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Abstract: Background: The primary objective of the study was to assess serum 25-hydroxyvitamin
D [25(OH)D] values in patients with Cushing’s disease (CD), compared to controls. The secondary
objective was to assess the response to a load of 150,000 U of cholecalciferol. Methods: In 50 patients
with active CD and 48 controls, we evaluated the anthropometric and biochemical parameters, in-
cluding insulin sensitivity estimation by the homeostatic model of insulin resistance, Matsuda Index
and oral disposition index at baseline and in patients with CD also after 6 weeks of cholecalciferol
supplementation. Results: At baseline, patients with CD showed a higher frequency of hypovita-
minosis deficiency (p = 0.001) and lower serum 25(OH)D (p < 0.001) than the controls. Six weeks
after cholecalciferol treatment, patients with CD had increased serum calcium (p = 0.017), 25(OH)D
(p < 0.001), ISI-Matsuda (p = 0.035), oral disposition index (p = 0.045) and decreased serum PTH
(p = 0.004) and total cholesterol (p = 0.017) values than at baseline. Multivariate analysis showed that
mean urinary free cortisol (mUFC) was independently negatively correlated with serum 25(OH)D
in CD. Conclusions: Serum 25(OH)D levels are lower in patients with CD compared to the controls.
Vitamin D deficiency is correlated with mUFC and values of mUFC > 240 nmol/24 h are associated
with hypovitaminosis D. Cholecalciferol supplementation had a positive impact on insulin sensitivity
and lipids.
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1. Introduction

Vitamin D is the precursor of a hormone with pleiotropic effects. Its deficiency has
been largely investigated and shown to be associated with many complications including
diabetes mellitus, adrenal insufficiency, cardiovascular disease, neurological disorders and
other endocrinopathies [1–3].

Vitamin D, also known as cholecalciferol, is first formed in the skin by the photolysis of
7-dehydrocholesterol and after hydroxylated in the liver to 25-hydroxyvitamin D [25(OH)D].
It is further transformed in the kidney into 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)
(calcitriol) that is the active form [4].

Cushing’s disease (CD) is characterized by a cortisol excess due to autonomous pitu-
itary ACTH secretion. Patients with CD show many comorbidities such as cardiovascular
disease, metabolic disease, diabetes mellitus, metabolic syndrome, dyslipidemia, obesity,
osteoporosis/osteopenia and infections that contribute to increasing the mortality risk
for these patients [5–11]. Indeed, GCs are key regulators of intermediary metabolism
promoting hepatic gluconeogenesis and glycogenosis and on lipid metabolism favouring
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the deposition of fat to the upper trunk and the face [12]. They stimulate water diure-
sis, glomerular filtration rate and renal plasma flow and these effects result in arterial
hypertension and atherosclerosis. GCs reduce bone remodelling, augment urinary calcium
excretion and decrease the intestinal calcium absorption. In addition, they act on immune
and hematological systems inhibiting the secretion of interleukins and increasing the red
blood cell count, respectively [12].

An interesting relationship exists between glucocorticoids (GCs) and vitamin D val-
ues [13–16]. Indeed, exogenous steroid therapy has been reported to be associated with
vitamin deficiency [13]. The mechanism by which GCs reduce 25(OH)D levels is not direct,
but indirect, regulating vitamin D receptor expression in many tissues and cells [17,18].
Some authors have shown that treatment with dexamethasone in mice was associated with
a decrease in 1α-hydroxylase which is involved in the conversion from 25(OH)D3 to the
active metabolite 1,25(OH)2D3 and an increase in 24-hydroxylase, able to break down the
active form of calcitriol, in inactive, reducing circulating 25(OH)D levels [19]. In a clinical
setting, controversial data have been reported on GCs effects on serum 1,25(OH)2D concen-
trations [20–23]. A likely reason for these discrepancies might be the marked heterogeneity
of the studied groups. Some of these studies were performed in humans [23–26], and
others in animal models [27,28], but only a few studies were conducted in subjects with
endogenous hypercortisolism.

Low serum 25(OH)D levels have significant skeletal and extra-skeletal consequences
such as myopathy, high risk of fractures and also affect the immune system and metabolism.
All of these systems are impaired in patients with hypercortisolism and a vitamin D de-
ficiency may provide a further aggravation of CD comorbidities. Indeed, it may cause
a reduced intestinal calcium absorption resulting in secondary hypocalcemia and hyper-
parathyroidism leading to a bone demineralization. Its deficiency can contribute to obesity
and metabolic syndrome due to the lack of antiadipogenic effect of vitamin D and to car-
diovascular disease by a deregulation of the renin–angiotensin–aldosterone system, cardiac
contractility and increase in cytokine release [29]. In the end, vitamin D deficiency causes
impaired insulin sensitivity and immune system [30].

The discrepancies that emerge in the above-mentioned studies suggest a need to
investigate the role of 25(OH)D in patients with CD. Therefore, the primary objective of the
study was to evaluate serum 25(OH)D levels in patients with CD, compared to a control
group matched for age, BMI and gender, and search for a possible correlation with the
degree of hypercortisolism. The secondary objective was to evaluate the response to a
course of 150,000 U of cholecalciferol on metabolic and hormonal parameters 6 weeks after
the administration in patients with CD.

2. Materials and Methods
2.1. Subjects and Study Design

Fifty patients with active CD, 43 of them women (86%) and 7 of them men (20%) (mean
age 50.9 ± 17.4 years; mean duration of disease 32.5 ± 22.4 years), followed from January
2016 to December 2020, by the Endocrinology of the University of Palermo, were included
in the current study. Clinical practice guidelines and a recent consensus statement were
used to diagnose CD [31,32].

We recruited a control group matched for age, BMI and gender in the same temporal
period. It was composed of 48 patients, 33 women (82.5%) and 7 men (17.5%) (mean age
48.5 ± 13.4 years) were evaluated by our team for a suspicion not biochemically confirmed
of Cushing’s syndrome (CS).

In all patients, we evaluated phenotypic characteristics including moon face, facial ru-
bor, dorsal fat pad or buffalo hump, defined as a fatty tissue deposit between the shoulders,
purple striae, defined as wide, reddish-purple streaks, and myopathy defined as muscle
weakness at the proximal level.

We also assessed cardiovascular, metabolic and bone comorbidities. The diagnosis
of metabolic syndrome was based on National Cholesterol Education Program Adult
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Treatment Panel (NCEP ATP III) criteria, while the diagnosis of diabetes mellitus and
prediabetes were based on the American Diabetes Association (ADA, Arlington, VA, USA)
criteria [33,34].

Among patients with diabetes mellitus (18 out of 50), 16 were treated with metformin
alone, while 2 were treated with a combination of metformin and GLP-1 agonist recep-
tors. Metformin and GLP-1 agonist receptors were discontinued 24 h and 2 weeks before
metabolic evaluations, respectively, to avoid any interference with metabolic parameters.
Diabetic patients were on good metabolic control (HbA1c ≤ 7%). Both CD patients and the
controls were naïve to cholecalciferol.

In CD and the controls, BMI and waist circumference (WC), fasting serum lipids
(total cholesterol (TC), HDL cholesterol, LDL cholesterol and triglycerides (TG), HbA1c,
glycaemia, insulinaemia, albumin corrected calcium, phosphorus and parathyroid hormone
(PTH) were assessed. To avoid seasonal influences, serum 25(OH)D levels were only
assayed between winter and spring seasons (November–April). We evaluated urinary free
cortisol (UFC) as the mean of three 24 h urine collections (mUFC), cortisol after a low dose
of dexamethasone suppression test and plasma ACTH. We defined patients with mild
hypercortisolism when mUFC levels not exceeding twice the upper limit of normal (ULN),
moderate hypercortisolism by a level of mUFC more than 2 to 5 times the ULN and severe
hypercortisolism by a mUFC level more than 5 times the ULN, as previously reported [35].

As defined by the Endocrine Society guidelines, we considered 25(OH)D deficiency
for values < 20 ng/mL (50 nmol/L), insufficiency as levels of 20–30 ng/mL (50–75 nmol/L)
and sufficiency for values ≥ 30 ng/mL (≥75 nmol/L) [36]. In addition, severe 25(OH)D
deficiency was defined by levels < 10 ng/mL (<25 nmol/L) [37].

As markers of insulin sensitivity, we calculated the homeostatic model of insulin
resistance (HOMA2-IR) [38], and in 32 patients with CD and in 40 controls who had no
previous diagnosis of diabetes, we also evaluated the Matsuda index of insulin sensitivity
(ISI-Matsuda) [39], the oral disposition index (DIo) [40] and the area under the curve for
insulin (AUC2h insulinemia) and glucose (AUC2h glycaemia).

At the baseline visit, we assessed patients’ lifestyle habits: physical activity level,
balanced diet (consumption of dairy products, meat, coffee, soft drinks), exposure to
ultraviolet (UV) radiation, smoking status and alcohol use.

We excluded patients with adrenal-dependent hypercortisolism, pregnancy, taking
oral contraceptives, liver or renal disease, cholecalciferol supplementation within 3 months
before the study, malabsorption syndrome and exposure to ultraviolet (UV) radiation
(solarium and sunscreen usage).

Patients with CD received an oral load dose of cholecalciferol of 150,000 UI [41,42] and
biochemical parameters (metabolic and hormonal) were assayed 6 weeks after administration.

The study protocol was approved by the Ethics Committee of the Policlinico Paolo
Giaccone hospital. All patients signed a written informed consent.

2.2. Assays

Biochemical parameters were measured by standard methods (Modular P800, Roche,
Milan, Italy), as previously reported [9].

Hormonal parameters were measured by electrochemiluminescence immunoassay
(ECLIA, Elecsys, Roche, Milan, Italy) following the manufacturer’s instructions, as previ-
ously reported [9].

Mean UFC was measured by mass spectrometry, as previously reported [35].
Normal values for hormonal markers were defined as follows: ACTH 2.2–14 pmol/L

and UFC 59–378 nmol/24 h.

2.3. Statistical Analysis

We used statistical Packages for Social Science SPSS version 19 (SPSS, Inc., Chicago, IL,
USA) for data analysis. The normality of quantitative variables was tested with the Shapiro–
Wilk test. We calculated mean ± SD for continuous variables and rates and proportions
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for categorical variables. The differences between paired continuous variables (CD vs.
controls) were analysed using one-way ANOVA. We used univariate Pearson correlation
to evaluate the relations with the outcome parameters. For those variables which were
significant at univariate correlation, we performed multiple linear regression analysis to
identify independent predictors of the dependent variable 25(OH)D. A p-value of 0.05 was
considered statistically significant. A receiver operating characteristic (ROC) analysis was
performed to investigate the diagnostic ability of significantly associated risk factors to
predict 25(OH)D deficiency. The ROC curve is plotted as sensitivity versus 1-specificity.
The area under the ROC curve (AUC) was estimated to measure the overall performance of
the predictive factors for serum 25(OH)D deficiency.

3. Results

At baseline, patients with CD had a higher frequency of arterial hypertension (p = 0.009),
osteoporosis/osteopenia (p = 0.002), hypercholesterolemia (p = 0.002), diabetes mellitus
(p = 0.026), myopathy (p < 0.001), facial rubor (p = 0.005), buffalo hump (p = 0.002) and
hypovitaminosis deficiency (p = 0.001) than the controls (Table 1).

Table 1. Comorbidities of patients with CD and controls at baseline.

Controls Cushing’s Disease

p(No. = 48) (No. = 50)

Subjects (%) Subjects (%)

Gender
Male 9 (18.7%) 7 (14%) 0.475

Female 39 (81.3%) 43 (86%)

Arterial hypertension 18 (37.5%) 32 (64%) 0.009
Osteoporosis/osteopenia 7 (14.6%) 21 (42%) 0.002

Visceral obesity 38 (79.1%) 44 (88%) 0.224
Metabolic syndrome 19 (39.6%) 29 (58%) 0.069

Hypercholesterolemia 14 (29.1%) 30 (60%) 0.002
Hypertriglyceridemia 11 (22.9%) 13 (26%) 0.486

Low HDL 14 (29.1%) 19 (38%) 0.361
Cardiovascular disease 0 5 (10%) 0.118

Peripheral vascular disease 0 1 (2%) 0.489
Diabetes mellitus 6 (12.5%) 24 (48%) 0.026

IFG 0 6 (12%) 0.622
IGT 6 (12.5%) 7 (14%) 0.678

IFG + IGT 1 (2%) 3 (6%) 0.457
Moon face 24 (50%) 33 (66%) 0.108
Myopathy 12 (25%) 36 (72%) <0.001

Facial rubor 9 (18.7%) 23 (46%) 0.005
Buffalo hump 17 (35.4%) 33 (66%) 0.002
Purple striae 11 (22.9%) 15 (30%) 0.245

Hypovitaminosis D
Deficiency 4 (8.4%) 26 (52%) 0.001

Insufficiency 10 (20.8%) 14 (28%) 0.545
Sufficiency 34 (70.8%) 10 (20%) 0.004

By contrast, the controls had a higher frequency of vitamin D sufficiency (p = 0.004).
Patients with CD also had higher WC (p = 0.031), PTH (p = 0.003), glycaemia (p = 0.010),
HbA1c (p = 0.004), total cholesterol (p < 0.001), LDL cholesterol (p = 0.002), ACTH (p < 0.001),
mUFC (p = 0.001), cortisol after a low dose of dexamethasone suppression test (p = 0.001)
and lower 25(OH)D (p < 0.001), ISI-Matsuda (p = 0.007) and DIo (p = 0.003) than the
controls (Table 2).
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Table 2. Anthropometric and biochemical parameters of patients with CD and controls at baseline.

Controls Baseline
(No. = 48)

Cushing’s Disease Baseline
(No. = 50) p

Mean ± SD Mean ± SD

Age (yrs) 48.2 ± 13.4 50.9 ± 17.4 0.815
Anthropometric parameters

BMI (kg/m2) 31.9 ± 5.01 33.1 ± 6.41 0.321
Waist circumference (cm) 105.4 ± 12.7 110.7 ± 8.97 0.031

Metabolic parameters
Creatinine (mg/dL) 0.78 ± 0.25 0.81 ± 0.31 0.601
Calcium (mg/dL) 9.43 ± 0.46 9.46 ± 0.61 0.841

Phosphorus (mg/dL) 3.83 ± 0.67 3.46 ± 0.54 0.125
Parathyroid hormone (pg/mL) 33.8 ± 8.03 54.1 ± 22.7 0.003

25(OH)D (ng/mL) 28.7 ± 8.49 16.7 ± 8.18 <0.001
Glycaemia (mmol/L) 4.97 ± 2.77 6.66 ± 2.19 0.010

HbA1c (%) 5.79 ± 0.73 6.73 ± 1.09 0.004
Total cholesterol (mmol/L) 4.51 ± 0.82 5.34 ± 1.07 <0.001
HDL cholesterol (mmol/L) 1.15 ± 0.29 1.19 ± 0.45 0.184

Triglycerides (mmol/L) 1.66 ± 0.43 1.73 ± 0.67 0.585
LDL cholesterol (mmol/L) 2.62 ± 0.91 3.31 ± 0.99 0.002

HOMA-IR 3.07 ± 1.01 4.67 ± 2.83 0.051
ISI-Matsuda 4.14 ± 1.59 3.02 ± 2.18 0.007

Oral disposition index 3.75 ± 0.54 2.25 ± 2.04 0.003

Hormonal parameters
ACTH (pmol/L) 7.72 ± 2.19 15.1 ± 6.56 <0.001

Mean urinary free cortisol (nmol/24 h) 310.2 ± 104.1 604.7 ± 65.6 0.001
Cortisol after low dose of dexamethasone

suppression test (nmol/L) 44.4 ± 11.5 361.4 ± 98.4 0.001

Six weeks after cholecalciferol treatment, patients with CD showed increased serum
calcium (p = 0.017), 25(OH)D (p < 0.001), ISI-Matsuda (p = 0.035), DIo (p = 0.045) and a
decrease in PTH (p = 0.004) and total cholesterol (p = 0.017) levels than at baseline (Table 3).

Table 3. Anthropometric and biochemical parameters at baseline and 6 weeks after cholecalciferol
supplementation in patients with CD.

Cushing’s Disease
(No. = 50)

p
Baseline Six Weeks After Cholecalciferol

Mean ± SD Mean ± SD

Anthropometric parameters
BMI (kg/m2) 33.1 ± 6.41 32.9 ± 7.43 0.880

Waist circumference (cm) 110.7 ± 8.97 109.8 ± 7.08 0.586

Metabolic parameters
Creatinine (mg/dL) 0.81 ± 0.32 0.78 ± 0.26 0.615
Calcium (mg/dL) 9.46 ± 0.61 9.75 ± 0.56 0.017

Phosphorus (mg/dL) 3.46 ± 0.54 3.54 ± 0.43 0.424
Parathyroid hormone (pg/mL) 54.1 ± 22.7 40.5 ± 11.5 0.004

25(OH)D (ng/mL) 16.7 ± 8.18 30.7 ± 9.65 <0.001
Glycaemia (mmol/L) 6.66 ± 2.19 6.02 ± 1.65 0.109

Total cholesterol (mmol/L) 5.34 ± 1.07 4.87 ± 0.81 0.017
HDL cholesterol (mmol/L) 1.19 ± 0.45 1.21 ± 0.38 0.465

Triglycerides (mmol/L) 1.73 ± 0.67 1.68 ± 0.41 0.660
LDL cholesterol (mmol/L) 3.31 ± 0.99 2.98 ± 0.75 0.068
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Table 3. Cont.

Cushing’s Disease
(No. = 50)

p
Baseline Six Weeks After Cholecalciferol

Mean ± SD Mean ± SD

HOMA-IR 4.67 ± 2.83 3.97 ± 2.02 0.166
ISI-Matsuda 3.02 ± 2.18 3.76 ± 1.12 0.035

Oral disposition index 2.25 ± 2.04 2.97 ± 1.89 0.045

Hormonal parameters
ACTH (pmol/L) 15.1 ± 6.56 14.3 ± 6.36 0.519

Mean urinary free cortisol (nmol/24 h) 604.7 ± 65.6 582.5 ± 54.9 0.075
Cortisol after low dose of dexamethasone

suppression test (nmol/L) 361.4 ± 98.4 363.9 ± 89.6 0.895

Considering the degree of hypercortisolism, in patients with severe hypercortisolism
we observed 25(OH)D deficiency in 73.1% of cases (53.8% of them had a severe deficiency),
insufficiency in 12.5% of cases and sufficiency in 6.3% of cases. In patients with moderate
hypercortisolism, we observed 25(OH)D deficiency in 64.7% of cases (29% of them had
a severe deficiency), insufficiency in 23.5% of cases and sufficiency in 11.8% of cases. In
patients with mild hypercortisolism, we observed deficiency in 52.9% of cases (20% of them
had a severe deficiency), insufficiency in 41.1% of cases and sufficiency in 6% of cases.

At univariate correlation, in patients with CD at baseline, serum 25(OH)D was in-
versely correlated with glycaemia (r = −0.385, p = 0.019), HbA1c (r = −0.391, p = 0.017),
WC (r = −0.373, p = 0.023), mUFC (r = −0.466, p = 0.033) and cortisol after a low dose of
dexamethasone suppression test (r = −0.299, p = 0.049) (Table 4). In the controls, at baseline,
25(OH)D was inversely correlated with WC (r = −0.130, p = 0.042) (Table 4).

Table 4. Correlation of serum 25-hydroxyvitamin D [25(OH)D] levels at baseline in patients with
Cushing’s disease and controls.

25(OH)D

Cushing’s Disease Controls

r p r p

Glycaemia (mmol/L) −0.385 0.019 −0.737 0.097
HbA1c (%) −0.391 0.017 0.213 0.355

BMI (kg/m2) −0.221 0.189 0.007 0.976
WC (cm) −0.373 0.023 −0.130 0.042

ACTH (pmol/L) −0.133 0.440 −0.198 0.567
Urinary free cortisol (nmol/24 h) −0.466 0.033 0.040 0.862

Cortisol after low dose of
dexamethasone suppression test

(nmol/L)
−0.299 0.049 0.260 0.255

Multivariate analysis showed that mUFC was independently inversely associated
with 25(OH)D (p = 0.010) in patients with CD (Figure 1). In the controls, no significant
associations were found.

The ROC analysis showed that a cut-off of mUFC > 240 nmol/24 h was associated with
25(OH)D deficiency with a specificity of 100% and a sensitivity of 56.9%, AUC 0.803 (Figure 2).
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Figure 2. 25(OH)D status and mUFC. ROC curve showed that a cut-off of mUFC > 240 nmol/24 h
could be associated with 25(OH)D deficiency. Statistical analysis was performed using the chi-square
test and receiver operator characteristic (ROC) curve analysis.

4. Discussion

The present study shows that patients with active CD have lower serum 25(OH)D
values than the controls and that serum 25(OH)D levels are inversely correlated with mUFC
in CD. In addition, a cholecalciferol load is associated after 6 weeks from the administration
with an improvement of serum 25(OH)D and glycometabolic and lipid parameters in
patients with CD. Furthermore, we found that higher values of mUFC than 240 nmol/24 h
are predictive of 25(OH)D deficiency. The degree of hypercortisolism evaluated by UFC
levels is a useful parameter to quantify the “amount” of cortisol secretion, even though
it is not sufficiently exhaustive to assess the aggressiveness of the disease [35]. Indeed,
a combination of several factors, including the degree of hypercortisolism, but also the
duration of the disease, age and other individual predisposing factors, contribute to the
aggressiveness of the disease.
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Long-standing studies were conducted on vitamin D levels in patients with CD.
Patients with CD, with and without osteopenia, were compared before and after oral
calcium load showing that serum 1,25 (OH)2D3 plasma levels were higher in subjects with
osteopenia than in those without it, likely due to a secondary increase in PTH levels as an
effect of hypercortisolism [19]. Another study investigated the effect of hypercortisolism
and eucortisolism, showing a reduction in serum 25(OH)D levels, but not in 1,25 (OH)2D3
in patients with hypercortisolism. By contrast, two other studies found normal serum
25(OH)D values in patients with CD [23,24]. However, all the above-mentioned studies
were conducted on a small sample of patients. Recently, a meta-analysis conducted on the
studies that evaluated serum 25(OH)D levels in patients treated with GCs reported lower
serum 25(OH)D levels in these patients compared to healthy subjects [16]. A hypothetical
reason was that patients with CD had low 24-hydroxylase levels than the controls, causing
an alteration of vitamin D catabolism.

An interesting in vitro study in NCI-H295R cells found that treatment with 1,25(OH)2D3
decreased corticosterone secretion without affecting cortisol levels [43].

As expected, in the current study, we showed that treatment with cholecalciferol is
associated with an improvement in insulin sensitivity and total cholesterol values in patients
with CD. Indeed, cholecalciferol supplementation has been reported to be associated
with improved peripheral insulin sensitivity and secretion in patients at high risk of
diabetes or with type 2 diabetes [44]. A recent meta-analysis on 41 randomized controlled
studies showed a significant improvement in total cholesterol levels after cholecalciferol
supplementation. In addition, this improvement was more pronounced in patients with
vitamin D deficiency [45,46].

A recent study compared the metabolism of vitamin D in patients with CD and
controls after cholecalciferol treatment, showing that patients with CD had a higher
25(OH)D/24,25(OH)2D ratio than healthy controls, likely due to a decrease in 24-hydroxylase
activity. The authors concluded that this alteration of vitamin D catabolism might have an
influence on the effectiveness of cholecalciferol therapy in CD [47].

There are some limitations in the current study. First, the study is not randomized.
Second, the dose of cholecalciferol administered is the same independently of the baseline
serum 25(OH)D values. Third, we did not register the intake of milk and dairy products of
the patients included in the study.

In conclusion, serum 25(OH)D levels are lower in subjects with active CD compared to
controls matched for age, BMI and gender. Vitamin D deficiency is correlated with mUFC
and values of mUFC > 240 nmol/24 h are predictive of 25(OH)D deficiency. In addition,
cholecalciferol supplementation has a positive impact on insulin sensitivity and lipids and
therefore should be considered part of the treatment of patients with CD at diagnosis, in
order to improve the comorbidities. However, further studies are needed to evaluate a
possible effect of cholecalciferol supplementation on the aggressiveness of CD.
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