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Abstract: Radiomics is an emerging field of research based on extracting mathematical descriptive
features from medical images with the aim of improving diagnostic performance and providing
increasing support to clinical decisions. In recent years, a number of studies have been published
regarding different possible applications of radiomics in gynaecological imaging. Many fields
have been explored, such as tumour diagnosis and staging, differentiation of histological subtypes,
assessment of distant metastases, prediction of response to therapy, recurrence, and patients’ outcome.
However, several studies are not robust, do not include validation cohorts, or lack reproducibility.
On these bases, the purpose of this narrative review is to provide an overview of the most relevant
studies in the literature on radiomics in gynaecological imaging. We focused on gynaecological
malignancies, particularly endometrial, cervical, mesenchymal, and ovarian malignant pathologies.

Keywords: radiomics; gynaecological imaging; MRI; CT; endometrial cancer; cervical cancer; ovarian
cancer; mesenchymal tumours

1. Introduction

Nowadays, cross-sectional imaging is widely used in clinical practice for diagnosis,
treatment planning, and monitoring of various diseases and conditions, as in the case
of gynaecological pathologies, both benign and malignant [1]. One of the most used
cross-sectional imaging techniques is computed tomography (CT), particularly useful
for evaluating different anatomical structures and organs. CT has low accuracy for the
characterization of pelvic masses, but it is helpful to evaluate the presence of secondary
lesions to the thorax and abdominal organs [2,3].

The most commonly and widely used cross-sectional imaging modality to character-
ize and correctly stage gynaecological conditions is magnetic resonance imaging (MRI).
Thanks to the high soft tissues’ spatial and contrast resolutions, MRI can offer detailed
images of the female pelvis, with no risk related to radiation dose exposure. Particularly,
MRI is considered the non-invasive standard of reference technique in the gynaecological
field, both for diagnosis and management [1]. Classical CT and MRI semiotics have, how-
ever, some limitations in the precise characterization and prediction of prognosis of some
gynaecological malignancies.

During the last few years, several studies aimed at investigating the role of radiomics
in gynaecological malignancies, including assessment of diagnosis, response to treatment,
and risk of relapse or recurrence, have been published [4–7]. The increase in radiomics
papers in gynaecological conditions, as in the case of other topics, can be due to the high
number of freeware and user-friendly software available for everyday clinical practice and
sometimes due to the simplicity of publications. However, in this large number of papers,
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many of them are not sufficiently robust, do not include validation cohorts, are affected by
lack of reproducibility, and have too different main objectives.

On these bases, we aimed to collect, summarize, discuss, and underline the most
important and robust papers regarding radiomics applied to gynaecological conditions
in order to sort out the large amount of data published in the literature and guide further
studies in this field. Therefore, the authors of this present study searched MEDLINE
(PubMed interface) and EMBASE (Elsevier interface) in August 2023, by using appropriate
keywords regarding radiomics applied to gynaecological conditions. For each paper,
we included the name of the first author, year of publication, study type (prospective,
retrospective), geographical area based on the first author’s affiliation, and the main
findings of the study.

2. Application of Radiomics in the Female Pelvis: From Segmentation to
Features Extraction

To obtain a quantitative reliable result in radiomics studies, it is fundamental to follow
a precise radiomics pipeline, composed of five necessary steps: (1) image acquisition,
(2) segmentation, (3) features extraction, (4) features selection, and (5) statistical analysis
and modelling [8]. All of them should be provided in the most robust way possible,
especially to allow reproducibility between studies and centres.

Image acquisition is the first and one of the most important steps. When setting
up a radiomics study, imaging protocol(s) must be well delineated (e.g., contrast media
administration, timing of dynamic sequences, mandatory and optional MRI sequences).
Data regarding CT and MRI protocols for the study of the female pelvis have been compre-
hensively detailed in the literature [9,10].

Segmentation is a fundamental step in medical image analysis as it allows for the
identification and isolation of specific anatomic structures or pathological regions within an
image. For computing this aspect, region(s) of interest (ROIs) or volume(s) of interest (VOIs)
should be drawn in the interested lesion, organ, or tissue. ROIs can be manually drawn by
human readers, semi-automatically or automatically, each of them with advantages and
disadvantages.

Manual segmentation has the main disadvantage of being time consuming: the reader
should sketch the contours slice by slice using pointing devices. Moreover, this procedure
can lead to a reduction in the robustness of radiomics features [11].

On the other hand, semi-automatic and automatic approaches are based on avail-
able software or custom-made algorithms; in the case of the semi-automatic approach,
the preliminary segmentation will be refined by a human reader [11,12]. Semi-automatic
segmentation strategies, providing putative contours that the expert operator is asked to
refine or correct, represent a solution to reduce both times and inter-operator variability.
Automatic segmentation techniques rely on deep or machine learning (DL and ML, respec-
tively) strategies [13]. These models learn step by step how to segment images if trained on
a large amount of already labelled images.

Once the ROI or VOI is segmented, a wide range of quantitative features can be
extracted. These features can be categorized into different groups such as shape-based
features, intensity-based features, texture-based features, and spatial-relationship-based
features. The process that leads to obtaining this quantitative data is named “feature
extraction”. After that, feature selection is employed to identify the most relevant and
discriminative features for a specific clinical task. This step helps reduce the computational
burden and improve the robustness of subsequent analysis.

Finally, the extracted and selected radiomic features are subjected to statistical analysis
and modelling. Various statistical methods, machine learning algorithms, or deep learning
architectures can be applied to explore the relationships between these features and clinical
outcomes or other relevant parameters [14].

One of the most important limitations to be underlined regards radiomics features
obtained by different scanners and institutions. In fact, radiomic features are usually



Appl. Sci. 2023, 13, 11839 3 of 22

strictly dependent on different factors, such as acquisition data, MR technical features, and
contrast media, being employed. For these reasons, whether it is necessary to compare
radiomics data deriving from different scanners or from multiple institutions, it is of utmost
importance to provide a post-processing step, in order to reduce potential bias. Different
methods were proposed, including denoising [15], N4 bias field correction [16], voxel
size resampling and interpolation, discretization [17], and ComBat harmonization [18].
Technical information regarding these aspects are out of the scope of this present review.

3. Endometrial Cancer

Endometrial cancer (EC) is the most common gynaecological malignancy in indus-
trialized countries, with an expected increasing incidence worldwide [19–21]. EC usually
affects postmenopausal patients (75–80% of cases), with a peak between 55 and 65 years,
and its most frequent clinical manifestation is abnormal postmenopausal bleeding [19,22].

Diagnosis is based on minimally invasive procedures (hysteroscopy, endometrial
biopsy, dilatation, and curettage) and transvaginal ultrasound (TVUS) [22,23]. However,
MRI is considered the best technique for pre-operative staging [24,25].

EC is classified according to the recently updated International Federation of Gy-
naecology and Obstetrics (FIGO) staging system [26] and is traditionally grouped into
two major prognostic groups (type I and type II), based on the histological type and FIGO
histological grading system [27–29]. Type I tumours account for approximately 80% of
endometrial neoplasms and include endometrioid histotypes with pathological grading G1
and G2. This category of EC is characterized by a good prognosis and is typically estrogen
responsive. Type II represents approximately 20% of overall endometrial tumours and
includes high-grade (G3) endometrioid and non-endometrioid forms (clear-cell, mucinous,
carcinosarcomas, undifferentiated forms). This group usually shows a more aggressive
course and does not correlate with estrogenic exposure.

In order to provide therapeutic management guidelines, the European Society of
Gynaecological Oncology (ESMO), European Society for Radiotherapy and Oncology
(ESTRO), and European Society of Gynaecological Oncology (ESGO) guidelines stratify EC
into four risk categories (low, intermediate, high intermediate, and high risk) according
to histology, grade, stage, and the presence of lymph vascular space invasion (LVSI),
which describe tumour behaviour and the likelihood of recurrences, directing toward
possible adjuvant therapy [22]. EC clinical behaviour is also influenced by its genomic
features; therefore, a reclassification of EC based on genomics has been recently proposed
considering four categories (POLE ultramutated, microsatellite instability hypermutated,
copy-number low, and copy-number high) [30].

Deep myometrial invasion (DMI) allows for the differentiation between the FIGO
stages IA and IB, the most important morphological prognostic factor [31,32]. Even if
MRI is the most accurate technique for the evaluation of DMI, its detection is not always
straightforward and has shown relatively high inter-observer variability, particularly when
the endometrium is thinned (i.e., older patients, endometrial cavity distension), when the
endometrial–myometrial interface is obscured by fibroids or adenomyosis, and when the
lesion is located in uterine cornual regions [31–34].

Another key prognostic factor is the presence of pelvic or para-aortic nodes metastases
(LNM), which is also essential in guiding the therapeutic approach. The principal criterion
for suspecting nodes metastases is based on nodal size (short axis > 1 cm). However, this
criterion has a low specificity because hyperplastic nodes can also be enlarged, which
may lead to a high percentage of false-positive results. At the same time, it has been
demonstrated that nodes with a short axis lower than 1 cm are sometimes proved as
metastatic at pathology [24,35].

Many studies investigated the possible role of radiomics in improving the assessment
of EC [36,37]. The most common imaging modality employed in radiomics investigation
studies for EC diagnosis and staging was MRI, using standard diagnostic MRI protocols.
According to the latest guidelines of the European Society of Urogenital Radiology (ESUR),
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pelvic MRI protocol for EC assessment includes T2WI, diffusion-weighted (DWI), and
dynamic contrast-enhanced (DCE) imaging [24].

Multicentric and prospective radiomic studies applied to EC are summarised in
Table 1.

3.1. Deep Myometrial Invasion

Due to its clinical and prognostic significance, approximately 10 studies investigated
the role of radiomics in assessing DMI. Ueno et al. [38] extracted 11 features from MRI of a
small cohort of patients with EC using a random forest model. Areas under the receiver op-
erating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value
(PPV), and negative predictive value (NPV) to assess DMI were estimated at 0.84, 79.3%,
82.3%, 81.0%, 76.7%, and 84.4%. Stanzione et al. analysed an MRI radiomics-powered
machine learning (ML) model to increase radiologists’ performance in assessing DMI. After
a three-dimensional segmentation of the EC, the authors extracted several radiomic features
from a small number of patients (n = 54), concluding that the radiologist’s performance
increases from 82% to 100% with the radiomics support [39]. In another prospective study,
the authors extracted radiomics features from two-dimensional ROIs in 180 patients. Their
results proved that high tumour entropy on apparent diffusion coefficient (ADC) maps
independently predicted DMI (odds ratio [OR] 3.2, p < 0.001) [40]. Another radiomic model,
based on whole-tumour features, showed a good performance for DMI prediction, with an
AUC of 0.84 and 0.76 in the training and test cohorts, respectively [41]. Zhu and co-workers
defined a geometric feature to describe the irregularity of tissue structure inside the corpus
uteri caused by EC and built a model combining it with texture features extracted by the
whole uterus region. Compared with models in other studies, this model showed better
performance in predicting DMI in terms of sensitivity (94.7%) and specificity (93.3%) [42].
Han et al. built three radiomics models on T2WI and DWI. The models based only on
T2WI or DWI, and the model which combined T2WI and DWI, which included 24, features
obtained in the validation set AUCs of 0.76, 0.80, and 0.85, respectively. Nevertheless, the
authors did not observe a statistically significant difference between diagnostic values ob-
tained by the model based on both T2WI and DWI and those obtained by two radiologists’
subjective assessments [43]. More recently, three other studies evaluated the performance
of MRI radiomics-based machine learning models to predict DMI, obtaining comparable
AUC values, including between 0.79 and 0.83 [44–46]. However, in the research performed
by Otani and colleagues, the diagnostic performance for DMI of four radiologists did not
show statistically significant improvement with the support of radiomic classifiers [46],
contrary to a previous investigation [39].

3.2. Nodal Involvement

Due to the limitations of conventional imaging in assessing nodal status and its
prognostic relevance, many studies investigated this topic. Ytre-Hauge et al. reported
that five texture features correlated with the presence of LNM, even if their accuracy and
specificity were lower compared with conventional MRI features [40]. For the evaluation
of nodal status, the AUC of a whole tumour radiomics model established by Fasmer
and colleagues yielded 0.73 and 0.72 in training and test cohorts, respectively [41]. Xu
and colleagues developed four different predictive models, one based on clinical features
exclusively, one based solely on radiomic features, and two based on both radiomics and
clinical features. Moreover, the authors evaluated the diagnostic performance of the MRI
reading of two specialized radiologists. One of the models based on radiomic features,
node size, and cancer antigen 125 (CA125) showed the best discrimination ability in the
training cohort (AUC: 0.892) and test cohort (AUC: 0.883). On a sub-analysis based on
node size, this model achieved the highest sensitivity (97%) and specificity (86%) in the
subgroup of enlarged nodes (diameter > 8 mm), which was comparable with radiologists’
diagnostic performance (accuracy: 0.970; sensitivity 81%). For the normal-sized nodes
(diameter: 3–8 mm) and the small-sized nodes subgroup (diameter < 3 mm) analysis, this



Appl. Sci. 2023, 13, 11839 5 of 22

model displayed an accuracy of 0.846 and 0.849, respectively, and a sensitivity of 64.7%
and 47.1%, respectively. In both cases, the model outperformed radiologists’ reports [47]. A
multicentre study established a radiomics model for assessing pelvic LNM on preoperative
MRI of a large cohort of patients (n = 662), divided into one training set and two validation
sets. The authors compared the performance of the radiomics model with the performance
of two experienced radiologists based on MRI findings alone and with the aid of the
radiomics model. The AUC values of the model were 0.935 for the training set, and 0.909
and 0.885 for the validations sets. Moreover, with the support of the radiomics model,
the authors demonstrated an improvement in radiologists’ diagnostic performance in
predicting LNM [48]. Finally, a recently published study reported mean AUCs of radiomics
classifiers for the assessment of pelvic and para-aortic nodes metastasis of 0.72 and 0.82,
respectively [46].

3.3. Lymph Vascular Space Invasion and Tumour Grading

LVSI, defined as the presence of tumour cells in a space lined by endothelial cells
outside the invasive border, is another key prognostic factor in EC [49]. In Ueno et al.’s
research, 12 texture features extracted from tumour segmentation of 137 MRIs finally
correlated with LVSI. AUC, sensitivity, specificity, and accuracy were estimated at 0.80,
80.9%, 72.5%, 76.6%, and 74.3% [38]. A further study performed on a small cohort of MRIs
(n = 73) demonstrated that texture analysis may have a limited role in the diagnosis of LVSI
since it yielded low diagnostic values (AUC: 0.59; sensitivity: 71%; specificity: 59%) [50].
Almost comparable values were observed by Celli and colleagues. They evaluated an LVSI
predictive model based on a single feature from ADC as a predictor, which achieved an AUC
of 0.59, a sensitivity of 50%, and a specificity of 61% [51]. More recently, four investigations
registered more promising performances of radiomics analysis for LVSI assessment, with
reported AUC values between 0.79 and 0.85 [44–46,52].

Several authors also investigated how radiomics may be useful for the assessment
of EC histological grades. In a prospective investigation, a texture feature obtained from
DCE images was capable of independently predicting a high-risk histological EC subtype
(OR 1.01, p = 0.004) [40]. In a recently published multicentric research, Zheng et al. devel-
oped a model based on clinical and radiomic features for pathological grade prediction,
which outperformed clinical and radiomics-only models, yielding AUCs of 0.920, 0.882,
and 0.881 for the training, internal validation, and external validation sets, respectively [53].
Moreover, the classification model based on clinical and T2WI signatures generated by
Li et al. obtained very promising results for histological type prediction (AUC: 0.91) on
the independent external testing dataset [45]. Lefebvre et al. explored the possible role of
harmonic signatures for predicting EC high tumour grade, describing a good performance
with an AUC, a sensitivity, and a specificity of 0.81, 93%, and 63%, respectively [54].

With regard to the assessment of the clinical risk category, one of the most robust
studies in the literature was published in 2020 by Yan and colleagues on a cohort of
717 pathologically confirmed ECs, divided into a primary group and two validation groups.
The authors developed a radiomics nomogram by combining selected radiomics MRI
features and clinical parameters. The AUC for the prediction of high-risk EC for the
radiomics nomogram in the primary group and the validation groups were 0.896, 0.877,
and 0.919, respectively [55]. Chen et al. compared the performance for predicting low-risk
EC in a cohort of 102 patients with pathologically proven stage I EC of a model based on
clinical and conventional MRI characteristics with those of a model based only on radiomic
features extracted from T2WI. Their results showed that the radiomic model had a better
performance (AUC of 0.946 vs. AUC of 0.756) [56]. Conversely, the model proposed by Celli
et al. for predicting low-risk EC, which was based on two features from ADC maps and
T2WI, had a less promising performance (AUC: 0.74) [51]. Moreover, the abovementioned
model generated by Li et al. was also tested for predicting high-risk categories, reporting
an AUC of 0.82 [45].
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3.4. Prognosis

With regards to EC prognosis, a prospective study demonstrated that high kurtosis
in post-contrast T1WI was a good predictor of reduced recurrence and progression-free
survival (HR 1.5, p < 0.001), after adjusting for MRI-measured tumour volume and his-
tological risk at biopsy [40]. In order to assess EC outcome, Jacob et al. generated and
validated a radiomic prognostic model based on MRI studies of 177 EC patients. They
found that the model predicted 46 genes that were associated with poorer disease survival
rates and a statistically significant correlation of the model with poor disease-specific sur-
vival (p < 0.001) [57]. Concerning EC recurrence risk assessment, Lin and co-workers in
their retrospective multicentric research built a model based on clinicopathological and
radiomics features extracted from the intra-tumoral area of 421 MRIs. This mode showed
optimal performance in predicting the recurrence in terms of AUCs (0.87 and 0.85 in the
internal and external validation cohorts, respectively), calibration curve, and decision curve
analysis [58].

Table 1. Overview of most relevant radiomic studies applied to uterine endometrial cancer.

First
Author

Publication
Year Study Type Geographical

Area
Sample

Size Main Findings ML
Method PMID

Ytre-
Hauge S

[40]
2018 Prospective E 180

ADC can predict DMI while
contrast-enhanced T1WI high-risk
histological subtype, recurrence-

and progression-free survival

N/A 30102441

Yan BC
[48] 2020 Retrospective,

Multicentre A 622

The model had an AUC of 0.935 for
the training set, and 0.909 and 0.885

for validation sets 1 and 2, in the
assessments of pelvic LNM

RF 32749583

Yan BC
[55] 2020 Retrospective,

Multicentre A 717

The nomogram showed an AUC of
0.896 in the primary group, 0.877 in
the validation group 1, and 0.919 in
the validation group 2 in predicting

high-risk patients preoperatively

LASSO,
LiR, LoR 32681608

Celli V [51] 2022 Retrospective,
Multicentre E 64

ADC can predict the LVSI
predictive model based on an AUC

of 0.59. By combining ADC and
T2WI, the AUC raised to 0.74

LoR 36497362

Lefebvre
TL
[44]

2022 Retrospective,
Multicentre A 157

Radiomics models for DMI, LVSI,
high-grade, and FIGO stages led to
AUCs of 0.81, 0.80, 0.74, and 0.84,

respectively, in the test and
training sets

RF 35819326

Lin Z
[58] 2023 Retrospective,

Multicentre A 421

The model based on
clinicopathological and radiomics

features showed better performance
for the prediction of recurrence

LASSO 37171486

Li X
[45] 2023 Retrospective,

Multicentre A 413

The signature model based on T2WI
reported AUCs of 0.79, 0.82, 0.91,
and 0.85 for DMI, high-risk EC,

histological type, and LVSI,
respectively

LASSO 37190137

Zheng T
[53] 2023 Retrospective,

Multicentre A 403

Compared with the clinical model
and radiomics model, the combined

model showed superior
performance; the AUCs were 0.920,

0.882, and 0.881 for the training,
internal validation, and external

validation sets, respectively

N/A 37097730

ML: machine learning; PMID: PubMed identifier; E: Europe; A: Asia–Pacific; MRI: magnetic resonance imaging;
DMI: deep myometrial invasion; LNM: lymph node metastases; EC: endometrial cancer; ADC: apparent diffusion
coefficient; T1WI: T1-weighted imaging; OR: odds ratio; HR: hazard ratio; AUC: area under the curve; LVSI: lymph
vascular space invasion; T2WI: T2-weighted imaging; FIGO: International Federation of Gynaecology and
Obstetrics; N/A: not applicable/not present; RF: random forest regression; LASSO: least absolute shrinkage and
selection operator logistic regression; LoR: logistic regression; LiR: linear regression.
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3.5. CT-Based Radiomics

To the best of our knowledge, only one study explored the performance of texture
analysis based on CT imaging for EC assessment. Ytre-Hauge et al. developed a model to
predict DMI, cervical stroma invasion (CSI), and LNM by analysing the tumour texture
features from 155 preoperative pelvic contrast-enhanced CTs. They found that high tumour
entropy independently predicted DMI and CSI with an AUC of 0.71 and 0.67, respectively.
Another CT feature (Kurtosis5) correlated with LNM (AUC = 0.69). Furthermore, high
tumour kurtosis tended to independently predict reduced recurrence- and progression-free
survival [59].

4. Cervical Cancer

Cervical cancer (CC) is ranked fourth among malignancies in terms of incidence,
prevalence, and mortality in women worldwide; however, when early diagnosis is made,
CC is one of the most successfully treatable forms of cancer [60]. Patients with CC are
staged according to the TNM classification, and the clinical staging is based on the FIGO
staging system [61]. The initial workup for assessment of pelvic tumour extent and to guide
treatment options is based on pelvic MRI according to consensus recommendations by the
ESMO, ESTRO, and European Society of Pathology (ESP) guidelines [62].

Radiological assessment of cervical malignancy for the initial staging, response mon-
itoring, and evaluation of disease recurrence is performed on pelvic MRI according to
the ESUR guidelines [63]. The standard pelvic MRI protocol includes T1WI without and
with saturation, T2WI with a slice thickness of 4 mm or less, and DWI sequences while
contrast-enhanced MRI remains optional. However, pelvic MRI has some limitations in the
assessment of CC, mainly related to the limited accuracy for nodes status, largely based
on the size criteria (i.e., ≥1.0 cm in short axis) which yields a low pooled sensitivity of
56–61% [64], in the assessment of parametrial invasion with a pooled sensitivity of 76% and
specificity of 94% [65], as well as in the evaluation of residual disease after chemoradiation
therapy with sensitivity and specificity of 80% and 55%, respectively [66]. Given the cur-
rent limitations of standard imaging techniques, over the last decade, there has been an
increasing number of studies investigating if radiomics applied to CT or MRI may fill the
current gaps in patients with CC.

Most of these radiomics studies proved a moderate to high performance of radiomics
or combined clinical–radiomics models suggesting that radiomics might be used as a
prognostic biomarker and helpful in tailoring therapeutic management. In addition, some
papers addressed technical issues about radiomics, including the development of a fully
automatic whole-volume tumour segmentation tool [67], evaluation of robustness, stability,
and reproducibility of radiomic features in pelvic MRI, suggesting the application of
normalization prior to features extraction [68–71] and the definition of the best volume of
interest to achieve a specific outcome [72].

Multicentric and prospective radiomic studies applied to CC are summarised in
Table 2.

4.1. Primary Tumour

With regard to diagnosis, radiomics analysis of cervical mucosa combining contrast-
enhanced T1WI images and T2WI seems promising for predicting MRI invisible early stage
CCs, and machine learning MRI-based radiomics models may allow for the detection of
carcinogenic HPV status in CC [72]. Whole-tumour volumetric 3D radiomics analysis had a
good performance in stratifying the histological grade of CC and performed better than the
radiomics evaluation of the centre slice of the tumour alone [73]. Wang et al. [74], instead
investigated the role of radiomics for predicting different histological subtypes of CC,
discovered that multiparametric MRI-based radiomics models may be a promising method
to differentiate adenocarcinoma and squamous cell carcinoma, achieving a specificity of
94% by using five combined MRI sequences. More recently, Liu et al. [75] investigated
the evaluation of pathological types and the FIGO stage. These authors found that MRI
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radiomics features, obtained using T2WI and contrast-enhanced T1WI, achieved an AUC
of 0.777 and 0.750, respectively, for differentiating between adenocarcinoma and squamous
cell carcinoma. From these two sequences, the AUC that distinguished low from high FIGO
stages was 0.716 and 0.676, respectively, while the AUC for node status was 0.730 and 0.618
on T2WI and contrast-enhanced T1WI, respectively.

4.2. Nodal Involvement, Lymph Vascular Space Invasion, and Parametrial Invasion

With regard to the detection of metastatic nodes, multiple original radiomics studies
are available so far [76–89]; these studies included a number of patients ranging from
almost 100 to more than 700 and only four of these studies were multicentric [86–89]
(Table 2). In addition, two metanalyses investigating the accuracy of radiomics for the
assessment of nodes status have been published in 2022 by Li et al. [90] and Ren et al. [91].
Based on the metanalysis by Li et al. [92], the pooled diagnostic odds ratio, sensitivity,
specificity, and AUC of radiomics in detecting nodes metastasis were 12, 80%, 76%, and 0.83,
respectively; in addition, the assessment of multiple sequences and radiomics combined
with clinical factors seemed to improve the diagnostic odds ratio compared with the human
reading. However, this metanalysis also highlighted the high heterogeneity among the
included studies [90]. The metanalysis by Ren et al. [91] concluded that compared with the
radiomics analysis, ADC values are more clinically promising because they are more easily
accessible and widely applied, with similar pooled diagnostic values. It is worth saying
that some additional studies investigated MRI-based radiomics in the prediction of the
LVSI preoperatively [92–96], but only the study by Wu et al. [96] was multicentric. In this
multicentric study with 168 patients, the authors developed an MRI-based nomogram by
combining contrast-enhanced T1WI and T2WI and obtained a moderately high AUC (0.830)
for predicting LVSI in the test cohort [96]. To the best of our knowledge, only one study
investigated the role of radiomics for predicting parametrial invasion in a retrospective
single-centre study with 137 patients; in this study, radiomics signatures obtained with
T2WI and joint T2WI and DWI yielded an AUC of 0.797 vs. 0.946 and 0.780 vs. 0.921,
respectively, in the primary and validation cohorts [97].

4.3. Response to Treatment

Another interesting and widely studied field of radiomics research in patients with
CC is the assessment of response to treatments including conization [98], radiotherapy,
chemotherapy, and chemo-radiation therapy [99–109], the evaluation of recurrence [110–113],
and toxicity related to radiotherapy [114–116]. Among all studies on the assessment of
response to treatments, there are four multicentric studies and one prospective study that
deserve attention (Table 2). Three multicentric studies were focused on the response to
neoadjuvant chemotherapy. The study by Sun et al. [100] included 275 patients with locally
advanced CC and showed that the combined model of the intratumoural zone of T1WI,
intratumoural zone of T2WI, and peritumoural zone of T2WI achieved an AUC of 0.998
in the training set and 0.999 in the testing set. Tian et al. [101] included 277 patients and
developed a radiomics signature containing pre- and post-contrast imaging features that
were able to distinguish responders from non-responders in both primary and validation
cohorts with an AUC of 0.773 and 0.816, respectively, and that remained relatively stable
across centres. In addition, the combined model incorporating radiomics signature with
clinical factors yielded an even better predictive performance compared with radiomics
signature alone. More recently, Zhang et al. [109] developed a deep-learning radiomics
nomogram to predict response to neoadjuvant chemotherapy with high accuracy; this
nomogram performed better than the clinical model and was strongly correlated with
disease-free survival. The prospective observational study by Bowen et al. [99] investigated
the role of radiomics in predicting the response of PET and MRI in FIGO IB2 -IVA patients
receiving external radiotherapy and brachytherapy. Finally, the multicentre retrospective
study by Gui et al. [104] analysed 183 patients from two institutions and created a radiomics
model to predict pathological complete response after neoadjuvant chemoradiotherapy,
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yielding promising results (the RF_DEF model showed a mean AUC of 0.80). It is also in-
teresting to mention that some studies have investigated the role of radiomics in predicting
malnutrition after intervention [117], as well as haematological toxicities, changes in the
pelvic bone marrow, and proctitis related to radiotherapy [114–116].

Several radiomics original studies also looked for radiomics features and signatures
that could help in prognostication [113,118–130]. Among these, five multicentre studies,
one prospective study, and one metanalysis are worth mentioning. Some of these studies
have focused their attention on radiomics applied to ADC maps [120], yielding high ac-
curacy. Other papers have analysed radiomics of T2WI alone [127,129] and combined it
with contrast-enhanced T1WI [119] or with ADC [126]. These models identified radiomics
signatures that are promising in predicting several prognostic outcomes. A recently pub-
lished meta-analysis aimed to determine the impact of radiomics in overall and disease-free
survival. The authors demonstrated that current predictive models for treatment toxicity,
local or distant recurrence, and survival prediction yield promising results with reasonable
predictive accuracy [131]. Nevertheless, studies with large data sets, external validation,
validation in prospective clinical trials, and evaluation of the integration of these models
into clinical practice are still needed before routine implementation of radiomics in patients
with CC.

Table 2. Overview of most relevant radiomic studies applied to uterine cervical malignancies.

First
Author

Publication
Year Study Type Geographical

Area
Sample

Size Main Findings ML
Method PMID

Bowen SR
[99] 2018 Prospective N 21

Histogram quantiles change throughout
radiotherapy; some intensity histogram
quantiles appeared to be associated with
favourable tumour response, including

large early RT changes in ADC
skewness (AUC = 0.86)

N/A 29044908

Meng J
[113] 2018 Prospective A 34

Two radiomics feature (one from T2WI
and one from ADC) were the

best-selected predictors of recurrence,
yielding an AUC of 0.885

LoR 30061666

Lucia F
[120] 2019 Retrospective,

Multicentre E 190
The ADC model can predict disease-free

survival with an accuracy of 90%
(sensitivity 92–93%, specificity 87–89%)

N/A 30535746

Sun C
[100] 2019 Retrospective,

Multicentre A 275

The combined model of the
intratumoural zone of T1WI and T2WI

and intratumoural zone of T2WI
achieved an AUC of 0.998 for predicting

the clinical response to
neoadjuvant chemotherapy

RF 31395503

Fang J
[119] 2020 Retrospective,

Multicentre A 248

The radiomics score demonstrated
better prognostic performance in

estimating disease-free survival in
comparison with

clinicopathological features

LASSO,
Cox

regression
32089742

Tian X
[101] 2020 Retrospective,

Multicentre A 277

Radiomics signature can adequately
distinguish chemotherapeutic

responders from non-responders in both
primary and validation cohorts and

remain relatively stable across centres,
with an AUC of 0.803–0.821

LoR 32117732

Dong T
[86] 2020 Retrospective,

Multicentre A 226

A logistic regression model
incorporating five radiomic features and
two clinicopathological features had an

accuracy of 89.20% for predicting the
LN status

LoR 32373511
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Table 2. Cont.

First
Author

Publication
Year Study Type Geographical

Area
Sample

Size Main Findings ML
Method PMID

Hou L
[87] 2020 Retrospective,

Multicentre A 168

Radiomics features on T2WI, ADC, and
contrast-enhanced T1WI are associated

with LNM. Moreover, the radiomic
signature can depict LNM with an AUC

of 0.825

LASSO 32974143

Gui B
[104] 2021 Retrospective,

Multicentre E 183

A radiomics model can predict
pathological complete response after
neoadjuvant chemoradiotherapy by

using T2WI with an AUC of 0.80

N/A 33807494

Liu Y
[88] 2021 Retrospective,

Multicentre A 219

A CT-based radiomic model can predict
normal-size LNM with an AUCs of

0.912 in the training cohort, 0.859 in the
internal validation cohort, and 0.800 in

the external validation cohort

SVM 33975178

Ikushima
H [111] 2022 Retrospective,

Multicentre A 204

Radiomics combined with clinical
parameters can increase the prediction

of OFR after chemotherapy, with an
AUC of 0.709

LASSO 34865079

Liu Y
[75] 2023 Retrospective A 235

Radiomics can differentiate
adenocarcinoma and squamous cell
carcinoma with an AUC of 0.777 and
0.750 on T2WI and T1WI. AUC can
depict low- and high-FIGO stages

(AUC = 0.716 and 0.676). Good results
were found also in the detection of

tumour grade.

LASSO 34918963

Shi J
[89] 2022 Retrospective,

Multicentre A 169

A radiomic signature nomogram can
predict LNM status better than a
radiomics or clinical model alone
(AUC = 0.891 vs. 0.830 vs. 0.812)

LASSO 34968703

Liu B
[126] 2022 Retrospective,

Multicentre A 263

A radiomic signature consisting of four
radiomic features for disease-free

survival prediction demonstrated better
prognostic performance in both primary
and validation cohorts (C-index: 0.736
and 0.758, respectively) compared with
a clinical-based model (C-index: 0.603

and 0.649, respectively)

LASSO,
Cox

regression
35145910

Autorino R
[127] 2022 Retrospective,

Multicentre E 175
A radiomic model can predict overall

survival before starting
chemoradiotherapy with an AUC of 0.73

LoR 35325372

Wei G
[129] 2022 Retrospective,

Multicentre A 83

Authors developed two radiomics
models to predict the overall survival by
concurrent chemoradiotherapy alone or
concurrent chemoradiotherapy followed
by adjuvant chemotherapy, with AUCs

of 0.832 and 0.879, respectively

Elastic Net
Regres-

sion,
LASSO,

Cox
regression

35636572

Wu Y
[96] 2023 Retrospective,

Multicentre A 168

The nomogram showed high predictive
performance in the training (AUC:

0.883) and test cohort (AUC: 0.830) for
predicting LVSI

Spearman,
LASSO 36929220

Zhang Y
[109] 2023 Retrospective,

Multicentre A 285

Radiomics signature showed favourable
predictive values in differentiating
responders from non-responders to

neoadjuvant chemotherapy with high
AUCs (over 0.90)

LoR,
LASSO 36980381

ML: machine learning; PMID: PubMed identifier; N: North America; A: Asia–Pacific; E: Europe; MRI: magnetic
resonance imaging; DWI: diffusion-weighted imaging; FDG: fluorodeoxyglucose; PET: positron emission tomog-
raphy; CT: computed tomography; CC: cervical cancer; ADC: apparent diffusion coefficient; RT: radiotherapy;
AUC: area under the curve; 2D: two-dimensional; 3D: three-dimensional; T2WI: T2-weighted imaging; T1WI: T1-
weighted imaging; LNM: lymph node metastases; LN: lymph nodes; OFR: out-of-field recurrence; ROC: receiver
operating characteristic; LASSO: least absolute shrinkage and selection operator; FIGO: International Federation of
Gynaecology and Obstetrics; SPAIR: spectral attenuated inversion recovery; LVSI: lymph vascular space invasion;
N/A: not applicable/not present; RF: random forest regression; LASSO: least absolute shrinkage and selection
operator logistic regression; LoR: logistic regression; SVM: support vector regression.
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5. Mesenchymal Tumours

Uterine mesenchymal tumours arise from uterine smooth muscle, endometrial stroma,
or a combination of both [132]. Benign leiomyomas (LM) are the most common mesenchy-
mal uterine tumours, affecting up to 80% of women of reproductive age [133]. Conversely,
uterine sarcomas (US) are a rare form of mesenchymal tumours, accounting for approxi-
mately 1% of gynaecological neoplasms and 3–7% of all uterine malignancies, and have a
poor prognosis [134]. Currently, there are no reliable imaging criteria for distinguishing US,
especially leiomyosarcomas, from LM with atypical features, including degeneration or
unusual pattern of growth [135]. The final diagnosis is usually made only after the surgery,
based on postoperative histopathological assessment.

Considering the overlap imaging features in atypical LM and US, several authors
investigated the possible role of MRI texture analysis in aiding radiologists in the differential
diagnosis between these two entities [136]. However, the majority of these publications are
retrospective and monocentric, beyond being limited by small sample cohorts of patients,
particularly those with malignant lesions.

Malek et al. developed a radiomic model based on MR perfusion, which showed
good diagnostic values (accuracy, sensitivity, and specificity of 91%, 100%, and 90%, respec-
tively) [137]. The same authors aimed to develop a decision tree and a complex algorithm
to differentiate US and LM, with accuracies of 96% and 100%, respectively. However, the
algorithm was reported to be time consuming, with a special limit for everyday clinical
practice [138].

Finally, Xie et al. reported that a radiomic model based on ADC map can predict
pathological results of patients with sarcomas and atypical leiomyomas with an AUC of
0.83 [139].

Nakagawa and colleagues compared the performance of ML using multiparametric
MRI and positron-emission tomography (PET), concluding that the MRI-based model
was superior to the PET one and comparable with that of experienced radiologists [140].
Another investigation compared the diagnostic performance of three different volumes
of interests (VOIs)—lesion, lesion and surrounding tissue, and whole uterus—in ADC
map-based radiomic analysis for distinguishing US and LM. The results showed that the
model based on features extracted from VOIs covering the whole uterus had the best
diagnostic performance (AUC: 0.876, sensitivity: 76.3%, and specificity: 84.5%) [141]. Yang
and Stamp focused their research on distinguishing low-grade US and LM, testing different
ML models and various cutting-edge deep learning techniques. For the classic techniques
considered, the highest classification accuracy was 0.85, while the most accurate learning
model achieved an accuracy of approximately 0.87 [142].

6. Ovarian Pathologies

Ovarian lesions are a frequent cause of gynaecological pathologies with both benign
and malignant conditions frequently encountered in clinical practice. Ovarian cancer
is in the seventh place for cancer incidence in females and it is associated with high
mortality [143]. Epithelial tumours are the most common cause of ovarian cancer, and they
include a wide spectrum of lesions with different histopathological features, risk factors,
treatment options, and prognosis [143]. Particularly, the most common ovarian lesions
are serous and mucinous tumours. In this complex clinical context, radiomics can serve
as a relevant tool to improve the diagnosis, management, and prediction of prognosis
in patients with ovarian pathologies [144]. Several studies explored the performance of
radiomics with a plethora of different aims and outcomes in ovarian pathologies. Relevant
multicentric studies are summarized in Table 3.

Ultrasound, CT, and MRI are the most used imaging techniques in patients with
ovarian pathologies. Ultrasound is the first imaging modality for the assessment of ovarian
pathologies but the differential diagnosis between different entities may be challenging
based only on the qualitative assessment. Initial single-centre studies applied the radiomics
analysis on ultrasound images to predict the histopathological types and grades of epithe-
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lial ovarian cancers [145,146] and prognosis [147] with reported good performances but
validation can be problematic as the ultrasound images’ acquisitions depend on operator
experience. Considering the main aim of this review and the application of CT and MRI
in clinical practice, further discussion will be focused on the application of cross-section
imaging in different scenarios.

6.1. CT

Contrast-enhanced CT is performed for the preoperative staging in patients with
ovarian tumours, providing information on the primary mass and presence of distant
metastases. Pan et al. [148] proposed a nomogram with combined radiomics and conven-
tional contrast-enhanced CT features for the preoperative classification between serous
and mucinous cystadenomas with an AUC of 0.92 in the external validation cohort. Using
non-contrast CT images, Li et al. [149] constructed and externally validated a radiomics
model and nomogram with good-to-excellent performance (AUC of 0.83 and 0.95, respec-
tively) for the differential diagnosis between benign and malignant ovarian tumours. A
large study including 1329 patients with ovarian tumours provided an AUC of 0.91 of
the machine-learning-based radiomics model for the differentiation between the benign
and malignant tumours on contrast-enhanced CT [150]. Furthermore, a multicentric study
involving 665 patients from four centres reported an AUC of 0.836 for differentiating
high-grade and non-high-grade serous carcinoma [151].

CT-based radiomics can also be used to predict overall survival and progression-free
survival in patients with ovarian cancer [152,153]. In this setting, a multicentric study
performed by Wei et al. [154] demonstrated good accuracy of the radiomics signature
on preoperative contrast-enhanced CT and nomogram for the prediction of 18-month
and 3-year recurrence risks in patients with advanced high-grade serous ovarian cancer.
Fotopoulou et al. [155] recently validated a radiomics prognostic vector, which was indepen-
dently associated with progression-free survival, in an independent cohort of high-grade
serous ovarian cancer imaged with contrast-enhanced CT. Radiomics was also able to
predict response to neoadjuvant treatment in patients with high-grade serous ovarian
carcinoma based on the segmentation of omental tumour deposits [156].

6.2. MRI

MRI is the most accurate imaging modality for the assessment of ovarian pathologies,
and it may be particularly helpful for lesion characterization and stratification of the risk of
malignancy. MRI is often performed as a second-line imaging modality in patients with
indeterminate adnexal masses detected on other imaging exams. Radiomics analysis in
ovarian pathologies has been applied to different MRI sequences, with the more promising
results reported for the radiomics features extracted from the T2WI. In a multicentric study,
Wei et al. [157] provided a combined model, including radiomics features extracted from the
segmentation of T2WI, which achieved a good performance (AUC of 0.86) in the external
validation set for the differential diagnosis between benign and borderline epithelial ovarian
tumours. Jian et al. [158] applied radiomics to multiple MRI sequences to differentiate type
I from type II epithelial ovarian cancers. Li and co-workers [159] proposed an MRI-based
radiomics signature for the prediction of recurrence-free survival in patients with high-
grade serous ovarian carcinoma. In that study, radiomics features were extracted from
the T2WI and post-contrast sequences, with similar performances. In a study including
186 patients, Wang et al. [160] reported that the radiomics model based on T2WI had the
highest performance among different MRI sequences of the prediction of prognosis in
patients with epithelial ovarian cancers. MRI-based radiomics models have also been tested
and validated for the prediction of postoperative residual tumour, peritoneal metastases,
or chemotherapy response in patients with ovarian cancers [161–163].

Radiomics can also predict genomics markers, such as BRCA mutations, proteomics,
and immunological markers in patients with ovarian cancers, as explored in recent stud-
ies [164–166]. Nevertheless, Avesani and co-workers [167] found a low performance of
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the radiomics model in predicting BRCA mutation (AUC of 0.46–0.59) when applied to a
multicentric cohort of 218 patients from four different centres.

Optimistic results of the current radiomics studies should be balanced by the chal-
lenges for the applications of radiomics in ovarian pathologies. Most of the current ra-
diomics research are retrospective single-centre studies lacking external validation. Het-
erogeneity of imaging acquisition parameters and lack of standardized protocol can limit
the application of the radiomics models in external centres [168]. Moreover, inter-reader
variability and reproducibility of the radiomics features are crucial for the validation of
the radiomics model, and they are often missing in current studies. A recent systematic
review pointed out that the methodological rigor and quality of radiomics studies are
still unsatisfactory in ovarian pathologies, with a reported radiomics quality score of 6,
corresponding to 16.7% of the total score, which is lower compared with other fields of
research in radiomics studies [169–171].

Table 3. Overview of most relevant radiomic studies applied to ovarian cancer.

First
Author

Publication
Year Study Type Geographical

Area
Sample

Size Main Findings ML
Method PMID

Wei W
[154] 2019 Retrospective,

Multicentre A 142

Radiomics signature’s accuracy was
79.7% and 70% for the prediction of
18-month and 3-year recurrence risk

in the independent external
validation cohort

LASSO,
Cox

regression
31024855

Veeraraghavan
H [164] 2020 Retrospective,

Multicentre N 75

The clinical–genomic model
revealed an association between

progression-free survival to
chemotherapy

Cox
regression 33212885

Pan S
[148] 2020 Retrospective,

Multicentre A 103
The combined nomogram had an
AUC of 0.92 for the differentiation

in the external validation cohort
LASSO 32547958

Li S
[149] 2021 Retrospective,

Multicentre A 134

Good performance of the radiomics
(AUC 0.83) and nomogram (AUC
0.95) for the differential diagnosis

between benign and malignant
ovarian tumours in the external

validation tests

LASSO 33888749

Jian J
[158] 2021 Retrospective,

Multicentre A 294

The combined radiomics model had
an AUC of 0.847 in the external

validation cohort for differentiation
between type I and type II epithelial

ovarian cancers

LASSO 32743768

Song X
[161] 2021 Prospective A 89

The radiomics model and
nomogram had an AUC of 0.928

and 0.944 in the validation cohort,
respectively, for the prediction of

peritoneal metastasis

LASSO,
LoR 33948702

Rundo L
[156] 2022 Retrospective,

Multicentre E 109

CT radiomic model based on
omental deposits predicted

response to neoadjuvant
chemotherapy treatment

Elastic Net
regression 35785153

Wang M
[151] 2022 Retrospective,

Multicentre A 665

Radiomics model had an AUC of
0.836 for differentiating high-grade

and non-high-grade serous
carcinoma in the testing cohort

LoR 36469315

HU J
[153] 2022 Retrospective A 217

The radiomics model had a c-index
of 0.858 for the prediction of overall
survival and 0.700 for the prediction
of disease-free survival in patients

with high-grade serous
ovarian cancer

Cox
regression 35800777
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Table 3. Cont.

First
Author

Publication
Year Study Type Geographical

Area
Sample

Size Main Findings ML
Method PMID

Li J
[150] 2022 Retrospective A 1329

The machine learning classifier
provided an AUC of 0.91 for the
radiomics model and 0.96 for the
mixed model for the differential
diagnosis between benign and

malignant ovarian tumours

KNN,
SVM, RF,

LoR, MLP,
XGBoost

36016613

Wei M
[157] 2022 Retrospective,

Multicentre A 417

The combined model had an AUC
of 0.86 for the differentiation

between benign and borderline
epithelial ovarian tumours in the

external validation set

LoR 35943620

Fotopolou
C [155] 2022 Retrospective,

Multicentre E 323

The radiomic prognostic vector
score was independently associated

with significantly worse
progression-free survival

Cox
regression 34923575

Lu J
[162] 2023 Retrospective A 128

The radiomic–clinical nomogram
had an AUC of 0.900 for the

prediction of residual tumour in the
separate validation cohort

LASSO 36587996

Li H
[163] 2023 Retrospective,

Multicentre A 301

The combined radiomics
nomogram had an AUC of 0.799 for

the prediction of platinum
resistance in the testing cohort

LoR 36995415

ML: machine learning; PMID: PubMed identifier; A: Asia–Pacific; N: North America; E: Europe; CT: computed
tomography; MRI: magnetic resonance imaging; AUC: area under the curve; T2WI: T2-weighted imaging;
LASSO: least absolute shrinkage and selection operator logistic regression; LoR: logistic regression; KNN: k-
nearest neighbour; SVM: support vector machines; RF: random forest; MLP: multi-layer perceptron; XGBoost:
extreme gradient boosting.

7. Conclusions

In conclusion, several radiomics studies applied to gynaecological pathologies have
shown promising results in terms of diagnostic and prognostic efficacy. However, many
radiomics models were developed using small populations and did not include validation
cohorts, which raises doubts about the reproducibility of their results. Moreover, these
investigations were mostly performed using manual segmentation methods and thus can
be extremely time consuming, especially in the case of radiomics features extracted from
multiple acquisitions. For these reasons, researchers’ efforts in the future should concentrate
on improving the reproducibility and feasibility of radiomics models, in order to accelerate
the path to their effective clinical application and, hopefully, to increase their diagnostic
and therapeutic impact.
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