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A B S T R A C T

This survey explores the convergence of Internet of Things (IoT) technologies with Water Distribution
Systems (WDSs), focusing on large-scale deployments and the role of edge computing (EC). Effective water
management increasingly relies on IoT monitoring, resulting in massive deployments and the generation of
Big Data. While previous research has examined these topics individually, this work integrates them into a
comprehensive analysis. We systematically reviewed 255 studies on IoT in WDS, identifying key challenges
such as interoperability, scalability, energy efficiency, network coverage, and reliability. We also examined
technologies like LPWAN and the growing use of EC for real-time data processing. In large-scale WDS scenarios,
where vast amounts of data are generated, we highlighted the importance of technologies like NB-IoT, SigFox,
and LoRaWAN due to their low power consumption and wide coverage. Based on our findings, we provide
guidelines for sustainable, large-scale IoT deployment in WDS, emphasizing the need for edge data processing
to reduce cloud dependency, improve scalability, and enable smarter cities and digital twins.
1. Introduction

Water Distribution Systems (WDSs) optimization and digitalization
are becoming key objectives in our modern society. Global water
consumption is constantly increasing, having a huge demand increment
each year while on the other side the world is facing a global water
deficit, foreseen to be about 40% by 2030 [1]. Climate change is
going to make the situation worse. Current changes in temperatures,
storms and rain behaviors urgently require better management of water
distribution between different regions.

At the same time, massive amounts of water are lost because of leak-
ages mainly due to dated water distribution infrastructures. According
to recent statistics of the European Federation of National Associations
of Water Services (EurEau), the average value of water lost is about
26% in Europe [2], although this value can even be higher than 50% in
some regions. In this context, it is of paramount importance to invest in
Information and Communication Technologies (ICTs) solutions that will
help improve the monitoring and the management of WDSs. Internet
of Things (IoT) technologies, and especially those equipped with Low
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Power Wide Area Network (LPWAN), have become a consolidated
way to deploy applications to monitor and control smart systems at
a large scale [3]. Indeed, the advantages of LPWAN architectures
include a wide coverage, in the order of kilometers, and a low power
consumption, with batteries lasting up to 10 years. Additionally, a
majority of existing Smart Water Distribution Systems (SWDSs) operate
primarily by gathering data from terminal points and transmitting this
information to cloud servers for centralized analysis. This process can
be visualized in Fig. 1. The sequence begins with data generation at
the meter level, followed by collection via the concentrator. The IoT
operator then processes this information before it is ultimately relayed
to the water operator through dedicated Application server.

Implementing a Smart Water Grid (SWG) in massive scenarios poses
its own set of challenges. For instance, the coexistence of multiple
IoT technologies could lead to interference phenomena, causing packet
or data loss. Ensuring the reliability of these massive IoT systems is
crucial, as loss of information could result in serious consequences,
such as the waste of thousands of liters of water. With water resources
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Table 1
Graphical outline of the survey: Structure and main points.

Section Name Content

1 Introduction Introduction to SWDS in Massive Scenarios.

2 Related Surveys Comparison with related Surveys, Overviews, and Reviews in the context of SWDSs

3 Research Method Research Questions, Inclusion and Exclusion Criteria, Search and Selection
Procedure, Data Extraction

4 Bibliometrics Results Distribution by Type of Venue, Distribution by Location, Distribution by Affiliation

5 Challenges in IoT for WDS (RQ1) Selection of IoT technologies for WDSs, Interoperability and Heterogeneity,
Scalability, Power Consumption and Energy Efficiency, Network Coverage and
Reliability, Edge Computing, Measurement and Sensing, WDS Applications, Summary
and Main Findings

6 IoT Technologies for Water Systems Monitoring
(RQ2)

LoRaWAN, SigFox, Fog vs. Edge in IoT for WDS, Summary and Main Findings

7 Edge Computing in Massive IoT for WDS (RQ3) Description, Summary and Main Findings

8 WDS in Large Scale Scenarios (RQ4) Description, Summary and Main Findings

9 Simulation Tools for Massive IoT in WDSs (RQ5) Water Network Simulation Tools (WNTR, WaterGEMS, WaterCAD, WDNetXL,
MATLAB), Wireless Sensor Network Simulation Tools (ns-3, OMNeT++, LoRaSim,
SEAMCAT), Summary and Main Findings

10 Lessons Learned and Guidelines for Sustainable
Large-Scale Deployment

Introduction and description of the framework as a holistic approach

11 Discussion and Future Directions Discussion of challenges and future research topics

12 Conclusions
Fig. 1. IoT architecture in SWDSs.

increasingly limited, it is essential to find new and innovative ways to
manage and distribute this vital resource.

Most of relevant literature focus on the study of WDS, concentrating
solely on either wireless networks or only water-related aspects, leaving
just a few that address a holistic analysis of massive IoT scenarios in
WDSs.

On this context, the primary goal of the present article is to conduct
an in-depth study of WDS in massive scenarios, listing the challenges
to be faced in integrating IoT technology into these scenarios. Another
goal is to create a complete comparison of the current literature on
this topic and, based on the latter, design and provide the scientific
community with guidelines for sustainable and large scale deploy-
ment for the future. Consequently, we introduce a new framework
that represents our vision for studying WDS in massive scenarios and
provides guidelines to the scientific community, based on the identified
challenges on this field. We apply the proposed guideline to a use
case focused on energy consumption in a massive LPWAN network and
optimal concentrators placement.

Finally, this comprehensive study of these massive IoT scenarios
can further enhance the planning of Wireless Sensor Networks (WSN)
in SWGs, making our water systems more efficient, sustainable and
resilient for the future.
2 
The remainder of this article is organized as follows: Section 2
discusses the relevant literature, while Sections 3 and 4 outline our
research methodology. The results are presented in the following sec-
tions. Section 5 delves into the challenges associated with massive IoT
deployment for WDS, Section 6 details the IoT technologies applicable
for water system monitoring, Section 7 introduces the role of edge
computing in the WDS domain, and Section 8 discusses WDS in massive
IoT scenarios. Section 9 provides context for the simulation tools used
for massive IoT in WDSs. Additionally, Section 10 presents and elab-
orates on the guidelines for sustainable and large-scale deployment.
Section 11 presents the discussion of challenges and future research
direction for massive SWDSs. The article concludes with Section 12,
where we summarize our findings. Furthermore, Table 1 provides a
graphical outline of the survey to provide a clear overview of the
structure.

2. Related surveys

The convergence of IoT and WDSs represents a crucial advance-
ment in infrastructure management. With global water demand esca-
lating and climate change amplifying water scarcity, efficient WDSs are
paramount, and understanding this dynamic landscape is essential for
tackling pressing water management issues. In this context, few survey
studies have been conducted approaching the IoT in WDS and Table 2
summarizes these contributions as explained below.

Despite lacking a background analysis of WDS, Lalle et al. [4] and
Oberascher et al. [5] provide a detailed view of IoT technologies,
offering a solid foundation for understanding the potential integration
of IoT in WDSs. However, this lack of contextualization could hinder
the practical application of the results. In contrast, Ismail et al. [6]
comprehensively analyze the role of IoT in WDS applications but does
not delve into the recommended architecture for IoT-based systems.
This provides detailed insight into the potential of IoT in improving
water distribution processes, although the absence of a recommended
architecture may limit practical implementation in massive scenarios.

Islam et al. [11], while providing a comprehensive overview of
current technologies and trends in water leakage detection and iden-
tifying the most common sensors and communication technologies, do
not adequately address issues related to interoperability and scalabil-
ity necessary for massive IoT applications and do not discuss edge
computing-based leakage detection.
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Table 2
Comparative analysis of survey or overview studies in IoT-based water distribution systems.

Secondary study Background
of WDS

Overview of
IoT

Challenges in
IoT based WDS

Overview of IoT for
leakage detection

Focus on edge
computing for WDS

Massive IoT
scenario in WDS

Guidelines for massive
IoT based WDS

Lalle et al. [4] x ✓ ✓ ✓ x x x
Oberascher et al. [5] x ✓ ✓ x x x x
Ismail et al. [6] x x ✓ x x x x
Yuan et al. [7] x x x ✓ x x x
Li et al. [8] x x ✓ x x x x
Abu-Bakar et al. [9] x x x x x x x
Velayudhan et al. [10] ✓ ✓ ✓ ✓ ✓ x x
Islam et al. [11] x ✓ x ✓ x x x
This survey ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Yuan et al. [7] and Li et al. [8] examine both the role of IoT
in WDS applications and the challenges associated with IoT-based
water distribution. Nonetheless, they do not provide a comprehensive
overview of IoT technologies, which may limit their completeness.
Finally, Abu-Bakar et al. [9] and Velayudhan et al. [10] address the
role of IoT in WDS applications and provide a recommendation for an
IoT architecture in WDS. However, it does not specifically address the
challenges related to water distribution based on massive IoT scenarios,
potentially limiting the understanding of potential obstacles.

In addition, various literature works discuss the application of ad-
vanced technology for security purposes within the field of WDS.
Adu-Manu et al. [12] focus on Water Quality Monitoring (WQM)
pplications using WSNs, highlighting the shortcomings of traditional
aboratory-based manual monitoring (TMLB) and in situ monitoring
TMIS) approaches for WQM via WSNs. Likewise, Laspidou [13] ad-
resses the importance of ICT in urban water management, highlighting
he need for solutions to address security challenges and threats in
oT-enabled water distribution networks, introducing blockchain tech-
ology as a solution, and providing a conceptual framework for imple-
enting a smart water supply system. Later on, Dogo et al. [14] explore

the importance of blockchain technology in various applications within
IoT-based water management systems, focusing on a scenario in Africa.

Vidács & Vida [15] and Geetha & Gouthami [16] cover real-time wa-
ter quality monitoring, presenting applications, communication tech-
nologies, controllers, sensors, and energy consumption issues with IoT-
ased hardware and software architecture, as well as WSN systems
nd use cases, illustrating water quality monitoring in domestic and
ndustrial settings and critical activities in WDSs, such as potential
eakage and efficiency.

As reported in Table 2, we can conclude that most of the relevant
iterature concentrates on the study of WDS or wireless networks indi-

vidually, with only a few addressing the holistic analysis of massive IoT
cenarios in WDS. Indeed, the last three columns of the table represents
he novelty contribution of this work that includes Edge Computing
EC), massive IoT and guideline in the WDS context. Thus, our work
ims to dive deeper into WDSs in large-scale scenarios, outlining the

challenges of integrating IoT technology into such environments.

3. Research method

To identify relevant papers, we employed an adaptation of PRISMA
uidelines [17]. In the following subsections, we define the scope of

the literature review through the set of research questions, providing
details of the exclusion and inclusion criteria, the search and selection
procedure, and the extraction of data.

3.1. Research questions

The scope of this survey is an in-depth study of WDS in massive
scenarios, and it is defined by the following Research Questions (RQs):

1. RQ1: What are the challenges in IoT for WDS?
2. RQ2: What are the IoT technologies for WDS?
 a

3 
3. RQ3: How is Edge Computing applied in large-scale IoT deployment
for WDS?

4. RQ4: What are the problems of massive IoT for WDS?
5. RQ5: What are the simulation tools for massive IoT deployment for
WDS?

RQ1 aims to identify the challenges associated with gathering data
from large-scale IoT scenarios where water meters are deployed, draw-
ng insights from existing literature and categorizing them accordingly.
Q2 gathers the available technologies solutions to address the collec-

ion of measurement in WDS as well as to report the analysis of the best
oT solutions for WDS. Later on, RQ3 delves into the utilization of EC
ithin massive IoT deployments for WDS, highlighting its advantages
nd applications. Furthermore, RQ4 explores the issues surrounding

massive IoT, considering various scales of WDS within large scenarios.
Finally, RQ5 examines the feasibility of employing simulation tools to
assess massive IoT scenarios, providing a means to replicate complex
environments for research purposes.

3.2. Inclusion and exclusion criteria

This subsection outlines the criteria used for evaluating the rele-
ance of the studies. We excluded all publications that met any of the
ollowing criteria: (E1) studies unrelated to WDSs, and (E2) non-English
ublications.1

On the other hand, we incorporated publications that satisfied at
east one of the following criteria: (I1) research studies that underwent
 stringent peer-review process, focusing on WDSs and IoT, and (I2)
ertinent gray literature sources like arXiv studies, project reports, and
anuals/books that met the first criterion.

3.3. Search and selection procedure

The database search was mainly conducted on Google Scholar, and
we reviewed known repositories (IEEE Xplore, ACM Digital Library,
SpringerLink, and Elsevier) to ensure comprehensive coverage. A set
of searches were carried out from June 2022 until April 2024.

In order to refine the process, we searched using the 10 strings listed
in Table 3 between 1970 and 2024.

We evaluated the study’s research output by reviewing the titles,
bstracts, and keywords. When a decision could not be made, the
rticle’s structure, introduction, methodology, results and conclusions
f the article were also reviewed. Initial screening was conducted by
he first and second authors, with any discrepancies resolved through
iscussion among all six authors to reach a consensus.

To identify pertinent studies, we initially analyzed document titles
and metadata. Following the database search, duplicate entries were
eliminated. Next, during the screening phase, inclusion and exclusion
criteria were applied. Finally, an eligibility assessment was performed
on 255 publications, ultimately leaving 107 publications included.

1 An exception was made to include a document in Portuguese, specifically
 thesis closely related to our goals, topics, and domain. See study P95.
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Table 3
Query and search strings used.

Query number Search query

1 ‘‘Water distribution networks’’ OR ‘‘Water distribution systems’’
OR ‘‘Water supply systems’’

2 ‘‘Water distribution networks’’ AND ‘‘Internet of Things’’
3 ‘‘Water distribution systems’’ AND ‘‘Internet of Things’’
4 ‘‘Water supply system’’ AND ‘‘Internet of Things’’
5 ‘‘Water distribution networks’’ OR ‘‘Water distribution systems’’

OR ‘‘Water supply system’’ AND ‘‘Internet of Things’’
6 ‘‘Water distribution networks’’ OR ‘‘Water distribution systems’’

OR ‘‘Water supply system’’ AND ‘‘Internet of Things’’ AND
‘‘Edge computing’’

7 ‘‘Water distribution networks’’ OR ‘‘Water distribution systems’’
OR ‘‘Water supply system’’ AND ‘‘LPWAN’’ AND ‘‘Edge
computing’’

8 ‘‘Water monitoring’’ AND ‘‘Massive IoT’’
9 ‘‘Water monitoring’’ AND ‘‘IoT’’
10 ‘‘Water Measurement’’ OR ‘‘Water sensor’’ OR ‘‘Water sensing’’

Fig. 2. Number of publications per year (1976–2024).

3.4. Data extraction

The data items that were collected from each publication are ti-
tle, author name(s), publication year, affiliation, type of affiliation
academy, industry, shared affiliation), country, type of venue (con-
erence, forum, journal, symposium, workshop), name of venue, and
ublisher, which provided contextual information.

For RQ1, we extracted the following challenges: interoperability and
eterogeneity, scalability, power consumption and energy efficiency,
etwork coverage and reliability, EC, measurement and sensing, and
DS applications.
For RQ2 and RQ3, we extracted the wireless technology (LoRaWAN,

ZigBee, Bluetooth, SigFox, Wi-Fi, GSM, 4G, NB-IoT), study type (experi-
mental, real-world application, simulation), WDS (yes, no), massive IoT
scenario (yes, no), EC (yes, no).

For RQ4, we identified the focus of study, the amount of
nodes/pipes, number of sensors, software of tools, IoT study (yes, no),
leakage detection (yes, no), water quality (yes, no).

Finally, for RQ5, we extracted water network simulation tools
EPANET, WNTR, WaterGEMS, WaterCAD, WDNetXL, MATLAB, R,

Python) and wireless sensor network simulation tools (ns-3, OMNet++,
LoRaSim, SEAMCAT, Python).

4. Bibliometrics results

After the eligibility assessment, we selected a set of publications
rom which we were able to extract relevant data to answer the research
uestions. The full list of studies is composed of 107 publications,

labeled as P01 to P107. The complete list of publications can be found
here [18].
4 
The demographic analysis examines the 107 selected publications
in terms of venue type, geographic distribution, and author affiliation.
These publications span from 1976 to 2024, showing a consistent up-
ward trend in the number of articles published each year. In particular,
the output of the research paper per year is shown in Fig. 2, and it can
e noted that there was 1 study in 1976, 1 in 1980, 1 from 2000 to

2008, 1 in 2012; 2 in 2010 and 2013; 5 in 2015, 3 in 2016, 9 in 2017,
 in 2018, 18 in 2019, 19 in 2020, 10 in 2021, 15 in 2022, 8 in 2023,
nd 1 in 2024, with the highest peaks between 2019 and 2022.

4.1. Distribution by type of venue

The majority of the articles were published in journals, with 67 stud-
es. This is followed by conferences, which accounted for 26 studies.
dditionally, we identified 3 articles from symposiums and workshops,
nd 1 from a congress. It is interesting to note that out of the 26 con-
erence articles, there were 25 different conferences represented, with
nly one conference (the ACM International Conference on Information
 Knowledge Management) having 2 articles.

Regarding the journals, we identified 46 different ones. The top 4
journals are: Sensors with 6 articles, Water with 5, and Environmental
Modelling & Software, IEEE Access, and Journal of Physics: Conference
Series each with 3 articles. Following these, Computers & Chemical
Engineering, IEEE Internet of Things Journal, Internet of Things, Journal of
Water Resources Planning and Management, Procedia Engineering, Water
Research, and Water Supply each have 2 articles.

4.2. Distribution by location

The analysis reveals a multifaceted picture of global research, with
China as the leading country with 13 studies, closely followed by the
USA, India and Italy with 10, 9 and 8 studies, respectively. Countries
like the United Kingdom and Australia also make notable contributions,
exemplifying the broader landscape of the community. Collaborations
between countries such as Tunisia-Portugal (P56, P92, P93), Cuba-
Mexico (P35, P103), Portugal-Brazil (P79, P80), UK-Italy-Greece (P86,
P87), Italy-Qatar (P82), Nigeria-South Africa (P105), among others,
highlight the importance of cross-border partnerships in advancing
scientific knowledge and addressing complex challenges. Furthermore,
we have identified a set of countries with only one contribution such
as New Zealand (P28), Denmark (P53), Czech Republic (P19), Egypt
(P99) and Malaysia (P77). These findings are illustrated in Fig. 3, which
learly depicts the distribution of research studies across continents. In
articular, it can be noted that Asia leads significantly with 50% of the
otal contribution of studies, highlighting its prominent role in global
esearch endeavors. In contrast, both America and Europe contribute
qually, with 22.7% each, reflecting their ongoing engagement in
cientific exploration. Meanwhile, Africa and Oceania exhibit notably
ower contributions at just 2.3%, with only 1 study each.

4.3. Distribution by affiliation

Within the 107 publications, we have identified that authors are
affiliated with 125 universities, 7 centers, 19 institutes, 24 companies,
1 consortium (Consorzio Nazionale Interuniversitario per le Telecomuni-
cazioni, Bari, Italy), and 8 government agencies such as the National
Homeland Security Research Center, USA and Xiayuan Multipurpose Dam
Water Diversion and Irrigation Project Construction and Management Bu-
reau of Henan Province, China, showing the dynamic and interconnected
research landscape.

The most frequently mentioned university is the Central China Nor-
mal University (Wuhan, China) identified 3 times within the affiliations
related to the Key Laboratory for Geographical Process Analysis & Sim-
ulation of Hubei Province, the Department of Computer Science, and
the College of Urban and Environmental Sciences. Other frequently

mentioned universities include the University of Exeter, England and
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Fig. 3. Distribution of studies by continent.

the Universitat Politècnica de Catalunya, Spain, each appearing twice as
ffiliations.

Regarding the companies, the most frequent ones include Tata
Consultancy Services, appearing twice with locations in Haryana and

oida, India, and water-related companies, such as the Water Resources
nformation Center of Henan Province and the Jiangsu Provincial Plan-
ing and Design Group both in China. European companies also show
ignificant representation with AGBAR Barcelona Water Company and
ingularLogic in Greece, highlighting a regional presence in technologi-
al and water management solutions. In addition, specialized firms and
arious engineering and technology companies in Australia (e.g., ECS
nd Water Division at Energy Conservation Systems Pty Ltd.) demonstrate
 global spread in innovative research and development activities.

5. Challenges in IoT for WDS (RQ1)

In this section, we initiate our analysis related to the research
uestions provided. More specifically, we tackle here the challenges
ssociated with technology selection, which encompass aspects of in-
eroperability, heterogeneity, scalability, energy efficiency, network
overage, and reliability.

5.1. Selection of IoT technologies for WDSs

Regarding sensor technology, there is no universal technology for
WDS monitoring. IoT chips with low power consumption and long-
istance wireless communication capability are ideal for these purposes
uch as LPWAN networks. LPWAN devices are expected to dominate the
ndustry [11], with different infrastructure requirements: (i) dependent
n cellular infrastructure, such as NB-IoT; (ii) dependent on third-party
nfrastructure, such as SigFox [19]; and (iii) autonomous LPWANs, such

as LoRa/LoRaWAN [20]. Cellular-based LPWANs offer broad coverage,
capacity, battery life, quality of service, and security, but are not
cost-effective due to subscription costs and reliance on commercial
networks. SigFox, a patented network, has spurred rapid innovation by
increasing competition among LPWAN technologies. LoRaWAN offers
numerous advantages, including low power consumption, vast cover-
age, simplicity and easy management thanks to its features. However,
it faces potential scalability issues in large-scale scenarios.

The implementation of smart sensor networks to monitor WDSs
involves the generation of massive IoT scenarios. For example, studies
on WDS in Refs. [21,22], and [23] had a number of pipes of 4494,
13 897, and 362,648, respectively. Assuming that we want to monitor
ach of these pipes with wireless sensors, with a transmission time
5 
between 5–15 min based on work [24], we would obtain a traffic load
that can be considered in a massive IoT scenario. However, according
o Jouhari et al. [25] massive IoT is a new category of IoT networks

driven by scale and not by communication speed.
The number of connected devices in massive IoT can range from

undreds to billions, where the main goal is to efficiently transmit
 small amount of sensing data from large numbers of connected
evices [25]. Therefore, establishing efficient, adaptable and cost-

effective systems within the massive IoT paradigm is becoming more
difficult due to increasing IoT connectivity demands and different ap-
plication requirements [26]. In this context, sensors in WDSs face chal-
lenges of interoperability, heterogeneity, scalability, energy efficiency,
network coverage and reliability [27–31].

In the strategic selection of IoT technologies for WDS, it is crucial to
address the multifaceted challenges posed by the evolving landscape of
the IoT. This complexity underscores the need for reliable and secure
ommunication among a growing number of devices, as well as efficient
anagement of the vast amounts of data they generate. Moreover, the

ntegration of various IoT technologies, including the need to mitigate
otential interference issues arising from operating within the same
nlicensed frequency bands [32].

Effective solutions must entail meticulous planning and resource
management to ensure uninterrupted connectivity [33]. Additionally,
managing widely distributed IoT devices, including sensors for water
uality monitoring and actuators for network control, necessitates ro-

bust strategies for powering and maintaining these devices, particularly
given their reliance on long-lasting battery solutions.

Furthermore, as IoT solutions become increasingly pervasive in
water distribution networks, prioritizing data security and privacy be-
comes paramount. Robust measures must be implemented to safeguard
sensitive data pertaining to water networks and consumer habits, mit-
igating the risk of unauthorized access and potential cyber threats. In
navigating these challenges, the strategic selection of IoT technologies
for WDSs demands a holistic approach that encompasses reliability,
efficiency, scalability, and security considerations to drive sustainable
and resilient water management practices.

In the following Section 6, we will examine the optimal selection of
IoT technology for WDSs by comparing various existing solutions and
providing a comprehensive overview.

5.2. Interoperability and heterogeneity

WDS are heterogeneous in terms of sensors, and, in some cases,
here is a need to integrate various communication technologies [11].

For instance, when multiple platforms coexist, data may originate from
different subsystems. Interoperability, defined by the ability to unify
eterogeneous objects in a dynamic way, is therefore an important

step for the development of massive IoT solutions. As outlined in [34],
there is a proposal to integrate various technologies, such as cloud com-
puting, massive IoT, and software-defined networking. The study also
delves into the associated challenges, opportunities, and AI solutions
for interoperability. Ensuring communication in heterogeneous water
monitoring systems is a critical issue, as studied in [35], where a hybrid
ommunication system is implemented using LoRa and ZigBee.

Specifically, two LoRa sensor clusters and two ZigBee sensor clus-
ers are utilized and combined with two ZigBee-to-LoRa converters to

communicate within a network managed by a LoRa GW. The ZigBee
network employs the token ring protocol, while the LoRa network uti-
lizes a polling mechanism. The system demonstrates effective operation
with a packet loss rate of less than 0.5%. The article [28] proposes a
new method to overcome interoperability challenges in WSNs for smart
water networks. The syntactic interoperability approach addresses data
format issues for applications, while semantic interoperability aligns
the ontologies of IoT and applications.

By utilizing domain-specific standards such as WaterML2, DIIM
makes IoT data interoperability, easing the connection between IoT
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platforms and various applications in smart water networks. Archi-
tectures such as BIG IoT [36], IoTexpert [37], and ISA-95 [38] can
rive interoperability in WDS by connecting dozens of IoT platforms
ike FIWARE [39], Cayenne [40], ThingWorx [41], among others.

These architectures aim to bridge the gap between different IoT plat-
forms and build an IoT ecosystem by creating APIs for cross-platform
communication.

5.3. Scalability

The main scalability concerns may include, for example, inter-
ference due to two or more wireless technologies sharing the same
frequency band, as discussed in [32]. Additionally, a database can be
the primary bottleneck in some circumstances. The authors in [29]
ound a scalability limit associated with MongoDB. Nevertheless, the
latform is suitable for massive IoT scenarios, demonstrating the ability
o handle 10 000 sensors without significant performance issues.

However, it is worth noting that scalability could be further im-
proved by adopting more efficient databases other than MongoDB.
Scalability is a fundamental feature of LPWAN technology, thanks to
its long range and the capacity for a large number of devices to reach
a given concentrator or gateway (GW). The network scales effectively
with dynamic transmission parameters and multiple sinks. Addition-
ally, Machine Learning (ML) can be applied to model and analyze
technical issues, thereby enhancing the scalability of LPWAN networks
and predicting network congestion [42]. Further developments could
include improved adaptive data rate mechanisms, optimization of GW
locations, and interference cancellation techniques [43].

5.4. Measurement and sensing

The selection of sensors plays a crucial role in monitoring the
ondition of water pipelines, which undergo progressive aging and
ace challenges associated with rapid intervention. Effective network
onitoring relies on dedicated systems, with primary metrics including

low, pressure, temperature, and water quality. As a result, a key
omponent in managing water supply networks is the implementation
f devices for monitoring flow and pressure at various points within the
etwork.

In general, there are three types of devices: mechanical, electrome-
chanical, and electronic devices. Most countries prefer fully mechanical

eters due to their low cost and high reliability. However, these meters
require manual reading, leading to limitations in obtaining measure-
ments with fast and accurate sampling intervals. Fully mechanical
meters for water flow measurement can be categorized by their oper-
ating principle: velocity-based or displacement-based. Turbine meters
fall into the former category, while meters with integrated oscillating
pistons belong to the latter [44].

In the last two decades, there has been a gradual integration of elec-
ronic circuit components into mechanical meters to enable automatic
unctionalities, such as Automatic Meter Reading (AMR). These meters,
eferred to as electromechanical meters [45], maintain a mechanical

measurement basis while possessing the capability to automate data
collection procedures.

In recent times, fully electronic meters based on innovative mea-
surement principles have been developed, including electromagnetic

eters [46], fluidic meters [47], and ultrasonic meters [48]. The
lectromagnetic method relies on the principle that the induced electro-
otive force produced by the fluid in a magnetic field is proportional

to the fluid’s velocity. The fluidic method utilizes the Coanda Ef-
fect, resulting in a frequency oscillation proportional to the fluid’s
velocity [47]. Ultrasonic meters employ one or more ultrasonic trans-
ducers to send signals through the fluid, detecting its velocity using
time-of-flight and the Doppler effect [49].

In contrast, fully mechanical devices often use magnetic coupling
to hermetically separate the reading from the water flow chamber,
 l
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known as dry dial devices [48]. Wet dial devices submerge the reading
mechanism in the liquid, eliminating magnetic coupling. Dry dial de-
vices, more common but vulnerable to interference, can be equipped
with electronic systems that detect measurements through magnetic
coupling.

Some manufacturers offer devices with a special housing for insert-
ng a probe, transforming them into electromechanical devices [50].

Electronic or smart meters generally provide higher measurement ac-
curacy than mechanical meters, showing promise for enhancing water
supply management in smart cities. Smart meters require a power sup-
ly, commonly relying on replaceable batteries, although self-powered
eters, as proposed in [51,52], are also available.

5.5. Power consumption and energy efficiency

Energy efficiency is not typically a principal concern for mea-
surements taken at water supply system tanks or pumping stations,
as these usually receive energy from the power grid. However, the
ituation changes when considering smart meters and flow monitor-

ing sensors within the water supply system, as they are generally
battery-powered [24]. In these scenarios, sensors with minimal power
consumption need to be paired with high-energy-efficient communica-
ion technologies to enable the sensors to have energy autonomy for

several years. In addition, minimizing the use of batteries is crucial to
reduce disposal costs, maintenance, and pollution in WDSs.

Encouraging the deployment of battery-free wireless devices
hrough energy harvesting from the environment is essential. Vari-
us established energy sources, including solar, piezoelectric, thermal,
ind, water, and radio frequency, can be utilized [53]. However,
chieving complete energy neutrality requires a detailed analysis of

energy consumption in different operational states [54]. For example,
ntegration of renewable energy sources based on water into monitoring
evices has been facilitated, as seen in [55]. Energy source and supply
nalysis is influenced by numerous factors, and its case-by-case nature
akes it challenging for systematic analysis.

On the other hand, ML algorithms can significantly contribute to
this field. ML approaches have successfully been applied in various con-
texts, enabling efficient location-based renewable energy selection [56]
and accurate energy forecasting [57]. Among the various technologies
shown in Fig. 4, categorized by energy consumption and coverage
range, LPWAN technologies (enclosed in a dashed box) provide the
most suitable solution for meeting the needs of smart water systems.
Indeed, by combining long-range wireless communication with low
power consumption, LPWAN technology allows for extended battery
life [58]. This is particularly crucial for flow monitoring, where sensor
ocations are often at the periphery of the WDS without the possibility
f connecting their power supply to a power grid.

5.6. Network coverage and reliability

Coverage maximization in WDS is an IoT optimization and reliabil-
ty problem. In short, within the context of coverage maximization, the
oal is to ensure that every point in the area of interest is within the

detection range of distributed sensors [59]. Consequently, it is essential
o choose technology with high coverage and reliability, for example,
o promptly identify any anomalies or leaks in WDSs.

Using long-range communication technologies, such as LPWANs, is
crucial for extending coverage and improving connectivity in remote
areas [60]. In addition, ad-hoc and mesh network implementations
facilitate connectivity between devices, facilitating the efficient ex-
tension of coverage [61]. However, spectrum sharing poses an addi-
ional challenge, requiring advanced strategies to optimize frequency
llocation [32]. Complying with specific standards and regulations is

essential to ensure consistent and reliable management of massive IoT
networks. One innovative approach to coverage and reliability chal-
enges is the introduction of artificial intelligence-based solutions that
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Fig. 4. Energy consumption versus communication range for various wireless technolo-
gies.

can dynamically optimize network performance and improve overall
system resilience [42]. Successfully integrating these solutions is a
crucial step toward creating more robust and reliable massive IoT
networks in a constantly evolving technology landscape.

5.7. WDS applications

Applications in WDSs play a crucial role in ensuring safe and
efficient water supply. Among these, leakage detection is essential
to prevent wastage and infrastructure damage. Models like Random
Walk Community Detection (RWCD) are used to divide WDS into
different segments. Subsequently, a long-term leakage detection model
(Extended Period Leakage Detection or EPLD) is employed to optimally
position pressure sensors, which monitor pressure variations that could
indicate leaks [62].

The goal is to maximize leak detection and reduce average detection
time. To reduce leaks, proper monitoring and maintenance of the WDS
are required. Moreover, the lack of historical scientific data on the
distribution system can lead to improper management and maintenance
of resources and consumer connections, such as supply deficiency,
leaks, higher demand, and low pressure [10].

Another crucial concern within the context of WDS pertains to the
continuous monitoring of water pressure and flow rate values. This is
combined with an extensive control process for immediate prediction
of pressure peaks, which could potentially cause leaks or other forms
of damage [63].

In most cases, maintaining disinfectant levels is usually of interest
to avoid bacteria regrowth and to protect against potential cross-
contamination. However, disinfectants, such as chlorine, decay over
time and produce potentially harmful disinfectant by-products when
they react with organic material in the water. Therefore, maintaining
a minimum chlorine residual requirement throughout the WDS is a
complex but essential task. When online booster disinfection is com-
bined with source disinfection, it has been shown that the total chlorine
dosage can be reduced while maintaining minimum chlorine residuals
across the system.

In this case, optimal valve operation can be combined with booster
disinfection to improve the system’s water quality [64]. A long-term
water quality detection model is employed to position water quality
sensors, which monitor parameters such as contaminant presence or
the percentage of clean water. The objective is to maximize intrusion
detection, clean water percentage, and reduce average detection time.
Lastly, flow reconstruction helps understand water system behavior.
Through hydraulic analysis friction factors and leak quantities are cal-
ibrated to identify leak presence and location. This aids in optimizing
flow management and identifying anomalies [65].
7 
5.8. Edge computing

To prevent overloading the cloud-based processing, existing lit-
erature underscores the importance of integrating processing at the
edge layer. This approach involves processing data at the edge, where
it originates from the sensor layer. Within the context of IoT, the
authors in [66] propose an intelligent edge-cloud framework designed
for water quality monitoring within WDS. The framework is evaluated
under various scenarios, including cloud computing, EC, and a hybrid
edge-cloud approach, to determine the most efficient platform.

In the first scenario, the analysis is conducted closer to the data
generation point (at the edge), aiming to optimize performance. The
second and third scenarios involve a combination of edge and cloud
platforms. In the third scenario, sensor data are directly transmitted
to the cloud for analysis. Rigorous testing of the proposed framework
across these scenarios yields insightful results. The findings indicate
that EC (scenario 1) outperforms cloud computing in terms of latency
(20.33 ms), throughput (148 Kb/s), and packet delivery ratio (97.47%).

Notably, collaborative strategies between edge and cloud platforms
enhance the accuracy of classification models, achieving up to 94.43%.
This improvement in accuracy is achieved while maintaining the energy
consumption rate at its lowest value. The design of an embedded
edge-processing IoT-based water quality monitoring system tailored
for monitoring irrigation and drinking water extracted from water
wells is very challenging. In [67], the authors outline the design and
implementation of this solution, with a specific focus on deployment in
central Chile.

The system’s design takes into account the region’s challenging to-
pographic conditions, which significantly impact power availability and
communication resources. Captured data from the monitoring system
are stored in a data lake, facilitating further processing based on water
quality models. This comprehensive approach aims to enhance the un-
derstanding of underground water dynamics, enabling more informed
and effective decision-making in the face of expanding drought areas
and increasing demand for water resources in the region.

5.9. Summary and main findings (RQ1)

Selecting the appropriate architecture is crucial for IoT in WDS,
with LPWAN technologies being widely adopted due to their cost-
effectiveness, though they present scalability challenges. For WDS,
integrating sensors and platforms demands addressing interoperabil-
ity issues, leveraging cloud computing, software-defined networking
(SDN), and AI for better coordination. Large-scale sensor networks face
interference and database constraints, necessitating scalable solutions
and ML to optimize network performance.

Energy efficiency is key, as smart sensors typically rely on bat-
tery power. Innovations such as energy harvesting and more efficient
wireless communication are essential for prolonging sensor lifespan.
In remote areas, ensuring broad coverage and reliable communica-
tion is vital, with LPWAN and AI improving performance. Processing
data at the edge – closer to the source – helps minimize network
load, reduces latency, and enhances real-time decision-making. Lastly,
advanced electronic sensors and smart meters are progressively re-
placing traditional mechanical ones, offering improved accuracy and
automated data collection.

6. IoT technologies for water systems monitoring (RQ2)

IoT promises to connect more than 30 billion devices by 2025
in smart city applications such as SWG, Smart Electrical Grid, Smart
Home, machine-to-machine (M2M), among others [10]. The growth
of the IoT can be identified from various statistical data. There are
currently 21.7 billion active connected devices worldwide, with 11.7
billion (or 54%) being IoT device connections. Since IoT is a highly
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Table 4
Comparative analysis of IoT for water monitoring systems.

Reference (year) Wireless technology Study type Water distribution
system

Massive IoT
scenario

Edge
computing

Verma et al. [68] (2015) LoRa/LoRaWAN Experimental ✓ x x
Suciu et al. [69] (2017) LoRa/LoRaWAN, ZigBee, Bluetooth, SigFox Real-world application ✓ x x
Predescu et al. [70] (2017) Wi-Fi Experimental ✓ x x
Cattani et al. [71] (2017) LoRa/LoRaWAN Experimental ✓ x x
Barbosa [72] (2017) SigFox Experimental x x x
Wang et al. [73] (2018) LoRa/LoRaWAN Experimental x x x
Niswar et al. [74] (2018) LoRa/LoRaWAN Experimental x x x
Srihari [75] (2018) Wi-Fi Simulation and experimental ✓ x x
Chinnusamy et al. [76] (2018) LoRa/LoRaWAN, GSM, Wi-Fi Experimental ✓ x x
Wu and Khan [77] (2019) LoRa/LoRaWAN Experimental x x x
Pal and Kant [78] (2019) ZigBee, Wi-Fi Simulation ✓ x x
Liu et al. [79] (2019) ZigBee, 4G Simulation and experimental ✓ x x
Amorsi et al. [80] (2019) LoRa/LoRaWAN, Sigfox Real-world application ✓ x ✓

Lalle et al. [27] (2019) LoRa/LoRaWAN, Sigfox, NB-IoT Simulation ✓ ✓ x
Silva et al. [81] (2019) LoRa/LoRaWAN Real-world application x x x
Babazadeh [82] (2019) LoRa/LoRaWAN Real-world application x x ✓

Amaxilatis et al. [83] (2019) LoRa/LoRaWAN Real-world application ✓ ✓ ✓

Di Gennaro et al. [84] (2019) SigFox Real-world application x x x
Lalle et al. [85] (2020) LoRa/LoRaWAN Simulation ✓ ✓ x
Bria et al. [86] (2020) Wi-Fi Real-world application x x ✓

Fuentes and Mauricio [87] (2020) Wi-Fi Experimental x x x
Pérez-Padillo et al. [88] (2020) Sigfox Experimental ✓ x x
Phua et al. [89] (2020) Wi-Fi Experimental x x x
Gericke and Kuriakose [90] (2020) Sigfox Experimental ✓ x x
Roy et al. [91] (2020) ZigBee, GPRS Real-world application x x ✓

Benedict [92] (2020) LoRa/LoRaWAN, ZigBee, Wi-Fi Real-world application x x ✓

Yeram et al. [93] (2020) LoRa/LoRaWAN Experimental x x x
Alves Coelho et al. [94] (2020) LoRa/LoRaWAN, NB-IoT Experimental ✓ x x
Lin et al. [95] (2020) NB-IoT Experimental x x x
Gautam et al. [96] (2020) Wi-Fi Experimental ✓ x x
Yang et al. [97] (2020) LoRa/LoRaWAN, Wi-Fi, 4G, NB-IoT Experimental x x ✓

Nkemeni et al. [98] (2020) Wi-Fi, Bluetooth Experimental ✓ x ✓

Amaxilatis et al. [99] (2020) LoRa/LoRaWAN, Wi-Fi, 5G Simulation ✓ x ✓

Slaný et al. [100] (2020) LoRa/LoRaWAN Experimental x x x
Lalle et al. [101] (2021) LoRa/LoRaWAN Simulation ✓ ✓ x
Che et al. [102] (2021) GSM Experimental x x x
Garlisi et al. [3] (2022) LoRa/LoRaWAN Simulation ✓ ✓ ✓

Bao et al. [103] (2022) Wi-Fi Experimental x x x
Ali et al. [104] (2022) Wi-Fi Experimental ✓ x x
Boccadoro et al. [105] (2022) SigFox Experimental x x ✓

Castillo et al. [106] (2023) LoRa/LoRaWAN Experimental ✓ x x
Restuccia et al. [107] (2023) LoRa/LoRaWAN Simulation and experimental ✓ ✓ ✓

Garlisi et al. [108] (2023) LoRa/LoRaWAN Simulation ✓ x ✓

Yauri et al. [109] (2023) LoRa/LoRaWAN Experimental x x x
advanced technology, it can trigger the development of intelligent de-
vices, smart sensors, actuators, and M2M devices, with the coexistence
of different IoT technologies like, Bluetooth, ZigBee, Wi-Fi, LoRaWAN,
Sigfox, and NB-IoT. The IoT communication technologies are intended
o connect heterogeneous objects or devices within one framework to

achieve smart applications and services, with low cost and low power
even in adverse communication environments such as lossy and noisy
ommunication links.

Table 4 provides a comparative analysis of IoT approaches applied
o water monitoring systems. It is possible to observe the publica-
ion year as well as the wireless technology (LoRa/LoRaWAN, ZigBee,
luetooth, SigFox, Wi-Fi, 4G, among others). The table also indicates
hether the study directly involved a WDS with a holistic approach or
ot. Additionally, it shows the presence of massive IoT scenarios and EC
ata processing, as well as the type of study, specifying whether it is an
xperimental application, simulation-based study, or real-world appli-
ation. An interesting fact that emerges from this table is that, out of the
elected 44 articles, only 6 (about 13.6%) address the study of WDSs in
assive IoT scenarios. Furthermore, the studies primarily approach the

esearch from a simulation standpoint. This could be attributed both to
he relative novelty and limited prevalence of such studies, as well as
he difficulty of conducting studies in massive scenarios, considering
actors such as data availability or the implementation of large-scale

eployments in the real world.

8 
Fig. 5. Wireless technologies distribution in water monitoring systems.

Fig. 5 illustrates the distribution of adopted wireless technologies
in terms of number of occurrences among the works listed in Table 4.
From pie chart in Fig. 6 it is evident that the most used technologies
are LoRa/LoRaWAN and Wi-Fi, representing respectively 37% and 24%
of the works. This suggests that LoRa/LoRaWAN and Wi-Fi are widely



A. Pagano et al.

i
w
o
T
c
w

t
c

c

l

L
t
s

b

s

t

a
k
a

w
n
s
o
s

l
o

I

e
w
t
I
b
u
c
a

s

a
t

Ad Hoc Networks 168 (2025) 103714 
Fig. 6. A pie chart of the percentage of the wireless technologies used in water
monitoring systems.

preferred for the implementation of IoT systems in water monitor-
ng contexts. However, when considering LPWAN technologies as a
hole, it emerges that these are widely adopted, representing 55%
f the works (37% for LoRa, 13% for SigFox, and 5% for NB-IoT).
his underscores the importance of technologies with efficient energy
onsumption and long-range communication capabilities in the field of
ater monitoring through the Internet of Things.

In this field, LPWAN technologies have emerged as a viable alterna-
ive to traditional wireless technologies to provide power-efficient and
ost-effective wide area connectivity for the IoT. Indeed, the advantages

of the LPWAN architectures include a wide coverage in the order of
kilometers, and a low power consumption, with batteries lasting up to
10 years. According to IoT Analytics, NB-IoT, LoRaWAN, and Sigfox are
today the most popular technologies for LPWAN, representing the 86%
of the market, both in terms of end-user adoption as well as ecosystem
support. The authors in [110] present various LPWAN technologies
ategorized based on the frequency spectrum used, whether licensed

or unlicensed bandwidth.
The study [32] proposes the emphasis is on LPWAN technolo-

gies, with particular attention to the most prominent ones in the
ISM band, such as LoRa/LoRaWAN and Sigfox. While NB-IoT utilizes
icensed bands, both LoRaWAN and Sigfox operate in the sub-GHz

ISM bands, potentially causing interference with each other, as illus-
trated in [32]. Therefore, in our opinion, LPWAN technologies such as
oRa/LoRaWAN and Sigfox, which use unlicensed bands and collec-
ively represent the most widely adopted solutions in the market, are
uitable for monitoring WDSs.

Both technologies are based on a simple star of stars topology,
as shown in Fig. 7, End Devices (EDs), such as sensors or actuators
deployed in the WDSs, transmit packets on the wireless medium to
fixed devices called GWs which, in turn, forward the collected packets
to a central Network Server (NS) interacting with several Application
Servers (ASs). The cloud layer also include the Join Server to serve the
authentication and security procedures.

The network infrastructure between GWs, NS, and ASs is typically
ased on Internet technology, while EDs are not associated to a specific

GW, which greatly simplifies implementation (e.g., in case of mobility):
in case a duplicate packet is simultaneously received by multiple GWs,
the NS is responsible of filtering these packets and performs other
simple decisions on network configuration.

In the following subsection we provide additional details on this two
elect technologies.

6.1. LoRaWAN

To minimize protocol complexity and energy consumption, Lo-
RaWAN employs a simple Aloha MAC protocol and defines three classes
 m
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of devices. Device classes represent different ways of managing recep-
ion operations performed by EDs. Class A devices, corresponding to

the lowest energy profile, can receive downlink packets only in two-
time windows following the transmission of their own packet to the
GW. This means that devices can sleep all the time and the downlink
transmission is triggered only after an uplink event. Class B devices
dd to this possibility a periodic scheduling of reception windows by
eeping a time synchronization with the GW. Finally, class C devices
re constantly listening to the channel for downlink packets.

LoRaWAN is a technology promoted by LoRa Alliance [111] that
orks on top of LoRa modulation, a proprietary physical layer tech-
ology patented by Semtech using a robust chirp-based modulation
cheme, LoRa provides limited data rates from 0.3 to 27 kb/s. More-
ver, LoRa transmissions are regulated by having a maximum transmis-
ion power of 25 mW (14 dBm) in the uplink, a configurable bandwidth

of 125, 250, or 500 kHz, and a duty cycle of 0.1%, 1.0%, and 10%,
which permit low energy consumption. Although LoRa technology is
imited to the physical layer, different network solutions can be built
n top of it, by exploiting its transmission interfaces.

Any time new packet is ready for transmission, devices attempt to
transmit by randomly selecting one of the available channels in the
SM bands e.g., in the 868 MHz there are 16 channels in Europe,

together with a modulation parameter called Spreading Factor (SF).
In particular, six different SFs are used in LoRaWAN (from SF7 to
SF12), which result in distinct symbol times and in almost orthogonal
transmissions; when two signals modulated at different SFs overlap, the
GW is able to decode both transmissions in a wide range of power ratios
among the signals [112].

Unlike many other IoT technologies, the LoRaWAN specification
offers dedicated end-to-end encryption to application providers, to-
gether with network-level security primitives, which allow sharing
the same network among multitenant applications. Summarizing, the
ase of deployment with excellent coverage, the availability of devices
ith very low energy demand, and intrinsic security mechanisms make

hese systems very suitable for innovative water metering applications.
ndeed, several state-of-the-art IoT applications in smart water grid are
ased on LoRa/LoRaWAN networks. For example, LoRa/LoRaWAN is
sed to connect sensor nodes for measuring hydraulic parameters or
ontrolling different kinds of actuators e.g., solenoid valves, and in
pplications such as leakage detection [3,100,109].

6.2. SigFox

SigFox adopts an innovative approach to address the IoT con-
cept. This technology is designed for applications requiring minimal
data transfer, utilizing Ultra Narrow Band (UNB) technology as its
foundation. The communication bandwidth is approximately 100 bps
(e.g., 100 Hz bandwidth) and 600 bps (e.g., 600 Hz bandwidth) for
the ETSI and FCC regions, respectively [113]. Sigfox operates within
unlicensed spectrum frequencies, adhering to spectrum access regula-
tions. For instance, in Europe, the bands employed by Sigfox for uplink
and downlink transmission are constrained by duty cycle limitations,
et at 1% and 10%, respectively. Additionally, the maximum power for

transmission is capped at 14 dBm within a 2-s timeframe, and a sensor
can transmit up to 40 packets.

In regions where FCC regulations are observed, the highest power
emitted by Base Stations is approximately 30 dBm [114]. The primary
strength of this technology lies in its ability to resist interference,
chieved through the implementation of a diversity mechanism in both
ime and frequency. Consequently, each sensor transmits each data

packet across three communication channels at randomly selected time
intervals. The communication operates asynchronously and is initiated
by the device, allowing the device to default to a sleep state and

115].
inimize energy consumption [
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Fig. 7. LPWAN architecture and integration of edge computing into WDS.
Uplink message transmissions can be received by multiple base
stations (typically around three base stations on average), facilitat-
ing cooperative reception and spatial diversity. While this mecha-
nism introduces redundancy at the communication level, a significant
drawback is the increased channel occupancy and, consequently, the
potential for collisions. It employs a simple Aloha MAC protocol.

Differential Binary Phase-Shift Keying (DBPSK) is employed for
uplink modulation, while Gaussian Frequency-Shift Keying (GFSK) is
utilized for downlink modulation. DBPSK holds an advantage in band-
width efficiency over GFSK, contributing to an extended uplink range,
thereby compensating for the lower permissible transmit power in the
uplink band. Furthermore, DBPSK provides robust protection against
interference, such as jamming, as the received power concentrates
within a narrow bandwidth, reaching a high power level. The achieved
performance level opens up the possibility of further increasing the
number of sensors theoretically by implementing load balancing. The
study [116] delved into the performance analysis under conditions
characterized by large-scale, high-density scenarios associated with Sig-
Fox networks. The use of Sigfox has recently been proposed for various
applications and research fields, such as monitoring water quality, flow,
and pressure in smart water grids, [27,72,84,88,105] to name a few.

6.3. Fog vs. edge in IoT for WDS

Fog computing and EC are two complementary paradigms used to
improve efficiency in water monitoring systems [3,99]. Fog computing
serves as an ideal complement by introducing an intermediate layer
between the cloud and the edge. This architecture not only alleviates
the load on the central network, but also enhances the overall scal-
ability and resilience of the system, as demonstrated by real-world
implementations in smart water networks [99,117]. However, EC is
essential for processing data directly on devices close to the source,
significantly reducing latency and allowing for quick and localized
responses to anomalies such as leaks or pressure surges. The literature
shows that Fog computing offers a promising solution for improving
WDSs. For example by integrating Fog computing with LoRaWAN, wa-
ter management systems can benefit from faster detection of abnormal
consumption patterns and increased resilience [118]. The integration
of Fog computing with IoT has shown significant potential to improve
energy efficiency in drinking water facilities [119]. Fan et al. discuss
a Cloud/Fog architecture for the water transfer project, emphasizing
a hybrid model for effective resource management, but note the com-
plexities of implementation in diverse geographical contexts [120].
10 
Emami et al. explore the application of evolutionary game theory to
enhance Quality of Service (QoS) in Fog environments, suggesting
that further empirical validation is necessary to confirm its real-world
effectiveness [121]. Mirzaie et al. focus on anomaly detection in urban
water distribution grids using Fog Computing, showing that localized
data processing can identify irregularities, although generalizability to
different environments poses further research questions [122]. Lastly,
the works [123,124] present an IoT system utilizing Fog Computing
for constrained LoRa and LoRaWAN networks in smart irrigation and
water quality monitoring which raises concerns about the long-term
sustainability of such solutions in various climates [123].

Overall, although Fog computing and EC are often used interchange-
ably, they represent distinct paradigms in data processing. However,
the adoption of EC in the field of WDS is not yet widespread and
presents a challenge. For this reason, we have focused our research
primarily on EC. In fact, EC could help address the future challenges
of large-scale water distribution systems, for example, by enabling
quick responses to anomalies close to data sources with cost-effective
hardware such as Raspberry Pi [125].

6.4. Summary and main findings (RQ2)

By 2025, the IoT is projected to connect over 30 billion devices,
playing a significant role in WDS field. However, a comprehensive anal-
ysis of 44 studies on IoT for water monitoring reveals that only 13.6%
of these studies address large-scale IoT deployments, with the major-
ity focusing on simulations rather than real-world implementations.
In the realm of WDS applications, LPWAN technologies, particularly
LoRaWAN, SigFox and Wi-Fi, dominate the landscape. Among the
analyzed studies, 55% of them adopt LPWAN for its energy-efficient
and long-range communication capabilities. LoRaWAN and Sigfox are
commonly utilized in WDS applications due to their operation in un-
licensed sub-GHz ISM bands. However, it should be noted that these
two technologies can interfere with each other. LoRaWAN proves to be
ideal for water monitoring applications, such as leak detection.

Finally, the literature has shown that EC can be implemented in
LPWAN networks with low-cost hardware such as Raspberry Pi boards,
reducing latency by processing data close to the sources and optimizing
traffic and bandwidth [125].
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7. Edge computing in massive IoT for WDS (RQ3)

The emergence of new services, not only those related to WDS,
which are based on massive and complex deployment scenarios, re-
quires a shift from classical monitoring models to low-latency, dis-
tributed, and collaborative data aggregation models. EC has been pro-
posed as an evolution of the traditional high-end central cloud com-
puting towards a continuum of collaborative distributed computing
lements from the cloud to the network edge. For example, although
oRaWAN has been an excellent starting point for integrating WDS
nfrastructures with cloud services and big data analytics, the central-
zed architecture must address some bottlenecks when extending to
arge-scale deployment areas.

Indeed, when considering massive scenarios, the increase in the
number of GWs forwarding large volumes of raw IoT data to the
entralized infrastructure puts significant pressure on the backbone
etwork in terms of energy, bandwidth, and security [126]. Such
cenarios require a paradigm shift in IoT data processing towards
ow-latency distributed and collaborative aggregation, where the latter
ould be a relevant feature in WDS, for example, to promptly intercept
 leak. At the same time, the growing demand for IoT services requires
 transition from the classic two-level model to multi-level models
nvolving EDs, GWs, Network Controller (NS), applications, and data
ources, as shown in Fig. 7. EC represents a natural evolution in the

provision of computing and storage by information technology, tradi-
tionally associated with centralized data centers, to include resources
available at the network edges [127].

In the case of LoRaWAN, which adopts the design approach involv-
ing the use of simple protocols to create a centralized architecture,

ultiple implications arise when attempting to incorporate it into the
C. Recently, some researchers have explored various approaches to
odifying the specified operation of the protocols, proposing alterna-

ive architectures to reduce the significant pressure imposed on central
loud services in the case of massive IoT data streams or limited-time
oT data consumption [128]. At the same time, introducing changes
o the architecture and specific operation of the protocols while main-
aining compatibility with previous versions is a challenging task.
herefore, it is necessary to find a compromise between the traditional
unctionality of GWs as simple bridges, which allows for rapid and
ost-effective implementation of unlicensed LPWANs, and potentially
erving as reliable intermediate processing and storage elements in
he EC without increasing complexity and thus maintaining backward
ompatibility with the network [125].

For example, Fiware4Water [80] is a distributed system for wa-
er supply systems that leverages the FogFlow framework, an ICT
nfrastructure that is geo-distributed, hierarchical, and heterogeneous,
ncompassing IoT devices, cloud nodes, and edge nodes [129]. With

FogFlow, it is possible to detect real-time anomalous water consump-
tion in a WDS with a large number of distributed nodes. For instance,
to monitor water consumption, a Raspberry Pi (edge node) can be
installed on each water node. This device can recognize anomalous
consumption at the edge and send an alert to both the user and the wa-
ter network manager for information aggregation. Moreover, FogFlow
enables serverless EC, a distributed processing paradigm where devel-
opers can write and deploy processing functions (or operators) without
worrying about managing the underlying infrastructure.

Practical details of an edge implementation on the wireless sensor
network for anomaly detection in WDS are also reported in [82].
Furthermore, benefits in terms of storage space, energy consumption,
and communication uptime are evaluated using various edge data
compression techniques. Indeed, performing data processing directly
on the cloud requires a constant data flow communication channel
between smart meters and remote cloud infrastructures, resulting in
significant energy consumption and an increase in network traffic.

On the contrary, if the choice is made to perform data
pre-processing on edge devices, a reduction in generated traffic is
11 
achieved. By employing EC, multiple packets can be combined over
larger time intervals and transferred all together to the cloud, as
proposed by Amaxilatis et al. [83]. In particular, they highlighted that
even a small city with 50,000 water meters can generate up to 13 GB
per day, creating a significant amount of traffic that may be excessive
for an IoT network. However, the use of pre-processing in massive
scenarios can reduce daily data production by up to 80%.

In the study [98], a distributed solution is presented where losses
n a WDN are detected through local computations between a sensor
ode and its closest neighbors, without the need for long-distance
ransmissions and without the requirement of a centralized station
or signal processing. It is demonstrated how distributed computation,
mplemented through a Kalman filter, improves the accuracy of loss

detection and reduces energy consumption. The aim was to eliminate
multi-hop communications, reduce latency, decrease sensor node en-
ergy consumption, and extend battery life. The study emphasizes the
importance of distributed data fusion in improving the reliability of
loss detection systems. Results showed that the bandwidth usage of the
distributed Kalman filter was approximately 16 times lower than that
of a centralized Kalman filter.

An intelligent implementation of water measurement based on the
EC paradigm is also presented in [99], where the proposed solutions
significantly reduce the overall load on wireless and cloud network
resources. In fact, only about 5% of the total network traffic was
ransmitted to the cloud. In [3], the authors introduced LoRaSURFING,
 tool that incorporates a data-driven approach to detect losses in a
DN using a LoRaWAN IoT network and EC. They trained various ML
odels to identify the best model for predicting losses at the edge.

urthermore, it was demonstrated that the proposed approach provides
ood performance even when only a subset of measurements is used to

train the artificial intelligence model. In fact, the results indicated an
average accuracy of 99% for the DecisionTree model when all leakage
nodes are present during training, and an average accuracy of 85%
when some leakage nodes are not present in the training dataset.

The WaterS architecture proposed in [105] is capable of performing
edge prediction within the Sigfox network nodes using deep learn-
ing solutions. WaterS addresses the issue of water pollution while
considering the specific constraints of IoT, such as energy efficiency
and autonomy. Additionally, it is demonstrated that it is possible to
predict water quality parameters such as pH, conductivity, oxygen, and
temperature by integrating into WaterS an algorithm based on a Long
hort-Term Memory recurrent neural network.

Finally, further benefits of EC for leakage detection in WDS are
addressed in [107,108]. In particular, LeakStream [108] proposed a
new approach to detect leaks through the combined use of clustering
techniques and ML models, aiming to accurately and promptly identify
anomalies within distribution networks. Data processing at the edge
is carried out using NebulaStream [130] to reduce latency and traffic
on the backhaul. NebulaStream is an example of a new data processing
platform that addresses the challenges of heterogeneity, reliability, and
scalability in IoT systems and includes an inference operator to support
edge processing.

7.1. Summary and main findings (RQ3)

LoRaWAN is effective for integrating IoT in WDS but faces chal-
enges in massive deployments, necessitating protocol adjustments for

better compatibility with EC. EC reduces the need for continuous cloud
communication, thereby minimizing energy consumption and network
traffic. Fiware4Water utilizes EC to detect real-time anomalies in water
usage, leveraging distributed nodes and edge devices such as Raspberry
Pi to trigger alerts for abnormal patterns. LoRaSURFING integrates ML
models at the edge to identify water losses in WDS with high accuracy,
reaching up to 99% for certain models.

Other systems like WaterS and LeakStream combine ML and deep
learning models at the edge to predict water quality parameters
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(e.g., pH, conductivity) and detect leaks, delivering real-time insights
while optimizing key IoT constraints, such as energy efficiency. EC
platforms like NebulaStream are designed to meet the growing demand
for scalable, reliable, and low-latency data processing, making them
well-suited for massive IoT deployments in WDS.

8. WDS in large scale scenarios (RQ4)

Massive-scale data extraction is crucial for realizing the potential
of the smart city [131], especially in WDS deployed at large scales.
n this section, we delve into the significance of WDS in extensive
eployments. Understanding the operation and optimization of WDS is
ssential for ensuring efficient water supply, reducing losses, preserving
ater quality, and ultimately contributing to the sustainability and

esilience of urban infrastructure. For example, in a massive scenario
onsidering up to 2,700,000 water meters, up to 270 GB of daily
ata could be generated [83]. This extensive data volume could lead
o scalability issues. Therefore, it becomes necessary to move data

processing closer to the production site, eliminating the transfer of data
to the cloud and reducing network traffic.

Table 5 presents a summary of research focused on WDS manage-
ment, sorted on network size. The third and fourth columns detail
the number of nodes, pipes, and sensors, respectively. Two categories,
medium and large-scale scenarios, are separated by a horizontal line in
the table. In the context of WDS, nodes and pipes are key components
for defining the type of scenario. For example, a wide range of system
sizes is observed, with the number of nodes and pipes varying from
a minimum of 92 nodes and 117 pipes in medium-sized studies to a
maximum of 257,362 nodes and 363,648 pipes in large-scale contexts.

In our classification, we consider scenarios as medium-sized when
fewer than 1000 nodes/pipes are considered (top of the table), while
ublications considering 1000 or more pipes are classified as large-scale
cenarios (bottom of the table). Additionally, we consider the employed

software tools and techniques, such as EPANET, WNTR, MATLAB, and
Python, to simulate, analyze, and optimize water system management
in column fifth. Finally, the table highlights the presence of leakage
detection and water quality application management in the last two
columns. We address each of the selected studies mentioned below.

The importance of edge data processing is further highlighted in
works [3,107], where ML models are studied to detect leaks in a WDS
with 2099 sensor nodes. In particular, 84 next-generation LoRaWAN

Ws are deployed in the study [3], which are capable of collecting
ata from sensor nodes and processing it to execute advanced software
or the desired ML analysis. The procedure was able to identify the

impact of the GWs’ positions on the performance of the ML models for
predicting leakage. In fact, the procedure only considered data from
nodes that were within the coverage of the GW under consideration
for training. Therefore, the prediction performance consistently showed
very high accuracy (99%) for most GWs, with the exception of a small
number of GWs where accuracy exceeded 90%.

The study [152] focuses on the implementation of efficient algo-
rithms for hydraulic analysis of water distribution networks, leveraging
sparse structure to reduce computations and enable rapid control of
large-scale networks. For example, a network with a density of 15.5%,
measured by the ratio of the average node connections to the number of
pipes, is analyzed, indicating an intricate and interconnected network
characterized by 12,527 nodes and 14,831 pipes.

The analysis of this network allows for evaluating the effectiveness
f the proposed algorithms under conditions of high complexity and
onsiderable size, providing valuable insights into the performance and
pplicability of hydraulic analysis methods for large-scale, high-density
ater distribution networks. Although the article focuses solely on
ydraulic analysis, the results obtained could certainly be utilized in a
roader study considering the installation of an IoT network. Similarly,
 radio planning for massive IoT for water monitoring can be performed

23]. Indeed, the work
y taking into account the results of study [

12 
employed an approach based on Graph Neural Networks (GNNs) to
integrate structural, geographical, and temporal information in order
to study large-scale water networks. Specifically, the utilization of the
Multi-hop Attention-based GNN (MAG) model to address challenges re-
lated to predicting losses in large-scale water distribution networks was
discussed, considering the importance of the water network structure,
the geographical effects of neighbors, and the temporal pattern of leaks.

Guidelines for conducting large-scale distribution system assess-
ments are presented in [151]. Specifically, it contains information on
hydraulic and water quality models, planning studies, equipment needs,
monitoring methodologies, and the integration of geospatial technol-
gy for distribution system management and modeling. Additionally,
he document offers guidance on equipment selection techniques and
oftware required for modeling contaminant transport (or water quality
hanges) in complex piping systems. The guide also presents real-
orld case studies, such as a network with 1062 miles of pipes and
pproximately 12,000 nodes, with an average daily demand of about 20
illion gallons and an estimated population of 130,000 people. In this

ase, a node selection process was applied to reduce computational in-
ensity and identify sources of contamination, determining the optimal
umber and placement of monitors to detect potential contamination
nd mitigate the impacts of such events.

The study [22] describes an unsupervised clustering method for
ividing a WDN into different district metering areas. The method
s applied to a large WDS that supplies water to 400,000 people. It
ncludes five water sources, 11,063 water demand nodes, and 13,896
ipelines. The approach uses a graph neural network to update node
haracteristics based on connections and another neural network to

group nodes. The importance of boundary pipes is also calculated to
determine the optimal location for the installation of sensors (flow
meters) and valves.

Capacity analyses of LPWAN networks in massive WDS contexts are
rovided in the studies [27,85,101]. In [101], routing strategies for

multi-hop LoRaWAN networks in the 1000-node smart water network
are presented. The proposed methods reduced the packet error rate and
total energy consumption compared to a standard single-hop network.
The study [85] analyzed the capability of the LoRaWAN network and
its application in smart water metering as a use case. The size of the
etwork reached up to 7000 nodes, and simulations were performed
ith ns-3 to find the optimal strategy for assigning SFs based on the

ensitivity of the GW. Using this strategy, a single GW was able to
support approximately 1000 smart water meters with a packet delivery
ratio of approximately 92%.

Finally, a scalability study comparing LoRaWAN, SigFox, and NB-
oT is reported in [27], with WDS scenarios involving up to 20,000

nodes. The study demonstrated that NB-IoT is a promising candidate
for massive scenarios due to its good scalability compared to LoRaWAN
and SigFox. However, the results obtained from LoRaWAN were unex-
ected, which may be attributed to the configuration of LoRa physical

parameters within the ns-3 simulator. Conducting a more in-depth
study of these parameters could improve the performance of LoRaWAN.
Furthermore, the studies [27,85,101] could be improved in the WDS
ontext by considering a more holistic approach. For example, studying
he wireless network taking into account some water features such
s the topology of the water network or the sampling period of the
hysical quantities to be measured, such as flowrate, pressure, among
thers.

Summarizing, from the above analysis, only 20% (6 out of 29
articles) of the selected studies addressed WDS study scenarios from
an IoT perspective (sixth column in Table 5). Moreover, the percent-
ge decreases to about 7% (2 out of 29 articles) when considering
tudies that address the study of WDS from both water and wireless
erspectives. For this reason, we believe that it is necessary to provide
 workflow that holistically integrates the behavior of a water system

into a sustainable and massive IoT scenario.
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Table 5
Comparison of water distribution system in medium and large scale scenarios.

Reference Focus of study Nodes/Pipes Number
of sensor

Software and tools IoT study Leakage
detection

Water
quality

Hu et al. [132] Method for pipe burst location
based on deep learning

92/117 6 EPANET x ✓ x

Fan and Yu [133] ML framework for leakage
detection and localization

388/429 24 WNTR x ✓ x

Li et al. [134] Optimal sensor placement for leak
localization

92/117 5 EPANET x ✓ x

Hu et al. [135] Optimization sensor placement for
leak detection

407/443 400 EPANET x ✓ x

Zhao et al. [136] Sensor placement for pipe burst
detection with cost–benefit
analysis

92/117 25 EPANET x ✓ x

Ge and Wang [137] Energy efficient networks for
monitoring water quality

200/– 200 – x x ✓

Garðarsson et al. [138] Graph-based learning for leak
detection and localization

782/– – – x ✓ x

Li et al. [139] Leakage localization using spatial
clustering

491/509 20 EPANET x ✓ x

Romero-Ben et al. [140] Leak localization based on graph
interpolation

782/909 – EPANET and MATLAB x ✓ x

Chen et al. [141] Leak identification by clustering
and ML interpolation

375/469 30 EPANET and Python x ✓ x

Zanfei et al. [142] Burst detection in WDS based on
graph neural networks

267/317 14 Python x ✓ x

Nejjari et al. [143] Optimal pressure sensor
placement in WDS

883/927 311 EPANET x ✓ x

Quiñones-Grueiro et al. [144] Leak location WDS with
clustering and classification

268/317 25 EPANET and MATLAB x ✓ x

Zhou et al. [145] Deep learning identifies burst
locations in WDS

480/567 4 EPANET x ✓ x

Zhou et al. [146] Contamination source
identification by graph neural
networks

1786/1985 6 EPANET x x ✓

Kim et al. [147] Leak detection and localization
using interval estimation

1154/– 6 – x ✓ x

Capelo et al. [148] Burst location and sizing in WDS
by Multi–Layer Perceptron

4448/4494 24 EPANET and MATLAB x ✓ x

Lalle et al. [101] Routing strategies for LoRaWAN
in WDS

– 1000 LoRaSim ✓ x x

Klise et al. [149] Simulate the effects of an
earthquake on a WDS

3323/3829 – WNTR x ✓ ✓

Difallah et al. [150] Spatio-temporal anomaly
detection in WDS

1891/2465 – MATLAB and R x ✓ x

Lalle et al. [85] LoRaWAN network capacity for
WDS

– 7000 ns-3 ✓ x x

Lalle et al. [27] Scalability of LPWAN
technologies in WDS

– 20 000 ns-3 ✓ x x

Rong et al. [22] Clustering method based on a
graph neural network

11 063/13 896 – – x x x

Panguluri et al. [151] Reference guide for hydraulic and
water quality models

12 000/– – EPANET x ✓ ✓

Liang et al. [23] Failure prediction for large-scale
WDS using GNN

257 362/363 648 – – x ✓ x

Abraham and Stoianov [152] Algorithms for large-scale WDS 12 527/14 831 – EPANET and MATLAB x x x
Garlisi et al. [3] Leakage detection in

LoRaWAN-based WDS
2099/– 2099 WNTR and LoRaSIM ✓ ✓ x

Amaxilatis et al. [83] Edge processing oriented IoT for
smart meter

– 2 700 000 – ✓ x x

Restuccia et al. [107] Distributed analysis for leakage
detection in WDS

2099/– 2099 WNTR ✓ ✓ x
As shown in Fig. 8, the Venn diagram represents the classification of
rticles related to massive scenarios and IoT. It was obtained by com-
ining the works from Table 4 with the massive scenarios from Table 5,

resulting in a total of 55 articles. Two main sets are highlighted:
Massive and IoT. In the first set, there are 15 articles, 9 of which deal

ith contexts involving significant data volumes but without analyzing
oT, while the other 6 overlap with articles studying IoT systems in
he water context. The IoT set, on the other hand, comprises forty
our articles divided into various categories, including IoT in relation
o WDS, together with EC and combinations of both, or in different
ontexts unrelated to WDS (14 studies). This diagram provides a clear

iew of the various intersections between massive scenarios and IoT in d

13 
water applications, identifying specific areas of interest and research
within this field.

8.1. Summary and main findings (RQ4)

In massive deployments, such as those involving up to 2.7 million
water meters, enormous volumes of data—up to 270 GB daily—can
lead to scalability challenges. WDS studies are categorized by sys-
tem size, with medium systems having fewer than 1000 nodes/pipes,
and large systems featuring 1000 or more pipes. The largest WDS
eployments involve up to 257,362 nodes and 363,648 pipes.
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Fig. 8. Venn diagram of articles per topic area. The numbers inside each area indicate
the quantity of papers identified in each of them.

Various software tools like EPANET, MATLAB, and Python are
widely used for simulation and optimization, particularly focusing on
leakage detection and water quality management. To address com-
putational challenges in large-scale, high-density water networks, al-
gorithms utilizing sparse structures have been proposed to enhance
hydraulic analysis, improving both computation speed and network
control.

When comparing LPWAN technologies for scalability in massive
WDS, studies suggest that NB-IoT outperforms LoRaWAN and SigFox
in large deployments. LoRaWAN’s performance has been found sub-
optimal in some simulations, necessitating further investigation into
the configuration of physical parameters. Notably, only 20% of the
reviewed studies approached WDS from an IoT perspective, with a mere
7% integrating both water and wireless perspectives. A more compre-
hensive approach that fully incorporates both IoT and water system
behavior is essential for sustainable large-scale WDS implementations.

9. Simulation tools for massive IoT in WDSs (RQ5)

The development of intelligent WDSs within the framework of a
massive IoT requires careful consideration of sophisticated computa-
tional systems for hydraulic modeling alongside specialized software
for the analysis of wireless systems. The design of massive and complex
smart WDS can require the support of large-scale testbeds. Often, these
testbeds or their associated data are difficult to find in real-life scenar-
ios, which is why the use of scalable simulation tools is preferred. In
simulations, the number of nodes in the scenario and the level of detail
required for the interactions between the nodes are key elements for
the scalability of the simulator [153]. For this reason, the subsequent
two subsections will present the predominant software tools employed
in the WDS examination, approaching the subject from both hydraulic
and wireless sensor network perspectives.

9.1. Water network simulation tools

A review of the principal software tools for investigating the hy-
draulic properties of networks was presented in [154]. Water distribu-
tion software encompasses public domain solutions including EPANET
and commercial alternatives like WaterGEMS, WaterCAD, and others.

It is a modeling software for WDS that falls under the public domain.
It was created by the Water Supply and Water Resources Division of
the United States Environmental Protection Agency (EPA). The soft-
ware conducts extended-period simulations to analyze the hydraulic
and water-quality dynamics in pressurized pipe networks. Its primary
purpose is to serve as a research tool, enhancing our comprehension of
14 
how drinking-water constituents move and behave within distribution
systems [155].

Control rules, water consumption, and network architecture are rep-
resented by files in the ‘‘.inp’’ format [156]. There are many modeling
packages that support this format; it is generally accepted, both free
and commercial. As a result, it is frequently considered the industry
standard. EPANET provides an extensive and long-term hydraulic study
that can handle systems of different sizes. Additionally, the software
facilitates the simulation of water demand that varies both spatially and
temporally, along with the option to incorporate constant or variable
speed pumps. It also considers minor head losses associated with bends
and fittings in the system.

The modeling capabilities encompass the generation of data such
as pipe flows, junction pressures, contaminant propagation, chlorine
concentration, water age, and the exploration of alternative scenarios.
This functionality not only aids in calculating pumping energy and
costs, but also in modeling different valve types, including shutoffs,
check pressure regulating, and flow control. Additionally, the software
facilitates the simulation of water demand that varies both spatially and
temporally, along with the option to incorporate constant or variable
speed pumps. It also considers minor head losses associated with bends
and fittings in the system. The modeling capabilities encompass the
data generation such as pipe flows, junction pressures, contaminant
propagation, chlorine concentration, water age, and the exploration
of alternative scenarios. This functionality aids in calculating pumping
energy and costs, as well as in modeling different valve types, including
shutoffs, check pressure regulating, and flow control.

9.1.1. WNTR
Water Network Tool for Resilience (WNTR) is a Python package

designed to simulate and analyze the resilience of water distribution
networks based on EPANET, open-source software for modeling the hy-
draulic and quality dynamics of a WDN [157]. WNTR was developed to
extend the capabilities of EPANET and simulate the dynamics of water
flows across pipelines, taking into account bulk flows and pipe wall
reactions, as well as the availability of water sources and reservoirs.
WNTR has an Application Programming Interface (API) that is flexible
and allows the configuration of the network topology and the schedul-
ing of disruptive incidents and recovery actions. WNTR generates, for
example, a complete trace, with the status of each node over time. This
simulation tool streamlines the execution of experiments, enhancing
sharing and integration into broader Python-based workflows.

9.1.2. WaterGEMS
This tool stands out as a versatile hydraulic modeling software

package, showcasing advancements in interoperability and network
optimization [158]. It offers robust model building capabilities sup-
ported by geospatial and asset management tools. This highly efficient
and dynamic software provides a comprehensive range of analyses
and solutions, including fire-flow analysis, water quality modeling, and
energy and capital cost management. The software excels at present-
ing results, offering visually appealing displays through tools such as
ArcMap visualization, thematic mapping, contouring, profiling with
color coding, and symbology. As its user base continues to grow,
WaterGEMS V8i has established itself as one of the most popular and
user-friendly hydraulic modeling and optimization software packages.
The software incorporates strong design algorithms to ensure accuracy
in the design of water distribution networks. It effectively controls
distribution network variables such as flow, pressure, and velocity, all
while providing optimization capabilities [159].
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9.1.3. WaterCAD
This is a comprehensive hydraulic modeling software package pro-

iding a broad range of functionalities, including graphical and pro-
iling advancements, flexible data archiving and representations, and
mprovements in the Graphical User Interface (GUI) with customization
ptions [154]. It offers enhanced capabilities for hydraulic and water

quality analysis, steady state, and extended period simulations. There
are a number of shared features and functions between WaterCAD and

aterGEMS, such as streamlined model building, integration with GIS
and AutoCAD functionalities, and optimized model calibration, design,
nd operation. WaterCAD boasts several advantages over other soft-
are options. It simplifies model building through geospatial modules
nd tools such as LoadBuilder and TRex. Additionally, it excels at
ater quality modeling, fire flow analysis, optimization, and scenario
anagement. The software’s user-friendly nature and versatility make

t widely accepted for various applications in water distribution and
uality modeling [158].

9.1.4. WDNetXL
It is an integrated system for WDN analysis, planning, and manage-

ent distributed as an MS-Excel add-in [160]. It integrates advanced
nd robust hydraulic simulation of water networks with topological
nalysis and optimization strategies to support engineers in the com-

plex problems of water network analysis, planning and management.
The WDNetXL system enables just-in-time technology transfer from
echnical research to WDN management through a holistic platform,
eady for possible extensions to the latest innovations, thus providing
pgradeable support to meet current and future needs. Additionally, it
ortrays a practical tool for training engineers from university courses

to continuing education at water companies.
Its versatility also makes the system dynamic for implementing cus-

tomized solutions through a virtuous cycle between users, researchers,
and developers. The WDNetXL system is open source, which means that
although the DLLs are binary files, it is possible to use them beyond
the models provided in the original package and link them to GIS or
ther systems through standard programming languages that link MS-
xcel to external applications [161]. A fundamental tool for advanced

hydraulic simulation comparable to EPANET in terms of robustness,
ydraulic consistency, and flexibility in analyzing many elements of
he water network, such as water demand components, leaks, control
evices, among others.

9.1.5. MATLAB
It is a widely used tool for the analysis and simulation of WDS [162,

163]. It can be employed to create simulation models to assess the im-
pact of various pump activation strategies on water distribution [164].
Another application of MATLAB when studying WDS is the evaluation
of water quality. It can be used to create simulation models that
allow the assessment of the influence of different factors on water
quality, such as temperature, pH, and the presence of chemicals [165].
Some practical examples involve using SIMULINK, a software tightly
integrated with MATLAB, to model pipeline systems or implement
optimal water scheduling policies [166,167]. Finally, MATLAB has also
been used to detect leaks in WDSs through clustering and sub-network
classification [144].

9.2. Wireless sensor network simulation tools

Nowadays, various tools are available for researchers conducting
advanced studies on WSNs, including both general-purpose simulators
and those specifically designed for WSNs. In the context of WSN,
hese simulation tools are categorized into three distinct approaches:
onte Carlo Simulation, Trace-Driven Simulation, and Discrete-Event

imulation. Monte Carlo Simulation relies on statistical analysis by
168].
unning multiple random scenarios [

15 
Simulation tools that use historical data or real traces to guide
he system’s behavior are faced in [169]. It provides more detailed

information, enabling users to get an in-depth understanding of the
imulation model. However, side-by-side, trace-driven simulation has
arious drawbacks: sometimes, in-depth details increase the complexity
f the simulation. Lastly, Discrete-Event Simulation models the system

in terms of specific events occurring at discrete time instances [170].
Typically, this type is used in WSN due to its ease of simulating various
tasks running on different sensor nodes. Each of these methods provides
a unique approach to understanding and evaluating the performance of
WSN. A selection of specific simulation tools for LPWAN technologies is
outlined below. Our analysis primarily concentrates on these tools’ abil-
ity to simulate LoRaWAN networks, which, according to our research,
are the most appropriate for the context of WDS.

9.2.1. ns-3
This is an open-source discrete-event network simulator for ed-

ucational and research purposes [171]. It is an extensible network
simulation platform used under the GNU GPLv2 license. One of the
undamental design goals of ns-3 was to improve the realism of the
odels by allowing the model’s implementation to be closer to the

ctual software or real-world implementations they modeled. The core
nd models of ns-3 are implemented in the C++ programming lan-

guage, with an optional Python Scripting API interface. Users can
use C++ or a Python program to write their simulation scripts. For
example, to simulate LPWAN networks, there is a LoRaWAN module
in ns-3. Each LoRa sensor and GW of the LoRaWAN module for ns-3
contain a single LoRaWAN MAC/PHY pair component, and the interac-
tion/communication between each sensor’s PHY layer and its respective
gateway’s PHY layer is through the spectrum channel module [172].

Furthermore, the ns-3 LoRaWAN module collision model is based on
he capture effect. The stronger signal picks up the weaker signal when
wo simultaneous uplink transmissions with the same frequency and

SF collide. As a result, the GW only receives the frame with the highest
received signal power. Over time, numerous researchers have created
various iterations of ns-3 modules to simulate LoRaWAN networks.
The authors of [173] provide a thorough analysis of four distinct
oRaWAN module implementations in the ns-3 simulator for the first
ime. They were made publicly available and further compared them
o highlight the most appropriate scenarios for each module. The four
odules are open-source on GitHub, an internet repository for software
evelopment and version control. Many researchers have validated,
xtended or improved their work using either the different implementa-
ions of the ns-3-based LoRaWAN modules or their proposed LoRaWAN
odules in the ns-3 simulation [174].

9.2.2. OMNeT++
It is an open-source, component-based discrete event network sim-

lator [175]. The simulator primarily supports standard wired and
wireless IP communication networks, with some extensions available
for WSN (WSN). Similar to ns-3, OMNeT++ is popular, extensible, and
ctively maintained by its user community in academia, which has
lso developed extensions specifically for WSN simulation. OMNeT++
tilizes the C++ language for simulation models. Simulation models,
r modules, are assembled using the high-level language Network
escription Language (NED) to create larger components that represent

entire systems.
The simulator provides graphical tools for building simulations

and evaluating results in real-time. The simulator performs well when
andling extensive network topologies, with its scalability constrained

by the computer’s memory capacity. However, OMNeT++ is unable to
simulate delays in OS-application layer execution time [176]. It does
allow for definable delays in lower layers, such as MAC and the wireless
channel. In the absence of suitable simulation models or framework
extensions, the simulator lacks adequate protocols and accurate energy
modeling for sensor networks, as its primary support is designed for IP
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networks. For example, the FLoRa simulator was developed to evaluate
the LoRa network’s performance using the ADR mechanism [177].

The efficacy of the ADR in raising the PDR while enhancing energy
fficiency was demonstrated. Utilizing both INET system components
nd the OMNeT++ network simulator, FLoRa is an end-to-end simu-
ation framework for LoRa networks. The creation of LoRa networks
hat facilitate the integration of LoRa nodes, GWs, and network server
odules is made possible by FLoRa code, which is produced using C++.

In addition, each LoRaWAN MAC protocol module aims to emulate
the physical layer [178]. Given that it is built on OMNeT++ and a
graphical network description, this provides a far more robust GUI than
the other simulation programs. For simulating a LoRa network, several
parameters need to be selected, such as the simulation time, warm-up
period, SF, the transmission power for each LoRa end device, backhaul
network configuration, and links. Once the run is over, the OMNeT++
GUI can be used to view the simulation statistics and tracing files [179].

9.2.3. LoRaSim
This simulation tool has been created utilizing SimPy as a dis-

crete event simulator with Python, aimed at simulating, exploring, and
analyzing the scalability and collision functionality within LoRaWAN
networks [179]. LoRaSim encompasses numerous Python scripts capa-
le of simulating both single and multiple GW scenarios. Additionally,
t can emulate devices equipped with directional antennas and function

across multiple networks. LoRaSim implements a radio propagation
odel based on the well-known long-distance path loss model. The

adio transceiver sensitivity at room temperature concerning various
preading factors and bandwidth settings is estimated. It also considers
arious related parameters, such as thermal noise power, receiver
andwidth, noise figure, and SNR [180]. Many improvements for Lo-
aSim have been proposed to make it multipurpose and to support the
ownlink, as the original version supported only the uplink. Therefore,
t can test scalability, energy consumption, and other performance

metrics [180].

9.2.4. SEAMCAT
It is a complex statistical simulator based on the Monte Carlo

ethod, devised to assess the interference between different radio
ommunication technologies [181]. It has been developed to deal
ith a complex range of spectrum engineering and radio compatibility
roblems. This simulation tool is developed by CEPT/ECC Working
roup Spectrum Engineering (WGSE) within its sub-entity SEAMCAT
echnical Group (STG). The exhaustive handbook for using SEAMCAT
as been published by CEPT as ECC Report 252 [182]. The simulator is
ased on the definition of a victim link, characterized by a transmitter
nd a receiver of a given technology, as well as one or more interfering
inks (including different technologies).

For each technology, it is possible to specify several physical pa-
ameters of the device, including for example, the propagation model,
ocation e.g. indoor/outdoor and height, antenna radiation diagram,
ransmission power - including emission mask, and receiver blocking

mask. Any of these parameters can have a statistical distribution among
end devices. The evaluation of the interference probability is performed
by averaging the results of multiple simulated events.

Furthermore, following the statistical distributions of the physical
parameters, for each event, the impact of interference is computed by
comparing the signal strength of the victim link with the sum of the
interfering signals, filtered by the transceiver power masks (including
also adjacent channels). Thus, for each event, the power received
by the victim is computed taking into account both the transmission
power and the relative path-loss (PL), evaluated by considering the
propagation model, and the environment parameters (e.g. position and
height). Lastly, some studies in the literature have used SEAMCAT for
interoperability, spectrum sharing, and interference studies in massive
IoT scenarios [32,183,184].

In conclusion,
 U
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9.3. Summary and main findings (RQ5)

Regarding the Water Network Simulation Tools, our review identi-
fied several key tools, including EPANET, WNTR, WaterGEMS/
WaterCAD, WDNetXL, and MATLAB which are widely used for model-
ing, analysis, simulation, and optimization of WDS. Beyond these, there
are other numerous tools developed for similar purposes that were not
covered in this review, such as WATSYS, Synergi Water, HYDROFLO3,
InfoWorks, DisNet, Netis, Archimede, Cross, and Pipe Flow Expert.

EPANET and WNTR stand out as the most suitable tools for WDS
simulation. WNTR, developed as an extension of EPANET, offers ad-
vanced capabilities that enhance experimentation, facilitate sharing,
and integrate seamlessly into larger workflows. It enables two-way
simulations between hydraulic systems and IoT elements, making it
particularly useful for combining hydraulic modeling with IoT-based
applications.

Later on, for WSN Simulation Tools, tools like ns-3, OMNeT++,
LoRaSim, and SEAMCAT are frequently used. Based on our analysis,
SEAMCAT and ns-3 are the most appropriate simulators for WDS needs.
SEAMCAT is ideal for assessing physical layer aspects, such as LP-
WAN coexistence, while ns-3 excels in analyzing energy efficiency and
protocol network performance.

In conclusion, for WDS hydraulic modeling, EPANET and WNTR
re the top choices due to their robustness and ease of use. For WSN
imulation, SEAMCAT and ns-3 are recommended for their capabilities
n interference assessment and network protocol analysis, respectively.

10. Lessons learned and guidelines for sustainable large-scale de-
ployment

Take into account the analysis above, in this section, we introduce
he lessons learned and an innovative framework designed to investi-

gate the utilization of massive IoT for monitoring and optimizing WDS
in the future deployements. In fact, the main lesson learned is that
many works in the literature on WDS focus exclusively on wireless
networks or only on water-related aspects, while no studies address
a multidisciplinary analysis in massive IoT scenarios for WDS that
includes both aspects. For these reasons, we provide a holistic approach
to overcome challenges and optimize the efficiency of massive IoT
implementations in WDSs, with a specific emphasis on sustainable
pplications.

10.1. Framework description

The workflow, illustrated in Fig. 9, enables a comprehensive anal-
ysis of WDS by integrating short and long term decision making pro-
cesses facilitated by continuous and extensive data collection via IoT,
EC, graph signal processing, and AI analysis. The framework blocks,
depicted in Fig. 9, are discussed in the following subsections.

10.1.1. Water distribution system
The initial step involves identifying the architectural model of a

WDS and subsequently creating a dataset based on the network’s topol-
ogy. This task can be accomplished using WNTR and EPANET, as
explained in Section 9. WNTR enables the automation of experiments,
streamlining the integration into larger workflows, and facilitating the
creation of datasets aligned with the WDS topology.

Our proposed methodology involves using WNTR to generate a
dataset. This process will export the physical values of the WDN net-
work into a file in comma-separated value (CSV) format, containing
the features listed in the left block of the framework called Water
Network analysis, as shown in Fig. 9. Finally, a subset of this dataset
ontaining node location and sampling time information is provided as
nput to the IoT simulators to perform an analysis of various wireless
etwork parameters, shown in the right-hand side of the framework.
pon completion of the process, two data structures are generated. The
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Fig. 9. Framework for green and large-scale IoT deployment in WDS.
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first pertains to the file for water hydraulic analysis, while the second
encompasses field parameters necessary for conducting network data
analysis. Both, including relevant parameters, are shown in the middle
of Fig. 9.

10.1.2. Water network analysis
This block provides a set of different features related to the selected

scenario, including dynamically generated hydraulic values during the
simulation and statically set values that represent the status of each
node in the network at the observed time interval. Furthermore, the
data is augmented to include information from ns-3 simulations. Hy-
draulic features include: (i) timestamp representing the time-interval,
(ii) unique ID of a node inside the network, (iii) demand value, that
is the rate of water withdrawal from the network, (iv) pressure in the
node of the WDS, (v) node position: coordinates of the node, (vi) node
type (i.e., ‘‘Junction’’, ‘‘Reservoir’’, ‘‘Tank’’), (vii) presence of leakage
(in terms of leak discharge, leak area and current leak demand), (x)
the flow rate of the water inside the pipe at the current timestamp.

10.1.3. Wireless network analysis
The wireless network analysis block considers the SEAMCAT and

s-3 simulator tools, with SEAMCAT focusing on aspects related to the
hysical layer and ns-3 being instrumental for network and energy-
elated considerations. Wireless network parameters include: (i) data

xtraction rate, (ii) sensor node energy consumption, (iii) node battery

17 
lifetime, (iv) network energy consumption, (v) sensor and gateway
position, (vi) spreading factor/data rate, (vii) received signal strength,
(viii) duty cycle, (ix) packet numbers. By combining available features
of both water and wireless, it is possible to address a WDS holistically.

herefore, the following subsection will provide some examples.

10.1.4. Optimization algorithms and sustainable applications
In the second phase of the framework, all water and wireless fea-

ures are processed by various optimization algorithms, encompassing
etwork classification and clustering, ML models focused on leakage
rediction and graph signal processing techniques for water flow recon-
truction within the network [185]. Together, these algorithms ensure
ustainable network optimization, addressing both water management
nd wireless communication perspectives. Some illustrative use cases

are listed in the following paragraphs. For example, ML algorithms
have been employed in distributed analysis for leak detection in WDS
with EC [3,107]. In this scenario, the system can identify leaks at the
arliest opportunity. One of the primary objectives is to minimize the
atency in leak detection by training the most effective ML model for
ach GW within the WDS [3]. In general, predicting the behavior of

an entire network to detect leaks, especially in large scenarios, poses
significant challenges. However, by clustering nodes based on shared
eatures, it becomes feasible to develop models capable of predicting

behavior within specific subnets or clusters [144]. The use of classifica-
tion and clustering algorithms facilitates the deployment of ML models



A. Pagano et al.

a

o

T

h
i
c
u

f
S

w
p

c
c
a
b

a
i

Ad Hoc Networks 168 (2025) 103714 
Table 6
Future research challenges and possible solutions on massive IoT for WDSs.

Main research challenge Motivation Possible solution

Massive IoT To provide interoperable, scalable,
energy-efficient and reliable massive IoT
for WDS

Employ LPWAN technologies

Suitable LPWAN To enhance large-scale implementations
and to mitigate interference

LoRaWAN

Edge computing in massive scenario To reduce latency for real-time anomaly
detection and high-accuracy localization
of water losses

EC with graph signal processing and
clustering-based ML

Simulators in large-scale scenario To implement large-scale simulations
including hydraulic and wireless aspects

IoT ecosystem simulators by creating
APIs for cross-platform communication
such as ns-3 and WNTR
r
n
a
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f
s
i
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o

c
p
t
t

t
t

tailored for leak prediction within clusters, thus improving prediction
accuracy [141].

In addition, to demonstrate the framework methodology, we discuss
 use case involving a massive IoT network supporting a WDS in

paper [186]. This case shows the systematic approach for assessing and
ptimizing the performance of the SWDS, ensuring efficient water dis-

tribution and network operation. The specific focus of this use case is on
evaluating strategies for LoRaWAN GW deployment in alignment with
the WDS hydraulic flow. The proposed solution utilizes the hydraulic
data of the WDS to determine the optimal GW deployment. For this
purpose, graph signal processing on the network graph is employed.

he goal of the proposed Degree Centrality Deployment is to utilize the
data and metrics produced in the preceding stages of the methodology
to discern the relationship between centrality and hydraulic flow. This
analysis aids in determining the optimal locations for GWs. The use case
focuses on a large network, which consists of 4419 nodes, 3 reservoirs,
and 5066 pipes, represented as a topology and dataset in a public
repository at this link.2 The results show that the proposed method
as lower energy consumption when a context-aware GW deployment
s performed compared to a Regular Grid GW deployment [186]. This
omparison sheds light on the potential energy efficiency benefits of
sing degree centrality for GW deployment strategies in SWDS.

11. Discussion and future directions

We identified several interesting challenges and technologies in IoT
or WDS, which could also serve as directions for future research.
pecifically, Table 6 summarizes the four main challenges highlighted

in this analysis and outlines potential solutions that could guide future
efforts to address them.

Within the challenges of IoT for WDS (RQ1), there is a significant
focus on integrating IoT to improve monitoring and management,

ith ongoing innovations in sensor technologies and communication
rotocols that address deployment challenges [25].

Robust data collection, storage, and analysis mechanisms are cru-
ial, but a lack of universal standards for sensor technologies and
ommunication protocols, as well as difficulties in scaling IoT solutions
nd ensuring interoperability, remain significant issues that have not
een solved yet [28,187]. With respect to Scalability, as WDSs expand

to include thousands or even millions of sensors, scalability remains
a significant challenge. Research should explore advanced data man-
agement techniques, efficient database systems, and optimized network
architectures to handle the massive scale of IoT deployments in water
management [29].

Despite advancements in low-power IoT devices, achieving sustain-
ble energy autonomy remains critical. Future efforts could center on
ntegrating renewable energy sources and improving energy harvesting

technologies to prolong sensor lifespan and reduce maintenance costs
in WDS.

2 https://github.com/WITS-Restart/WDN-IoT-Dataset-Workbench.
 h
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Furthermore, ensuring reliable connectivity across large and often
emote WDS areas is crucial. Future research might focus on enhancing
etwork coverage through advanced mesh networking, spectrum man-
gement strategies, and AI-driven optimization techniques to improve

reliability and responsiveness [66,67].
Approaching integration and interoperability, while various IoT

technologies like LoRaWAN, NB-IoT, and SigFox offer solutions for
WDS monitoring (RQ2), there is a need for standardized interoper-
bility protocols to seamlessly integrate heterogeneous systems [28,

59]. Future research could focus on developing robust interoperability
frameworks that accommodate diverse sensor networks and communi-
cation technologies.

In terms of EC in large-scale IoT deployment for WDSs (RQ3), it
is increasingly used to process data in real-time, reducing the need
or constant data transmission to central servers and enhancing the re-
ponsiveness of IoT systems [66]. Distributed computing architectures
mprove system resilience and scalability, but managing distributed
C resources and integrating them with existing infrastructures are
ngoing challenges, alongside the lack of standardized frameworks for

implementation. In this line, studies to come could explore optimal
edge-cloud architectures tailored for real-time monitoring, predictive
analytics, and decision support in water distribution [97].

Also, regarding advanced sensing technologies, developing next-
generation sensors capable of real-time monitoring for water quality,
leak detection, and pressure management is essential. Future research
could focus on enhancing sensor accuracy, reliability, and resilience
against environmental conditions to improve overall system efficiency
and water quality management [3,66].

For WDSs in large-scale scenarios (RQ4), addressing network con-
gestion due to the high volume of data generated by IoT devices and
developing automated maintenance solutions are major trends [23,27].
Ensuring the reliability and accuracy of the collected data, robust
infrastructure support, and qualified professionals to manage and main-
tain complex IoT systems are critical needs [99]. Concerning Security
and Privacy, with the increase in IoT devices, ensuring robust cyberse-
urity measures to protect sensitive data and infrastructure becomes
aramount. Future research topics could include developing encryp-
ion standards, intrusion detection systems, and privacy-preserving
echniques tailored for WDS IoT environments [188].

Leveraging advanced data analytics, AI, and ML for predictive main-
enance, anomaly detection, and decision support systems could op-
imize WDS operations [94]. New research might explore AI-driven

predictive models and adaptive control strategies for efficient water
resource management [108].

Finally, regarding simulation tools for massive IoT deployment in
WDSs (RQ5), advanced hydraulic modeling tools like EPANET [156]
and WNTR [149] are used to simulate WDSs, alongside specialized tools
for wireless sensor networks [173]. Integrated simulation environments
combining hydraulic and wireless network simulations are being devel-
oped [186]. There is a need for more accurate and realistic simulation
models, user-friendly interfaces for non-experts, and addressing the
igh complexity and computational requirements of existing tools.

https://github.com/WITS-Restart/WDN-IoT-Dataset-Workbench
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12. Conclusion

This survey provides a holistic analysis of the integration of IoT
technologies with WDS, focusing on the challenges and opportunities
that arise in massive IoT scenarios. In fact, optimizing and digitaliz-
ing WDSs are becoming key objectives in modern society as global
water consumption increases. The integration of IoT technologies of-
fers a viable solution with their extensive coverage and low power
consumption. However, implementing SWGs on a large scale presents
challenges, including potential interference among multiple IoT tech-
nologies and ensuring system reliability to prevent significant water
wastage. As water resources become increasingly limited, innovative
management and distribution strategies are essential.

Based on the analysis of selected studies, we introduced a frame-
work designed to provide a holistic approach to overcoming future
challenges and optimizing the efficiency of massive IoT implementa-
tions in WDSs. This includes the increasing application of EC, ML,
and AI for predictive maintenance and anomaly detection. The study
highlights future challenges such as the need for more energy-efficient
IoT devices to prolong battery life and reduce maintenance costs, while
ensuring data security and privacy remains a critical concern.

Moreover, addressing challenges like interoperability, scalability,
etwork coverage is critical for the successful deployment of massive
oT in WDSs. As well as employing data mining for promoting the
otential of smart cities and digital twins.

LPWAN networks offer appropriate sensor technologies to over-
come future challenges and to implement effective data management
practices, which are vital for monitoring and managing water sys-
tems. Lastly, Utilizing EC enhances data processing efficiency, reduces
etwork traffic, and improves system reliability, making it crucial
or large-scale implementations. Implementing these technologies and
ethodologies will contribute to more efficient, sustainable, and re-

ilient WDSs, addressing the pressing global need for better water
anagement.
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