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A B S T R A C T

Apoptosis, or programmed cell death, plays a pivotal role in maintaining cellular homeostasis by eliminating 
damaged or surplus cells. Dysregulation of signaling pathways, such as JAK/STAT, is implicated in various 
diseases, rendering them attractive therapeutic targets for potential new anticancer drugs. Concurrently, it is 
imperative to preserve essential proteins like TNF-α and p53 to maintain normal cellular life/death balance. In 
light of these considerations, this study employs an innovative in silico hybrid and hierarchical virtual screening 
approach aimed at identifying JAK/STAT multi-target inhibitors as potential anticancer agents for several tu
moral diseases. Initially, the Biotarget Predictor Tool is utilized in a combined ON/OFF-target/Multitarget mode 
using the extensive National Cancer Institute (NCI) database, previously filtered by ADME evaluation tools. 
Subsequently, Molecular Docking studies are conducted on JAK2, JAK3, and STAT3, facilitating the identifica
tion of the most promising compound, 755435. Finally, Molecular Dynamics Simulations validate the high 
stability of the potential multitarget inhibitor 755435 in complex with JAK2, JAK3, and STAT3.

1. Introduction

Apoptosis, also referred to as programmed cell death, is a tightly 
regulated physiological process occurring in multicellular organisms. Its 
primary function is to maintain cellular homeostasis by eliminating 
damaged or surplus cells. Additionally, apoptosis acts as a crucial de
fense mechanism against immune responses and contributes to the 
clearance of cells damaged after disease [1]. During apoptosis, cells 
cease their growth and division, initiating a meticulously orchestrated 
pathway toward cell death, often likened to “cellular suicide” [2]. This 
process can be instigated either by the cell itself through intracellular 
sensors, termed the intrinsic pathway, or by external stimuli triggering 
the extrinsic pathway, involving interactions between immune system 
cells and damaged cells.

The extrinsic pathway operates through death receptors located on 
the cell surface, such as Fas receptors, Death Receptor 4 and 5 (DR4 and 
DR5), Tumor Necrosis Factor Receptors (TNF), and TNF-related 
apoptosis-inducing ligand (TRAIL). Activation of these receptors by 
external signals leads to the recruitment of downstream caspase-8 and 

subsequent initiation of cell death processes [2,3]. Internally, stimuli 
like DNA damage or oxidative stress can activate the intrinsic/mi
tochondrial pathway of apoptosis. Within this pathway, B-cell lym
phoma (Bcl) proteins, such as Bcl-2-associated X protein (BAX) and 
Bcl-2, regulate the release of other Bcl family members. This process 
culminates in the formation of the apoptosome, involving Apoptotic 
Protease Activating Factor-1 (APAF1) and procaspase 9, ultimately 
activating executioner caspases 3, 6, and 7, thus driving cell apoptosis 
[3].

Hence, apoptosis intricately intertwines with various signaling 
pathways, among which the Janus kinase/Signal Transducer and Acti
vator of Transcription (JAK/STAT) pathway stands out as a pivotal 
player, primarily involved in extrinsic cellular processes such as immune 
modulation and hematopoiesis. Although traditionally recognized for 
regulating responses to extracellular signals, recent research indicates 
its involvement in modulating the intrinsic pathway of apoptosis. JAKs, 
closely associated with cytokine receptors, facilitate receptor tyrosine 
phosphorylation and recruit signal transducer and activator of tran
scription (STAT) proteins. Upon phosphorylation, STAT proteins form 
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dimers that translocate into the nucleus, thereby influencing gene 
expression. This intricate interplay underscores the JAK/STAT path
way’s potential role as a regulator bridging both intrinsic and extrinsic 
apoptotic pathways, thereby emphasizing its multifaceted involvement 
in determining cellular fate [4]. The JAK-STAT pathway is tightly 
regulated, and any disruption in this controlled process can profoundly 
impact normal physiology. Mounting evidence suggests constitutive 
activation of JAKs in various cancers, including Acute Lymphoid Leu
kemia (ALL), Chronic Myelogenous Leukemia (CML), Myeloprolifera
tive Neoplasia (MPN), lymphomas, and myelomas. Additionally, 
constitutively active JAKs have been implicated in solid cancers such as 
breast, prostate, head, and neck cancers [5–10].

The JAK family encompasses four primary members: JAK1, JAK2, 
JAK3, and TYK2. JAK2 and JAK3 serve as pivotal kinases in cytokine 
and hormone signaling pathways, playing essential roles in cytokine 
receptor signaling. While JAK2 is expressed ubiquitously throughout 
various tissues, JAK3 expression is confined to myeloid and lymphoid 
tissues [4,11]. Structurally, JAKs feature an N-terminal FERM domain 
responsible for their association with cytokine receptors, with implica
tions for intracellular regulation of JAK activity [12]. The SH2-like 
domain, while not functioning as a conventional 
phosphotyrosine-binding domain, has a yet unclear but presumably 
significant role. The JH1 domain, activated via trans-phosphorylation of 
tandem tyrosines in the activation loop, encodes a kinase crucial for 
phosphorylating key substrates. Conversely, JH2, also termed the 
pseudokinase domain lacking kinase activity, regulates JH1 activity 
[13].

The activity of JAK2 undergoes tight regulation through the phos
phorylation of approximately 20 tyrosine residues, which are identified 
as phosphorylation sites during cytokine stimulation. Among these sites, 
several have been functionally characterized. Notably, the activation 
loop, present in all JAKs and comprising tandem tyrosine residues 
(Tyr1007-Tyr1008 in JAK2, and Tyr980-Tyr981 in JAK3), serves as the 
primary site of autophosphorylation. Its phosphorylation is a crucial 
prerequisite for catalytic activation [5].

STAT3 plays a pivotal role in regulating numerous genes involved in 
proliferation, differentiation, apoptosis, autoimmune-inflammatory 
processes, and cell survival [14]. These responses are orchestrated 
through phosphorylation of the STAT3 SH2 domain by Janus kinases 

(JAKs) [15,16]. Moreover, STAT3 is frequently activated in human 
cancers and is implicated in regulating cancer cell survival, prolifera
tion, angiogenesis, and metastasis [17–19], rendering it a promising 
target for anticancer therapies [20], particularly through approaches 
aimed at inhibiting STAT3 dimerization [7].

From a structural perspective, STAT3 comprises six domains: the N- 
Terminal Domain (NTD), Coiled-Coil Domain (CC), DNA Binding 
Domain (DBD), Linker Domain (LD), Src Homology 2 Domain (SH2), 
and Transactivation Domain (TAD) (see Fig. 1). Canonical activation of 
STAT3 relies on the phosphorylation of Tyr705, a critical tyrosine res
idue, which induces SH2 domain-mediated dimerization [20]. This 
dimerization is further strengthened by the TAD through additional 
protein-protein interactions between the two monomers [21,22].

As previously mentioned, dysregulation of the JAK/STAT pathway is 
linked to various pathologies, warranting the use of JAK/STAT in
hibitors as a compelling strategy due to the pivotal roles these proteins 
play in promoting oncogenesis and tumor progression. Targeting STAT3 
and JAKs offers several advantages in cancer therapy. Inhibiting these 
proteins can disrupt signaling cascades supporting cancer cell survival, 
proliferation, and immune evasion. Moreover, their aberrant activation 
often correlates with treatment resistance, making them attractive tar
gets for overcoming therapeutic challenges. First-generation JAK in
hibitors (such as tofacitinib, oclacitinib, baricitinib, and ruxolitinib) 
competitively inhibit adenosine triphosphate (ATP) binding, targeting 
the active conformation of the JH1 tyrosine kinase domain. However, 
these inhibitors lack specificity, affecting various Janus kinase isoforms. 
In contrast, new-generation inhibitors exhibit greater selectivity and 
specificity, enhancing safety profiles with fewer side effects by targeting 
single Janus kinase isoforms [23]. JAK inhibitors can impede STAT 
phosphorylation and activation, yet it’s crucial to note their potential 
interference with other signaling pathways upstream of tyrosine kinases. 
This interference may contribute to adverse events, prompting explo
ration of STAT inhibitors as a potentially more specific option with 
fewer side effects. Most inhibitors focus on limiting STAT phosphory
lation and/or dimerization, employing peptidomimetic approaches. 
Alternative methods include non-peptidic small molecules and STAT 
inhibitors based on oligonucleotides specific to the STAT DNA-binding 
domain [5].

Simultaneously, p53 and TNF-α, integral components of the cellular 

Fig. 1. 3D structure of STAT3 bounded to DNA. In detail, NTD, CC, DBD, LD, SH2, TAD, and DNA are depicted in pink, red, blue, violet, green, orange, and yellow, 
respectively. X-ray structures used for the image are 4ZIA for the NTD, and 6QHD for the rest of the protein. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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regulatory network, emerge as potential off-targets when considering 
interventions aimed at modulating apoptosis [24–27]. The multifaceted 
roles of p53 and TNF-α in orchestrating programmed cell death under
score their significance as regulators of apoptosis [28]. While activation 
of these molecules can enhance apoptosis and aid in the elimination of 
damaged cells, inhibiting them may disrupt this delicate balance, 
potentially impeding the natural apoptotic process. Understanding the 
interplay between p53, TNF-α, and apoptosis regulation provides valu
able insights into the potential unintended consequences of targeting 
these molecules [29]. While selectively modulating them holds promise 
for therapeutic interventions, it becomes imperative to navigate the 
complexities of these pathways cautiously. Precise control over these 
off-target effects is essential to harness therapeutic potential while 
minimizing unintended consequences, ensuring a nuanced approach 
towards apoptosis regulation in various pathological contexts.

In light of these considerations, this study utilized an innovative in 
silico hybrid and hierarchical virtual screening approach to identify new 
JAK/STAT inhibitors without binding affinity against the OFF-targets 
p53 and TNF-α. Leveraging our in-house ligand-based Biotarget Pre
dictor Tool (BPT) in a combined ON/OFF-targets/Multitarget mode 
enabled rapid screening of a large database of active molecules, previ
ously curated, which were further scrutinized through structure-based 
studies.

2. Results and discussion

2.1. Database preparation

Prior to implementing the virtual screening protocol, we conducted a 
preliminary cleaning phase on the National Cancer Institute (NCI) 
database, consisting of two consecutive steps to select small molecules 
meeting specific parameters and requirements. Initially, the NCI data
base, comprising approximately 40,000 compounds analyzed by the 
National Cancer Institute in in vitro antiproliferative assays against 60 
cancer cell lines (NCI60), underwent preparation using the LigPrep tool 
from the Schrödinger Maestro Suite, at physiological pH (7.3 ≤ pH ≤
7.5). This process generated all possible tautomers and stereoisomers at 
the lowest energy state for each ligand. Subsequently, the ligands un
derwent analysis with the QikProp tool [30], which predicts the ADME 
(Absorption, Distribution, Metabolism, and Excretion) properties of 
drug candidates based on their full 3D molecular structure. QikProp can 
calculate a wide variety of pharmaceutically relevant properties, 
including octanol/water and water/gas partition coefficients, aqueous 
solubility, brain/blood partition coefficient, overall Central Nervous 
System (CNS) activity, Caco-2 and MDCK cell permeabilities, and log 
Khsa for human serum albumin binding. This process enabled rapid 
screening of compound libraries for potential hits.

In our study, we honed in on two specific parameters: the “Rule of 
Five,” indicating the number of violations of Lipinski’s rule, and 
"#stars,” which consolidates all QikProp parameters into a single metric, 
representing the number of property or descriptor values that fall 
outside the 95 % range of similar values for known drugs. A higher 
number of outlying descriptors results in a higher "#stars” value, sug
gesting that a molecule is less drug-like compared to one with fewer 
"#stars”. To isolate only drug-like small molecules, we discarded ligands 
with Rule of Five and #stars values other than 0, thereby reducing the 
NCI database to 18,510 compounds (see Supplementary Material, Da
tabases S1, S2).

Considering that a significant portion of drug candidates fail in 
clinical trials due to poor ADME properties, integrating their predictions 
into the development process can yield lead compounds with satisfac
tory ADME performance during clinical trials. This approach contem
poraneously reduces the amount of wasted time and resources while 
streamlining the overall development process.

To further ascertain the drug-like nature of our investigated com
pounds, we conducted an additional analysis using the SwissADME 

website (http://www.swissadme.ch, accessed on April 08, 2024 [31]). 
This platform enabled us to compute physicochemical descriptors and 
predict ADME parameters, pharmacokinetic properties, and medicinal 
chemistry friendliness of our screened small molecules. Specifically, a 
comprehensive array of parameters was predicted, including the num
ber of heavy atoms, H-bond acceptors, H-bond donors, and rotatable 
bonds, as well as adherence to the Rule of Five, Blood Brain Barrier 
(BBB) permeability, metabolic reactions, and Human Oral Absorp
tion—parameters shared with QikProp. Additionally, novel issues were 
investigated for the first time for our compounds, such as Ghose, Veber, 
Egan, Muegge, and lead-likeness violations, bioavailability score, and 
PAINS alerts. Through this analysis, we chose to retain only ligands with 
a PAINS alert value of 0. Furthermore, we removed duplicates, resulting 
in a refined database of 15,632 drug-like small molecules ready for 
further investigation using the proposed in silico protocol (see Supple
mentary Material, Database S3,S4).

2.2. Ligand based studies

The Biotarget Predictor Tool (BPT), available on the DRUDIT web 
platform (https://www.drudit.com, accessed on April 08, 2024) [32], is 
designed to predict the biological affinity of the given input structure 
against chosen biological targets.

Molecules with Multi-ON and minimal OFF target interactions 
represent a promising avenue for the development of highly effective 
and well-tolerated pharmaceuticals, ensuring that therapeutic in
terventions are precisely targeted. The BPT, as an established ligand- 
based protocol [33–38], has the advantage of being used also in a 
Multi and/or ON/OFF-target Mode to address the issue of selectivity in 
order to investigate drug molecules able to discriminate two or more 
biological targets.

2.2.1. Ligand based target templates building
In order to utilize the BPT, we initiated a preliminary phase of ligand- 

based template construction for both ON and OFF targets (ON targets: 
STAT3, JAK2, and JAK3; OFF targets: TNF-α and p53), as previously 
described in literature [39]. Large databases of known modulators for 
STAT3, JAK2, JAK3, TNF-α, and p53 were obtained from BindingDB 
[40], a trusted source of experimentally determined protein-ligand 
binding affinities, providing Ki, Kd, IC50, EC50 values, and correspond
ing target information for numerous active molecules. Specifically, a 
threshold of activity IC50 < 100 nM was applied to select highly active 
inhibitors, followed by meticulous cleaning to remove duplicates. Sub
sequently, these inhibitor sets underwent molecular descriptor calcula
tion using MOLDESTO (MOlecular DEScriptors TOols), our proprietary 
software [32], capable of generating over 1000 molecular descriptors 
(3D, 2D, and 1D) for each input structure. This process yielded a 
“Compounds vs. Molecular Descriptors” matrix for each database, from 
which two sequences of value pairs for each molecular descriptor (mean 
and standard deviation) were extracted, constituting the molecular 
descriptor-based target templates [32]. These templates were integrated 
into the DRUDIT platform, facilitating the assessment of ligand affinity 
against them.

2.2.2. Biotarget Predictor Tool application
Once all preliminary phases were concluded, we proceeded to submit 

the prepared database of drug-like small molecules to the in-house BPT, 
utilizing it in a comprehensive ON/OFF-targets/Multitarget Mode. 
Subsequently, 15,632 input structures were uploaded to the DRUDIT 
platform and analyzed through the BPT, using the “DAS – Drudit Affinity 
Score” parameter. In details, the DAS parameter is computed according 
to the choices for three input parameters N, Z and G. N is related to the 
number of dynamically selected molecular descriptors, Z represents the 
maximum allowed percentage of unavailable values (zeros) per molec
ular descriptor, and G defines the Gaussian smoothing function used to 
score the descriptor values.
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For the calculation of DAS values, which ranges from 0 to 1, we used 
standard values of N, Z, and G, which means N = 500, Z = 50 %, G = a 
[32]. Lower values, closer to 0, indicate poor binding affinity between 
ligands and targets, whereas higher values, closer to 1, suggest a strong 
capability of compounds to interact with targets. Specifically, DAS 
values of structures for each target (ON/OFF targets), available in 
Supplementary Material, Matrix S1, were assessed collectively in the 
combined ON/OFF-targets/Multitarget Mode. This mode aimed to 
identify new JAK/STAT multitarget inhibitors with low affinity against 
the OFF targets TNF-α and p53. This was achieved by computing the 
“Multi-ON/OFF Target Score” using equation (1): 

Multi −
ON
OFF

Target Score =
DASχ
DASγ

(1a) 

Where DASχ is DASSTAT3 × DASJAK2 × DASJAK3, and DASγ is DASTNF-α ×

DASp53.
Compounds were sorted in descending order based on the “Multi- 

ON/OFF Target Score”, where a higher score indicated a higher DASχ, 
reflecting greater affinity for the ON targets STAT3, JAK2, and JAK3, 
and a lower DASγ, indicating reduced affinity for the OFF targets TNF-α 
and p53. Accordingly, the top-ranked 5 % of molecules (approximately 
780 small molecules) were chosen for subsequent in silico structure- 
based analysis (Supplementary Material, Matrix S2).

2.3. Structure-based studies

Virtual screening has emerged as a highly effective strategy for 
discovering ligand hits and aiding lead optimization in drug discovery 
endeavors. Molecular Docking Studies, when combined with a ligand- 
based approach, offer the potential to identify small molecules likely 
to bind effectively to one or more high-resolution structures of protein 
targets. With this perspective in mind, a two-step docking virtual 
screening workflow was implemented to further refine the selected 
compounds based on their potential to interact with the binding pocket 
of the three ON targets, thereby assessing predicted binding affinity and 
interaction efficacy with key amino acids in the active sites. The initial 
step involves Extra Precision (XP) docking, aimed at pinpointing ligand 
poses that could exhibit unfavorable energies, thus filtering out false 
positives. Only active compounds with available poses demonstrating 
favorable contacts between the protein and the ligand, thereby cir
cumventing such penalties, are selected for further analysis.

As an initial step, this phase was applied to the structures selected 
thus far, encompassing all three proteins (PDB codes 6NUQ, 6VGL, and 
6GL9 for STAT3, JAK2, and JAK3, respectively) [41–43]. Docking grids 
were consequently generated, centering on the binding pockets of 
STAT3, JAK2, and JAK3, which encompassed all crucial amino acid 
residues. The residue-atom notation nearest to the center of the docking 
grid for each crystallographic structure is as follows: for JAK2, the res
idue is Val863 with an H-CH2 atom (Val863CH3); for JAK3, the residue is 
Leu956 with an H-CH2 atom (Leu956CH3); and for STAT3, the residue is 

Fig. 2. (a) 3D x-ray structure of STAT3 SH2 Domain in complex with its co-crystalized ligand SI109; (b) 3D x-ray structure of JAK2 JH1 Domain in complex with its 
co-crystalized ligand ruxolitinib; (c) 3D x-ray structure of JAK3 JH1 Domain in complex with its co-crystalized ligand FM475.
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Glu638 with an H-N atom (Glu638NH). Fig. 2a–c illustrates the 3D 
binding sites of STAT3 in complex with compound SI109 (PDB code 
6NUQ [42]), JAK2 in complex with ruxolitinib (PDB code 6VGL [41]), 
and JAK3 in complex with compound FM475 (PDB code 6GL9 [43]).

Fig. 2a illustrates the STAT3 SH2 domain, highlighting essential 
components for p-Tyr705 recognition. These include the pivotal residue 
Arg609, crucial for stabilizing p-Tyr705 via favorable electrostatic inter
action energy between the negatively charged phosphate and the posi
tively charged NH3 amino group. Additionally, residues Lys591, Ser611, 
and Ser613 facilitate the formation of polar interactions. Furthermore, 
STAT3 harbors residues susceptible to various post-translational modi
fications, such as Lys658 and Lys679. Acetylation at these sites can 
modulate STAT3 diverse functions and properties, including protein 
dimerization, transcriptional activity, mitochondrial translocation, and 
methylation of tumor-suppressor gene promoters [14–22]. This struc
tural insight is invaluable for drug design endeavors aimed at competing 
with p-Tyr705 for binding in the SH2 cavity [21,22]. Conversely, Fig. 2b 
depicts the JAK2 JH1 Domain, emphasizing critical residues within the 
site. These include Glu930 and Leu932 of the hinge region, Leu855, Gly856, 
Lys857, and Gly858 of the P-loop, Asp994 of the DFG motif, and the hy
drophobic and flexible gatekeeper residue Met929 [41].

Finally, Fig. 2c showcases the JAK3 JH1 Domain, characterized by 
the typical bilobar structure of kinases, where two lobes are connected 
by a short linker known as the “hinge” region. This domain’s primary 
role is to catalyze the transfer of phosphate from the ATP phosphate 
donor to a protein substrate [44]. The ATP binding pocket is situated 
between the two lobes, adjacent to the hinge, and encompasses critical 
residues such as Met902, Glu903, Tyr904, Leu905, Pro906, and Gly908. 
Notable features include the Glycine-rich loop (Gly829, Gly831, and 
Gly834), the “Arginine pocket” (Arg911 and Arg953), the catalytic Cys909, 
and residues contributing to a hydrophobic environment (Val836 and 
Ala966). Additionally, there’s a polar triad hydrogen bond network 
comprising Lys855, Glu871, and Asp967, along with Leu828, Val884, Ala853, 
Asn954, and Leu956 [45].

After analyzing the output, as detailed in Table S1 of the Supple
mentary Material, we selected the top 200 small molecules from each XP 
docking simulation. Subsequently, we focused on the common struc
tures present in every simulation, resulting in the identification of 44 
small molecules. The docking score values for each ON target are pro
vided in Table S2 of the Supplementary Material. Moving beyond the 
conventional rigid receptor approximation inherent in structure-based 
virtual screening, we employed the Induced Fit Docking (IFD) proto
col. This approach predicts the impact of ligand docking on protein 
structure by elucidating the structural features of ligand/target com
plexes and analyzing their mutual conformational changes.

In the second step of the docking workflow, IFD studies were con
ducted utilizing the same X-ray structure depicted in Fig. 2a–c. The 
output results are outlined in Table S3 of the Supplementary Material, 
while the IFD score for the top 20 small molecules is presented in 
Table 1. In this analysis we included a validation set of 9 compounds as 
well-known inhibitors of JAK2, JAK3, and STAT3 (filgotinib, gandoti
nib, and ruxolitinib for JAK2 [46–48]; ritlecitinib, upadacitinib, and 
FM475 for JAK3 [49,50]; BP-1-102, SH5-07 and SI109 for STAT3 [51,
52]).

The analysis of the Induced Fit Docking (IFD) simulations reveals 
that numerous compounds demonstrate effective interactions with the 
target proteins, yielding IFD scores that are either higher or comparable 
to those of the reference ligands. Notably, among the 20 structures listed 
in Table 1, compound 755435 consistently emerges as the most prom
ising, achieving IFD score values of: -1188.82 for STAT3, boasting the 
highest score in the series; − 722.75 for JAK2, exceeding other ligands 
including ruxolitinib (-717.95); and − 656.61 for JAK3, with a notable 
margin compared to the co-crystalized ligand FM475. Furthermore, 
derivative 755435 surpasses other compounds included in the valida
tion set (filgotinib and gandotinib for JAK2, ritlecitinib and upadaciti
nib for JAK3, BP-1-102 and SH5-07 for STAT3). In summary, 

compound 755435 exhibits remarkable potential as an inhibitor for all 
three targets. Fig. 3a illustrates the 2D structure of compound 755435, 
while Fig. 3b–d depict the 3D complexes formed between 755435 and 
STAT3, JAK2, and JAK3, respectively. These visual representations 
further underscore the compound promising interactions with the target 
proteins. The key interactions formed by compound 755435 with each 
protein binding site, were investigated and reported in Table 2.

In the JAK2 JH1 Domain, compound 755435 engaged in numerous 
interactions with critical residues of the active site. Notably, the hinge 
region played a pivotal role, akin to the co-crystallized ligand rux
olitinib, involving key residues such as Glu930, Tyr931, Leu932, Gly935, 
Ser936, and Asp939. Among these, Asp939 formed a hydrogen bond be
tween the oxygen atom of its side chain and the hydrogen atom of the 
phenolic group of compound 755435 (O—H-O). Additional hydrogen 
bonds were established between the N-H backbone of Phe860 and Gly861 

and the amidic moiety of the compound (N-H—O), as well as between 
the oxygen atom of the Gly996 backbone and the phenolic group of the 
compound (O—H-O), with Pi-Pi stacking interaction involving Lys882. 
Furthermore, hydrophobic interactions were observed with the flexible 
gatekeeper residue Met929, the amino acids of the P-loop (Leu855, Gly856, 
Lys857, and Gly858), and Asp994 of the DFG motif. Additionally, the 
compound interacted with surrounding amino acids of the binding 
pocket, including Asn859, Ser862, Val863, Ala880, Lys883, Leu884, Phe895, 
Arg980, Asn981, Leu983, and Gly993. In the JAK3 JH1 Domain, compound 
755435 formed stabilizing interactions with key residues of the binding 
pocket, particularly in the hinge region (Met902, Glu903, Tyr904, Leu905, 
Pro906, Gly908). Multiple hydrogen bonds were formed with phenolic 
and amidic groups, with the hydrogen atom of the O-H group in the 
Tyr904 side chain acting as an H-bond donor. Other stabilizing H-bonds 
were formed near the hinge region, involving the O-H phenolic of 
755435 with the N-H backbone of the catalytic Cys909 and the O-H 
group of the side chain of Asp912. Furthermore, interactions with the 
backbone oxygen atom of Arg953 in the “Arginine pocket” and other 
crucial residues of the active site, including Gly829, Gly831 (Glycine-rich 
loop), Val836, Leu828, Lys830, Ala853, Lys855, Leu875, Val884, Arg916, 
Asn954, Leu956, Ala966, and Asp967, were observed. Concerning the 
STAT3 SH2 Domain, although the number of interactions created was 
lower than the reference ligand, the compound 755435 fulfilled essen
tial requirements akin to the reference ligand SI109. These included the 
formation of hydrogen bonds between the oxygen atom of the Ser636 

backbone and the phenolic group of the compound, the N-H backbone of 

Table 1 
IFD score of the 20 best-ranked selected small molecules, the reference co- 
crystalized ligands SI109, ruxolitinib, and FM475 against STAT3 (PDB code 
6NUQ), JAK2 (PDB code 6VGL), and JAK3 (PDB code 6GL9) [41–43], and the 
well-known inhibitors filgotinib and gandotinib for JAK2, ritlecitinib and 
upadacitinib for JAK3, BP-1-102 and SH5-07 for STAT3.

STAT3 JAK2 JAK3

Title IFDScore Title IFDScore Title IFDScore

SI109 − 1197.26 755435 − 722.75 684134 − 658.52
755435 − 1188.82 684134 − 721.10 755435 − 656.61
647610 − 1187.17 707556 − 719.96 647610 − 655.92
707556 − 1187.07 668891 − 719.35 707566 − 654.83
684134 − 1186.62 gandotinib − 718.70 707556 − 654.69
733269 − 1186.45 647610 − 718.52 697491 − 654.36
697491 − 1185.86 627737 − 718.52 627737 − 653.90
BP-1-102 − 1185.61 707567 − 718.59 753193 − 653.88
753193 − 1185.42 filgotinib − 717.99 732491 − 653.62
707566 − 1185.32 ruxolitinib − 717.95 668891 − 653.48
SH5-07 − 1184.71 732491 − 717.84 707567 − 653.26
707567 − 1184.53 707566 − 717.09 673596 − 653.21
707571 − 1184.53 625894 − 716.95 707571 − 652.95
625894 − 1184.47 697491 − 716.67 733269 − 651.82
732491 − 1183.20 707571 − 716.46 625894 − 651.82
668891 − 1183.11 733269 − 716.17 Ritlecitinib − 651.06
627737 − 1182.33 673596 − 716.12 FM475 − 649.82
673596 − 1182.15 753193 − 715.83 Upadacitinib − 649.40
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Glu638 and the amidic moiety of the compound, and interactions with 
Gln635, Val637, Pro639, Gly656, Tyr657, and Lys658. Additionally, a hy
drophobic interaction network was observed with Phe621, Met648, Ile654, 
Ile659, and Leu666.

2.4. Molecular dynamics simulations

Molecular Dynamics Simulations were conducted to delve into the 
structural characteristics of the 755435/JAK2, 755435/JAK3, and 
755435/STAT3 complexes. This approach allowed us to explore the 
dynamic behavior of molecular systems, tracking the trajectories of in
dividual atoms and molecules as they evolve over time.

The Molecular Dynamics duration (100ns) allows for the extraction 
of meaningful information regarding the proteins and ligands in each 
complex within the same timeframe, such as Root Mean Square Devia
tion (RMSD), Protein Root Mean Square Fluctuation (P-RMSF), and 
Ligand Root Mean Square Fluctuation (L-RMSF).

The Root Mean Square Deviation (RMSD) was computed for both the 
ligand and protein throughout the trajectory of simulations lasting 100 
ns for each ligand-protein complex. This analysis aimed to evaluate the 
stability and convergence of the simulations by measuring the average 
change in displacement of the backbone from a reference frame at t = 0. 
According to the RMSD analysis, depicted in Fig. 4a–c, compound 
755435 demonstrated satisfactory stability within the binding sites. 
Specifically, the left Y-axis of the plots illustrates the evolution of RMSD 
for JAK2, JAK3, and STAT3, respectively, indicating the structural 
conformation changes during the simulations. Importantly, the RMSD 
values of the proteins remained within the acceptable range of 1–3 Å, 
signifying the maintenance of structural integrity. Meanwhile, the right 
Y-axis of the plots illustrates the RMSD value of 755435 throughout the 

simulation.
Although the RMSD of 755435 complexed to STAT3 reaches 

approximately 10 Å, we confirm that the ligand remained within its 
initial binding site throughout the simulation and did not diffuse away. 
Moreover, the convergence of the RMSD values of both the protein and 
ligand towards the end of the simulations suggests that the systems 
reached equilibration, reinforcing the stability of the complexes.

The Protein Root Mean Square Fluctuation (P-RMSF) analysis was 
conducted to examine the fluctuations of specific residues throughout 
the simulation in detail. Fig. 5a–c depict P-RMSF plots for each protein 
(JAK2, JAK3, and STAT3, respectively), where peaks indicate regions 
experiencing significant fluctuations. These results reveal heightened 
flexibility in terminal regions compared to more rigid secondary struc
ture elements. Peaks in the P-RMSF plots pinpoint areas crucial for 
protein function or interactions, offering valuable insights into the dy
namics of the molecular system.

Throughout the simulation, the dynamics of protein secondary 
structure elements (SSE), such as alpha-helices and beta-strands, for 
JAK2, JAK3, and STAT3 are meticulously tracked. The results of this 
analysis are presented in Figs. S1–S3 of the Supplementary Material.

The Ligand Root Mean Square Fluctuation (L-RMSF) serves as a 
crucial metric for tracking changes in the positions of ligand atoms 
during molecular dynamics simulations. In this study, L-RMSF analysis 
was conducted for compound 755435 within each complex formed by 
JAK2, JAK3, and STAT3. The reference time (tref) was set to the first 
frame, establishing it as the zero point in time. The L-RMSFs, illustrated 
in Fig. 6b–d for JAK2, JAK3, and STAT3 complexes respectively, offer a 
detailed breakdown of ligand atomic-level fluctuations. These fluctua
tions are visually represented in Fig. 6a as a 2D structure. This infor
mation provides insights into how specific ligand fragments interact 

Fig. 3. a–d. (a) 2D chemical structure of compound 755435; (b) STAT3 SH2 domain in complex with compound 755435; (c) 3D x-ray structure of JAK2 JH1 domain 
in complex with compound 755435; (d) 3D x-ray structure of JAK3 JH1 domain in complex with compound 755435.
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with the protein and contribute to the entropic aspects of the binding 
event. The ‘Fit Ligand on Protein’ line depicted in the figures illustrates 
ligand fluctuations relative to the protein environment. By aligning the 
protein-ligand complex on the protein backbone and measuring the L- 
RMSF on its heavy atoms, this line demonstrates how the ligand 
dynamically responds within the context of the protein environment.

In summary, compound 755435 demonstrates stability, with an 
overall RMSF ranging from 1 to 8 Å. This stability is particularly note
worthy as it indicates a consistent and well-defined binding mode 
throughout the simulations. Additionally, the ligand torsion profile, 
summarizing the conformational evolution of every rotatable bond in 
compound 755435, was accurately analyzed throughout the simulation. 
The results of this analysis are presented in Fig. S4 of the Supplementary 
Material.

Subsequently, a range of structural parameters was computed for 
each complex to offer a comprehensive analysis of their molecular fea
tures. This included the calculation of the Radius of Gyration (rGyr), 
which assesses the “extendedness” of the ligand and correlates with its 
principal moment of inertia. Additionally, parameters such as Intra
molecular Hydrogen Bonds (intraHB), Molecular Surface Area (MolSA), 
Solvent Accessible Surface Area (SASA), and Polar Surface Area (PSA) 
were determined. The findings from these calculations are presented and 
discussed in the Supplementary Material (Figs. S5–S7).

Molecular Dynamics Simulations for reference compounds within 
the validation set, in complex with respective proteins, have been con
ducted. RMSD, P-RMSF, L-RMSF, SSE analysis have been reported in the 
Supplementary Material as Figs. S8–S15. Finally, we analyzed the 
conformational space and energies of complexes across Molecular Dy
namics Simulations studies. Fig. S16 (Supplementary Material) depicts 
plots of protein–ligand contacts and explains the interaction fraction of 
the protein residue with the ligand, which explains how much (%) of the 
simulation time of the specific interaction is maintained between ligand 
and receptors complexes. Table S3 (Supplementary Material) shows a 

summary of performed MM-GBSA analysis, describing Coulomb, van der 
Waals and solvent energies for 755435/JAK2, 755435/JAK3, 755435/ 
STAT3, ruxolitinib/JAK2, filgotinib/JAK2, gandotinib/JAK2, retliciti
nib/JAK3, upadacitinib/JAK3, FM745/JAK3, BP-1-102/STAT3, SH5- 
07/STAT3, and SI109/STAT3 complexes. Furthermore, output data 
from Molecular Dynamics Simulation are available in Supplementary 
Material 3.

3. Material and methods

3.1. Database cleaning phase

In this study, we utilized two widely recognized computational tools, 
QikProp and SwissADME, to evaluate the pharmacokinetic profiles of 
the designed compounds and to identify those lacking drug-like prop
erties. QikProp [31], an integral part of the Schrödinger Suite, employs 
molecular descriptors to predict various drug-like attributes, such as 
solubility, permeability, and bioavailability. Default settings were 
employed for calculations, yielding insights into the compounds’ ADME 
(Absorption, Distribution, Metabolism, and Excretion) properties. 
Moreover, we employed SwissADME, an online platform developed by 
the Swiss Institute of Bioinformatics, to further assess the pharmacoki
netic parameters. SwissADME utilizes robust algorithms to estimate 
physicochemical properties, drug-likeness, and medicinal 
chemistry-related parameters. The integration of QikProp and Swis
sADME analyses provided a comprehensive understanding of the po
tential drug-like characteristics of the investigated compounds, 
facilitating the selection of lead candidates for subsequent experimental 
validation.

3.2. Ligand-based studies

The web service DRUDIT (www.drudit.com, accessed on April 08, 

Table 2 
Overview of the amino acids involved in the binding of the selected compound 755435 in the binding sites of STAT3, JAK2, and JAK3, compared to co-crystalized 
ligands SI109, ruxolitinib, and FM475, at 4 Å proximity.

STAT3 SH2 Domain JAK2 JH1 Domain JAK3 JH1 Domain

Title Sl109 755435 Title ruxolitinib 755435 Title FM475 755435

Lys591 Xa ​ Leu855 X X Leu828 Xa X
Arg609 Xa ​ Gly856 X X Gly829 X X
Ser611 Xa ​ Lys857 X X Lys830 ​ X
Glu612 Xa ​ Gly858 X X Gly831 ​ X
Ser613 X ​ Asn859 ​ X Val836 X X
Ser614 X ​ Phe860 ​ aX Ala853 X X
Thr620 X ​ Gly861 X aX Lys855 X X
Phe621 ​ X Ser862 X X Glu871 X ​
Trp623 X ​ Val863 X X Leu875 ​ X
Gln635 X X Ala880 X X Val884 X X
Ser636 Xa Xa Lys882 X #X Met902 X X
Val637 X X Lys883 ​ X Glu903 X ​
Glu638 Xa Xa Leu884 ​ X Tyr904 X aX
Pro639 Xa X Phe895 ​ X Leu905 X X
Tyr640 X Xa Val911 X ​ Pro906 X ​
Thr641 X ​ Met929 X X Gly908 X X
Gln644 Xa ​ Glu930 aX X Cys909 X aX
Met648 ​ X Tyr931 X X Asp912 ​ aX
Ile653 ​ Xa Leu932 aX X Arg916 ​ X
Ile654 ​ X Gly935 ​ X Arg953 X aX
Gly656 X X Ser936 ​ X Asn954 X X
Tyr657 Xa X Asp939 ​ aX Leu956 X X
Lys658 X X Arg980 X X Ala966 X X
Ile659 ​ X Asn981 X X Asp967 X X
Leu666 ​ X Leu983 X X ​ ​ ​
​ ​ ​ Gly993 X X ​ ​ ​
​ ​ ​ Asp994 X X ​ ​ ​
​ ​ ​ Gly996 ​ aX ​ ​ ​
Tot. 19 15 Tot 19 27 Tot. 19 21

The derivative 755435 exhibited a comparable number of interactions to the co-crystallized ligands SI109, ruxolitinib, and FM475, within a 4 Å proximity.
a H-bonds.
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2024) operates on four servers, each capable of concurrently handling 
more than ten jobs. These servers run various software modules imple
mented in C and JAVA on MacOS Mojave. Specifically, the Biotarget 
Finder Module was employed in a combined ON/OFF-targets/ 
Multitarget Mode to screen the extensive, meticulously cleaned NCI 
database of active small molecules for potential JAK/STAT inhibitors, 
while ensuring minimal impact on the OFF targets TNF-α and p53 [33].

The Biotarget Predictor Tool (BPT) facilitates the prediction of 
binding affinity between candidate molecules and specified biological 
targets. Templates of ON and OFF targets (STAT3, JAK2, JAK3, TNF-α, 
and p53) were constructed using sets of well-established protein in
hibitors with affinities <100 nM, sourced from BindingDB [34]. Mo
lecular docking studies were then conducted at each respective binding 
site to securely position ligands within the pockets. Molecular de
scriptors were computed using MOLDESTO. Five molecular descriptor 
target templates were integrated into DRUDIT, employing default pa
rameters (N = 500, Z = 50, G = a) [33,40].

In the initial phase of the in silico workflow, the meticulously curated 
NCI database was uploaded to DRUDIT and subjected to the Biotarget 
Predictor in a combined ON/OFF-targets/Multitarget Mode. The output 
results yielded a Drudit Affinity Score (DAS) value for each structure, 
representing the binding affinity of compounds against the ON targets 
JAK2, JAK3, and STAT3, as well as the OFF targets TNF-α and p53.

In detail, DAS χ and DAS γ were first calculated by equations (2) and 
(3) as follows: 

DASχ=DASSTAT3 × DASJAK2 × DASJAK3 (2) 

DASγ =DASTNFα × DASp53 (3) 

Finally, the “Multi-ON/OFF Target Score” was computed with equation 
(1): 

Multi −
ON
OFF

Target Score =
DASχ
DASγ

(1b) 

3.3. Strucuture-based studies

The preparation of ligands and proteins for in silico studies adhered to 
the following meticulously detailed procedures.

3.3.1. Ligand preparation
The ligands earmarked for docking were prepared using the LigPrep 

tool within the Schrödinger Maestro Suite [53]. Each ligand underwent 
exhaustive tautomer and stereoisomer generation at a pH of 7.0 ± 0.4, 
employing default settings and the Epik ionization method [54]. 
Following this, the Optimized Potentials for Liquid Simulations (OPLS 
2005) force field was employed to minimize the energy status of the 
ligands [55].

3.3.2. Protein Preparation
Crystal structures of JAK2, JAK3, and STAT3 (PDB codes 6VGL [41], 

6GL9 [43], and 6NUQ [42], respectively) were retrieved from the Pro
tein Data Bank [56,57]. Using the Protein Preparation Wizard within the 
Schrödinger software suite, default settings were applied to prepare 
these structures [58]. This involved assigning bond orders, including the 
Het group, eliminating all water molecules, and adjusting heteroatom 
states using the Epik tool, with the pH set to biologically relevant values 
(7.0 ± 0.4). Subsequently, optimization of the H-bond network was 

Fig. 4. (a) Calculated RMSD during the simulation trajectory of 100ns for 755435/JAK2 complex; (b) calculated RMSD during the simulation trajectory of 100ns for 
755435/JAK3 complex; (c) calculated RMSD during the simulation trajectory of 100ns for 755435/STAT3 complex.
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conducted, followed by a restrained energy minimization step (with an 
RMSD of atom displacement set at 0.3 Å), utilizing the OPLS 2005 force 
field [55].

3.3.3. Docking validation
The molecular docking investigations were conducted using the 

Glide module within the Schrödinger Suite. Receptor grids were 
generated by designating the original ligands ruxolitinib (for JAK2, PDB 
code 6VGL [41]), FM475 (for JAK3, PDB code 6GL9 [43]), and SI109 
(for STAT3, PDB code 6NUQ [42]) as the centroids of the grid boxes. 
This led to set the enclosing box size as a cube with sides of length 26 Å, 
and point separation of 2.89 Å. The residue-atom notation nearest to the 
center of the docking grid for each crystallographic structure is as fol
lows: for JAK2, the residue is Val863 with an H-CH2 atom (Val863CH3); 
for JAK3, the residue is Leu956 with an H-CH2 atom (Leu956CH3); and for 
STAT3, the residue is Glu638 with an H-N atom (Glu638NH). Employing 
the Extra Precision (XP) mode as the scoring function, 3D conformers 
were docked into the receptor model. A post-docking minimization step 
was executed for each ligand conformer, generating a maximum of 2 
docking poses and a total of 5 poses per ligand conformer. Notably, the 
docking protocol successfully redocked the original ligands within the 
receptor-binding pockets with an RMSD < 0.51 Å.

The Extra Precision (XP) Docking was employed to preliminarily 
screen compounds selected by DRUDIT. The Induced Fit Docking (IFD) 
simulation was conducted using the Schrödinger IFD application, a 
precise and robust technology accommodating both ligand and receptor 
flexibility [59,60]. Applying Schrödinger’s validated IFD protocol, 
JAK2, JAK3, and STAT3 proteins (PDB codes 6VGL [41], 6GL9 [43], and 
6NUQ [42], respectively), previously refined by the Protein Preparation 
module, were used. The IFD score, calculated as IFD score = 1.0 Glide 
Gscore +0.05 Prime Energy, incorporating protein-ligand interaction 
energy and system total energy, was utilized to rank the IFD poses.

3.3.4. Molecular dynamics simulation
To assess the stability and binding affinity of the 755435/JAK2, 

755435/JAK3, and 755435/STAT3 complexes, Molecular Dynamics 
Simulations were conducted using the Desmond software. The simula
tions were performed under the constant-temperature–constant-pres
sure ensemble (NPT), allowing precise control over both temperature 
and pressure conditions. Pressure adjustments within the NPT ensemble 
were achieved by modifying the volume, while the unit cell vectors were 
allowed to change. Simulation parameters were configured with a sys
tem temperature of 300 K and a pressure of 1013.25 bar. The Nose- 
Hoover Chain thermostat and the Martyna-Tobias-Klein barostat were 
settled with a relaxation time of 1ps, and 2ps, respectively. Before 
commencing the production run, the systems underwent energy mini
mization for 1000 steps to establish a stable starting point. Subse
quently, a production run of 100ns was conducted for the 755435/ 
JAK2, 755435/JAK3, and 755435/STAT3 complexes, respectively. The 
simulation results were meticulously analyzed to observe the time-lapse 
binding energy for both the protein and ligand, Root Mean Square De
viation (RMSD), Root Mean Square Fluctuation (RMSF), and Radius of 
Gyration (rGyr). This comprehensive analysis offers crucial insights into 
the dynamic behavior of the complexes, providing valuable information 
about their structural integrity and the nature of molecular interactions 
over the simulation period.

4. Conclusions

Apoptosis plays a pivotal role in maintaining cellular health and 
regulating immune responses by eliminating damaged or unnecessary 
cells within the body. Dysregulation of JAK/STAT signaling, crucial in 
the life-and-death balance of human cells, is implicated in various can
cers and diseases, making it a promising therapeutic target.

In this study, we employed an innovative computational approach to 

Fig. 5. (a) Calculated P-RMSF during the simulation for JAK2; (b) calculated P-RMSF during the simulation for JAK3; (c) calculated P-RMSF during the simulation 
for STAT3.

A. Bono et al.                                                                                                                                                                                                                                    Journal of Molecular Graphics and Modelling 135 (2025) 108913 

9 



identify potential inhibitors capable of targeting key proteins involved 
in apoptotic pathways, with a specific focus on JAK2, JAK3, and STAT3, 
while minimizing affinity for OFF-targets such as TNF-α and p53. Our 
methodology involved a meticulous cleaning phase of the NCI database 
using QikProp and SwissADME tools. The cleaned database underwent 
ligand-based studies using the Biotarget Predictor Tool (BPT) in a 
combined ON/OFF-targets/Multitarget mode. Subsequent Molecular 
Docking investigations led to the identification of compound 755435, 
exhibiting binding affinities for JAK2, JAK3, and STAT3 comparable to 
reference ligands, suggesting its potential as a viable therapeutic agent. 
Furthermore, Molecular Dynamics Simulations established the potential 
compound ability to interact with the target binding sites, indicating a 
potential multi-target inhibition mode of action. The prospect of a 
unique molecule with multi-target activity could reduce the need for 
mixed therapy, enhancing patient compliance, minimizing the risk of 
adverse drug interactions, and facilitating the identification of desired 
therapeutic effects and possible adverse reactions. In light of these 
findings, we propose an in silico mixed ligand/structure-based protocol 
for designing JAK/STAT multi-target inhibitors, with low affinity for the 
OFF-targets TNF-α and p53, as potential anticancer agents for the 
treatment of various tumoral diseases.

Supplementary Materials: The following supporting information can 
be downloaded at: www.mdpi.com/xxx/s1, Matrix S1: DA

S values of structures for each target (ON/OFF targets); Matrix S2: 
top-ranked 5 % of molecules; Table S1: top 200 small molecules from 
each XP docking simulation; Table S2: docking score values for each ON 
target for the identified small molecules; Table S3: IFD score for the 
identified common structures; Figs. S1–S3: Summary of the tracked 
protein Secondary Structure Elements (SSE) for JAK2 (S1), JAK3 (S2), 
and STAT3 (S3); Fig. S4: 2D schematic representation of compound 
755435 and rotatable bond torsion dial plot; Figs. S5–S7: Detailed 
outcomes results for complexes 755435/JAK2 (S5), 755435/JAK3 (S6), 

and 755435/STAT3 (S7); Fig. S8: Calculated RMSD during the simula
tion trajectory of 100ns for ruxolitinib/JAK2, FM745/JAK3, and 
SI109/STAT3; Fig. S9: Calculated P-RMSF during the simulation for 
JAK2, JAK3, and STAT3; Fig. S10: 2D structure of ruxolitinib, FM475, 
and SI109, and calculated L-RMSF during the simulation for ruxolitinib 
in complex with JAK2, FM475 in complex with JAK3, and SI109 in 
complex with STAT3; Figs. S11–S13: Summary of the tracked protein 
Secondary Structure Elements (SSE) for JAK2 (S11), JAK3 (S12), and 
STAT3 (S13); Fig. S14: Protein–ligand interactions examination across 
the simulation time for 755435/JAK2, 755435/JAK3, 755435/STAT3, 
ruxolitinib/JAK2, FM475/JAK3, and SI109/JAK2; Table S4: Summary 
of MM-GBSA analysis. Supplementary Material 3: Molecular Dynamics 
Simulation Output files.
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M. Gehringer, K. Ghoreschi, S. Müller, S. Knapp, et al., Development, optimization, 
and structure-activity relationships of covalent-reversible JAK3 inhibitors based on 
a tricyclic imidazo[5,4- d]pyrrolo[2,3- b]pyridine scaffold, J. Med. Chem. 61 
(2018) 5350–5366, https://doi.org/10.1021/acs.jmedchem.8b00571.

[44] M.G. Cornejo, T.J. Boggon, T. Mercher, JAK3: a two-faced player in hematological 
disorders, Int. J. Biochem. Cell Biol. 41 (2009) 2376–2379, https://doi.org/ 
10.1016/j.biocel.2009.09.004.

[45] J.E. Chrencik, A. Patny, I.K. Leung, B. Korniski, T.L. Emmons, T. Hall, R. 
A. Weinberg, J.A. Gormley, J.M. Williams, J.E. Day, et al., Structural and 
thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex 
with CP-690550 and CMP-6, J. Mol. Biol. 400 (2010) 413–433, https://doi.org/ 
10.1016/j.jmb.2010.05.020.

[46] P.G. Traves, B. Murray, F. Campigotto, R. Galien, A. Meng, J.A. Di Paolo, JAK 
selectivity and the implications for clinical inhibition of pharmacodynamic 
cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib, Ann. 
Rheum. Dis. 80 (2021) 865–875, https://doi.org/10.1136/annrheumdis-2020- 
219012.

[47] A. Rosenthal, R.A. Mesa, Janus kinase inhibitors for the treatment of 
myeloproliferative neoplasms, Expet Opin. Pharmacother. 15 (2014) 1265–1276, 
https://doi.org/10.1517/14656566.2014.913024.

[48] L. Ma, J.R. Clayton, R.A. Walgren, B. Zhao, R.J. Evans, M.C. Smith, K.M. Heinz- 
Taheny, E.L. Kreklau, L. Bloem, C. Pitou, et al., Discovery and characterization of 
LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F, Blood 
Cancer J. 3 (2013) e109, https://doi.org/10.1038/bcj.2013.6.

[49] H. Xu, M.I. Jesson, U.I. Seneviratne, T.H. Lin, M.N. Sharif, L. Xue, C. Nguyen, R. 
A. Everley, J.I. Trujillo, D.S. Johnson, et al., PF-06651600, a dual JAK3/TEC family 

kinase inhibitor, ACS Chem. Biol. 14 (2019) 1235–1242, https://doi.org/10.1021/ 
acschembio.9b00188.

[50] I.J. Kwon, S.E. Kim, S.C. Kim, S.E. Lee, Efficacy of oral JAK1 or JAK1/2 inhibitor 
for treating refractory pruritus in dystrophic epidermolysis bullosa: a retrospective 
case series, J. Dermatol. 51 (2024) 441–447, https://doi.org/10.1111/1346- 
8138.17079.

[51] X. Zhang, P. Yue, B.D. Page, T. Li, W. Zhao, A.T. Namanja, D. Paladino, J. Zhao, 
Y. Chen, P.T. Gunning, et al., Orally bioavailable small-molecule inhibitor of 
transcription factor Stat3 regresses human breast and lung cancer xenografts, Proc. 
Natl. Acad. Sci. U. S. A. 109 (2012) 9623–9628, https://doi.org/10.1073/ 
pnas.1121606109.

[52] P. Yue, F. Lopez-Tapia, D. Paladino, Y. Li, C.H. Chen, A.T. Namanja, T. Hilliard, 
Y. Chen, M.A. Tius, J. Turkson, Hydroxamic acid and benzoic acid-based STAT3 
inhibitors suppress human glioma and breast cancer phenotypes in vitro and in 
vivo, Cancer Res. 76 (2016) 652–663, https://doi.org/10.1158/0008-5472.CAN- 
14-3558.

[53] Schrödinger Release 2021–2, LigPrep, Schrödinger, LLC, New York, NY, USA, 
2021.

[54] Schrödinger Release 2021-2 : Protein Preparation Wizard, Epik, Schrödinger, LLC, 
New York, NY, 2021. Impact, Schrödinger, LLC, New York, NY; Prime, 
Schrödinger, LLC, New York, NY, 2021.

[55] J.L. Banks, H.S. Beard, Y. Cao, A.E. Cho, W. Damm, R. Farid, A.K. Felts, T. 
A. Halgren, D.T. Mainz, J.R. Maple, et al., Integrated modeling program, applied 
chemical theory (IMPACT), J. Comput. Chem. 26 (2005) 1752–1780, https://doi. 
org/10.1002/jcc.20292.

[56] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I. 
N. Shindyalov, P.E. Bourne, The protein Data Bank, Nucleic Acids Res. 28 (2000) 
235–242, https://doi.org/10.1093/nar/28.1.235.

[57] RCSB PDB, Available online: www.rcsb.org. (Accessed 29 June 2022).
[58] G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and 

ligand preparation: parameters, protocols, and influence on virtual screening 
enrichments, J. Comput. Aided Mol. Des. 27 (2013) 221–234, https://doi.org/ 
10.1007/s10822-013-9644-8.

[59] W. Sherman, H.S. Beard, R. Farid, Use of an induced fit receptor structure in virtual 
screening, Chem. Biol. Drug Des. 67 (2006) 83–84, https://doi.org/10.1111/ 
j.1747-0285.2005.00327.x.

[60] W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner, R. Farid, Novel procedure for 
modeling ligand/receptor induced fit effects, J. Med. Chem. 49 (2006) 534–553, 
https://doi.org/10.1021/jm050540c.

A. Bono et al.                                                                                                                                                                                                                                    Journal of Molecular Graphics and Modelling 135 (2025) 108913 

12 

https://doi.org/10.3390/v12080805
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1021/acs.jmedchem.0c01952
https://doi.org/10.1016/j.ccell.2019.10.002
https://doi.org/10.1021/acs.jmedchem.8b00571
https://doi.org/10.1016/j.biocel.2009.09.004
https://doi.org/10.1016/j.biocel.2009.09.004
https://doi.org/10.1016/j.jmb.2010.05.020
https://doi.org/10.1016/j.jmb.2010.05.020
https://doi.org/10.1136/annrheumdis-2020-219012
https://doi.org/10.1136/annrheumdis-2020-219012
https://doi.org/10.1517/14656566.2014.913024
https://doi.org/10.1038/bcj.2013.6
https://doi.org/10.1021/acschembio.9b00188
https://doi.org/10.1021/acschembio.9b00188
https://doi.org/10.1111/1346-8138.17079
https://doi.org/10.1111/1346-8138.17079
https://doi.org/10.1073/pnas.1121606109
https://doi.org/10.1073/pnas.1121606109
https://doi.org/10.1158/0008-5472.CAN-14-3558
https://doi.org/10.1158/0008-5472.CAN-14-3558
http://refhub.elsevier.com/S1093-3263(24)00213-4/sref53
http://refhub.elsevier.com/S1093-3263(24)00213-4/sref53
http://refhub.elsevier.com/S1093-3263(24)00213-4/sref54
http://refhub.elsevier.com/S1093-3263(24)00213-4/sref54
http://refhub.elsevier.com/S1093-3263(24)00213-4/sref54
https://doi.org/10.1002/jcc.20292
https://doi.org/10.1002/jcc.20292
https://doi.org/10.1093/nar/28.1.235
http://www.rcsb.org
https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1111/j.1747-0285.2005.00327.x
https://doi.org/10.1111/j.1747-0285.2005.00327.x
https://doi.org/10.1021/jm050540c

	A novel in silico approach for identifying multi-target JAK/STAT inhibitors as anticancer agents
	1 Introduction
	2 Results and discussion
	2.1 Database preparation
	2.2 Ligand based studies
	2.2.1 Ligand based target templates building
	2.2.2 Biotarget Predictor Tool application

	2.3 Structure-based studies
	2.4 Molecular dynamics simulations

	3 Material and methods
	3.1 Database cleaning phase
	3.2 Ligand-based studies
	3.3 Strucuture-based studies
	3.3.1 Ligand preparation
	3.3.2 Protein Preparation
	3.3.3 Docking validation
	3.3.4 Molecular dynamics simulation


	4 Conclusions
	CRediT authorship contribution statement
	Informed consent statement
	Institutional review board statement
	Funding
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	datalink4
	References


