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Abstract

One of the most relevant and debated topics related to the effects of the climate

change is whether intense rainfall events have become more frequent over the

last decades. It is a crucial aspect, since an increase in the magnitude and fre-

quency of occurrence of heavy rainfall events could result in a dramatic

growth of floods and, in turn, human lives losses and economic damages.

Because of its central position in the Mediterranean area, Sicily has been often

screened with the aim to capture some trends in precipitation, potentially

related to climate change. While Mann-Kendall test has been largely used for

the rainfall trend detection, in this work a different procedure is considered.

Precipitation trends are here investigated by processing the whole rainfall

time-series, provided by the regional agency SIAS at a 10-min resolution,

through the quantile regression method by aggregating precipitation across a

wide spectrum of durations and considering different quantiles. Results show

that many rain gauges are characterized by an increasing trend in sub-hourly

precipitation intensity, especially at the highest quantiles, thus suggesting that,

from 2002 to 2019, sub-hourly events have become more intense in most of the

island. Moreover, by analysing some spatial patterns, it has been revealed that

the south and the east of Sicily are more interested in significant increasing

rainfall trends, especially at the 10-min duration. Finally, the comparison

between the two procedures revealed a stronger reliability of the quantile

regression in the trend analysis detection, mainly due to the possibility of

investigating the temporal variation of the tails of precipitation distribution.
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1 | INTRODUCTION

For about 30 years climate change has been, and still
today is, one of the most relevant and debated topics for

the scientific community. Although the signals, impacts,
and effects of climate change appear to be obvious and
we have been hearing more and more about matters such
as global warming, rising of oceans and seas temperature,
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rising of global sea level, decreasing of arctic sea ice
extent, melting of glaciers, increasing of extreme events
(e.g., heavy rainfall events and/or droughts), and so forth,
still today a part of the scientific community is sceptical
about climate change (Koutsoyiannis, 2020). What is cer-
tain is that if no action will be taken to face the climate
change, some climate tipping points might be reached
(Lenton, 2011), resulting in strong consequences for the
Earth difficult, or even impossible, to revert (e.g., the ice
melt in the poles). As an example, an increasingly warm
climate could result in an increase of the occurrence of
longer and more intense droughts in the 21st century
(Field et al., 2018) with relevant implications in water
availability for human, vegetation, and agriculture
(Thuiller et al., 2011). At the other side of the spectrum,
an increasing trend in the magnitude and frequency of
heavy rainfalls could lead to floods and, consequentially,
to fatalities and economic damages (Tabari, 2020). All
these aspects, in the long-term, could produce social and
economic frictions between populations, leading to a
growth of future risk of conflicts (Mach et al., 2019).

In this respect, already in the past, the Mediterranean
region has been referenced as one of the most responsive
regions to climate change, so much to be defined as a pri-
mary hotspot of climate change (Giorgi, 2006). Also, the
last report from the Intergovernmental Panel on Climate
Change has highlighted the Mediterranean as one of the
most vulnerable regions in the world to the impacts of
global warming (IPCC, 2019). One of the most debated
points, still today, is whether these changes have led to
an increase in frequency and magnitude of heavy rainfall
events over the Mediterranean area in the last years. The
detection of an increasing trend in such a kind of events
is very important since, other than being an indicator of
a climate alteration, it could support political decisions to
mitigate their effects (Ingold and Fischer, 2014). For this
reason, over the last decades, a great number of studies
have been aimed to detect the presence of trends in pre-
cipitation time-series over the Mediterranean region.

In general, to study the changes in rainfall character-
istics, there is no doubt that it is necessary to perform a
robust statistical analysis of historical data. Over the
years, one of the most used methods to detect trends in
precipitation has been the non-parametric Mann–
Kendall (hereinafter referred to as MK) test. It has
largely been used also in trend detection for extreme
events, often coupled with different methods used for
extracting extremes, such as the Block-Maxima (Pujol
et al., 2007; Villarini, 2012; Westra et al., 2013; Wi
et al., 2016), the Peak Over Threshold (POT) (Villarini
et al., 2011b; Tramblay et al., 2012; Wi et al., 2016) and
the indices developed by the Expert Team on Climate
Change Detection and Indices (ETCCDI) (Song

et al., 2015; Panda et al., 2016; Gentilucci et al., 2020). A
great number of studies involving the MK test have been
applied over the Mediterranean area (Norrant and
Douguédroit, 2006; Pujol et al., 2007; Chaouche
et al., 2010; Valdes-Abellan et al., 2017) and particularly
to the Italian peninsula (Buffoni et al., 1999; Crisci
et al., 2002), its southern part (Longobardi and
Villani, 2010; Caloiero et al., 2011), and its main islands,
that is, Sardinia and Sicily (Bonaccorso et al., 2005; Can-
narozzo et al., 2006; Arnone et al., 2013; Caloiero
et al., 2019), since their central geographic location in
the Mediterranean basin. Focusing on Sicily (Italy),
many studies have involved the use of the MK test for
detecting precipitation trends at several durations and
evaluating their significance. As an example, Bonaccorso
et al. (2005) applied the MK test to Sicilian rainfall annual
maxima at the canonical durations (i.e., 1, 3, 6, 12, and
24 hr) for those stations having more than 50 years of data.
The authors found a relationship between the trend direc-
tion and duration, highlighting an increasing trend at the
shortest time scale and an opposite behaviour at the longest
ones. Arnone et al. (2013) used the MK test coupled with a
non-parametric estimate, presented by Hirsch et al. (1982),
to determinate the magnitude of trends and thus identify
changes in rainfall characteristics at the canonical durations
for Sicily. The authors found out that the percentage of
gauges showing a positive trend tends to decrease when
duration increases, finding the maximum percentage at the
1-hr duration. For this reason, they guessed that a further
increase in the percentage of stations showing a positive
trend and, consequently, of extreme events could be extrap-
olated towards sub-hourly durations. In addition, the num-
ber of stations characterized by a non-significant trend
increases with duration and consists of the greatest part of
the gauges under study.

Differently from the MK test, the quantile regres-
sion (hereinafter referred to as QR) analysis (Koenker
and Bassett, 1978; Koenker, 2005) allows one to per-
form a linear regression on the whole data time-series,
taking into account those values greater than a selected
quantile. This means that, if very high (low) quantiles
are considered, QR allows exploring the upper (lower)
tail of the probability distribution function of the data.
QR method has been applied in the past to study trends
at different temporal and spatial scales for rainfall
(Villarini et al., 2011a; Bartolini et al., 2014; Lausier
and Jain, 2018) and other climatic variables, such as
temperature (Barbosa et al., 2011). Lausier and
Jain (2018) applied the QR method to the annual total
precipitation at a global scale, comparing results with
those provided by a linear regression model. The
authors, who found different precipitation trends
related to the mean (linear regression model) and the
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median (QR model at 0.5 quantile) of time-series,
asserted that a wrong trend interpretation, deriving by
using an easier method as simple linear regression,
could have implications for some environmental sys-
tems. Hence, they suggested to use a more robust
method, such as the QR. Lastly, by detecting trends for
the lower and upper tails of precipitation probability
density function, they classified the whole planet into
three risk classes, with the aim to identify some strate-
gies to deal with them. Bartolini et al. (2014) started
from two hourly rainfall data sets to look for trends in
precipitation amount, frequency, and intensity in two
locations of Tuscany (Italy) by means of a QR method.
Results showed a tendency to a decrease of total rain-
fall and wet hours, occurring in winter and spring, and to
an increase of hourly average precipitation during wet
hours. With reference to rainfall at sub-daily timescale,
some studies used the QR with the aim to understand
changes of sub-daily precipitation with temperature. For
instance, Van de Vyver et al. (2019) detected the scaling
rates of sub-daily precipitation with dew point temperature
at various quantiles, highlighting a general increase of rain-
fall extremes depicted by quantiles higher than 0.9, with
dew point temperature in various cities of Europe. How-
ever, to our knowledge, there seems to be a lack of studies
involving applications of QR in detecting trends of short-
duration (i.e., hourly and sub-hourly) precipitation, which
is one of the main purposes of the present study.

Starting from the above-mentioned conjecture of
Arnone et al. (2013), this work analyses a 10-min resolution
precipitation data set, different from that used by Arnone
et al. (2013), in order to identify eventual statistically signifi-
cant trends for Sicily at the sub-hourly durations and thus
verify if the hourly and sub-hourly precipitation are charac-
terized by the same behaviour, both in terms of trend direc-
tion and significance. To determinate an eventual existence
of trends and study their magnitude, a different method
than that used in Arnone et al. (2013), namely the QR
method, is here used. The Student's t test is used to assess
the significance of trends. Finally, the presence of any spa-
tial patterns of trends in magnitude is globally and locally
verified through a spatial autocorrelation analysis based on
the Global Moran's I Index (Moran, 1950) and the Local
Moran (Anselin, 1995), respectively.

Despite the observation period here investigated is not
enough long to infer properly about climate change effects,
the results of the study may still be a further potential signal
that something is probably changing in Sicilian and, more
in general, in Mediterranean climate, as several studied
have already pointed out over the years (Giorgi, 2006;
Giorgi and Lionello, 2007; Arnone et al., 2013; Forestieri
et al., 2018). In this sense, the work attempts to contribute

to the research in the field of climate change and its impact
on heavy rainfall occurrence trying to answer to the follow-
ing research questions: is it possible to identify statistically
significant trends at the sub-hourly durations, thus verifying
the conjecture of Arnone et al. (2013)? Is there an increase
in the significance of rainfall trends with the duration? And
if so, is it possible to assume that this aspect mainly con-
cerns extreme rather than ordinary events? Finally, is it pos-
sible to identify any spatial pattern of trends magnitude?

The article is organized as follows. Section 2 intro-
duces the methodology and data used in this study. Here
just a brief description of the detection trends methods is
provided. Section 3 is comprehensive of the achieved
results and the related discussions. Lastly, Section 4
reports the conclusions concerning the study.

2 | METHODOLOGY AND
DATA SET

In this paper, two different procedures are used to identify
trends in rainfall time-series: the QR method, originally
developed for econometric and statistical applications and
subsequently applied also in the environmental field, associ-
ated with the Student's t test, and the MK test, largely used
in extreme events analysis, coupled with the Sen's slope esti-
mator. The two procedures are briefly described in the
following.

2.1 | Quantile regression procedure

QR method, as introduced by Koenker and Bassett (1978),
can be considered as a natural extension of the standard lin-
ear regression models, due to the possibility to perform a
regression on quantiles rather than just on the mean. The
capability to investigate, at any quantile level, the linear
relationship between two or more variables provides a more
complete view of the statistical properties of a sample, also
inspecting the tails of its distribution. Furthermore, stan-
dard regression models are strongly influenced by the pres-
ence of outliers, aspect that could be quite annoying
especially in detecting trends along time.

The main difference between a simple linear regression
and the QR method is on the evaluation of coefficients.
While in a classical bi-dimensional simple linear regression
the intercept and the slope of the regression line are evalu-
ated through the least square minimization problem, the
QR model is based on a minimization of the sum of the
weighted absolute value of a difference between the ith
observation (yi) and the τth quantile line (β0(τ)+ β1(τ)xi)
at xi:
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From Equation (1) it is possible to evince the depen-
dency of the intercept, β0, and the slope, β1, of the regres-
sion line on the quantile level τ, for any 0 < τ < 1. The
role of τ and (1− τ) is to weight the vertical distances,
that depend on the position of the observations with
respect to the τth quantile line. In particular, points
above the quantile line are weighted by τ, while those
below the quantile line are weighted by (1− τ), thus
meaning that the greater the considered quantile, the
more relevant are points above the quantile line in
the evaluation of the slope and intercept of the regression
line. To evaluate the trends significance, the Student's
t test has been applied to the QR results. The test is here
used to reject the null hypothesis, with a significance
level of .05 and .1, that the slope of the quantile line is
equal to zero. In order to have a measure of the accuracy
in estimating the slope and the intercept of the QR line,
the standard error is also computed with a sparsity
method, known as ‘nid’ (‘not independently and identi-
cally distributed error’) (Koenker, 2004). This method, as
considered by Koenker and Machado (1999), allows one
to estimate the sparsity function for data that are not
independently and identically distributed, assuming local
linearity of the conditional quantile function Q(τjx) in x,
where Q(�) indicates the conditional probability of the
quantile τ given the observed variable x. The ‘nid’
method is sensitive to the presence of many equal values
in the analysed data set; indeed, such a condition could
generate a singular matrix, from which the algorithm
cannot compute the SE and, consequently, the confi-
dence interval.

For further details on the QR method the reader is
referred to Koenker (2005) and Hao and Naiman (2007).

2.2 | Mann–Kendall procedure

The MK test (Mann, 1945; Kendall, 1948) has been
largely used in the history of hydrological trends, mainly
because it is a non-parametric test. Due to this aspect,
trends related to a generic variable can be obtained with-
out any assumption about the properties of its distribu-
tion. Furthermore, this method is not so much affected
by the presence of outliers.

Unlike the QR method, the MK test is usually not
applied to raw precipitation data (i.e., time series of rain-
fall depth originally recorded by the gauges), but it is gen-
erally used with specific data sets, such as annual
maxima (Bonaccorso et al., 2005; Arnone et al., 2013).
The null hypothesis in the test indicates that the popula-
tion from which the sample is extracted has no trend,
while the alternative hypothesis is that a trend exists. To
accept or decline the null hypothesis at a fixed signifi-
cance level (i.e., αsig) a comparison between αsig and a
local significance level (i.e., pvalue) is required. This last
term is obtained as follows:

pvalue=2 1−Φ ZSj jð Þ½ �, ð2Þ

where Φ(�) is the CDF (Cumulative Distribution Func-
tion) of a standard normal variate. The standardized test
statistic, ZS, follows a standard normal distribution and
can be computed as reported below:

ZS=

S−1
σ

if S>0

0 if S=0
S+1
σ

if S<0

8>>>><
>>>>:

ð3Þ

In Equation (3), σ is the variance of the standardized
normal distribution function followed by the Kendall's
S statistic, under the null hypothesis. The S statistic is
computed as the sign function of the difference between
two consecutive observations, namely xi and xj:

S=
Xn−1

i=1

Xn
j= i+1

sign xj−xi
� � ð4Þ

In the case of an autocorrelated series, the MK test
could detect a trend even if it is not real, as demonstrated
by Von Storch (1999). For this reason, a pre-whitening
procedure is usually suggested, especially when the
observed data set is shorter than 50 elements (Yue and
Wang, 2002). It consists in removing from each observa-
tion, xi, a component given by the product of the previous
one and the lag 1 serial correlation coefficient.

min
β0 τð Þ,β1 τð Þ

X
yi≥ β0 τð Þ+β1 τð Þxið Þ

τ yi− β0 τð Þ+β1 τð Þxið Þj j+
X

yi< β0 τð Þ+β1 τð Þxið Þ
1−τð Þ yi− β0 τð Þ+β1 τð Þxið Þj j

0
@

1
A ð1Þ
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In literature, MK is quite often coupled with the Sen's
slope method (Almeida et al., 2017; Güçlü, 2018), as an
estimator of the trend magnitude. This latter assumes
that the slope of the regression line is estimated as the
median of the ensemble of slopes derived by linking
the pairs of consecutive observed data (Sen, 1968).

2.3 | Spatial autocorrelation analysis

The Global Moran's I statistic (Moran, 1950) can be inter-
preted as an extension of the autocorrelation coefficient,
by means of a symmetric spatial weights' matrix filled by
the inverse of the geographic distance between the pairs
of points, where data are recorded. The value of Moran's
I ranges from −1 to 1 (same as the autocorrelation). The
Global Moran's I has been here used to perform a spatial
autocorrelation (hereafter SAC) analysis in order to verify
the presence of specific patterns in the spatial distribu-
tions of the trend magnitude.

In order to establish whether data are randomly distrib-
uted or not, the Moran's I must be compared with its
expected value, E[I]. In general, if I is less than E[I] data are
dispersed, while I values greater than E[I] indicate a clus-
tered pattern. When I is close to its expected value, instead,
data tend to be randomly distributed across the points.
However, since SAC analysis is an inferential statistic,
results must be interpreted on the base of null hypothesis,
stating that data are randomly distributed across points.
Therefore, the p-value and the Z-score of the analysis must
be assessed. The null hypothesis cannot be rejected if the p-
value is not statistically significant, thus meaning that data
are randomly distributed across the points. On the other
hand, for those cases in which the p-value is statistically sig-
nificant, that is, the spatial distribution of the processed var-
iable is not the result of a random spatial process, a positive
sign of the Z-score statistic reveals the presence of a clus-
tered pattern of the analysed feature, while a negative one
means that the spatial pattern is dispersed.

The Global Moran's I statistic is useful to conclude if
the spatial distribution of a given variable is globally clus-
tered or not, but a local statistical analysis is necessary to
derive the geographical position of a cluster. To this
regard, Anselin (1995) introduced a class of local indica-
tors of spatial association, known as LISA. Among all the
possible LISA, in this study the Local Moran has been
applied. The link between the two global and local indi-
cators is that the global I can be seen as an average value
(up to a factor of proportionality) of local Ii, where the
subscript i stands for the location of the measurement. It
is worth to mention that, even if the Local Moran reflects
the presence of significant local clusters, it does not mean
that the global spatial distribution of the feature needs to

be necessarily clustered. The local clusters are identified
by means of the Moran scatterplot, in which points have
x–y coordinates given by the original and the spatially
lagged variable, respectively. This scatterplot is divided
into four quadrants, in which the axes intersect in the
centroid of the point cloud. The upper-right and the -
lower-left quadrants refer to a positive spatial autocorre-
lation, representative of similar values at geographically
near location. On the opposite, the other two quadrants
represent a negative spatial autocorrelation, meaning that
there are dissimilar values at neighbouring locations. Com-
bining the information provided by the Moran scatterplot
with an indication of significance, it is possible to make a
classification into four classes. In particular, significant clus-
ters, identified in the upper-right and the lower-left quad-
rants, are denoted as high-high (HH) and low-low (LL),
while significant outliers, identified in the lower-right and
the upper-left quadrants, are denoted as high-low (HL) and
low-high (LH), respectively.

2.4 | Study area and rainfall data set

The trend analysis detection here proposed is applied for
Sicily, which is the largest island of the Mediterranean Sea.
The island has an extension of about 25,700 km2 and a mor-
phology that is characterized by a mountain range along
the longitudinal direction on the northern side and the Etna
volcano on the eastern side. Elevation ranges from 0 to
about 3,300 m a.s.l. in correspondence of the volcano Etna.
Precipitation across the island has a significant spatio-
temporal variability, with a mean annual precipitation
(MAP) ranging between about 360 mm in the southeast
part of the island and about 1,900 mm at the volcano Etna,
situated in the northern east side (Caracciolo et al., 2018;
Cipolla et al., 2020). Concerning temporal variability, the
greatest part of MAP occurs during the winter seasons,
while the summers are generally drier. Being Sicily the wid-
est island of the Mediterranean area and lying in the heart
of the Mediterranean Sea, it has a climate that can be con-
sidered as representative of an area quite extensive of the
Mediterranean region.

The precipitation data set used for the study was pro-
vided by the regional agency SIAS (Servizio Informativo
Agrometeorologico Siciliano; i.e., Agro-Meteorological Infor-
mation Service of Sicily) and covers the period 2002–2019.
SIAS rain gauge network consists of 107 tipping bucket
rain gauge stations rather homogeneously distributed
across the island with an average density equal to about
250 Km2�gauge–1. Data are retrieved with high temporal
resolution (10 min) allowing time aggregation when neces-
sary. The time-series are characterized by a high level of
homogeneity, as declared by the SIAS Agency. The survey
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sites were chosen according to the World Meteorological
Organization (WMO) standards and the strict criteria used
in data detection, management and validation provide a
high degree of uniformity over the whole island.

In order to avoid any misinterpretation in calculating
trends, the original data set from SIAS was preprocessed
by removing all those gauges with at least 1 year of miss-
ing data. This operation has led to take into account only
72 stations for further analyses (Figure 1). The metadata
(i.e., name, ID, location, and altitude) of the selected sta-
tions are reported in Table S1 in the Supporting
Information.

Before proceeding with the QR analysis, it was neces-
sary to carry out a further two more operations. Firstly,
in order to prevent a great number of null values from
being weighted in Equation (1), all the zero precipitation
values were removed from the data set. Moreover, to
guarantee the correct sequence of rainfall in time, each
record has been previously associated to a ‘timestamp’
that fixes its position in the timeline. Secondly, since the
‘nid’ method is sensitive to the presence of many equal
values, as stated in Section 2.1, a Gaussian white noise
(i.e., zero mean with a negligible standard deviation, here
fixed equal to 10−5 mm) was added to the original time-
series. Indeed, the raw 10-min data set includes plenty of
values equal to the rain gauge resolution (i.e., 0.2 mm)
and its multiples that invalidate such a method.

Starting from the modified data set, data have been
aggregated to coarser time resolutions (20, 30, 40 min
and 1, 3, 6, 12, 24 hr), for the further trend analysis detec-
tion with the QR. In order to leave unchanged the total
precipitation amount at the different durations, a moving
window with the size of the chosen duration and that

moves with a time step equal to its size has been consid-
ered; at each step, all the data within the window have
been summed up to return the value of the aggregated
precipitation. The use of the above-mentioned
‘timestamp’ to fix the position of the 10-min record in
the timeline, guarantees the correct sequence of rainfall
in time also for the coarser time resolutions. Moreover, in
order to compare results with those obtained with the
MK analysis, the rainfall annual maxima for the previous
nine durations have been extracted as well.

3 | RESULTS AND DISCUSSION

3.1 | Precipitation trends through the
QR method at the gauge level

In order to derivate the slope (i.e., the trend magnitude)
and the intercept for a various range of quantiles, the R-
package ‘quantreg’ (Koenker, 2004) was used to apply
the QR method to the rainfall time-series generated as in
Section 2.4. Although the QR analysis was carried out for
all the gauges displayed in Figure 1, for the sake of
length, only the results related to the station of ‘Palermo’
are reported and discussed in this section. The signifi-
cance of trends has been assessed by means of the Stu-
dent's t test with reference to all the stations under study.
The results of such an analysis are reported in Section 3.2,
where the procedure to identify the presence of spatial
patterns has been carried out as well.

In order to provide a full view of the rainfall behav-
iour at different timescales aggregations, Figure 2 a, b,
and c shows the results only for the shortest (10 min),

FIGURE 1 Spatial distribution

of SIAS rain gauges overlaid on the

digital elevation model (DEM) of

Sicily. The gauge named ‘Palermo’
is highlighted with a bigger red

point as compared with the

remaining points [Colour figure

can be viewed at

wileyonlinelibrary.com]
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intermediate (1 hr), and the longest (24 hr) durations,
respectively. Grey points represent the hourly rainfall
intensities, ih, obtained from aggregated rainfall depths,
while QR lines (coloured-solid lines) for the quantile
levels 0.25, 0.5, 0.9, 0.95, and 0.99 are shown contextually
to the ordinary least square (hereafter OLS) method line
(black-dashed line).

Results confirmed that, as the considered quantile
level grows, the intercept value grows as well. Indeed, for
the highest quantiles, the highest rainfall intensity values
have more weight than other values in the QR procedure,
as expressed by Equation (1). This behaviour is not
always valid for the slope since, depending on the data,
there could be a trend inversion at any quantile level.

From Figure 2, it is noteworthy to highlight that the
OLS regression line is not suitable to describe the behav-
iour of extreme events, both in terms of high and low
intensity precipitation, since the sample includes a great
number of ordinary low rainfall events that affect the
intercept of the regression line, thus pushing the regres-
sion line towards low values of intensity.

By observing the slope of the regression lines, it is
possible to make some inferences about the trend magni-
tudes for the durations considered. In addition, to make
possible the comparison of the trend magnitudes pro-
vided by the slopes of the regression lines at different
durations, it was decided to refer the slope units to the
annual increment of hourly intensity (Δih�year–1). A
graphical representation of this transformation can be
observed in the lower right panel of Figure 2. With this
regard, Figure 3 represents the variation of slope with
quantiles for the same durations shown in Figure 2.
Black points are representative of the slope of the regres-
sion lines for different quantile levels, while the grey
bands delimit the 90% confidence interval for the esti-
mated slopes. The QR has been applied to 0.02 equal step
quantiles ranging from 0.02 to 0.98, together with the qua-
ntiles 0.95 and 0.99 in order to extensively explore the rela-
tionship between slope and quantile. The slope of the OLS
regression line, which is constant at a fixed duration, is indi-
cated using a red-solid line whereas the related confidence
intervals are displayed by means of some red-dashed lines.

FIGURE 2 Graphic representation of QR lines (coloured—solid) and OLS line (black—dashed) for the station of ‘Palermo’ at
(a) 10-min, (b) 1-hr, and (c) 24-hr durations. In the lower right panel, it is reported an exemplification of the annual increment of hourly

intensity to compare slopes of rainfall intensity at different durations [Colour figure can be viewed at wileyonlinelibrary.com]
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In general, if one observes the results of QR analysis,
an increasing (decreasing) trend at the higher quantiles
corresponds to the probability (with a certain level of sig-
nificance) to have more (less) severe events. With this in
mind, from the three panels of Figure 3, it is possible to
notice that for the lower quantiles the slope is always
close to zero, while it tends to generally increase for the
higher quantiles. Such a behaviour is mainly due to the
high number of low-intensity rainfall events which, for
the lower quantiles, have more weight than the higher
intensities. Moreover, with reference to the slope of the
ordinary least square method (red-solid line in Fig-
ure 3), this is characterized by a slope significantly dif-
ferent from those relative to the highest quantiles.
Such a behaviour is not observable for the lower qua-
ntiles, which have points mostly within the confidence
interval of the mean (red-dashed lines). This certifies
the fact that the ordinary least square method is only
representative of the average behaviour of the sample
and is not effective to characterize any trend at higher
quantiles, which correspond to heavy and very heavy
rainfall.

From the analysis of the confidence interval (grey
bands in Figure 3), for each duration and rain gauge

analysed, it can be observed that the standard error grows
with the quantile; this is mainly due to the reduced
extent of the sample used in the QR procedure for the
higher quantiles.

For completeness, it is noteworthy to highlight the
presence of some peaks in the slope at the 10-min dura-
tion for the higher quantiles (Figure 3a). This aspect can
be explained by comparing the shape of the empirical pdf
of rainfall intensity data at 10-min, 1- and 24-hr dura-
tions, as shown in Figure S1. In the case of the 10-min
duration (Figure S1a), the pdf shows the highest peak in
correspondence of the gauge resolution (i.e., 0.2 mm) and
several other peaks for the multiples of the gauge resolu-
tion that become smaller and smaller as the multiple of
the gauge resolution increases. This reflects in weighting
data in the QR procedure, thus generating the spikes
shown in Figure 3a. This aspect is lost at the higher dura-
tions (i.e., 1- and 24-hr durations in Figure S1b and c,
respectively) since data are aggregated and the empirical
pdf of rainfall intensity assumes a smoother shape.

3.2 | Variability of precipitation trends

The QR analysis was used to detect eventual relation-
ships between the magnitude and significance of the
trends with their durations and quantiles. In particular,
Section 3.2.1 will regard the detection of the relation
between significant trend magnitudes with duration/qua-
ntile, grouping all the gauges. Section 3.2.2, instead, will
be focused on analysing the previous relationships from a
spatial point of view.

3.2.1 | Effects of duration and quantile
on precipitation trends

Following the conjecture provided by Arnone
et al. (2013) about the existence of trends in sub-hourly
precipitation, a particular attention was paid to identify
eventual positive trends for the events at the sub-hourly
durations and for the higher quantiles. Moreover, a fur-
ther and most crucial aspect is linked to the fact that
eventual positive trends for these events would corre-
spond to an increase in rainfall events with a short-
duration and high-intensity that, in certain cases
(e.g., small catchments with low times of concentration),
could cause flash flood events and, as a consequence,
higher risks of economic damages and fatalities.

Figure 4 summarizes the QR results for all the consid-
ered rain gauges. It provides the percentage of gauges
showing a significant positive (red), negative (green), or
non-significant (grey) trend for the whole ensemble of

FIGURE 3 Slope of the regression lines versus quantile level

for the station of ‘Palermo’ at (a) 10-min, (b) 1-hr, (c) 24-hr

durations. Black points are representative of the slopes for various

quantiles, while the grey bands stand for the 90% confidence

intervals. The figure also displays the slope of the OLS regression

line (red-solid line) and the related confidence intervals (red-

dashed lines) at the three considered durations [Colour figure can

be viewed at wileyonlinelibrary.com]
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considered durations and 0.2, 0.5, 0.9, 0.95, and 0.99 qua-
ntiles. The two columns of Figure 4 are representative of
two different levels of significance (i.e., αsig = .05 and
αsig = .1, respectively).

Focusing on the lowest and intermediate quantiles,
namely 0.2 and 0.5, respectively, it is possible to notice
that a high percentage of rain gauges show a non-
significant trend for all the considered durations for both

the levels of significance. However, it is noteworthy that
a noticeable percentage of stations has a positive trend at
the sub-hourly durations, reaching the maximum value
at the 10-min duration (i.e., 26.4 and 33.3% for αsig = .05
and αsig = .1, respectively). As the duration increases,
there is an increase of the percentage of stations showing
a negative trend and, at the same time, a corresponding
decrease of the percentage of gauges manifesting a

FIGURE 4 Percentage of rain gauges characterized by a positive (red), negative (green), and non-significant (grey) trend coming out

from QR procedure at 0.2, 0.5, 0.9, 0.95, and 0.99 quantiles at all durations [Colour figure can be viewed at wileyonlinelibrary.com]

5946 TREPPIEDI ET AL.

 10970088, 2021, 13, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7161 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


positive trend. This is more evident for the αsig = .1.
When the percentages related to the shortest (10 min)
and longest (24 hr) duration (Figure 4, top right panel)
are taken into account, for instance, one can observe that
the first bin (10 min) provides about 33% of gauges char-
acterized by a significant positive trend and about 6% of
gauges with a significant negative trend, while, on the
other hand, the last bin of the panel (24 hr) displays an
opposite behaviour (about 4% with a significant positive
trend and about 20% with a significant negative trend).
Furthermore, it seems that as the duration increases there
is a reduction of the very ordinary (i.e., 0.2 quantile) and
ordinary (i.e., 0.5 quantile) long-duration events. If these
negative trends for the lower quantiles (e.g., 0.2) will persist
especially at the longer durations, they could result in an
increased risk of dry conditions (Lausier and Jain, 2018)
with a reduction of available water resources, impacting, for
instance, the agricultural sector (Field et al., 2018), hence
causing noticeable economic damages.

Regarding the higher quantiles (i.e., 0.9, 0.95, 0.99), as
quickly as the duration decreases, it is possible to observe
a clear increasing pattern of the percentage of rain gauges
with a positive trend. In particular, for the two highest
quantiles (i.e., 0.95 and 0.99, respectively) and both the
significance levels (i.e., αsig = .05 and αsig = .1, respec-
tively), at least the 50% of the stations shows an increas-
ing trend at the 10-min duration. Regarding the quantile
level of 0.9, unless for the 10-min duration, which shows
a percentage slightly lower than the other sub-hourly
durations, the increasing pattern of positive trends with
the decreasing of durations is still maintained. On the
opposite, for the 24-hr duration, the stations with no-
trend strongly prevail, especially for 0.99 quantile level,
where about 98% of stations reveal a non-significant
trend at αsig = .05. All of the previous considerations sug-
gest an increase in rainfall intensity provided by sub-
hourly extreme events in Sicily, thus confirming what
Arnone et al. (2013) had already guessed for Sicily region
and other studies had found for other parts of the world
(De Toffol et al., 2009; Adamowski et al., 2010). As
already said at the beginning of this section, such a con-
dition could lead to an increase of flash floods, with all of
its consequences, but also to other consequences such as
an increase in the soil loss, due to its erosion, and a con-
sequent decreasing in production of these soils as found
by Wei et al. (2009) in the North-West of China.

Differently from the case of the lower quantiles, in the
last cases (i.e., 0.90, 0.95, and 0.99) less than the 10% of sta-
tions show a negative trend at all the durations under study;
this percentage becomes smaller and smaller as quickly as
the quantile increases. Moreover, differently than for the
positive trend, it is not possible to recognize any pattern
with duration. Furthermore, for the 0.99 quantile and

αsig = .05, almost no station reveals a significant negative
trend at all durations.

In order to describe the variation of trend magnitudes
with quantiles and durations, Figure 5 reports, the empir-
ical cumulative distribution function (hereafter ECDF) of
the trend magnitude for the gauges showing a statistically
significant (positive and negative) trend for αsig = .1 and
the durations of 10, 30-min and 1, 6, and 24-hr and the
0.2, 0.95, and 0.99 quantiles.

Firstly, it is worth to focus on the entity of the trend
magnitude, which considerably varies with quantiles.
Indeed, at the 0.2 quantile (Figure 5a), it is possible to
notice that, for all the durations, the trend magnitude
values are close to zero, so that hourly and sub-hourly
ECDFs, apart from those at 6 and 24-hr durations, cannot
be distinguished. An opposite behaviour is illustrated in
Figure 5b,c, related to the 0.95 and 0.99 quantiles,
respectively. In particular, as the duration increases, the
sample size becomes even smaller, due to a general loss
of statistical significance (see also Figure 4) and, at the
same time, the trend magnitude grows. Furthermore, as
the quantile increases, the trend magnitude increases as
well. As an example, focusing on the quantile 0.99 and
sub-hourly durations, it is possible to notice that the 75%
of stations present a trend magnitude greater than about
0.3 mm�h–1�year–1, which is approximately the maximum
magnitude value which characterizes the analyses carried
out for 0.95 quantile. These findings confirm that the
short-duration and high-intensity rainfall events are
occurring more frequently in Sicily, at least with refer-
ence to the considered period, thus confirming that in
the last years we are experiencing an increase in short-
duration high intensity rainfall events that could be prob-
ably a consequence of climate change, as affirmed by
Field et al. (2018).

The remaining ECDFs, related to all the durations
and quantiles considered, are reported in Section S3.

3.2.2 | Spatial analysis of precipitation
trends

In order to assess an eventual spatial distribution of the
trends in Sicily, for each rain gauge station, Figure 6 rep-
resents the magnitude, direction, and significance of the
trends detected with the QR approach. For the sake of
clarity, the trend magnitude, which is expressed as the
annual increment of hourly intensity, is symbolized by a
graduated colour, the trend direction is represented by
the symbol orientation (i.e., positive or negative), while
the dimension of the triangle is related to three different
classes of significance level (i.e., ≤.05; .05� .1;> .1). The
panels A, B, C, D and E in Figure 6 represent the spatial
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distribution of detected trends for the quantiles 0.2, 0.5,
0.9, 0.95, 0.99, respectively, while the columns 1, 2, and
3 are relative to the durations of 10-min, 1-, and 24-hr,
respectively. For the sake of the length of the paper, the
plots related to all the other durations considered for the
previous analyses are reported in Section S4.

By observing this figure, it is possible to notice that
the number of stations showing a significant trend (posi-
tive or negative) increases with the quantile level and
decreases as the duration increases, thus confirming what
has been already shown in Figure 4. Moreover, it is possi-
ble to observe that the trend magnitude values decrease
moving from the higher to the lower quantile for each
duration. The low trend magnitudes, which have been
obtained at the lower quantile levels, are strictly con-
nected to the high number of similar low rainfall inten-
sity values weighted in the QR process. For this reason,
these trends are expected to be low but, at the same time,

not negligible, since they refer to very ordinary rather
than extreme events. Indeed, even small changes in
events that frequently occur throughout the year could
lead to an important alteration of the local hydrological
cycle.

In order to objectively identify the potential spatial
clustered situations in the trend magnitude, the SAC
analysis was carried out on those rain gauges showing a
significant trend with αsig = .1 (i.e., all the medium and
large colourful triangles in Figure 6) using the GeoDa
software (Anselin et al., 2006). Table 1 shows the SAC
analysis results in terms of Global Moran's I estimated
value, Z-score, p-value, and sample size, related to all the
possible combinations between durations and quantiles
shown in Figure 6. It is important to remark that this
analysis aims to determine whether the trend magnitude
is globally clustered or not over the island. In such a kind
of analysis the sample size plays a very relevant role;

FIGURE 5 ECDF of the trend magnitude for 10, 30 min and 1, 6, and 24 hr at (a) 0.2, (b) 0.95 and (c) 0.99 quantile. ECDFs are

representative of the positive and negative trend magnitude with a significance level of .1. The sample size for any quantile-duration

combination is reported in the legend [Colour figure can be viewed at wileyonlinelibrary.com]
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Legendre and Fortin (1989) suggest to apply the SAC
analysis to samples composed of about 30 values, in order
to have a sufficient amount of data to reliably identify
potential spatial patterns. Nevertheless, this threshold is
not a strict limit and, in fact, Griffith (2010) suggests a
minimum sample size of 25 elements.

The results of such an analysis are reported in
Table 1, where the cases with a p-value lower than .1 but

a sample size smaller than 25 are indicated with an italic
font, while the cases with a p-value lower than .1 and a
sample size greater than 25 data are reported with a bold-
italic font. Normal font face, instead, is related to the
quantile-duration combinations in which the p-value is
higher than .1 and, consequentially, in which the spatial
distribution of the magnitude can be considered as the
result of a random spatial process.

FIGURE 6 Spatial distribution of the gauges under study and magnitude (colour), expressed in mm�h–1�year–1, direction (triangles

orientation) and significance (triangle size, large for αsig≤.05, medium for .05 < αsig≤.1 and small for αsig>.1) from QR at 0.2, 0.5, 0.9, 0.95,

0.99 quantiles for 10-min, 1- and 24-hr durations. The bold letters, A-E, stand for the quantiles, while the bold numbers 1–3, denote the
durations [Colour figure can be viewed at wileyonlinelibrary.com]
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Focusing on the lower (i.e., 0.2 and 0.5) and highest
quantiles (i.e., 0.99), the results of Table 1 indicate that
no spatial patterns of the trend magnitude can be found
at any duration, given the resulting p-value and Z-score
statistics. Indeed, regarding the 0.99 quantile and 10-min
duration, the p-value of the SAC analysis is higher than
.1, probably due to a great variability of the trend magni-
tude. Therefore, it is not possible to assume that, globally,
the distribution of the trend magnitude is significantly
clustered.

On the contrary, when one observes the quantile 0.9
it is possible to highlight that for the 1- and 24-hr dura-
tions, the p-value is less than .1 and, contemporary, the
Z-score is positive. This means that the spatial distribu-
tion of the trend magnitude is clustered, even though the
result related to the 1-hr duration may be considered
more reliable than the 24-hr one due to the greater
sample size.

Regarding the 0.95 quantile, while all the durations
exhibit a p-value lower than αsig = .1 only the 10-min and
1-hr durations are characterized by a sample size greater
than 25. Furthermore, the Z-score is always positive, indi-
cating that the trend magnitude is clustered.

The results of the SAC analysis for the remaining
quantiles and durations are reported in Section S4. With
reference to all the durations under study, the Global
Moran's I generally resulted in a spatially clustered distri-
bution of the trend magnitude especially for the higher
quantiles. This behaviour is particularly enhanced at
the 0.95 quantile for the whole ensemble of sub-hourly
durations (i.e., 10, 20, 30, and 40 min), which are

characterized by the greater sample sizes. Furthermore,
for the 0.9 quantile, the same considerations are valid for
the sub-hourly durations of 30 and 40 min. The reader is
referred to Table S2 for more details.

In order to identify the clusters' position, a Local
Moran analysis (Anselin, 1995) has been applied at the
same samples and for the same duration-quantile combi-
nations used in Figure 6. In particular, panels a to c in
Figure 7 show the results for 95th percentile at 10-min,
1-, and 24-hr duration, respectively. This quantile has
been chosen as representative mainly because the sample
size criterion is satisfied both for 10-min and 1-hr dura-
tion (i.e., 44 and 26 locations), while the sample size is
the largest among those relative to the 24-hr duration
(i.e., 17 points), even if it is smaller than 25 elements.

However, for the sake of completeness, Figure S5
shows the results relative to 0.2, 0.5, 0.90, and 0.99 qua-
ntiles at 10-min, 1-, and 24-hr duration.

In Figure 7, red and blue circles are relative to HH
and LL clustering cases, respectively, and characterized
by a p-value lower than .1. The significant outliers,
instead, are marked with the diamond shape and filled
with pink (HL) or light blue (LH) colours. Therefore, the
crosses represent those locations in which the signifi-
cance level exceeds .1.

It is worth to mention that for all the panels in
Figure 7 it is possible to distinguish two significant clus-
ters. In particular, in the south-east there is a HH cluster,
while the northern-west part is characterized by a LL
cluster. Looking at the dimension of these two clusters, it
is possible to observe as their extension changes with the

TABLE 1 Global Moran's index estimated value, Z-score, p-value, and sample size for 0.2, 0.5, 0.9, 0.95, and 0.95 quantiles and 10-min,

1- and 24-hr durations

0.2 quantile 0.5 quantile 0.9 quantile

10 min 1 hr 24 hr 10 min 1 hr 24 hr 10 min 1 hr 24 hr

Moran's I index 0.0442 0.2722 0.0202 −0.0939 −0.5349 −0.2730 0.0854 0.1494 0.6666

Z-score 0.5108 1.6065 0.4338 −0.4451 −1.4191 −0.9623 1.3501 2.1511 3.5955

p-value .6095 .1082 .6645 .6562 .1559 .3359 .1770 .0315 .0003

Sample size 28 17 17 25 12 14 24 28 15

0.95 quantile 0.99 quantile

10 min 1 hr 24 hr 10 min 1 hr 24 hr

Moran's I index 0.2766 0.1744 0.4674 0.0501 −0.1462 0.3266

Z-score 2.9122 1.7659 2.8604 1.0981 −0.3092 0.8874

p-value .0036 .0774 .0042 .2722 .7571 .3749

Sample size 44 26 17 43 14 5

Note: All cases in which the p-value is less than .1 but the sample size is less than 25 are indicated with an italic font, while those cases in which the p-value is
less than .1 and the sample size is greater than 25 are written in bold-italic font. Normal font face is related instead to those cases in which the spatial

distribution of the trend magnitude is the result of a random spatial process (p-value greater than .1).
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duration. At the 10-min duration (Figure 7a), for
instance, a relevant number of stations composes both
the clusters (i.e., 8 and 12 sites for the LL and HH, respec-
tively). Moreover, by comparing this panel with the cor-
respondent one in Figure 6 (i.e., panel D1) it is possible
to notice that the HH cluster includes those stations char-
acterized by the highest values of trend magnitude.
Therefore, the LL cluster is composed by a group of
gauges where the trend magnitude is moderately positive.
Starting from this consideration, it is worth to highlight
that the acronyms HH and LL do not necessarily refer to
a cluster of gauges in which an increasing or a decreasing
trend is observed.

Focusing on the 1- and 24-hr durations (i.e., Figure 7b,c,
respectively), both the clusters reduce their dimension. Fur-
thermore, the LL cluster seems to be more confined in the
north-west side of the island. Looking at the trend magni-
tude of the gauges forming the LL cluster (panels D2 and
D3 in Figure 6, respectively), it is also possible to observe
that, in this case, they match with a decreasing trend mag-
nitude cluster (i.e., except for the upper-left point in LL
cluster of Figure 7c).

Looking at the Figure S5, it is worth to focus that,
when the HH and LL clusters are visible, their location
is, more or less, the same of that highlighted in Figure 7.
This consideration is not valid for 0.2 quantile at 1-hr
duration, where different clusters can be detected.

3.3 | Mann–Kendall test for rainfall
annual maxima trends

This section shows the results of the MK method, applied
to the pre-whitened annual maxima extracted by the
SIAS data set, as well as a qualitative comparison with
the QR method results, with the aim to explore the

advantages and drawbacks of both methodologies in
trends detection.

As an example, the results of such an analysis for the
rain gauge of Palermo are shown in Figure 8, where
the subplot a) shows the annual maxima extracted for the
durations of 10 min, 1, and 24 hr, while the remaining
plots show the results regarding the trend-duration
dependency (Figure 8c) and the spatial variability of
trends magnitude, direction, and significance (Figure 8b).
The magnitude, in this case, is obtained through the Sen's
slope method and represents the variation of rainfall
annual maxima per year (mm�year–1).

Focusing on canonical durations, it is possible to
observe two different behaviours between positive and
negative trends with duration. Indeed, as the duration
increases, the percentage of stations characterized by a
negative trend becomes greater, while the one featured
with positive trend decreases. In particular, at the 24-hr
duration, these percentages reach 18 and 0% for negative
and positive trend, respectively. Regarding the sub-hourly
durations, instead, no patterns with duration are notice-
able. In any case, it is worth to observe that the majority
of the rain gauges is characterized by a non-significant
trend.

Although it is not possible to make a direct compari-
son between the results obtained with the QR and MK
methods because of the different data sets they work
with, it may be useful to highlight some differences,
strengths and weaknesses of the two methods. First of all,
focusing on the data, since the MK test works with the
annual maxima (i.e., only a value of rainfall per year), it
might be unsuitable to work with short data sets (i.e., few
years of observed data) since it would return results sta-
tistically not significant. Moreover, working with annual
maxima implies that all the rainfall depths slightly lower
than the annual maxima, despite the fact that could be

FIGURE 7 Local Moran analysis for the 0.95 quantile at (a) 10-min, (b) 1-hr, and (c) 24-hr duration. The LISA is applied to both the

positive and negative trend magnitudes with a significance level of .1. Red and blue circles are relative to high-high (HH) and low-low

(LL) clustering cases, respectively, and characterized by a p-value lower than .1. The significant outliers are marked with light blue and pink

diamonds for low-high (LH) and high-low (HL) clustering cases, respectively. The crosses represent those locations in which the significance

exceed the level of .1 [Colour figure can be viewed at wileyonlinelibrary.com]
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even higher than the annual maxima of other years, are
discarded from the analysis.

In the QR method, instead, all data are processed to
extract information about trends, even if only those exceed-
ing the threshold related to the examined quantile are
weighted in a more significant way. Nevertheless, by
looking at the ECDFs of the aggregated time-series, related
to 10-min, 1- and 24-hr duration, for ‘Palermo’ rain gauge,
it is possible to observe that about 1,200, 470, and 100 values
are above the 95th percentile, respectively. Moving to the
99th percentile, the number of observations above this per-
centile drops to about 240, 90, and 20, respectively, but, in
any case, higher than those used in the MK procedure that
are 18 values (i.e., the annual maxima) for each of the con-
sidered durations. This could be the main reason why the
QR approach is able to detect a consistent number of sta-
tions featured by a positive trend for the 0.95 and 0.99 qua-
ntile (i.e., about 57 and 56% at αsig = .1, respectively), while
this information is not captured by the MK procedure.

With reference to the spatial patterns (Figure 8b),
most of the stations shows a non-significant trend at all
durations. Since the maximum number of rain gauges
showing a significant trend is equal to 13 (at 24-hr dura-
tion), the SAC analysis has not been carried out to avoid
inconsistent and/or unreliable results.

For all of these reasons, the QR could be a valid alter-
native to the MK procedure to detect trend in extreme
rainfall, especially when the period under study is short.
It is further worth to highlight that, also in the QR proce-
dure, the loss of significance recorded especially at the
longest duration could be attributable to a too small
sample size.

4 | CONCLUSIONS

Climate change is still today considered as one the most
critical issues to face by the scientific community. Its

FIGURE 8 Annual maxima for the rain gauge of ‘Palermo’ of the SIAS data set at 10-min, 1-hr, 24-hr duration (a), spatial distribution

of magnitude, direction and significance of trends (b), and percentage of stations having a negative (green), positive (red), or non-significant

(grey) trend obtained through the MK test (c) [Colour figure can be viewed at wileyonlinelibrary.com]
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manifestations could exasperate different kinds of extremes,
such as water scarcity and/or heavy rainfall events.

In this perspective, this work has been conducted
with the aim to identify potential changes in rainfall
intensity for Sicily (Italy) over the last 20 years. The
rainfall data time-series at different durations (i.e., 10,
20, 30, 40 min and 1, 3, 6, 12, and 24 hr), aggregated
from the original 10-min observations provided by the
regional agency SIAS, have been elaborated using the
QR method, at the quantiles ranging from 0.02 to 0.98
and considering also 0.95 and 0.99. The achieved trends
have been analysed under two different significance
levels (i.e., αsig = .05 and αsig = .1). Moreover, in order
to give a comparison of QR with one of the most
employed methods in trends detection, the annual max-
ima at the above-cited durations have been extracted
and processed with the MK test coupled with the Sen's
slope method.

When considering the 0.2 quantile, results revealed
the existence of a decreasing (increasing) pattern of the
positive (negative) trend with duration, even though
the greatest part of the rain gauges have shown a non-
significant trend. A decreasing trend at this quantile,
which can be assumed to be representative of the dry tail
of precipitation distribution, could lead in the future to a
higher risk of the occurrence of too dry conditions, thus
to water scarcity.

Moving to the highest quantiles, the dependence of
the negative trends with duration disappears and, in
addition, the percentage of stations showing a negative
trend tends to zero. On the opposite, a clear increase of
the percentage of stations characterized by a positive sig-
nificant trend has been achieved moving towards the
sub-hourly durations. This is especially highlighted at
the 10-min duration, where more than a half of the con-
sidered stations manifests a positive trend in rainfall
intensity. In addition, a general loss of significance of
trends with duration is registered. These results confirm
what Arnone et al. (2013) guessed years ago about extrap-
olating the increase in extreme events towards sub-hourly
durations.

Not only the temporal, but also the spatial variability
of precipitation trends has been investigated in this work,
by means of the Global and the Local Moran Indexes.
According to the SAC analysis results, it is possible to
assume that the spatial distribution of the magnitude is
clustered at any durations for the 0.95 quantile, while
only at 1- and 24-hr durations for the 0.9 quantile. For
the LISA analysis at 0.95 quantile, the majority of the
considered stations revealed a positive significant trend,
mainly located in the southeast of the island whereas the
west coast of the region mostly presents a cluster charac-
terized by a decreasing trend.

The MK test on annual maxima did not confirm the
QR results, since about the 90% of the stations revealed a
non-significant trend and this is probably due to the
small extension of the annual maxima data set used.

On the contrary, since regression procedure in the QR
method is based on the whole precipitation data set, it is
demonstrated to be less sensitive to outliers in the data
(Koenker, 2005; Roth et al., 2015) and to better look at
the tails of the probability distribution functions (Lausier
and Jain, 2018; Villarini and Slater, 2018). This provides
a more complete and reliable estimation of trends respect
to the MK procedure.

In conclusion, the general increase of sub-hourly
rainfall intensity, especially the more severe ones, over
the considered period (from 2002 to 2019) could be con-
sidered as a typical sign of a changing climate. Particular
attention is given to this result, since this kind of rainfall
could cause several damages due to the high quantitative
of rainfall that can occur also for a short duration event.
Especially in regions like Sicily, since the presence of
many small catchments with low times of concentration
and sometimes highly urbanized, the increasing occur-
rence of short-duration and high-intensity rainfall events
could lead to a higher number of flash floods, thus
increasing the risk of economic damages and fatalities.
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