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In this paper, the multinode Shepard method is adopted for the first time to numerically solve 
a differential problem with a discontinuity in the boundary. Starting from previous studies on 
elliptic boundary value problems, here the Shepard method is employed to catch the singularity 
on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard 
basis functions are proposed to overcome the difficulties encountered. The Motz’s problem is 
considered as numerical benchmark to assess the method. Numerical results are presented to 
show the effectiveness of the proposed approach.

1. Introduction

The Motz’s problem was introduced in 1947 [1] to analyze the performance of the relaxation method and it is considered a 
benchmark to verify the efficiency of numerical schemes in solving elliptic problems with singular boundary conditions [2]. The 
problem, whose formulation has been modified by Wait and Mitchell [3] in 1971, consists in finding the solution of the Laplace 
equation

Δ𝑢 = 0 (1)

in the rectangular domain

Ω= {(𝑥, 𝑦) ∶ −1 < 𝑥 < 1,0 < 𝑦 < 1}

subject to the following mixed Neumann–Dirichlet boundary conditions (see Fig. 1 for a graphical representation)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢 = 0, if 𝑦 = 0 and −1 ≤ 𝑥 < 0 (Γ1)
𝜕𝑢

𝜕𝑦
= 0, if 𝑦 = 0 and 0 < 𝑥 ≤ 1 (Γ2)

𝑢 = 500, if 𝑥 = 1 and 0 ≤ 𝑦 ≤ 1 (Γ3)
𝜕𝑢

𝜕𝑦
= 0, if 𝑦 = 1 and −1 < 𝑥 < 1 (Γ4)

𝜕𝑢

𝜕𝑥
= 0, if 𝑥 = −1 and 0 ≤ 𝑦 ≤ 1 (Γ5).

(2)
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Fig. 1. Graphical representation of the boundary conditions in (2).

Table 1

First 20 coefficients of the series (3) provided by [8].

Coefficient Value Coefficient Value

𝐴1 401.1624537452 𝐴11 0.0073023017
𝐴2 87.6559201951 𝐴12 −0.0031841139
𝐴3 17.2379150794 𝐴13 0.0012206461
𝐴4 −8.0712152597 𝐴14 0.0005309655
𝐴5 1.4402727170 𝐴15 0.0002715122
𝐴6 0.3310548859 𝐴16 −0.0001200463
𝐴7 0.2754373445 𝐴17 0.0000505400
𝐴8 −0.0869329945 𝐴18 0.000023167
𝐴9 0.0336048784 𝐴19 0.000011535
𝐴10 0.0153843745 𝐴20 −0.000005295

The solution 𝑢(𝑥, 𝑦) of the Motz’s problem has a singularity at the point (0, 0) [2] and it can be expressed as the sum of the series

𝑢(𝑟, 𝜃) =
∞∑
𝑖=1

𝐴𝑖𝑟
𝑖− 1

2 cos
[(

𝑖− 1
2

)
𝜃
]
, (3)

where 𝑟 and 𝜃 are the polar coordinates centered at the singular point [4]. In 1975 Rosser and Papamichael [5] show that the 
convergence radius of the series (3) is at least 2 and therefore the above expansion is valid in the whole solution domain Ω ∪ 𝜕Ω. 
Moreover, they compute the first 20 coefficients 𝐴𝑖 of the series (3) by using a conformal mapping technique. In 1996 Georgiou, Olson 
and Smyrlis [6] compute the first 25 coefficients by using a Singular Function Boundary Integral Method (SFBIM). The convergence 
of this method, which allows to get the coefficients of the asymptotic expansion at a exponential rate, has been studied in [7]. In 2004 
Lu, Hu and Li [8] provide the first 34 coefficients 𝐴𝑖 with great accuracy (17 significant digits for 𝐴1) by using a collocation Trefftz 
method. Moreover, in 2006 Li, Chan, Georgiou and Xenophontos [9] solved the Motz problem using different boundary approximation 
methods and presented converged results for the leading 35 singular coefficients. The first 20 values of these coefficients are reported 
in Table 1.

Efficient standard numerical methods like finite element, boundary element, finite difference and spectral methods are typically 
employed in solving elliptic partial differential equations [10–13,3,14]. These methods, however, face challenges in handling prob-

lems with singularities, leading to a decline in their high-order convergence rates. Such singularities are commonly encountered in 
engineering problems, either due to sudden changes in boundary conditions on smooth boundaries or to the presence of re-entrant 
corners. To address the numerical solution challenges of elliptic problems with boundary singularities, the common strategy is a grid 
refinement near the singularity. While this approach can be effective, it significantly raises computational costs and does not always 
yield satisfactory efficiency.

An improved solution is to integrate analytical insights about the singularities directly into the numerical model. Following 
Motz’s pioneering work, these specialized methods have been frequently employed to enhance the precision of traditional numerical 
approaches. The core concept involves employing the asymptotic solution form (3) close to the singularity and a standard numerical 
method for the remaining domain. The unknown coefficients of the asymptotic solution are determined by matching them with 
the numerical solution at specific boundary nodes. For two-dimensional Laplace and Poisson equations, such methods have been 
successfully applied in conjunction with finite difference and finite element techniques. In boundary element methods, the domain’s 
entire solution is approximated using the leading terms of the local asymptotic expansion, with the expansion coefficients computed 
by minimizing the boundary condition residuals at selected boundary nodes [4,15–17].

Recently, methods capable to work with data irregularly distributed across the problem domain have been incrementally adopted 
to solve differential problems [18–21]. The multinode Shepard method [22] has been used to solve BVPs too [23,24] and it has 
88

proven to be an interesting computational alternative to the most commonly adopted methods [25–27]. In this paper, we extend the 
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multinode Shepard method by including additional enrichment functions to capture the singularity in solving the Motz’s problem. 
The multinode cardinal Shepard basis is enriched with special functions allowing to catch the singularity at the origin giving the 
method more flexibility.

In order to keep the paper self-contained, in Section 2 the method is briefly explained and in Section 3 some numerical experiments 
are presented. In Section 4 the enriched multinode Shepard method is introduced and simulations are performed on different data 
sets to investigate the impact on the accuracy, by varying the number of enrichment functions.

2. Fundamentals on the multinode Shepard method

The multinode Shepard method allows the reconstruction of a function from scattered data in the multidimensional euclidean 
space by combining local interpolation polynomials of total degree with inverse distance weighted basis functions [28]. Since the 
specificity of Motz’s problem, here we set Ω = (−1, 1) × (0, 1). Let  = {𝜼1, … , 𝜼𝑛} ⊂ Ω̄ with 𝜼𝒊 ≠ 𝜼𝒋 , for 𝑖 ≠ 𝑗,  = {𝑓1, … , 𝑓𝑛} the 
known function values at the nodes 𝜼𝑖 and Π𝑟(ℝ2) the space of bivariate polynomials of total degree 𝑟.

To construct the multinode Shepard operator we set

𝑚 = (𝑟+ 1)(𝑟+ 2)
2

= dim
(
Π𝑟(ℝ2)

)
and define injective maps

𝜙𝜏 ∶ {1,… ,𝑚}⟶ {1,… , 𝑛}, 𝜏 = 1,… , 𝑠,

with 𝜏𝜅 ∶= 𝜙𝜏 (𝜅), and we consider a cover of  by means of subsets 𝛾𝜏 = {𝜼𝜏1 , … , 𝜼𝜏𝑚}, 𝜏 = 1, … , 𝑠, for which it exists a unique 
polynomial 𝑝𝜏 (𝒙) ∈Π𝑟(ℝ2) such that

𝑝𝜏 (𝜼𝜏𝜅 ) = 𝑓𝜏𝜅 𝜏 = 1,… , 𝑠, 𝜅 = 1,… ,𝑚. (4)

In practice, each set 𝛾𝜏 is realized by selecting a subset of 𝑚 discrete Leja points from a set of 𝑚 + 𝑞, 𝑞 > 0 nearby nodes (for more 
details see [23,29,30]). The interpolant (4) is represented as

𝑝𝜏 (𝒙) =
𝑚∑
𝜄=1

𝓁𝜏,𝜄(𝒙)𝑓𝜏𝜄 , 𝒙 ∈ℝ2,

where 𝓁𝜏,𝜄(𝒙) are the Lagrange fundamental polynomials expressed in the Taylor basis centered at the barycenter 𝜼(𝑏)𝜏 of 𝛾𝜏 , that is,

𝓁𝜏,𝜄 (𝒙) =
∑
|𝛼|≤𝑟 𝑎

(𝜏,𝜄)
𝛼

(
𝒙− 𝜼(𝑏)𝜏

)𝛼
, (5)

with 𝛼 ∈ℤ2
+ being a multi-index [31]. By considering the multinode basis functions related to the cover {𝛾𝜏}𝑠𝜏=1

𝐾𝜈,𝜏 (𝒙) =

𝑚∏
𝜄=1

‖‖‖𝒙− 𝜼𝜏𝜄
‖‖‖−𝜈

𝑠∑
𝑙=1

𝑚∏
𝛽=1

‖‖‖𝒙− 𝜼𝑙𝛽
‖‖‖−𝜈

, 𝜏 = 1,… , 𝑠; 𝜈 > 0, (6)

the multinode Shepard approximant is defined as follows

𝜈[𝑓 ] (𝒙) =
𝑠∑

𝜏=1
𝐾𝜈,𝜏 (𝒙)𝑝𝜏 (𝒙) . (7)

The functions 𝐾𝜈,𝜏 (𝒙) satisfy the following properties

1.

𝑠∑
𝜏=1

𝐾𝜈,𝜏 (𝒙) = 1, 𝒙 ∈ℝ2

2. 𝐾𝜈,𝜏

(
𝜼𝜄

)
= 0 for all 𝜼𝜄 ∉ 𝛾𝜏

3.
∑
𝜏∈𝜄

𝐾𝜈,𝜏

(
𝜼𝜄

)
= 1,

4. ∇𝐾𝜈,𝜏

(
𝜼𝜄

)
= 𝟎 for all 𝜼𝜄 ∉ 𝛾𝜏 , 𝜈 ∈ 2ℤ+, 𝜈 > 1

5.
∑
𝜏∈𝜄

∇𝐾𝜈,𝜏

(
𝜼𝜄

)
= 𝟎, 𝜈 ∈ 2ℤ+, 𝜈 > 1

6. H𝐾𝜈,𝜏

(
𝜼𝜄

)
= 𝟎 for all 𝜼𝜄 ∉ 𝛾𝜏 , 𝜈 ∈ 2ℤ+, 𝜈 > 2,

7.
∑

H𝐾
(
𝜼
)
= 𝟎, 𝜈 ∈ 2ℤ , 𝜈 > 2
89

𝜏∈𝜄
𝜈,𝜏 𝜄 +
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where ∇𝐾𝜈,𝜏 (𝒙) and H𝐾𝜈,𝜏 (𝒙) are the gradient and the Hessian matrix of 𝐾𝜈,𝜏 and 𝜄, 𝜄 = 1, … , 𝑛, is the set of indices 𝜏 ∈ {1, … , 𝑠}
such that 𝜼𝜄 ∈ 𝛾𝜏 .

The properties 1-3 imply that 𝜈 [𝑓 ] interpolates 𝑓𝜄, 𝜄 = 1, … , 𝑛, and 𝜈[𝑝] = 𝑝 for all 𝑝 ∈ Π𝑟(ℝ2), since the uniqueness of 
polynomial 𝑝𝜏 (𝒙), 𝜏 = 1, … , 𝑠.

By appropriately handling (7) we can express the multinode Shepard approximant as follows

𝜈[𝑓 ] (𝒙) =
𝑛∑

𝜄=1
𝜈,𝜄 (𝒙)𝑓𝜄 (8)

where, for each 𝜄 = 1, … , 𝑛 we assume

𝜈,𝜄 (𝒙) =
∑
𝜏∈𝜄

𝐾𝜈,𝜏 (𝒙)𝓁𝜏,𝜄 (𝒙) . (9)

By denoting with 𝛿𝜅𝜄 the Kronecker delta function, we observe that

𝜈,𝜄(𝜼𝜅 ) = 𝛿𝜅𝜄, 𝜅, 𝜄 = 1,… , 𝑛, (10)

so that the set {𝜈,𝜄}𝑛𝜄=1 is linearly independent on the set  . From now on we refer to {𝜈,𝜄}𝑛𝜄=1 as the multinode cardinal Shepard 
basis.

In applying the multinode Shepard approximant to numerically solve boundary value problems, it is helpful to rearrange the terms 
in (8) by splitting them according to the boundary conditions [23]. In the Motz’s problem, it is useful a reordering of the nodes in 
as follows

𝜼𝜅 ∈Ω, 𝜅 = 1,… , 𝑛𝐼 ;
𝜼𝜅 ∈ Γ2 ∪ Γ4, 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 ;
𝜼𝜅 ∈ Γ5, 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 ;
𝜼𝜅 ∈ Γ1 ∪ Γ3, 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 + 1,… , 𝑛,

where 𝑛𝐼 is the number of the interior nodes, 𝑛Γ𝑖 , 𝑖 = 1, … , 4, is the number of nodes on the boundary Γ𝑖, respectively while 𝑛 is the 
total number of nodes.

3. Solution of the Motz’s problem through the multinode Shepard method

Let us assume that the approximate solution 𝑢̂ of the Motz’s problem is expressed as

𝑢̂ (𝒙) =
𝑛∑
𝜄=1

𝜈,𝜄 (𝒙) 𝑢̂𝜄, (11)

where 𝑢̂𝜄 = 𝑢̂
(
𝜼𝜄

)
are the unknown coefficients and 𝜼𝜄 are the collocation points. By imposing to the approximate solution (11) the 

interior and the boundary conditions (see equations (1) and (2), respectively), we get a collocation matrix whose entries can be 
easily computed by taking into account the properties 4-7 satisfied by the functions 𝐾𝜈,𝜏 and the Kronecker delta property of the 
fundamental Lagrange polynomials 𝓁𝜏,𝜄. More precisely, we obtain

𝐴𝜅𝜄 = Δ𝜈,𝜄 (𝒙) |𝒙=𝜼𝜅
=

∑
𝜏∈𝜄

Δ
(
𝐾𝜈,𝜏 (𝒙)𝓁𝜏,𝜄 (𝒙)

) |𝒙=𝜼𝜅
=

∑
𝜏∈𝜄

(
𝐾𝜈,𝜏

(
𝜼𝜅

)
Δ𝓁𝜏,𝜄

(
𝜼𝜅

)
+ 2∇𝐾𝜈,𝜏

(
𝜼𝜅

)
⋅∇𝓁𝜏,𝜄

(
𝜼𝜅

))
, 𝜅 = 1,… , 𝑛𝐼 , 𝜄 = 1,… , 𝑛,

(12)

𝐴𝜅𝜄 =
𝜕𝜈,𝜄

𝜕𝑦

(
𝜼𝜅

)
=

∑
𝜏∈𝜄

𝐾𝜈,𝜏

(
𝜼𝜅

) 𝜕𝓁𝜏,𝜄

𝜕𝑦

(
𝜼𝜅

)
, 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 , 𝜄 = 1,… , 𝑛, (13)

𝐴𝜅𝜄 =
𝜕𝜈,𝜄

𝜕𝑥

(
𝜼𝜅

)
=

∑
𝜏∈𝜄

𝐾𝜈,𝜏

(
𝜼𝜅

) 𝜕𝓁𝜏,𝜄

𝜕𝑥

(
𝜼𝜅

)
, 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 , 𝜄 = 1,… , 𝑛, (14)

𝐴𝜅𝜄 =𝜈,𝜄(𝜼𝜅 ), 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 + 1,… , 𝑛, 𝜄 = 1,… , 𝑛. (15)

By taking into account the Dirichlet boundary conditions (2) on Γ1 ∪ Γ3, we get

𝑢̂𝜅 = 𝑢(𝜼𝜅 ), 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 + 1,… , 𝑛.
90

Therefore, the collocation linear system reduces to the order 𝑛𝑈 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 with



Applied Numerical Mathematics 205 (2024) 87–100F. Dell’Accio, F. Di Tommaso and E. Francomano

Fig. 2. Set of 𝑛𝐼 = 41 × 21 gridded interior points coupled with 𝑛Γ1
= 𝑛Γ3

= 22 Chebyshev points of the first kind on [−1, 0] and [0, 1] respectively, 𝑛Γ2
= 𝑛Γ5

= 20
equispaced points on [4 × 10−2,1

)
and (0, 1] respectively, and 𝑛Γ4

= 39 equispaced points on (−1, 1).

Fig. 3. Sparsity pattern of the collocation matrix related to the points distribution of Fig. 2.

𝐴𝜅𝜄 =Δ𝜈,𝜄 (𝒙) |𝒙=𝜼𝜅 , 𝜅 = 1,… , 𝑛𝐼 , 𝜄 = 1,… , 𝑛𝑈

𝐴𝜅𝜄 =
𝜕𝜈,𝜄

𝜕𝑦

(
𝜼𝜅

)
, 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 , 𝜄 = 1,… , 𝑛𝑈

𝐴𝜅𝜄 =
𝜕𝜈,𝜄

𝜕𝑥

(
𝜼𝜅

)
, 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 1,… , 𝑛𝑈 , 𝜄 = 1,… , 𝑛𝑈 ,

(16)

and known term

𝑦𝜅 = −
𝑛∑

𝜄=𝑛𝑈+1
Δ𝜈,𝜄 (𝒙) |𝒙=𝜼𝜄 𝑢(𝜼𝜄), 𝜅 = 1,… , 𝑛𝐼 ,

𝑦𝜅 = −
𝑛∑

𝜄=𝑛𝑈+1

𝜕𝜈,𝜄

𝜕𝑦

(
𝜼𝜄

)
𝑢(𝜼𝜄), 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 ,

𝑦𝜅 = −
𝑛∑

𝜄=𝑛𝑈+1

𝜕𝜈,𝜄

𝜕𝑥

(
𝜼𝜄

)
𝑢(𝜼𝜄), 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 1,… , 𝑛𝑈 .

(17)
91
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Fig. 4. Error with gridded points and 𝑟 = 3. Left: absolute error on the surface of the approximate solution. Right: approximation behavior along the boundary 
embedding the singularity. The solid line refers to the 27 terms of the series expansion; the dashed line refers to the multinode Shepard method.

Fig. 5. Set of 𝑛𝐼 = 41 × 21 Halton interior points coupled with 𝑛Γ1
= 𝑛Γ3

= 22 Chebyshev points of the first kind on [−1, 0] and [0, 1] respectively, 𝑛Γ2
= 𝑛Γ5

= 20
equispaced points on [4 × 10−2,1

)
and (0, 1] respectively, and 𝑛Γ4

= 39 equispaced points on (−1, 1).

3.1. Numerical experiments

In this section, we perform some numerical experiments to test the approximation accuracy of the proposed method in solving 
Motz’s problem by using different sets of collocation points. We set 𝜈 = 4 and, for the computation of the errors, we take as the exact 
solution the truncation of the series expansion (3) to the first 27 terms.

In the first experiment (see Fig. 2), we consider:

• 𝑛𝐼 = 41 × 21 gridded interior points;

• 𝑛Γ1 = 𝑛Γ3 = 22 Chebyshev points of the first kind on [−1, 0] and [0, 1], respectively;

• 𝑛Γ2 = 𝑛Γ5 = 20 equispaced points on [0.04, 0.952] and [0.05, 1], respectively;

• 𝑛Γ4 = 39 equispaced points on [0.95, 0.95].

We set 𝑟 = 3 and we generate the covering 
{
𝛾𝜏
}𝑠

𝜏=1 by considering, for each collocation point 𝜼𝜄, 𝜄 = 1, … , 𝑛, sets of 17 nearest points 
(𝑚 = 10, 𝑞 = 7). The collocation matrix has a sparsity of about 96% and its sparsity pattern is shown in Fig. 3. The absolute error 
on the surface of the approximate solution is shown in Fig. 4 (left). A maximum absolute error of 3.66𝑒 + 1 and a root mean square 
error of 3.87 are reached. Moreover, in Fig. 4 (right) we display the behavior of the approximation along the boundary embedding 
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the singularity.
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Fig. 6. Sparsity pattern of the collocation matrix for points distribution of Fig. 5.

Fig. 7. Error with Halton points and 𝑟 = 4. Left: absolute error on the surface of the approximate solution. Right: approximation behavior along the boundary embedding 
the singularity. The solid line refers to the 27 terms of the series expansion; the dashed line refers to the multinode Shepard method.

A second experiment has been performed with a set of 𝑛𝐼 = 41 × 21 Halton points in (0, 1)2 moved into (−1, 1) × (0, 1) by means 
of the affine map

(𝑥, 𝑦)↦ (2𝑥− 1, 𝑦), (𝑥, 𝑦) ∈ℝ2 (18)

coupled with the boundary points of the first experiment (see Fig. 5). We set 𝑟 = 4 and we generate the covering 
{
𝛾𝜏
}𝑠

𝜏=1 by con-

sidering, for each collocation point 𝜼𝑖, 𝑖 = 1, … , 𝑛, sets of 18 nearest points (𝑚 = 15, 𝑞 = 3). The collocation matrix has a sparsity of 
about 95% and its sparsity pattern is shown in Fig. 6. The absolute error on the surface of the approximate solution is displayed in 
Fig. 7 (left). In particular, we obtain a maximum absolute error of 4.08𝑒 +1 and a root mean square error of 3.98. Moreover, in Fig. 7

(right) we display the behavior of the approximation along the boundary embedding the singularity.

The presented numerical results show that the multinode Shepard collocation method is not so accurate near the singular point. 
The loss of accuracy is because the exact solution presents a singularity at the origin which is not captured by the multinode Shepard 
approximant. In the next Section, we introduce an improvement of the standard methodology to overcome such issue.

4. Solution of the Motz’s problem through the enriched Multinode Shepard method

To improve the accuracy of the numerical solution, in line with [32], we need to avoid the oscillations occurring near the singular 
point. To this aim, it is convenient to enlarge the functional space spanned by the multinode cardinal Shepard basis (9) by including 
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functions that are able to capture the singularity on the boundary. More precisely, we enrich the functional space with the 𝑁 functions
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Table 2

Values of 𝑞 for the experiment on gridded data varying the number 𝑁 of the enrichment functions 𝑓𝓁 .

𝑁 29 × 13 41 × 21 61 × 31

𝑚 = 10 𝑚 = 15 𝑚 = 21 𝑚 = 10 𝑚 = 15 𝑚 = 21 𝑚 = 10 𝑚 = 15 𝑚 = 21

1 8 13 20 7 8 15 9 12 15

2 6 13 20 8 13 15 8 8 15

3 6 13 20 8 13 14 7 8 15

4 7 12 20 7 13 14 8 8 15

5 7 15 19 7 7 15 8 8 15

6 7 15 19 7 7 15 8 8 15

7 13 12 20 8 7 15 13 8 15

8 13 12 18 7 7 15 11 8 15

9 9 19 17 8 7 15 8 8 15

10 9 20 17 11 7 15 9 9 15

11 9 12 17 11 7 14 9 8 15

12 13 12 15 7 7 14 8 8 14

13 9 12 15 11 7 14 9 12 14

14 9 12 14 10 7 14 11 9 15

15 9 12 11 7 7 15 9 8 15

16 13 12 20 7 7 13 9 8 15

17 13 12 19 11 7 15 8 8 14

18 13 19 11 11 7 13 8 8 15

19 13 19 10 11 7 13 11 8 15

20 13 17 13 7 7 3 11 8 14

21 9 20 14 11 7 10 8 8 15

22 9 20 18 11 7 13 13 9 15

23 9 17 11 11 7 13 13 8 15

24 9 17 14 11 7 13 12 8 15

25 8 12 13 11 7 13 11 8 14

26 10 19 16 11 7 13 11 8 9

27 8 11 19 11 10 7 12 8 14

28 17 16 11 15 6 13 11 8 11

29 14 19 12 15 10 3 11 8 2

30 15 20 14 11 10 12 8 9 14

𝑓𝓁(𝜌, 𝜃) = 𝜌
2𝓁−1
2 cos

(
2𝓁 − 1

2
𝜃

)
, 𝓁 = 1,… ,𝑁, (19)

where 𝜌 and 𝜃 are the polar coordinates of the point 𝒙 = (𝑥, 𝑦), that is

𝜌 =
√
𝑥2 + 𝑦2 and 𝜃 = arccos

(
𝑥√

𝑥2 + 𝑦2

)
.

More precisely, the approximate solution of the Motz problem is now represented as

𝑢̂ (𝒙) =
𝑛∑
𝜄=1

∑
𝜏∈𝜄

𝜈,𝜏 (𝒙)𝛼𝜄 +
𝑁∑
𝓁=1

𝛽𝓁𝑓𝓁 (𝜌, 𝜃) . (20)

Note that the functions 𝑓𝓁 in (19) appear in the exact solution (3) and have a singularity of the first order at the origin, therefore are 
suitable to reproduce the derivative jump. In particular, for each 𝓁 = 1, … , 𝑁 , we have

𝜕𝑓𝓁

𝜕𝑥
= 2𝓁 − 1

2
𝜌

2𝓁−5
2

(
𝑥 cos

(
2𝓁 − 1

2
𝜃

)
+ 𝑦 sin

(
2𝓁 − 1

2
𝜃

))
,

𝜕𝑓𝓁

𝜕𝑦
= 2𝓁 − 1

2
𝜌

2𝓁−5
2

(
𝑦 cos

(
2𝓁 − 1

2
𝜃

)
− 𝑥 sin

(
2𝓁 − 1

2
𝜃

))
,

and

𝜕2𝑓𝓁

𝜕𝑥2
= (2𝓁 − 1)(2𝓁 − 3)

4
𝜌

2𝓁−9
2

(
(𝑥2 − 𝑦2) cos

(
2𝓁 − 1

2
𝜃

)
+ 2𝑥𝑦 sin

(
2𝓁 − 1

2
𝜃

))
,

𝜕2𝑓𝓁

𝜕𝑦2
= (2𝓁 − 1)(2𝓁 − 3)

4
𝜌

2𝓁−9
2

(
(𝑦2 − 𝑥2) cos

(
2𝓁 − 1

2
𝜃

)
− 2𝑥𝑦 sin

(
2𝓁 − 1

2
𝜃

))
,

then,
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Δ𝑓𝓁 = 0.
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Fig. 8. Root mean square error (in logarithmic scale) on sets of 29 × 13 interior gridded points (top left), 41 × 21 interior gridded points (top right), 61 × 31 interior 
gridded points (bottom) varying the degree 𝑟 from 3 to 5.

Consequently, in the collocation process, we have to take into account the conditions related to the enrichment functions 𝑓𝓁 which 
correspond to add 𝑁 rows and 𝑁 columns to the collocation matrix. More precisely, the entries of the collocation matrix related to 
the multinode Shepard operator remain as in (12)-(15) with the addition of the following

𝐴𝜅𝜄 = 0, 𝜅 = 1,… , 𝑛𝐼 ,

𝐴𝜅𝜄 =
𝜕𝑓𝜄−𝑛
𝜕𝑦

(𝜼𝜅 ), 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 ,

𝐴𝜅𝜄 =
𝜕𝑓𝜄−𝑛
𝜕𝑥

(𝜼𝜅 ), 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 1,… , 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 ,

𝐴𝑘𝜄 = 𝑓𝜄−𝑛(𝜼𝜅 ), 𝜅 = 𝑛𝐼 + 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 + 1,… , 𝑛,

(21)

with 𝜄 = 𝑛 + 1, … , 𝑛 +𝑁 ; and finally

𝐴𝜅𝜄 = 𝑓𝜄−𝑛(𝜼𝜅 ), 𝜄 = 1,… , 𝑛𝐼 ,

𝐴𝜅𝜄 = 0, 𝜄 = 𝑛𝐼 + 1,… , 𝑛𝐼 +𝑁,
(22)

with 𝜅 = 𝑛 + 1, … , 𝑛 +𝑁 . The known term is

𝑦𝜅 =

⎧⎪⎪⎨⎪⎪⎩

0, 𝜅 = 0,… , 𝑛𝐼 ,

0, 𝜅 = 𝑛𝐼 + 1,… , 𝑛𝐼 + 𝑛𝑁𝑒𝑢,

0, 𝜅 = 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 1,… , 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 𝑛Γ1
500, 𝜅 = 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 𝑛Γ1 + 1,… , 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 𝑛𝐷𝑖𝑟,

0, 𝜅 = 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 𝑛𝐷𝑖𝑟 + 1,… , 𝑛𝐼 + 𝑛𝑁𝑒𝑢 + 𝑛𝐷𝑖𝑟 +𝑁,
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where 𝑛𝑁𝑒𝑢 = 𝑛Γ2 + 𝑛Γ4 + 𝑛Γ5 and 𝑛𝐷𝑖𝑟 = 𝑛Γ1 + 𝑛Γ3 .
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Fig. 9. Sparsity pattern of the collocation matrix for the case 𝑛𝐼 = 29 × 15 interior gridded points with 𝑟 = 3 and 𝑁 = 1 enrichment function (top left), 𝑁 = 10
enrichment functions (top right), 𝑁 = 20 enrichment functions (bottom left) and 𝑁 = 30 enrichment functions (bottom right).

4.1. Numerical experiments

In this section, we assess the effectiveness of the enriched multinode Shepard collocation method. Various experiments are con-

ducted on different data sets by varying the number of enrichment functions 𝑓𝓁 . The series expansion (3) with the first 27 terms is 
considered as the exact solution. All the experiments are performed by considering the following sets of points

• 𝑛𝐼 = 29 ×15 gridded or Halton points, 𝑛Γ1 = 𝑛Γ3 = 16 Chebyshev points of the first kind on [−1, 0] and [0, 1], 𝑛Γ4 = 27 equispaced 
points on [−0.928, 0.928], 𝑛Γ2 = 𝑛Γ5 = 14 equispaced points on [0.04, 0.931] and [0.071, 1], respectively;

• 𝑛𝐼 = 41 ×21 gridded or Halton points, 𝑛Γ1 = 𝑛Γ3 = 22 Chebyshev points of the first kind on [−1, 0] and [0, 1], 𝑛Γ4 = 39 equispaced 
points on [−0.95, 0.95], 𝑛Γ2 = 𝑛Γ5 = 20 equispaced points on [0.04, 0.952] and [0.05, 1], respectively;

• 𝑛𝐼 = 61 ×31 gridded or Halton points, 𝑛Γ1 = 𝑛Γ3 = 32 Chebyshev points of the first kind on [−1, 0] and [0, 1], 𝑛Γ4 = 59 equispaced 
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points on [−0.966, 0.966], 𝑛Γ2 = 𝑛Γ5 = 30 equispaced points on [0.04, 0.968] and [0.033, 1], respectively.
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Table 3

Values of 𝑞 for the experiment on Halton points varying the number 𝑁 of the enrichment functions 𝑓𝓁 .

𝑁 29 × 13 41 × 21 61 × 31

𝑚 = 10 𝑚 = 15 𝑚 = 21 𝑚 = 28 𝑚 = 10 𝑚 = 15 𝑚 = 21 𝑚 = 28 𝑚 = 10 𝑚 = 15 𝑚 = 21 𝑚 = 28

1 3 5 8 11 9 3 12 4 9 13 6 4

2 3 19 8 15 9 20 5 3 9 14 11 4

3 3 19 8 15 9 10 5 3 9 14 11 4

4 3 6 8 10 5 3 5 3 7 14 11 4

5 6 6 3 15 5 6 10 4 7 6 11 4

6 6 6 3 4 5 6 10 3 7 6 11 4

7 6 6 2 11 9 6 3 3 13 7 11 4

8 6 6 2 11 5 6 3 3 6 8 11 4

9 2 6 3 11 9 6 9 3 4 8 4 4

10 5 1 3 11 4 4 15 7 8 8 12 14

11 3 6 3 4 9 6 4 2 8 8 5 6

12 3 6 3 11 5 4 3 20 6 5 4 4

13 17 3 3 11 6 6 6 2 9 6 5 4

14 6 1 3 11 5 6 7 2 9 5 6 4

15 3 3 3 4 6 6 14 12 7 6 3 4

16 3 3 3 11 6 4 4 2 6 6 5 14

17 3 8 3 3 5 6 7 5 9 6 5 6

18 3 2 3 3 4 6 7 4 15 4 5 17

19 3 1 3 5 5 12 3 5 12 6 4 4

20 3 1 3 1 5 4 4 16 6 8 7 4

21 6 3 3 6 7 12 3 4 4 7 5 8

22 3 5 6 3 13 8 3 8 4 6 7 8

23 6 3 3 12 13 19 3 8 4 6 3 8

24 3 3 3 13 13 3 3 7 6 8 5 8

25 6 1 3 6 4 6 2 15 18 8 5 6

26 3 5 8 6 17 6 12 3 16 17 3 10

27 3 1 3 6 8 6 2 15 18 8 3 6

28 3 5 3 6 8 19 2 15 4 5 3 18

29 3 3 2 16 4 6 7 3 9 10 7 4

30 9 3 4 16 4 6 7 3 9 10 7 4

First simulations are performed with the degree 𝑟 of the local polynomial approximant varying from 3 to 5 and with the values of 
𝑞 as reported in Table 2. In Fig. 8 we display the semilog plot of the root mean square error by varying the number of enrichment 
functions 𝑁 from 1 to 30. We observe that the enriched method overcomes the standard one getting better as 𝑟 and 𝑁 increase. 
In Fig. 9 we report the sparsity pattern of the collocation matrix for the case 𝑛𝐼 = 29 × 15 with 𝑁 = 1, 10, 20, 30. According to the 
equations (21)-(22), we observe that, by increasing the number 𝑁 of functions 𝑓𝓁 , the sparsity pattern of the collocation matrix is 
about the same.

By varying the point distributions in the problem domain the good behavior of the enriched solution is confirmed. We consider 
sets of 𝑛𝐼 interior Halton points in (0, 1)2 moved into (−1, 1) × (0, 1) by means of the affine map (18). We set 𝑟 = 3, 4, 5, 6 and we 
realize the covering {𝛾𝜏}𝑠𝜏=1 by taking into account the values of 𝑞 as in Table 3. In Fig. 10 we display the semilog plot of the root 
mean square error varying 𝑁 and in Fig. 11 we report the sparsity pattern of the collocation matrix for the case 𝑛𝐼 = 29 × 15 with 
𝑁 = 1, 10, 20, 30.

5. Conclusion

In this paper the multinode Shepard method has been adopted to solve the Motz problem. This benchmark gives evidence that 
the standard method is not sufficiently accurate in solving problems with singularity on the boundary. In order to improve the 
approximation accuracy, the functional space spanned by the multinode cardinal Shepard basis has been enriched by including 
functions able to capture the discontinuity in the boundary conditions. The performance of the proposed approach improves by 
increasing both the number of enriched functions and the degree of the local polynomial approximant. Studies with gridded and 
scattered point distributions are conducted highlighting the numerical behavior of the standard and the enriched multinode Shepard 
method. Future works are oriented to apply the enriched multinode Shepard method to solve real problems with singularities in the 
boundary.
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Fig. 10. Root mean square error (in logarithmic scale) on sets of 29 × 13 interior Halton points (top left), 41 × 21 interior Halton points (top right), 61 × 31 interior 
Halton points (bottom) varying the degree 𝑟 from 3 to 6.
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