in the controlled
experiments with human subjects. Observables are averaged over 6 different initial conditions and on time intervals of 2.5 s. Dashed lines provide standard error
bars.

7. Conclusions

The Congestion Level 𝐶𝐿 is a recently introduced metric to assess the emergence and presence of potentially dangerous or at
least problematic conditions in a pedestrian crowd. In this work, we investigated the theoretical foundations of the 𝐶𝐿 definition,
and suggested an alternative metric, the Congestion Number 𝐶𝑁 . The 𝐶𝑁 is a pure number with no explicit dependence on
computational parameters, and has a straightforward interpretation (𝐶𝑁 ≪ 1 corresponding to not congested state, 𝐶𝑁 ≈ 1
corresponding to extreme congestion).
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Fig. 15. Pedestrians in the 2 ped/m2 condition controlled experiments at the time 𝐶𝑁𝑀∗ is attained (𝐶𝑁𝑀∗ = 0.451 at 𝑡∗ = [7.5, 10) s, 𝑟∗ = 1). (A): 𝐯 field (m/s);
(B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional to the magnitude (full length
𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a moving average over the
Moore neighbourhood.

To better clarify the main features of the 𝐶𝑁 , we initially focused on cross-flow scenarios, which were deemed to be complex
enough to need an analysis using information beyond the one provided just by density and flow values, but still simple enough to
be used to investigate the properties of a new crowd indicator.

By computing 𝐶𝑁 values for simulations using agents that, either being externally controlled with a pre-assigned velocity, or
lacking actual body size, did not need to perform any collision avoidance behaviour, we verified that the proposed assessment
metric is able to detect the lack of any actual congestion problem even in presence of high density and flux. On the other hand,
by using agents that had an actual finite body size and (possibly relatively inefficient) collision avoidance behaviour, we verified
the occurrence of 𝐶𝑁 ≈ 1 conditions when pedestrians appeared to be unable to freely move towards their preferred destination.
Finally, the analysis of an experiment using human subjects in a similar setting showed the occurrence of intermediate 𝐶𝑁 values,
which appeared to reflect the actual state of the crowd (presence of a still manageable congestion problem).

We then analysed different scenarios, such as bottlenecks, uni-, bi- and multi-directional settings, a real-world railway station,
and a bi-directional flow over a loop. The last two scenarios were particularly interesting. The study of the movement of pedestrians
in the Shinjuku railway station (Section 6.3) shows that, even when considering a real-world setting, the proposed 𝐶𝑁 indicator
provides information qualitatively different from the one that can be derived from density patterns. The study of the movement of
pedestrians over a loop (Section 6.4) shows that, at least in the proposed controlled scenario, such information is extremely valuable,
as changes in the self-organisation state of the crowd were clearly identified by corresponding changes in the 𝐶𝑁 value, although
density and speed values were unchanged.

Since the concept of 𝐶𝑁 has just been proposed, it is obviously impossible at the current stage to provide a clear correlation
between the observed values of such indicator and the ‘‘level of danger’’ of an actual real-world (or even controlled) crowd, and with
this work we obviously do not propose to abruptly replace well-studied crowd metrics with the proposed indicator, nor we propose
a clear ‘‘threshold’’ to differentiate between safe and dangerous states. Indeed, it is unrealistic to believe that a single number may
completely define the state of a complex system like a crowd, and indeed in a few points of the manuscript we hint to the necessity
of taking in account other observables, such as density.

Nevertheless, we hope that the findings of this manuscript suggest that the proposed indicator is of possible value, and will
stimulate further studies of its properties and applications.
16



Transportation Research Part C 148 (2023) 104041F. Zanlungo et al.
Fig. 16. Pedestrians in the 2 ped/m2 condition controlled experiments at the time in which the maximum density 𝜌𝑀 is attained (𝜌𝑀 = 2.65 ped/m2 at 𝑡 = [7.5, 10)
s, 𝑟 = 6). (A): 𝐯 field (m/s); (B): density 𝜌 field (ped/m2); (C): (∇ × 𝐯)𝑧 field (s−1); (D): 𝐶𝑁 field. In the velocity field, the length of the arrow is proportional
to the magnitude (full length 𝑣 > 0.5 m∕s), while the colour gives the orientation, as shown in the colour wheel legend. The density field is represented using a
moving average over the Moore neighbourhood.

Fig. 17. Average density and 𝐶𝑁 for evacuation drills through a single bottleneck without ((A): experimental setting; (B): density; (C): 𝐶𝑁) and with ((D):
experimental setting; (E): density; (F): 𝐶𝑁) an obstacle. The exit (bottleneck) has a width of 75 cm and is located in the middle of the 𝑥-axis. Distributions are
computed over multiple trials performed under the same experimental condition. Details on the analysis and on the experiments can be found in Feliciani et al.
(2020a).
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Fig. 18. 𝐶𝑁 shown as a function of density for controlled experiments reproducing different types of crowd motion. Data from several experiments concerning
A) uni-directional, (B) bi-directional and (C) multi-directional flows are examined and results summarised in bins having a size of 0.2 ped/m2. For each bin,

a box representation is used, with the central mark being the median and the bottom and top edges indicating the 25th and 75th percentiles, respectively.
Extreme points are represented using whiskers and outliers shown in red markers. Details on the experiments are given by Zhang et al. (2012) and Feliciani
and Nishinari (2018b).

Fig. 19. Relation between 𝐶𝑁 (median values from Fig. 18) and density for crowd motion under different degrees of freedom. The multi-directional case is
used to calibrate 𝐶𝑁𝑚𝑎𝑥 and 𝜌0, which are later used to fit the uni-directional and bi-directional cases.

Finally, although we often show graphs concerning the time variation of 𝐶𝑁 , only spatial derivatives (i.e., no time derivatives)
here included in its definition. As time variation is of clear importance in the assessment of instabilities in a crowd, both the

nclusion of time variation in the very definition of 𝐶𝑁 , and the importance of time variation of 𝐶𝑁 as defined in this work, should
e the subject of future studies.
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Fig. 20. (A) Average density and (B) 𝐶𝑁 during a 18 h data collection period on the 2nd floor of JR Shinjuku station (Tokyo, Japan). Results were smoothed
using the LOWESS smoothing method of Mathworks (2022) to reduce sensing noise and create a more continuous representation for both density and 𝐶𝑁 .
The pedestrian trajectories used for calculation were obtained using Velodyne VLP-16 3D LiDAR sensors installed in 11 locations to cover the majority of the
concourse layer. Boundaries of the concourse are depicted by black lines. The colour bar for the density distributions reports also the values (letters from A to
E) associated with different ‘‘Level-Of-Service’’ (flat walkways) densities.

Data and software availability

The data analysis software, along with simulated pedestrian data, is available at Zanlungo (2020). The human subject experiment
data is available at Feliciani et al. (2022).

Appendix A. Comments on the choice of the cross-flow scenario

We want our indicator to be able to identify a tendency, manifest at the macroscopic crowd level, of pedestrians to deviate from
their preferred path (i.e., at the crowd level, from the crowd’s ‘‘natural flow’’), because such deviations are expected to ‘‘congest’’ or
‘‘disrupt’’ the flow of the crowd. Since preferred paths are in principle unknown, we expect this tendency to be expressed through
local ‘‘irregularities’’ in the velocity field, irregularities that, in the approach of this work, are defined through the variation in the
magnitude of the velocity rotor (see Section 3 for the formal definition). We thus wanted to identify a scenario that was simple
enough to allow a systematic treatment from theoretical, simulation and experimental view-points, but complex enough to cause
the aforementioned disruption of the crowd’s flow. We believe the cross-flow (see Sections 4, 5 for procedural definitions) to be such
a scenario. Indeed, while in most systematically studied scenarios, such as uni-directional flow, bottleneck and evacuation from an
exit, all the pedestrians in the crowd roughly share the same goal,8 in a cross-flow pedestrians with clearly different goals need to
share the same space (the crossing area) at the same time. The bi-directional flow could seem to be a possible alternative, but in
such a scenario a good level of separation between the two flows can be attained by using a simple self-organising rule (e.g., ‘‘walk
on the left side’’; such rules are actually known to be strongly followed at least in some real-world environments Zanlungo et al.,
2012). On the other hand, while also the flow in a crossing area can be optimised through a ‘‘stripe formation rule’’ (see Sections
Section 4, 5), such a rule requires a high level of coordination between pedestrians and will necessarily be only partially attained
by self-organisation. For these reasons, we expect the ‘‘flow disruption’’ that we want to analyse in this work to naturally arise in
the cross-flow scenario.

8 This is partially true also for a multi-exit scenario, as the highest densities and flows are usually attained in the proximity of a given exit.
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Fig. 21. Experimental setting, average speed and 𝐶𝑁 for a bi-directional flow in a ring. (A) reports the initial condition of an experiment repetition in which
the crowd reaches a high level of self-organisation towards the end of the experiment, shown in (B). The corresponding speed (in blue) and 𝐶𝑁 (black) time
evolutions are shown in (C). On the other hand, (D) (initial condition), (E) (condition towards the end of the experiment) and (F) (speed and 𝐶𝑁 plots)
correspond to a repetition that attained a lower level of self-organisation. In both cases, people with red and yellow caps walk in opposite directions (clockwise
and counter-clockwise). In (C) the transition into a stable configuration is shown using a dotted vertical line. In (F) the 𝐶𝑁 during the aforementioned transition
(the intersection between the curve in (C) and the dotted line, corresponding to 0.09) is reported using a horizontal line to make comparison easier. Details on
experimental conditions are given by Feliciani and Nishinari (2018b).

Appendix B. Comments on the motivation of this work and on the use of the term ‘‘congestion’’

The purpose of this work is to improve the definition of the Congestion Level by introducing a dimensionless ‘‘Congestion
Number’’ and to elucidate its main properties. The Congestion Level and the work defining it (Feliciani and Nishinari, 2018b)
are taken as a starting point, and in this work we do not try to justify the introduction of 𝐶𝐿. Nevertheless, it may be useful to
provide a few comments on its motivation and on the choice of the name.

The fundamental idea is to identify possibly ‘‘problematic’’ conditions in a pedestrian crowd, and the assumption is that such
conditions may be related to a pedestrian flow that abruptly changes in time and space. The obvious parallel in fluid dynamics is
the emergence of a turbulent state. Nevertheless, as discussed in Section 2, defining a velocity field for a crowd involves problems
related to the characteristic scales of crowd dynamics, that do not allow to properly perform a ‘‘continuous limit’’ in space and
time. For these reasons, we tried to define a relatively simple ‘‘index’’ that could identify the presence of a ‘‘turbulent flow’’ just
through a rough definition of a velocity vector field over a spatial lattice with a grid size comparable to human size, and without
taking in account time derivatives.9 We were thus inspired by the presence, in turbulent flows, of many eddies and vortices, and
we considered that the emergence of a similar state in the crowd could be tested by measuring the rotor of the velocity field and
its variation in space.

Concerning the name ‘‘congestion’’, it was intended as a proxy for a state in which the crowd is ‘‘not normally flowing’’, and thus
is getting ‘‘congested’’. Although some of the ideas behind the 𝐶𝐿 and 𝐶𝑁 concept are inspired by concepts in fluid dynamics, we
prefer not to use the term ‘‘turbulence’’, as we do not claim this work to be a contribution to the study of turbulence in fluid dynamics.
A possible alternative term could be ‘‘crowd flow disruption’’, by which we mean a tendency to deviate from preferred paths due to
the state of the crowd. Nevertheless, in this work we stick to the name ‘‘congestion’’ in order to create a clear connection with the
previous work (Feliciani and Nishinari, 2018b) and with other crowd research studies that used the 𝐶𝐿 concept, such as Feliciani
et al. (2018), Fujita et al. (2019), Feliciani and Nishinari (2020), Feliciani et al. (2020b), Ye et al. (2020, 2021) and Hosseini et al.
(2021).

9 The choice not to take in consideration time derivatives, at least in this first approach, is mainly due to two considerations: first of all, although it appeared
to us that the problem has a clear minimum spatial scale (human body size), we could not identify a corresponding ‘‘natural’’ time scale; furthermore, a time
scale has to be introduced in our computations to obtain a relatively smooth velocity field, see the discussion in Appendix C, over the chosen grid, and thus
the computational time scale appears to be ‘‘subordinate’’ to the spatial one, making the meaning of time derivatives harder to interpret.
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Appendix C. Choice of computational parameters

Three computational parameters need to be defined in order to compute the 𝐶𝑁 , namely the size of the grid 𝑅, the averaging
time 𝛥𝑡 and the size of the ROI, 𝐿. The first two parameters are actually needed to define the very velocity field (as the average
f velocities falling in the 2+1 dimensional 𝑅-by-𝑅-by-𝛥𝑡 volume), while 𝑅 is used also to compute (at each time 𝑘𝛥𝑡) the rotor

field, and 𝐿 is needed to compute the 𝐶𝑁 proper. All the computations in this work have been based on the definitions by Feliciani
and Nishinari (2018b) and Feliciani and Nishinari (2020), although a theoretical justification for the choice of 𝑅 and 𝐿 has been
provided (see in particular Appendix D).

With respect to 𝐶𝐿, 𝐶𝑁 has the advantage of not depending explicitly on these parameters (𝐶𝐿 has an explicit dependence on
𝑅), and thus it could seem possible to define the optimal parameters as those for which we have a convergence in the 𝐶𝑁 value.
Nevertheless, after a second thought, it is clear that such an analysis is not trivial. Although the theoretical definition of 𝐶𝑁 is
based on assuming the existence of a continuous velocity field, such a rigorous continuous approach is possible only using scales
much larger than those at which interesting congestion phenomena appear (see Lautrup, 2011), and thus convergence is expected
for parameter values considerably larger than those proposed by Feliciani and Nishinari (2018b) and Feliciani and Nishinari (2020).
Furthermore, the three parameters are inherently different from a dimensional view point (𝑅 being a continuous length, 𝐿 a multiple
of 𝑅, and 𝛥𝑡 a time).

We may nevertheless try to perform a quantitative analysis of parameter stability by assuming the choice of Feliciani and
Nishinari (2018b) and Feliciani and Nishinari (2020) as a starting point, defining a grid in parameter space over a scale compatible
with such a choice, and analyse the stability over such grid.

Namely, we may investigate the value attained by the maximum over time of 𝐶𝑁 , averaged over the set of all repetitions {𝑟}
(e.g., the peaks of Fig. 6), or

𝑀 = ⟨max
𝑡

𝐶𝑁𝑀
𝑟 (𝑡)⟩{𝑟}, (C.1)

for the ‘‘finite body size’’ simulation data by changing the parameters in the following ranges: 𝑅 = 𝑖 0.05 m, 𝐿 = 𝑗 𝑅, 𝛥𝑡 = 𝑘 0.5
s, with 𝑖, 𝑗, 𝑘 = 1,… , 10. Writing the explicit dependence of 𝑀 over {𝑖, 𝑗, 𝑘} through the notation 𝑀𝑖,𝑗,𝑘 we may then compute the
magnitude of the ‘‘gradient’’

𝛥𝑥 ≡ 𝑀𝑖+1,𝑗,𝑘 −𝑀𝑖−1,𝑗,𝑘,

𝛥𝑦 ≡ 𝑀𝑖,𝑗+1,𝑘 −𝑀𝑖,𝑗−1,𝑘,

𝛥𝑧 ≡ 𝑀𝑖,𝑗,𝑘+1 −𝑀𝑖,𝑗,𝑘−1,

𝐺𝑖,𝑗,𝑘 ≡
√

𝛥2
𝑥 + 𝛥2

𝑦 + 𝛥2
𝑧.

(C.2)

Figs. 22–24 show the results. In the 𝜌 = 1 ped/m2 initial condition setting (Fig. 22) the highest maximum 𝐶𝑁 , 𝑀 (Eq. (C.1)),
converges to a stable value for 𝑅 ≳ 0.3, 𝐿 ≳ 5𝑅, 𝛥𝑡 ≳ 2.5, values comparable, although higher, than those used in this work. It
has nevertheless to be considered that choosing a ROI with a diameter ≈ 3 m corresponds to covering almost the whole crossing
area with a single ROI, and thus losing local information. The proposed values (detailed in Fig. 23) appear then as a compromise
to retain local information, while cutting off the parameter area with strong instability (high gradient).

As density grows, convergence is faster and already almost attained around the proposed parameters (Fig. 24). Indeed, an analysis
of the 𝐶𝑁 values for the minimum gradient points shows that they are very similar to those found using the proposed parameters.
Namely, defining

{𝑖𝑚, 𝑗𝑚, 𝑘𝑚} = argmin
𝑖,𝑗,𝑘

𝐺𝑖,𝑗,𝑘, (C.3)

e see the highest maximum 𝐶𝑁 value for the minimum gradient point is 𝑀𝑖𝑚 ,𝑗𝑚 ,𝑘𝑚 ≈ 0.58 for the 𝜌 = 1 ped/m2 initial condition at
𝑅 = 0.35 m, 𝐿 = 9𝑅, 𝛥𝑡 = 3.5 s; while for the 𝜌 = 2 ped/m2 initial condition we have 𝑀𝑖𝑚 ,𝑗𝑚 ,𝑘𝑚 ≈ 0.9 at 𝑅 = 0.35 m, 𝐿 = 7𝑅, 𝛥𝑡 = 4 s.
A comparison with Fig. 4 shows that using the proposed parameter values 𝐶𝑁 has already attained a value compatible to the one
at ‘‘convergence’’ (minimum gradient).

Appendix D. Toy models of high 𝑪𝑵 settings

D.1. Discrete approach

Let us study some settings that correspond to very high 𝐶𝑁 values, first using a derivation more closely related to the numerical
nature of the computation. Such a ‘‘discrete derivation’’ has the following interesting properties:

1. does not rely on a fictitious continuous field defined at a scale much smaller than 𝑅,
2. clearly explains the relation between 𝐿 and 𝑅,
3. clearly explains the role of the approximation ⟨𝑣⟩𝑅(𝐱) ≈ ⟨𝑣⟩𝐷𝑅

in our derivation,
4. explains the role of numerical approximations (e.g. choice of integration/differentiation schemes).

In Appendix D.2, we take the opposite approach, i.e., perform all computations on a microscopic, continuous velocity field.
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Fig. 22. Gradient 𝐺𝑖,𝑗,𝑘 as a function of 𝛥𝑡 (abscissa axis) and 𝐿 (ordinate axis, refer to Fig. 23 for details) for values of 𝑅 = 𝑖 0.05 m, 𝑖 = 2,… , 9 (growing from
left to right, top to bottom). ‘‘finite body size’’ simulation data with 𝜌 = 1 ped/m2 initial condition.

Fig. 23. Gradient 𝐺𝑖,𝑗,𝑘 as a function of 𝛥𝑡 and 𝐿 for 𝑅 = 0.2 m. The value 𝐿 = 4, 𝛥𝑡 = 2.5, close to the one used in the rest of the work (𝑅 = 0.2 m, 𝐿 = 3.5,
𝛥𝑡 = 2.5) is highlighted by white borders. ‘‘finite body size’’ simulation data with 𝜌 = 1 ped/m2 initial condition.

D.1.1. Separated, random constant velocity
The discrete equivalent of two opposite maximally rotating fields located at a close distance can be realised on the grid shown

in Fig. 25 (A). The maximum rotor value occurs in the cell 2, while the minimum occurs in cell 3. We are going to compute 𝐶𝑁 in
cell 1, which is in the middle of the two flows (and separated from them). If the cells have size 𝑅, the distance between cells 2 and
3 is 𝐿 = 4𝑅. The vector field has magnitude 𝑣 in the direction given by the arrows, and we assume it to have constant magnitude
𝑣 but random direction on all other cells. In such a way, regardless of the choice of the ROI, the value of ⟨𝑣⟩ is going to be 𝑣.
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Fig. 24. Gradient 𝐺𝑖,𝑗,𝑘 as a function of 𝛥𝑡 (abscissa axis) and 𝐿 (ordinate axis, refer to Fig. 23 for details) for values of 𝑅 = 𝑖 0.05 m, 𝑖 = 2,… , 9 (growing from
left to right, top to bottom). ‘‘finite body size’’ simulation data with 𝜌 = 2 ped/m2 initial condition.

We recall that

(∇ × 𝐯)𝑧 = 𝜕𝑥𝑣𝑦 − 𝜕𝑦𝑣𝑥. (D.1)

Using the most trivial numerical differentiation scheme, in cell 2 we have

(∇ × 𝐯)𝑧 =
2𝑣
2𝑅

− (− 2𝑣
2𝑅

) = 2𝑣
𝑅

, (D.2)

while obviously in 3 we have the opposite value, so that

max(∇ × 𝐯)𝑧 − min(∇ × 𝐯)𝑧 =
4𝑣
𝑅

, (D.3)

and

𝐶𝑁 = 4𝑣
𝑅

𝑅
6𝑣

= 2
3
. (D.4)

The reason we obtained a value different from 1 is due to the difference between the values of the average velocity in the
continuous model used to define 𝐶𝑁 and in the discrete model. Anyway, higher values of 𝐶𝑁 are possible, as shown next.

D.1.2. Separated, negligible velocity outside flows
Let us now go back to Fig. 25, but this time we may assume that velocity is almost 0 (i.e., ≪ 𝑣) where arrows are lacking

(including cells 1, 2 and 3). This choice of having a lot of cells with very low velocity is due to the attempt of keeping ⟨𝑣⟩ as
small as possible, and thus 𝐶𝑁 as large as possible. It should be noticed that an empty cell is, from the crowd dynamics viewpoint,
extremely different from a non-empty cell with a low velocity, and indeed (Feliciani and Nishinari, 2018b) remind us to compute
average velocities using only occupied cells. Anyway, in the computations below, the cells without arrows may be considered with
such a small velocity (e.g., 10−3𝑣) that their contribution to averages and rotors is simply ignored (from an actual crowd dynamics
viewpoint, obviously, this is quite unrealistic).

The value of ⟨𝑣⟩ROI depends now strongly on the definition of the ROI. It seems obvious that the ROI should include all non-
zero cells, so that its ‘‘diameter’’ (maximum distance between two included cells) has to be at least 7𝑅, which is exactly the value
empirically proposed by Feliciani and Nishinari (2018b). The actual choice of the ROI depends then on the definition of the distance
on the grid. We propose here 3 schemes:
23



Transportation Research Part C 148 (2023) 104041F. Zanlungo et al.
Fig. 25. (A): separated flows. MM scheme boundary in green, OE scheme boundary in red, ME scheme boundary in blue. (B): overlapping flows.

1. Manhattan distance: only cells at a Manhattan distance 𝑑𝑀 = |𝑑𝑥| + |𝑑𝑦| ≤ 3 are included. This includes exactly 𝑁ROI = 25
cells, as shown in Fig. 25 (A) (Minimum Manhattan scheme, or MM).

2. The original scheme proposed by Feliciani and Nishinari (2018b), i.e., including, since the diameter of the ROI is 7, all cells
that have a Euclidean distance between their centres 𝑑𝐸 ≤ 7𝑅∕2. This includes 37 cells (Original Euclidean scheme, or OE).

3. As above, using Euclidean distance but, since the distance between cells 2 and 3 is 𝐿 = 4𝑅, requiring 𝑑𝐸 ≤ 4𝑅. This includes
49 cells (Maximum Euclidean scheme, or ME).

Since only 8 cells have non-zero 𝑣, the value of ⟨𝑣⟩ would be 8 𝑣∕𝑁ROI, and thus

𝐶𝑁 =
𝑁ROI
8𝑣

4𝑣
𝑅

𝑅
6

=
𝑁ROI
12

, (D.5)

which gives a value higher than 4 in the ME scheme. It seems anyway reasonable that these extremely artificial conditions may not
occur in the real world and values of 𝐶𝑁 ≈ 1 should already be considered as extremely high.

In such a setting, the same values are found in case we use a single maximally rotating field, e.g. in the centre of the cell, since
the numerator is decreased by a factor two, but also the denominator is equally decreased (the number of non-empty cells would be
4). These results may be puzzling, but, again, we should remember that 𝐶𝐿 has been proposed by Feliciani and Nishinari (2018b)
to deal with actual crowds, and not with our handpicked situations. Furthermore, ‘‘empty cells’’ in our settings should actually
represent occupied cells with very low velocity (packed crowd), and it is clear that having a strongly rotational movement inside a
packed, almost non-moving crowd, should be a hint of a potentially very dangerous situation in an actual crowd.

D.1.3. Overlapping, random constant velocity
If in Fig. 25 we displace both maximally rotating fields by one cell towards the centre (Fig. 25 (B)) we get a non-zero field in 1

(𝐯 = (0, 2𝑣)). In this case, the absolute value of the maximum and minimim rotor is

|(∇ × 𝐯)𝑧| =
3𝑣
2𝑅

− (− 2𝑣
2𝑅

) = 5𝑣
2𝑅

. (D.6)

If the velocity in the other cells has constant magnitude 𝑣 we get

𝐶𝑁 = 5𝑣
𝑅

𝑅
6𝑣

= 5
6
. (D.7)

D.1.4. Overlapping, negligible velocity outside flows
Assuming negligible velocity outside the flows, we now get, by having just 7 ‘‘non-zero’’ cells, one of them contributing to 2𝑣

𝐶𝑁 =
𝑁ROI
8𝑣

5𝑣
𝑅

𝑅
6

=
5𝑁ROI
48

. (D.8)

Interestingly, anyway, in this situation it is possible to include all non-zero cells in a 𝐿 = 2𝑅 radius ball, which would have 𝑁ROI = 13
(Fig. 25 (B)) and thus 𝐶𝑁 close to 1 (65∕48).

D.2. Continuous approach

Models using a velocity field defined on a continuous scale smaller than 𝑅 have little physical or computational value, but
allowing for analytical computations, they are helpful in better clarifying basic concepts. Let us generalise Eq. (8) to

𝐯(𝑟, 𝜑) =
𝑣𝑅 𝑓 (𝑟)𝐞 . (D.9)
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i

o

so that

(∇ × 𝐯)𝑧 =
𝑣𝑅
𝑟𝑅

𝜕𝑟 (𝑟𝑓 (𝑟)) ≡
𝑣𝑅
𝑟𝑅

𝜕𝑟 (𝑔(𝑟)) , (D.10)

where we defined

𝑔(𝑟) ≡ 𝑟𝑓 (𝑟). (D.11)

Now, if 𝑓 (𝑟) = 𝑟, we have (Eq. (9)) (∇ × 𝐯)𝑧 = 2𝑣𝑅∕𝑅, so we may define

RotMax =
2𝑣𝑅
𝑅

. (D.12)

Furthermore, we define 𝑙(𝑟) such that

(∇ × 𝐯)𝑧 ≡ RotMax𝑙(𝑟), (D.13)

and as a consequence

ℎ(𝑟) ≡ 2𝑟𝑙(𝑟) = 𝜕𝑟 (𝑔(𝑟)) , (D.14)

which gives us a differential equation for the value of the velocity field given the value of the rotor one. Furthermore, we have, on
a disc 𝐷𝑟,

⟨𝑣⟩𝐷𝑟
=

(𝑣𝑅∕𝑅) ∫
2𝜋
0 d𝜑 ∫ 𝑟

0 𝑓 (𝜌)𝜌 d𝜌
𝜋𝑟2

=
(𝑣𝑅∕𝑅)2𝜋 ∫ 𝑟

0 𝑓 (𝜌)𝜌 d𝜌
𝜋𝑟2

= RotMax

𝑟2 ∫

𝑟

0
𝑓 (𝜌)𝜌 d𝜌. (D.15)

D.2.1. Continuous rotor field
Let us assume now that between two maximally rotating fields the value of the rotor passes gradually from 2𝑣𝑅∕𝑅 to −2𝑣𝑅∕𝑅

n a 2𝑅 distance. This may be attained by using the following function for 𝑙(𝑟)

𝑙(𝑟) =

⎧

⎪

⎨

⎪

⎩

1, if 0 ≤ 𝑟 < 𝑅
2 − 𝑟

𝑅 , if 𝑅 ≤ 𝑟 < 2𝑅
0, if 𝑟 ≥ 2𝑅

(D.16)

r

ℎ(𝑟) =

⎧

⎪

⎨

⎪

⎩

2𝑟, if 0 ≤ 𝑟 < 𝑅

4𝑟 − 2𝑟2
𝑅 , if 𝑅 ≤ 𝑟 < 2𝑅

0, if 𝑟 ≥ 2𝑅

(D.17)

The function is clearly not differentiable in 𝑅 and 2𝑅, but a differentiable version in which the radial derivative of ℎ transits from 0
to −1∕𝑅 (and vice versa in 2𝑅) in a 𝜆 ≪ 𝑅 scale can be obtained using a ‘‘smoothed step function’’, adapting the detailed description
on bump functions found in W. Tu (2011).

Using

𝑔(𝑟) = ∫

𝑟

0
ℎ(𝜌) d𝜌 (D.18)

we obtain

𝑔(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟2, if 0 ≤ 𝑟 < 𝑅

2𝑟2 − 2𝑟3
3𝑅 − 𝑅2

3 , if 𝑅 ≤ 𝑟 < 2𝑅
7𝑅2

3 , if 𝑟 ≥ 2𝑅

(D.19)

or

𝑓 (𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟, if 0 ≤ 𝑟 < 𝑅

2𝑟 − 2𝑟2
3𝑅 − 𝑅2

3𝑟 , if 𝑅 ≤ 𝑟 < 2𝑅
7𝑅2

3𝑟 , if 𝑟 ≥ 2𝑅

(D.20)

and

⟨𝑣⟩𝐷𝑟
=

⎧

⎪

⎪

⎨

⎪

⎪

RotMax 𝑟
3 , if 0 ≤ 𝑟 < 𝑅

RotMax( 2𝑟3 − 𝑟2

6𝑅 − 𝑅2

3𝑟 + 𝑅3

6𝑟2 ), if 𝑅 ≤ 𝑟 < 2𝑅

RotMax 𝑅2(14𝑟−15𝑅) , if 𝑟 ≥ 2𝑅.

(D.21)
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We introduced this model because it reproduces our ‘‘linear approximation’’ for the gradient, so we may use it to check the validity
of the approximation according to which ⟨𝑣⟩ROI = 2∕3𝑣𝑅. Using the above results, for 2𝑅 we obtain ⟨𝑣⟩𝐷2𝑅

= 13∕12𝑣𝑅. In the case of
wo different opposing rotating fields, we may use as ROI a disc of radius 4𝑅 located in the middle point. A numerical integration
ives for this case ⟨𝑣⟩𝐷4𝑅

≈ 1.0095𝑣𝑅. These values suggest again that the maximal possible 𝐶𝑁 value should not depart strongly
rom 1.

.2.2. Discontinuous rotor field
Defining the velocity field starting from the rotor may seem counter-intuitive. We could have started from the velocity field,

.g., asking the velocity to be zero outside a disc of radius 2𝑅

𝑓 (𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑟, if 0 ≤ 𝑟 < 𝑅
2𝑅 − 𝑟, if 𝑅 ≤ 𝑟 < 2𝑅
0, if 𝑟 ≥ 2𝑅

(D.22)

y straightforward differentiation we have now

𝑙(𝑟) =

⎧

⎪

⎨

⎪

⎩

1, if 0 ≤ 𝑟 < 𝑅
𝑅
𝑟 − 1, if 𝑅 ≤ 𝑟 < 2𝑅
0, if 𝑟 ≥ 2𝑅

(D.23)

he rotor field is now discontinuous. The continuity can be regained by using bump functions (W. Tu, 2011) in such a way that 𝑓 (𝑟)
s re-defined as a differentiable function in 𝑅, i.e. by having 𝑙(𝑟) to make a continuous transition from 1 to 0 over a scale 𝜆 ≪ 𝑅.
nyway, in this way the gradient of the rotor would be increased by a scale 𝑅∕𝜆 with respect to the ‘‘macroscopic variation’’ scale
𝑅∕𝑅2. This toy model serves thus to remind us that trying to define the differential congestion (𝐷𝐶 and 𝐸𝐷𝐶) on a scale smaller
han 𝑅 is meaningless, and justifies our use of a linear approximation, i.e. of the comparison between the maximum and minimum
alues on the ROI.

By integrating 𝑓 (𝑟) we obtain for this model

⟨𝑣⟩𝐷𝑟
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RotMax 𝑟
3 , if 0 ≤ 𝑟 < 𝑅

RotMax(𝑅 − 𝑟
3 − 𝑅3

3𝑟2 ), if 𝑅 ≤ 𝑟 < 2𝑅

RotMax 𝑅3

𝑟2
, if 𝑟 ≥ 2𝑅

(D.24)

The result for 𝑟 > 2𝑅 is the mathematical average, but since the velocity for 𝑟 > 2𝑅 is zero, the average according to the 𝐶𝐿
efinition is the 2𝑅 value, or ⟨𝑣⟩ = 𝑣𝑅∕2. If the velocity for 𝑟 > 2𝑅 is negligible but non-zero, for two opposite flows included in

a 𝐷4𝑅 ROI, we have ⟨𝑣⟩ = 𝑣𝑅∕4 and 𝐶𝑁 = 8∕3, showing that also for continuous models we may have 𝐶𝑁 quite large in these
eemingly artificial settings.
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