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Introduction

In the last years, the miniaturization of the electronic devices became a very
challenging topic. So, the mathematical models that describe transport phenom-
ena in semiconductors have a crucial role and are the focus of this thesis. In
particular semiclassical and quantum hydrodynamical, drift diffusion and energy
transport models will be devised and discussed.

The structure of the thesis is the following: in Chapter 1 we introduce the
Weyl Quantization and the Moyal Calculus; in Chapter 2 the main features of
solid state matter are recalled, in particular the crystal properties with a special
focus on graphene; in Chapter 3 phonons and electrons transport is introduced
and in Chapter 4 the maximum entropy approach to close the moments equations
is explained. The original contribution starts from the Chapter 5 in which an
optimized hydrodynamical model is presented. In Chapter 6 there is the original
part regarding a quantum corrected transport model for phonons obtained from
the Wigner equation. In Chapter 7 the Wigner approach is used also for electrons
transport. In Chapter 8 there are original results about an optimized quantum
drift diffusion model for a Resonant Tunneling Diode.

The papers strictly related to the thesis and already published are the
following:

• Camiola, V.D., Nastasi, G., Romano, V., Vitanza, G. (2022), “Op-
timized Hydrodynamical Model for Charge Transport in Graphene” In:
Ehrhardt, M., Günther, M. (eds) Progress in Industrial Mathematics at
ECMI 2021. ECMI 2021. Mathematics in Industry(), vol 39. Springer,
Cham. https://doi.org/10.1007/978-3-031-11818-0 37 (see Chapter 5);

• Camiola, V.D., Romano, V. & Vitanza, G., “Wigner Equations for Phon-
ons Transport and Quantum Heat Flux” J Nonlinear Sci 34, 10 (2024).
https://doi.org/10.1007/s00332-023-09993-z (see Chapter 6);

• Muscato, O., Nastasi, G., Romano, V., Vitanza, G., (2024), “Optimized
quantum drift diffusion model for a resonant tunneling diode”, Journal of
Non-Equilibrium Thermodynamics, 2024. https://doi.org/10.1515/jnet-
2023-0059. (see Chapter 8).
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In addition also other two topics have been developed during my Ph.D. course.
The first one is a model to fit a real dataset about infected, susceptible and
recovered people, considering the vaccine effect and comparing the different
measures taken by the governments during the COVID pandemic (see chapter
9, first section). This work has been published in Nastasi, G.; Perrone, C.;
Taffara, S.; Vitanza, G. “A Time-Delayed Deterministic Model for the Spread
of COVID-19 with Calibration on a Real Dataset” Mathematics 2022, 10, 661.
https://doi.org/10.3390/math10040661. The second one is an accepted paper
developed during my period in STMicroelectronics, in Prague. The subject of
this last work is the development of an automated flow, implemented in Python,
to appropriately place the analog and digital devices in integrated circuits, trying
to optimize the area utilization and to respect all the constraints given for the
electric components inside the circuits. Usually, this procedure is performed by
hand in the engineering design centers. We have improved this approach by
using machine learning and artificial intelligence techniques. This activity has
been developed within the European MSCA-Raise project AMBEATion (see
chapter 9, second section).

The content of chapter 7 is the matter of a preprint.
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Chapter 1

From Weyl Quantization to
Moyal calculus

The use of the Wigner function is one of the most promising ways to study
quantum transport. Its main advantage is that a description similar to the
classical or semiclassical transport is obtained in a suitable phace-space. The
mean values are expectation values with respect to the Wigner function as
it would be a probability density and the semiclassical limit of the Wigner
transport equation recovers, at least formally, the Boltzmann transport one.
There is a huge body of literature regarding the Wigner equation and the way to
numerically solve it (see for example [1–3] and references therein). However, the
most part of the works in the subject consider a quadratic dispersion relation for
the energy. Instead, for several material like semiconductors or semimetal, e.g.
graphene, other dispersion relations must be considered [4, 5, 7, 8]. From the
Wigner transport equation quantum hydrodynamical models have been obtained
in [9] for charge transport in silicon in the case of parabolic bands, while in [10]
the same has been devised for electrons moving in graphene including quantum
effects as second order corrections in the scaled Planck constant arising from
the equilibrium Wigner function at the same temperature of a thermal bath of
phonons.

To treat the Wigner function one has to start with the Weyl’s quantization
scheme [11], that is a corrispondence between quantum-mechanical operators in
Hilbert space and ordinary functions in phase space.

There are also alternative paths to deal with the quantization: the standard
one utilizing operators in Hilbert space, developed by Heisenberg, Schrödinger,
Dirac, and others in the 1920s; another one was introduced by Dirac and
constructed by Feynman and it is based on path integrals [12].

But which are the advantages of following the Wigner-Weyl approach? As
it is known, the usual procedure (map) which associates to a classic function
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defined on the phase space a quantum operator is affected by ambiguity problems.
Indeed it’s not enough to think that to solve this association we simply can
correlate a classic function to an operator, beacause this procedure leads to a
partially correct theory. The minimal requests on the previous map are:

• the map is linear in its arguments;

• the identical operator is associated to the constant function of value one;

• the map returns a self-adjoint operator;

In addition to these simple rules, we would like to verify that our quantization
hypothesis are physically meaningful. From a methematical point of view, the
Weyl map is properly an original and mathematically rigorous solution to these
requests, in particular thanks to its invertibility and to the Moyal product that
allows to expand and to generalize the Poisson parenthesis in the quantum
theory.

At the end, to summarize, we can say that the Weyl quantization has several
advantages:

• Preservation of Symmetry: Weyl quantization preserves the symmetries of
the classical system. In particular, it respects the symplectic structure of
the classical phase space. This is important because symmetries often play
a crucial role in the understanding of physical systems.

• Compatibility with Canonical Commutation Relations: The Weyl quant-
ization naturally leads to quantum operators that satisfy the canonical
commutation relations. This is essential for maintaining consistency with
the fundamental principles of quantum mechanics.

• Correspondence Principle: The Weyl quantization satisfies the correspond-
ence principle, which states that quantum mechanics should reduce to
classical mechanics in the limit of large quantum numbers or high energies.
This makes Weyl quantization a suitable framework for connecting classical
and quantum descriptions of a system.

• Unitary Equivalence: Operators obtained through Weyl quantization are
unitarily equivalent to the corresponding classical observables. This means
that the transformation preserves the inner product structure of the Hilbert
space, which is a desirable property in quantum mechanics.

• Mathematical Simplicity: The Weyl quantization procedure is mathemat-
ically straightforward and elegant. It provides a clear and systematic way
to map classical functions on phase space to quantum operators.
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• Generalization to Higher Dimensions: Weyl quantization can be easily
extended to systems with higher dimensions, making it versatile for applic-
ations in various physical scenarios.

• Applications in Quantum Field Theory: Weyl quantization is often em-
ployed in the quantization of classical field theories, providing a bridge
between classical and quantum descriptions of fields.

Despite all these advanteges, the choice of quantization method often depends on
the specific properties of the system under consideration and the mathematical
convenience of the chosen approach. In our case, the Weyl’s quantization and
the Wigner function will be crucial for the development of this thesis, then in
the following we will introduce some preliminary definitions and theorems, in
order to explain in a rigorous way all the advantages already listed.

In particular, the comparison with some common quantization schemes will
be analyzed in Section 1.1 and in Section 1.2 the Weyl quantization will be
deeply explained, with a special focus on the Moyal product.

1.1 Some Common Quantization Schemes

The first point to clarify before moving on is: “What does the word quantiz-
ation mean?”. In few and simple words, the quantization is the mathematical
procedure that maps a classic state (information about the system given by the
measurements of this one) into a quantum state, that is represented by a unit
vector ψ in an appropriate Hilbert space H. If ψ1 and ψ2 are two unit vectors in
H with ψ2 = cψ1 for some constant c ∈ C, then ψ1 and ψ2 represent the same
quantum physical state. This last sentence could be translated mathematically
in different ways, then the answer exists but it’s not unique! Actually there are
different definitions for the quantization scheme (see [13]), but only the most
common ones will be reported here.

The most common possible descriptions of a system in quantum mechanics
are in terms of coordinates or in terms of momentum [14].

Definition 1 Coordinates representation For a particle moving in R3, let
the quantum Hilbert space be L2(R3) and define the position and momentum
operators Xj and Pj, j = 1, 2, 3, by

Xjψ(x) = xjψ(x), Pjψ(x) = −i~dψ(x)
dxj

. (1.1)

Definition 2 Momentum representation For a particle moving in R3, let
the quantum Hilbert space be L2(R3) and define the position and momentum
operators Xj and Pj, j = 1, 2, 3, by

Pjψ(p) = pjψ(p), Xjψ(p) = −i~dψ(p)
dpj

. (1.2)
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By the von Neumann Stone theorem, these representations are unitarily equival-
ent; that is, there is a unitary transformation

ψ(x) W−→ ψ(p)

such that the operators defined by (1.2) are transformed into the operators (1.1).
It is not hard to see that the Fourier transformation

ψ(x) =
(

1
2πh

) 3
2
∫
R3
e
i
hpxψ(p)dp,

ψ(p) =
(

1
2πh

) 3
2
∫
R3
e−

i
hpxψ(x)dx.

is such a transformation (see [14]). Neither the position nor the momentum
operator is defined as mapping the entire Hilbert space L2(R3) into itself. In-
deed, for ψ ∈ L2(R3), the function xjψ(x) may fail to be in L2(R3). Similarly, a
function ψ ∈ L2(R3) may fail to be differentiable, and even if it is differentiable,
the derivative may fail to be in L2(R3). This means that Xj and Pj are unboun-
ded operators 1. They are defined on suitable dense subspaces Dom(Xj) and
Dom(Pj) of L2(R3). A vitally important property of this pair of operators is
that they do not commute.

Proposition 1 The position and momentum operators Xi and Pj do not com-
mute, but satisfy the relation

XiPj − PjXi = i~δij , (1.3)

This relation is known as the canonical commutation relation.

Given that, the easiest systems with one degree of freedom and with classic
observables, that are polynomials in x (position) and p (momentum), will be
presented. The domain for all of our operators is C∞(R).

One of the problems that arises from the definition of quantization scheme
is that we are considering operators that may not to be essentially self-adjoint
and this could lead to not real eigenvalues, even if they are symmetric, therefore
the definitions has to take into account this issue. For example, the operator
P 2 − cX4, for c > 0, is not essentially self-adjoint on C∞(R).

The simplest approach to quantization is to choose which operator put first,
the position or the momentum operator. If we put the momentum operators to
the right, it is acting first, and the position operators to the left it is acting second.
In this approach, a polynomial in x and p will be quantized to a differential
operator in “standard form”, with all the derivatives acting first, followed by
multiplication operators.

1An operator A is unbounded if there is no constant C such that ||Aψ|| ≤ C||ψ|| ∀ψ.
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In harmonic analysis, there is a method for extending this quantization
scheme to more-or-less arbitrary symbols2, f. For a general (nonpolynomial)
symbol f , the resulting operator f̂ is known as a pseudodifferential operator.

Let’s analyze some quantization definition:

Definition 3 Pseudodifferential operator quantization:

Q(xjpk) = XjP k.

The limit of this definition is that even when the symbol f is real-valued, the
operator f̂ is typically not self-adjoint (or even symmetric). If, for example,
f(x, p) = xp, then the associated operator is XP , the adjoint of which is PX,
which is not equal to XP. The simplest way to fix this problem is to symmetrize
the operator by taking half the sum of the operator and its adjoint. From this
idea arises the following definition:

Definition 4 Symmetrized pseudodifferential operator quantization:

Q(xjpk) = 1
2(XjP k + P kXj).

But also in this case, we don’t have a definition general enough. The Weyl
quantization, instead, takes into account all possible orderings of X and P . For
example, x2p2 will be quantized by the Weyl quantization as follows

1
6(X2P 2 +XPXP +XP 2X + PX2P + PXPX + P 2X2).

For a general monomial, the Weyl quantization similarly averages all the possible
orderings of the position and momentum operators.

Definition 5 Weyl quantization:
By starting from a scheme that is uniquely determined-as a map from poly-

nomials on R2 into operators on C∞(R), we can define the Weyl quantization:

Q(xjpk) = 1
(j + k)!

∑
σ∈Sj+k

σ(X,X, ...,X, P, P, ..., P ),

where for any operators A1, A2, ..., An and any σ ∈ Sn, we define

σ(A1, A2, ..., An) = Aσ(1)Aσ(2) · · ·Aσ(n). (1.4)

where Sn is the set of the all possible orderings of n operators.

In the applications, the most useful quantization scheme is Weyl scheme and
in the following we will see the advantages of this approach. All of the definitions
of quantization schemes, except for the pseudodifferential operator quantization,
have the property of mapping real-valued polynomials to symmetric operators
on C∞(R).

2phase-space functions.
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Observation 1 It is important to recognize that two different expressions may
describe the same operator. We may calculate, for example, that

1
2(XP 2 + P 2X) = 1

2(PXP + [X,P ]P + PXP − P [X,P ]) = PXP,

since [X,P ] is a multiple of the identity and thus commutes with P. As a result,
we can eliminate the PXP term in the Weyl quantization of xp2, with the result
that

Q(xp2) = 1
3(XP 2 + PXP + P 2X) = 1

2(XP 2 + P 2X), (1.5)

which coincides, in this very special case, with the symmetrized pseudodifferential
quantization of xp2.

Op~ indicates the Weyl quantization, in order to underline the operatorial nature
of the “object” with which we are dealing and also the dependence on the
constant ~ (Planck reduced constant) that will be useful when we will use the
expansion of quantum operator and the Moyal calculus.

Proposition 2 The Weyl quantization -viewed as a linear map of the space of
polynomials on R2 into operators on C∞(R)- is uniquely characterized by the
following identity:

Op~((ax+ bp)j) = (aX + bP )j (1.6)

for all non-negative integers j and all a, b ∈ C.

The proof is taken from [13].
Proof. The Weyl quantization satisfies the identity

Op~((a1x+ b1p) · · · (ajx+ bjp)) = 1
j!
∑
σ∈Sj

σ(a1X + b1P, ..., ajX + bjP ), (1.7)

for all sequences a1, ..., aj and b1, ..., bj of complex numbers, where the expression
σ(·, ·, ..., ·) is defined by (1.4). Specializing to the case where all the aj ’s are
equal to a and all the bj ’s are equal to b gives (1.6).

Conversely, suppose that Q is any linear map of polynomials into operators
on C∞(R) satisfying Q((ax + bp)j) = (aX + bP )j for all a, b, and j. For each
j, let Vj denote the space of homogeneous polynomials f of degree j such that
Q(f) = Op~(f). Then Vj contains all polynomials of the form (ax+ bp)j , and
thus, Vj consists of all homogeneous polynomials of degree j, so that Q = Op~.

�

Proposition 3 The Weyl quantization satisfies

Op~(xg) = Op~(x)Op~(g)− i~
2 Op~

(
∂g

∂p

)
(1.8)

= Op~(g)Op~(x) + i~
2 Op~

(
∂g

∂p

)
(1.9)
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and

Op~(pg) = Op~(p)Op~(g) + i~
2 Op~

(
∂g

∂x

)
(1.10)

= Op~(g)Op~(p)− i~
2 Op~

(
∂g

∂x

)
(1.11)

for all polynomials g in x and p.

Observation 2 The formulas for the Weyl quantization in Proposition 3 may
not give the same “expression” for Op~(f) as does Definition 5, but it gives the
same operator.

The proof is extracted from [13].
Proof. Suppose A = (a1X + b1P ) and B = (a2X + b2P ). Then [A,B] is a

multiple of I, from which we can easily verify that

ABj = BkABj−k + k[A,B]Bj−1, 0 ≤ k ≤ j.

If we sum this relation over k and divide by j + 1, we obtain

ABj = 1
j + 1

j∑
k=0

BkABj−k + 1
j + 1

j(j + 1)
2 [A,B]Bj−1. (1.12)

Now, A is the Weyl quantization of (a1x+b1p) and Bj is the Weyl quantization of
(a2x+b2p)j , and both terms on the right-hand side of (1.12) are easily recognized
as Weyl quantizations. Thus, after rearranging the terms and evaluating the
commutator, (1.12) becomes,

Op~((a1x+ b1p)(a2x+ b2p)j) = Op~(a1x+ b1p)Op~((a2x+ b2p)j)

− i~j2 (a1b2 − a2b1)Op~((a1x+ b1p)j−1). (1.13)

Meanwhile, if we run the same argument starting with BjA we obtain a similar
result:

Op~((a1x+ b1p)(a2x+ b2p)j) = Op~((a2x+ b2p)j)Op~(a1x+ b1p)

+ i~j
2 (a1b2 − a2b1)Op~((a1x+ b1p)j−1). (1.14)

If we specialize to the case (a1, b1) = (1, 0) and (a2, b2) = (a, b), we get

Op~(x(ax+ bp)j) = Op~(x)Op~((ax+ bp)j)− i~j
2 bOp~((ax+ bp)j−1), (1.15)

where the last term on the right-hand side of (1.15) is −i~/2 times the Weyl
quantization of ∂(ax+bp)j/∂p. Thus, (1.15) is precisely (1.8) in the case g(x, p) =
(ax+ bp)j . We can then see that (1.8) holds for all polynomials g. The proofs of
(1.9), (1.10), and (1.11) are similar.�
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1.2 The Weyl Quantization for R2d

At this point, we could wonder if the definitions and results obtained until now
in the simplest case of polynomials on R2, can be generalized for a much larger
class of symbols. We can start by generalizing from symbols defined on R2

to symbols defined on R2d, but before proceeding we need some preliminary
theorems and observations.

1.2.1 Stone’s Theorem

The commutation relation in exponential form is one of the crucial point for the
Weyl’s quantization: precisely the assumption of this different point of view will
allow the resolution of a certain number of problems of the standard formulation
of quantum mechanics. However, this exponential version only makes sense in
light of Stone’s theorem. Stone’s result concerns one-parameter unitary groups
and strongly continuous groups.

Definition 6 Called H a generic Hilbert space and U(H) the set of unitary
operators acting on it, given the application U such that U : R → U(H), U
defines a unitary group with one parameter if ∀t ∈ R then U(t) is unitary
and U(t+s) = U(t)U(s) ∀s; t ∈ R, with the additional requirement that U(0) = I.
Furthermore U is strongly continuous if ∀φ ∈ H it is true that

U(t)φ→ U(t0)φ,

when t→ t0.

If U is a strongly continuous one-parameter unitary group, the infinitesimal
generator of U is the operator A given by

Aφ = lim
t→0

1
i

U(t)φ− φ
t

, (1.16)

with the domain of the operator A, Dom(A), consisting of the set of φ ∈ H for
which the limit in (1.16) exists in the norm topology on H. It is now possible to
state Stone’s theorem.

Theorem 1 (Stone’s) Suppose U is a strongly continuous one-parameter unitary
group on H. Then the infinitesimal generator A of U is densely defined and
self-adjoint, and U(t) = exp(itA) ∀t ∈ R.

This theorem introduce the idea of exponential operators, and this is the way
that we want to follow to generalize the quantization procedure to more generic
symbols. In the following, the idea will be explained in detail.
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1.2.2 Some prelimanary observations to generalize the quant-
ization procedure

For all a,b ∈ Rd and all non-negative integers j, we can easily think that the
generalized Weyl quantization is defined as follows

Op~((a · x + b · p)j) = (a ·X + b ·P)j (1.17)

If we want to extend Op~ to certain non polynomial symbols, we can use the
concepts introduced in the previous paragraph and we will start to do some
considerations on the complex exponentials, to explain the link between the
generalization procedure and the Stone’s theorem.

If we multiply (1.17) by (i)j/j! and sum on j, we would expect to have

Op~(exp(i(a · x + b · p))) = exp(i(a ·X + b ·P)). (1.18)

Now, if f is any sufficiently regular function on R2d, we can write f by using
the Fourier anti-transform that involves functions like exp(i(a · x + b · p)):

f(x,p) = (2π)−n
∫
R2d

f̂(a,b) exp(i(a · x + b · p))dadb,

where f̂ is the Fourier transform of f . Putting together the (1.18) and this last
expression of f , it seems natural to define

Op~(f) = (2π)−n
∫
R2d

f̂(a,b) exp(i(a ·X + b ·P))dadb, (1.19)

Before proceeding, we will try to compute the operator exp(i(a ·X + b ·P)).
If A and B are bounded operators that commute with their commutator (i.e.,

such that [A, [A,B]] = [B, [A,B]] = 0), then

exp(A+B) = exp(−[A,B]/2) exp(A) exp(B). (1.20)

If we formally apply (1.20) with A = ia ·X and B = ib ·P (even though these
are unbounded operators), we obtain

exp(i(a ·X + b ·P)) = exp(i~(a · b)/2) exp(ia ·X) exp(ib ·P). (1.21)

Meanwhile, we know that

(exp(ib ·P)φ)(x) = φ(x + ~b).

Thus, we may deduce that

(exp(i(a ·X + b ·P))φ)(x) = exp(i~(a · b)/2) exp(ia · x)φ(x + ~b). (1.22)

Now we have to remember that we have used unbounded operators instead
of bounded ones but we can prove that, in this particular case, the result of
the formal calculation is correct. Thus, to prove it we can use the following
Proposition (the interested reader can find more details in [13]).
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Proposition 4 For all a and b in Rd, the operators Ua,b(t) on L2(Rd,C) given
by

(Ua,b(t)φ)(x) = exp(it2~(a · b)/2) exp(ita · x)φ(x + t~b) (1.23)

form a strongly continuous one-parameter unitary group. The infinitesimal
generator of this group coincides with a ·X + b ·P on C∞(Rd) and is essentially
self-adjoint on this domain. Thus, if a ·X + b ·P denotes the unique self-adjoint
extension of the infinitesimal generator on C∞(Rd), it follows from Stone’s
theorem that

exp(it(a ·X + b ·P)) = exp(it2~(a · b)/2) exp(ita ·X) exp(itb ·P)

∀ t ∈ R. In particular, (1.21) and (1.22) hold.

With the computation of the operator exp(i(a ·X + b ·P)) in hand, we
return to our analysis of the proposed formula (1.19) for the general Weyl quant-
ization. For our purposes, it is convenient to think of operators on L2(R2d,C)
as integral operators and to write down a formula for the integral kernel of
Op~(f) in terms of f itself. At a formal level, the operator mapping φ to
exp(i~(a · b)/2) exp(ia · x)φ(x + ~b) may be thought as an “integral” operator,
with integral kernel given by

exp(i~(a · b)/2) exp(ia · x)δn(x + ~b− y), (1.24)

where δn is a n-dimensional δ function. Thus, it should be possible to obtain the
integral kernel of Op~(f) by integrating the previous expression against f̂(a,b).
To evaluate the resulting integral, we make the change of variable c = ~b, from
which we obtain

(2π~)−n
∫
Rd

∫
Rd

exp(i(a · c)/2) exp(ia · x)δn(x + c− y)f̂(a, c/~)dcda

= ~−n(2π)−n/2
[
(2π)−n/2

∫
Rd

exp(ia · (x + y)/2)f̂(a, (y− x)/~)da
]
. (1.25)

We may recognize the integral in square brackets in (1.25) as undoing the Fourier
transform of f in the x-variable, leaving us with the partial Fourier transform of
f in the p variable, evaluated in ((x + y)/2, (y− x)/~). Thus, we expect that
Op~(f) should be the integral operator with integral kernel kf given by

kf (x,y) = (2π~)−n
∫
Rd
f((x + y)/2,p) exp(−i(y− x) · p/~)dp. (1.26)

1.2.3 Weyl Quantization for L2 symbols

What we have discussed in the previous section will help us to define Op~(f) as
the integral operator with kernel kf , beginning with the case in which f belongs
to L2(R2d,C). The resulting operators will turn out to be Hilbert-Schmidt
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operators on L2(Rd,C). If H is a Hilbert space and A ∈ B(H) is a non-negative
self-adjoint operator on H, then it can be shown that A has a well-defined trace,
that is to say the value of

tr(A) :=
∑
j

〈ej , Aej〉

is the same for each orthonormal basis {ej} of H.

Observation 3 Since A is a non-negative operator, 〈ej , Aej〉 is a non-negative
real number, so that the sum is always defined, but may have the value +∞.

We would like to avoid infinity values, so it is natural to introduce the
following definition. Given that if A is any bounded operator, then A∗A is
self-adjoint and nonnegative.

Definition 7 We say that A is Hilbert–Schmidt if

tr(A∗A) <∞.

Given two Hilbert-Schmidt operators A and B, it can be shown that AB is a
trace-class operator, namely

tr(A∗B) :=
∞∑
j=1
〈ej , A∗Bej〉

is absolutely convergent and the value of the sum is independent of the choice of
orthonormal basis.

Definition 8 We define the Hilbert-Schmidt inner product of A and B and the
associated Hilbert-Schmidt norm of A by

〈A,B〉HS := tr(A∗B)

||A||HS :=
√

tr(A∗A).

It can be demonstrated that the space of Hilbert-Schmidt operators on H forms
a Hilbert space with respect to the Hilbert-Schmidt inner product. We denote
the space of Hilbert-Schmidt operators on H by HS(H). We will make use of the
following standard result characterizing Hilbert-Schmidt operators on L2(Rd,C)
in terms of integral operators.

Proposition 5 If k is in L2(R2d,C) then for every φ ∈ L2(Rd,C), the integral

Ak(φ)(x) :=
∫
Rd
k(x,y)φ(y)dy (1.27)

is absolutely convergent for almost every x ∈ Rd, and Ak(φ) also belongs
to L2(Rd,C). Furthermore, the operator Ak is a Hilbert-Schmidt operator on
L2(Rd,C) and

||Ak||HS = ||k||L2(R2d,C).
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Conversely, for any Hilbert-Schmidt operator A on L2(Rd,C), there exists a
unique k ∈ L2(R2d,C) such that A = Ak.

We are now ready to define the Weyl quantization of L2 symbols.

Definition 9 For all f ∈ L2(R2d,C), define kf : R2d → C by

kf (x,y) = (2π~)−n
∫
Rd
f((x + y)/2,p) exp(−i(y− x) · p/~)dp, (1.28)

and define the Weyl quantization of f , as an operator on L2(Rd,C), by

Op~(f) = Akf ,

where Akf is defined by (1.27).

The integral in (1.28) is not necessarily absolutely convergent, and should be
understood as computing a partial Fourier transform. Thus, we should replace
the right-hand side of (1.28) with

lim
R→∞

(2π~)−n
∫
|p|≤R

f((x + y)/2,p) exp(−i(y− x) · p/~)dp, (1.29)

where the limit is in the norm topology of L2(R2d,C). In few words, we may
describe the procedure for computing kf at a point (x1,x2) in R2d in three steps:

1. compute the partial Fourier transform Fp of f(x,p) in the p-variable,
resulting in the function (Fpf)(x, ξ);

2. evaluate Fpf at the point x = (x1 + x2)/2, ξ = (x2 − x1)/~;

3. multiply the result by ~−n(2π)−n/2 to get

kf (x1,x2) = ~−n(2π)−n/2(Fpf)((x1 + x2)/2, (x2 − x1)/~). (1.30)

Definition 10 The inverse map Op−1
~ : HS(L2(Rd))→ L2(R2d) is given by

Op−1
~ (A)(x,p) = ~d

∫
Rd
k(x− y/2,x + y/2)eiy·pdy,

where k is the integral kernel of A and HS(L2(Rd)) is the Hilbert-Schmidt space.
The latter integral is called symbol of the operator A.

Theorem 2 The map Op~ is a constant multiple of a unitary map of L2(R2d,C)
onto HS(L2(Rd,C)). The inverse map Op−1

~ : HS(L2(Rd,C))→ L2(R2d,C) is
given by

Op−1
~ (A)(x,p) = ~n

∫
Rd
k(x− ~b/2,x + ~b/2) exp(ib · p)db,

where k is the integral kernel of A as in Proposition 5. Furthermore, for all
f ∈ L2(R2d,C), we have Op~(f) = Op~(f)∗; in particular, Op~(f) is self-adjoint
if f is real valued.
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Observation 4 The integral in the theorem should be understood as an L2

limit, as in (1.29). The fact that Op~ is unitary (up to a constant) tells us
that for an appropriate constant c, the operators c exp(i(a ·X + b ·P)) form an
“orthonormal basis in the continuous sense” for the Hilbert space HS(L2(Rd,C)).

The following proof is taken from [13].
Proof. Proposition 5 gives a unitary identification of HS(L2(Rd,C)) with

L2(R2d,C). Thus, it suffices to show that the map f → kf is a multiple of a
unitary map. This result holds because the partial Fourier transform is a unitary
map of L2(R2d,C) to itself and composition with an invertible linear map is a
constant multiple of a unitary map. The inverse of the map f → kf is obtained
by inverting the linear map and undoing the partial Fourier transform. Finally,
it is apparent from (1.28) that

kf (x,y) = kf (y,x).

This shows that Op~(f) = Op~(f)∗. �

1.2.4 The Moyal Product

Until now, we have demonstrated the strength of the Weyl corrispondence thanks
to its ivertibility. But another advantage of the Weyl approach is introduced in
this paragraph and it is to have an expansion in powers of ~ of the product of
two operators, under certain hypothesis that will lead us to consider in particular
the Hilbert-Schmidt operators.

Let consider f, g ∈ L2(R2d,C), then Op~(f) and Op~(g) are Hilbert- Schmidt
operators, in which case their product is again Hilbert-Schmidt. Thus, since Op~
is a bijection of L2(R2d,C) with HS(L2(Rd,C)), there is a unique L2 function,
which we denote by f ∗ g, such that

Op~(f)Op~(g) = Op~(f ∗ g). (1.31)

Since we know that the Weyl quantization is characterized by the Fourier
transform, it’s natural to state the following proposition.

Proposition 6 The Moyal product f ∗ g may be characterized in terms of the
Fourier transform as

(̂f ∗ g)(a,b) = (2π)−n
∫
Rd

∫
Rd

exp(−i~(a · b′ − b · a′)/2)×f̂(a − a′,b− b′)ĝ(a′,b′)da′db′,

where the symbol f̂ on a function f is the Fourier transform.

Observation 5 If we set ~ = 0 in the above formula, f̂ ∗ g reduces to (2π)−n

times the convolution of f̂ and ĝ, which is the Fourier transform of fg. It is
thus not difficult to show that

lim
~→0+

f ∗ g = fg.
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That is to say, the Moyal product f ∗ g is a “deformation” of the ordinary
pointwise product of functions on R2d.

Observation 6 The Moyal product can be expanded in an asymptotic expansion
in powers of ~. This expansion terminates in the case that f and g are both
polynomials. This expansion will be crucial for the Wigner equation that will be
introduced later.

Proof. The easier way to work is to consider (1.19), which can be shown to
give the same result as Definition 9 when f is a Schwartz function. We assume
standard properties of the Bochner integral3 for functions with values in a Banach
space (B(H)), which are similar to those of the Lebesgue integral. We have,
then,

Op~(f)Op~(g) = (2π)−n
∫
R2d

f̂(a,b) exp(i(a ·X + b ·P))dadb (1.32)

×(2π)−n
∫
R2d

ĝ(a′,b′) exp(i(a′ ·X + b′ ·P))da′db′.

Now, it is an easy calculation to verify, using Proposition 4, that

exp(i(a ·X + b ·P)) exp(i(a′ ·X + b′ ·P)) =
exp(−i~(a · b′ − b · a′)/2) exp(i((a + a′) ·X + (b + b′) ·P)), (1.33)

which is what one obtains by formally applying the special case of the Baker-
Campbell-Hausdorff formula in (1.20). Thus, we may combine the integrals in
(1.32) to obtain

Op~(f)Op~(g) = 1
(2π)2n

∫
R4d

[exp(−i~(a · b′ − b · a′)/2) exp(i((a + a′) ·X + (b + b′) ·P))×

f̂(a,b)ĝ(a′,b′)
]
dadbda′db′.

By introducing new variables c = a + a′ and d = b + b′ in the a and b
integrals and reversing the order of integration, we obtain, after simplifying the
exponent,

Op~(f)Op~(g) = 1
(2π)n

∫
R2d

[(2π)−n
∫
R2d

exp(−i~(c · b′ − d · a′)/2) (1.34)

×f̂(c− a′,d− b′)ĝ(a′,b′)da′db′] exp(i(c ·X + d ·P))dcdd.

From this and (1.19), we see that Op~(f)Op~(g) is the Weyl quantization of the
function whose Fourier transform is the quantity in square brackets above, which
is what we wanted to show.�

3it extends the definition of Lebesgue integral to functions that take values in a Banach
space, as the limit of integrals of simple functions.
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Proposition 7 The Moyal product f∗g extends to a continuous map of L2(R2d,C)×
L2(R2d,C) into L2(R2d,C) and the composition formula (1.31) holds for all f
and g in L2(R2d,C).

Proof. A standard inequality asserts that for any two Hilbert-Schmidt operators
A and B, we have

||AB||HS ≤ ||A||HS ||B||HS .

It follows that the product map (A,B)→ AB is a continuous map ofHS(L2(Rd,C))×
HS(L2(Rd,C)) to HS(L2(Rd,C)). Meanwhile, the Weyl quantization is a con-
stant multiple of a unitary map from L2(R2d,C) to HS(L2(Rd,C)). For Schwartz
functions f and g, the Moyal product is nothing but

f ∗ g = Op−1
~ (Op~(f)Op~(g)). (1.35)

The right-hand side of (1.35) provides the desired continuous extension of f ∗ g.
Clearly, the composition formula (1.31) holds for this extension.�

The Moyal product, under suitable regularity assumptions (see [15]), possesses
the following formal semiclassical expansion

f ∗ g(a,b) =
∑
α,β

(
i~
2

)|α|+|β| (−1)|β|
α!β! ∂αa ∂

β
bf(a,b)∂βa∂αbg(a,b) (1.36)

where α = (α1, ..., αd) ∈ Nd is a multi-index, |α| =
∑
i αi, α! =

∏
i αi!, ∂αa =∏

i ∂
αi
ai and similarly for ∂βb .

The expansion (1.36) can be rewritten as

f ∗ g(a,b) =
∞∑
n=0

~nf ∗n g (1.37)

where

f ∗n g(a,b) =
∑

α,β,|α|+|β|=n

(
i

2

)n (−1)|β|
α!β! ∂αa ∂

β
bf(a,b)∂βa∂αbg(a,b) (1.38)

It is easy to see that

f ∗n g(a,b) = (−1)ng ∗n f(a,b),

that is the operation ∗n is commutative (respectively anticommutative) when n
is even (respectively odd).

These properties will be crucial for the following chapters of the thesis.

1.2.5 Commutation Relations

The last step that will be useful for writing the Wigner equations, it’s to discuss
the commutation relations, in light of what we have said until now about Weyl
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quantization. Indeed, in quantum mechanics, the commutator of two operators
(divided by i~) plays a role similar to that of the Poisson bracket in classical
mechanics, that are fundamental to write the equations that describe the changing
in time of the system states. Thus, we may naturally ask: How does the Weyl
quantization map Poisson brackets? Are the commutation relations mantained
after the quantization? The answer is: not always; such an exact correspondence
holds only for special classes of symbols. If we consider, for example, the class of
symbols that depend only on x and not on p, then on the classical side, all such
functions Poisson commute. The Weyl quantization maps such functions f(x)
to the operator of multiplication by f(x), and thus the quantizations of any two
such functions commute. A more interesting (in particular, noncommutative)
example is the following.

Proposition 8 Suppose f is a polynomial in x and p of degree at most 2 and
g is an arbitrary polynomial in x and p. Then

1
i~

[Op~(f), Op~(g)] = Op~({f, g}), (1.39)

where {f, g} is the Poisson bracket of f and g.

Observation 7 We define the Weyl quantization by the obvious n-variable
extension of Definition 5, and we regard all operators as operating on C∞(Rd).

The following proof is present in [13].
Proof. If f has degree zero, then both sides of the desired equality are zero.

Turning to case in which f has degree 1, we use the n-variable extension of
Proposition 3, the proof of which is essentially the same as the 1-variable result.
The result is as follows:

Op~(xjg) = Op~(xj)Op~(g)− i~2 Op~
(
∂g

∂pj

)
= Op~(g)Op~(xj)+

i~
2 Op~

(
∂g

∂pj

)
.

By subtracting these two formulas and rearranging, we get

1
i~

[Op~(xj), Op~(g)] = Op~

(
∂g

∂pj

)
= Op~({xj , g}).

A very similar argument establishes the desired result when f = pj and thus
for all homogeneous polynomials of degree 1. Suppose now that f1 and f2 are
homogeneous polynomials of degree 1 in x and p. Then it follows easily from
Proposition 3 that for any polynomial h, we have

Op~(fjh) = 1
2(Op~(fj)Op~(h) +Op~(h)Op~(fj)), j = 1, 2. (1.40)

In particular, we have

Op~(f1f2) = 1
2(Op~(f1)Op~(f2) +Op~(f2)Op~(f1)). (1.41)
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Using (1.41) and the product rule for commutators, we have

1
i~

[Op~(f1f2), Op~(g)] = 1
2i~ ([Op~(f1), Op~(g)]Op~(f2)+Op~(f1)[Op~(f2), Op~(g)]

+[Op~(f2), Op~(g)]Op~(f1) +Op~(f2)[Op~(f1), Op~(g)]).

Using the degree-1 case of the result we are trying to prove, along with (1.40),
we get

1
i~

[Op~(f1f2), Op~(g)] = 1
2(Op~({f1, g})Op~(f2) +Op~(f1)Op~({f2, g})

+Op~({f2, g})Op~(f1) +Op~(f2)Op~({f1, g}))
= Op~(f2{f1, g}) +Op~(f1{f2, g}) = Op~({f1f2, g}),

(1.42)

where in the last equality we have used the product rule for the Poisson
bracket. We have now established the desired result when f is a homogeneous
polynomial of degree 0, 1, or 2. �

It could appear that the result is valid also in the case where f has degree
3, by considering three homogenous polynomials f1, f2, and f3 of degree 1 and
symmetrizing. The argument breaks down, however, because the Op~(fj)’s do
not commute. The Op~(fj)’s will not always occur in the correct order to allow
us to pull the fj ’s back inside the Weyl quantization. Indeed, an elementary
calculations shows that

1
i~

[Op~(x2p), Op~(xp2)] = 3X2P 2 − 6i~XP − ~2I,

whereas
Op~({x2p, xp2}) = 3X2P 2 − 6i~XP − 3

2~
2I,

so that the two expressions differ by ~2I/2.
This last observation won’t be a problem for the development of the thesis,

because the operators considered are not of higher degree than two.
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Chapter 2

Solid state physics basic
concepts

Solid state physics is one of the branch of physics and it deals with properties of
solid matter. Solid materials are made of a huge amount of atoms interacting
each other. From these interactions the mechanical, thermal, electrical, magnetic
and optical properties of solids are deduced. A particular class of solids material
is that one constitued by the crystals [5].

This chapter is organized as follows: in Section 2.1 the crystal lattice structure
is presented and then the properties and the structure of phonons and electrons
will be introduced in Section 2.2 and 2.3, respectively. In the last section the
structure of graphene is briefly treated.

2.1 Crystal lattice

In this section we want to introduce some definitions about a crystal lattice
before going into details of crystal vibrations. Crystals are made of atoms, and
atoms are relatively complex systems with nuclei and electrons around them.
Nevertheless, many features of crystal vibrations are reasonably well described
considering atoms simply as single particles located at the lattice points. This is
the result of the adiabatic approximation, introduced by Born and Oppenheimer
in 1927 and well verified in most cases. Crystals constitute a particular class
of solids; its characteristic is that they are made of repeated identical building
blocks of atoms or group of atoms. The sinlgle block of atoms or group of
atoms that is reapeted is called primitive cell or unit cell and it’s described
mathematically by three vectors linearly indipendent and not orthogonal. These
vectors are called primitive vectors and by translating them, without rotating
them, all the space will be filled.
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If we call a1,a2,a3 the primitive vectors and n1, n2, n3 ∈ Z, the set of all
locations of the unit cells is given by

R = n1a1 + n2a2 + n3a3,

and this set is called Bravais lattice of the crystal.

Observation 8 In a crystal all the points transformed by R are equivalent.
More in details, if

x′ = x + R,

then x′ ≡ x and all physical quantities assume the same value both in x and in
x′.

The primitive cell that is copied throughout space can assume any shape but the
most natural choice is a parallelepiped with three edges equal to the primitive
vectors. Thanks to the fact that the primitive vectors generate the Bravais
lattice, we can define the concept of basis as the set of vectors giving the location
of the atoms relative to the origin of each cell.

Another important definition is the Wigner-Seitz primitive cell, that is a
particular primitive cell which is formed by all points closer to one of the lattice
points than to any other.

The reciprocal lattice is a fundamental concept in the whole theory of solid
state. Given a direct lattice with primitive vectors a1,a2,a3, the corresponding
reciprocal lattice is defined in the space of wavevectors by the three unit vectors
b1,b2,b3 such that ai · bj = 2πδij , where δij is the Kronecker symbol. The
reciprocal lattice is itself a Bravais lattice.

The First Brillouin Zone (FBZ) of a lattice is formed by all points of the
reciprocal space closer to one of the points of the reciprocal lattice than to any
other. It is the analogous, in the reciprocal space, of the Wigner-Seitz cell of
direct space. The center of the FBZ is called Γ point.
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Figure 2.1: The reciprocal lattices (dots) and corresponding FBZs of (a) square
lattice and (b) hexagonal lattice. (Picture from Wikipedia)

2.2 Crystal Vibrations and Phonons

The concept of phonons was introduced in 1932 by the soviet physicist Igor
Tamm. The name phonon comes from the Greek word φωνη′ (phonē), which
translates “to sound” or “voice”, because long-wavelength phonons give rise
to sound. There is a strong link between the vibrations of the lattice and the
phonons; indeed, the phonons are produced when more atoms interact, therefore
it doesn’t make sense to consider phonons when we don’t have any interactions.
The crystal temperature is also involved in these interactions because the higher is
the temperature and the higher will be the amount of interactions and vibrations
in the crystal. In particular, in solids, under the adiabatic approximation1,
thermal motion of atoms around their equilibrium positions can be described
as an ensemble of normal modes (branches) of the crystal lattice vibration [17].
The interactions among the atoms depend on the specific chemical bond, e.g.
ionic or covalent. As first approximation they can be considered as elastic
interactions and this approximation allows us to use the Hooke’s law to describe
their behavior.

Let discuss different situations in which phonons and crystal vibrations are
involved.

1According to this approximation, since the electrons are much lighter than the nuclei, they
can follow their nuclei, at least the most internal ones closer to the nuclei, without internal
energy change, i.e., adiabatically.
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2.2.1 Chain of N equal particles of mass m

We can start from a chain of N equal particles of mass m, connected by equal
massless springs with elastic constant k. This model is only a simplified case
that will be generalized later. The lattice constant a is the physical dimension
that determine the geometry of the unit cells in a crystal lattice, but since we
are in 1D case it represents the distance from the equilibrium position (see Fig.
2.2).

The particles can vibrate along the direction of the chain producing longit-
udinal waves or along the perpendicular directions producing transversal waves
(see Fig. 2.2). For simplicity, we will assume that the particles can vibrate only
along the longitudinal direction.

Figure 2.2: Types of vibrations in a crystal lattice.

Let xj be the displacement of the j-th particle from its equilibrium position.
If cyclic boundary conditions are imposed we will deal with an infinite chain,

xj+N (t) = xj(t), t > 0,

where t is time and N ∈ N is the period. We are assuming that only the
interactions of each atom with the nearest neighbors are taken into account.
Under such hypothesis one gets the following motion equations

mx′′j = k(xj+1 + xj−1 − 2xj), j = 1, 2, ..., N. (2.1)

To solve these equations, we want to look for solutions of the type

xj = ξ exp(i(lja− ω(l)t)),

where ξ is the amplitude and l the (1D) wave vector. The solution represents a
plane wave. After substituing xj in (2.1), we have non trivial solutions if and
only if the angular frequency ω(l) satisfies the dispersion relation
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ω(l) = 2
√
k/m

∣∣∣∣sin( la2
)∣∣∣∣ .

By imposing the boundary conditions introduced previously, one has

exp(ilNa) = 1 =⇒ l = 2π
Na

n = 2π
L
n, n ∈ Z,

where L = Na is the length of the portion of chain made of the N atoms. The
distance between two consecutive wave vectors is 2π

L and therefore the density
of states, that is the number of wave-vectors per unit-length, is d(l) = L

2π . Since
under the transformation l 7→ l + l 2πa , l ∈ Z, the solution does not change, it
is enough to let vary l ∈ [−π/a, π/a] which is the first Brillouin zone for the
considered case. There are exactly N distinct modes. Of course the solutions
are periodic with the FBZ as interval of periodicity.

When the wavelength is much longer than the interatomic distance,

|la| << 1,

the frequency is approximately given by the linear relation

ω(l) =
√
k

m
a|l|.

Note that in this limit the waves are not dispersive and the group velocity (equal
to the phase velocity) is

√
k
ma which represents the sound velocity of the crystal

in the continuum limit. The solutions considered are plane waves, but we can
see these waves like particles with energy and momentum that follow the Bose
Einstein statistic. These particles are the phonons, that have a double nature as
particles and waves, in analogy with photons.

2.2.2 Linear chain with two different types of particles

Let us now consider a linear chain composed of two different types of particles,
with alternate masses m1 and m2 (see Fig. 2.3). This one could be considered as
a simple model to describe a one-dimensional crystal with two atoms in each unit
cell. Let us assume that the lattice distance is a = 2b, b being the equilibrium
distance betweeen two adjacent atoms.

Figure 2.3: Schematic representation of a biatomic linear chain.
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The motion equations are the following{
m1x

′′
2j+1 = k(x2j+2 + x2j − 2x2j+1),

m2x
′′
2j = k(x2j+1 + x2j−1 − 2x2j).

(2.2)

Also in this case, to solve the system we look for solutions of the following
type

x2j+1 = ξ exp(i((2j + 1)bl − ω(l)t)),

x2j = η exp(i(2jbl − ω(l)t)).

distinguish between even and odd indices that represent particles with mass
m1 and m2, respectively. Proceeding as in the previous case, one gets the
dispersion relation

ω2(l) = k

(
1
m1

+ 1
m2

)[
1∓

√
1− 4m1m2

(m1 +m2)2 sin2(bl)
]
.

In the limit |bl| << 1, it becomes

ω2(l) =
{ 2k

m1+m2
b2l2, acoustic branch,

2k
(

1
m1

+ 1
m2

)
, optical branch.

(2.3)

Note that near to l = 0 the acoustic branch is almost linear (Debye ap-
proximation), while the optical branch is almost flat (Einstein approximation).
Therefore, near to l = 0, the optical branch has a negligible group velocity and
does not transport energy.

It is meaningful to analyze also the ratio of the displacements

ξ

η
= 2k cos(lb)

2k −m1ω2 ∼

{
1, for acoustic modes (branches)
−m2
m1
, for optical modes (branches)

as l 7→ 0.

Therefore, the acoustic modes produce oscillations along the same direction,
while the optical modes produce oscillations in opposite directions.

2.2.3 Three dimensional case

In the 3D situation we have different directions of polarization with longitudinal
and transversal oscillations, for both optical and acoustic modes, that in term of
particles are considered as different branches of phonons. Each unit (primitive)
cell generally consists of more than one atom, which is therefore characterized by
four numbers. The first three, n = (n1, n2, n3), with ni ∈ Z, i = 1, 2, 3, identify
the cell to which it belongs and the fourth, s ∈ N, represents its number in the
cell and runs from 1 to the number of atoms in each primitive cell.
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Let us(n) be the displacements of the atoms in their vibrations. The Lag-
rangian of a crystal lattice, considered as a mechanical system of particles
vibrating around their equilibrium positions, by retaining in the potential only
up to the quadratic terms in the displacements (harmonic approximation), is
given by

L = 1
2
∑
n,s

ms|u′s(n)|2 − 1
2
∑

n,n′,s,s′
〈Λss

′
(n− n′)us(n),us′(n′)〉, (2.4)

where the ms are the masses of the atoms and the matrices Λss′ depend only on
the differences n− n′, since the interaction forces depend only on the relative
position of the atoms. The Λss′ ’s satisfy the simmetry relation

Λss
′
(n) = (Λs

′s(−n)T ), (2.5)

along with some further relations which descend from the fact that a parallel
displacement or a rotation of the lattice as a whole give rise to no forces. In
(2.5) the upper-script T indicates transposition.

The Lagrange equations of motion read

msu′′s(n) = −
∑
n′,s′

Λss
′
(n− n′)us′(n′). (2.6)

Let us look for solutions in the form of plane waves

us(n) = es(l) exp[i(l · rn − ωt)], (2.7)

with rn the radius vector of any particular vertex of the cell n, which can be
used to define its position, ω the angular frequency, l the wave vector and es
the polarization vector, which is the same for equivalent atoms in different cells.
Substituing (2.7) into (2.6), after some algebra one gets

∑
s′

Λ̃ss
′
(l)es′ − ω2mses = 0, (2.8)

where

Λ̃ss
′
(l) :=

∑
n

Λss
′
(n) exp(−il · rn). (2.9)

System (2.8) has non trivial solutions if and only if

det |Λ̃ss
′
(l)− ω2ms′δss′ | = 0, (2.10)

is satisfied. If ν is the number of atoms per cell, the order of the determinant
is 3ν, therefore (2.10) is an algebric equation of degree 3ν in the unknown ω2.

32



Each solution determines ω as a function of the wave vector l, which means that
there are 3ν branches of such function

ω = ωµ(l), µ = 1, ..., 3ν,

which, as said, is called dispersion relation, µ labelling the various branches.
From definition (2.9) and property (2.5), it follows that

Λ̃ss
′
(l) = Λ̃s

′s(−l) = [Λ̃s
′s(l)]∗, (2.11)

where * indicates complex conjugation. As a consequence, the Λ̃ss′(l)’s form
an Hermitian matrix, whose eigenvectors corresponding to different eigenvalues
are orthogonal, that is

ν∑
s=1

msu(µ)
s · u(µ′)∗

s = 0, for µ 6= µ′, (2.12)

Due to the symmetry of the mechanical equations of motion under time
reversal, the dispersion relation has to be even

ω(l) = ω(−l).

Moreover, the wave vector l appears in (2.7) only in the exponential factor
exp(il · rn), which does not change under the substitution

l 7→ l + G, G = n1a∗1 + n2a∗2 + n3a∗3, n1, n2, n3 ∈ Z, (2.13)

where G is an arbitrary vector of the reciprocal lattice. Therefore, the wave
vector is phisically indeterminate, meaning that values of l differing by G are
phisically equivalent. This implies that the function ω(l) is periodic in the
reciprocal lattice

ω(l + G) = ω(l), (2.14)

and can be restricted to a single cell. From a geometrical point of view, the
dispersion relation ω(l) is represented by a finite four dimensional hypersurface,
with 3ν layers, corresponding to the various branches, which may intersect.

As seen for the simple 1D chain, it is possible to ensure also in the 3D case
that some of the branches of the vibrational spectrum, for wavelengths large
with respect to the physical dimension of a unit cell, correspond to sound waves
in the crystal and for them the dispersion relation is a first order homogeneous
function of the components of the wave vector, for l small enough. These waves
are called acoustic waves.

In lattices with more than one atom per cell, there are 3(ν − 1) further types
of waves, whose frequency does not vanish at l = 0, but tends to a finite constant.
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Such vibrations are called optical vibrations, and for them the atoms in each
cell are in relative motion[16].

For example, in silicon and gallium arsenide there are two atoms per cell
and, therefore, six types of elastic waves: three acoustic modes and three optical
modes. Among the three acoustic modes, one is longitudinal (LA), that is to say
the atoms are displaced in the direction of the wave propagation, and two are
transverse (TA), in which the atoms are displaced in an orthogonal direction.
The same is true for the optical phonons (LO and TO). The transversal modes
are doubly degenerate.

What said above is strictly valid only in the harmonic approximation, in which
the various monochromatic waves freely propagate through the crystal, without
interacting. Higher order terms are taken into account as various processes of
decay and scattering among these waves. Their description is rather complex. A
simplified approach based on a relaxation time approximation is usually adopted
in the device simulations. Recently, other methods based on molecular dynamics
simulations have been adopted for studying the anharmonic effects.

2.2.4 Phonons

The description of the lattice vibrations in nanoelectronics needs a quantum ap-
proach, because of very small dimensions that are involved in the analysis. Since
Λ̃ss′(l)’s are Hermitian matrices, it is possible to write the classical equations
of motion in canonical coordinates decoupling them in indipendent harmonic
oscillators. As a consequence, the analogous quantum Hamiltonian is the sum of
the Hamiltonians of 3νN indipendent quantum oscillators, with N total number
of cells, each of them having quantized energy levels given by

εn = ~ω
(
n+ 1

2

)
, n = 0, 1, 2, ....

From the particle point of view, each quantum state can be considered as formed
by n fictitious particles called phonons having energy ~ω. The processes which
change the state from the energy level εn to εn+1 (respectively εn−1) can be
interpreted as the creation (respectively annihilation) of a phonon.

The quasi-momentum

q = ~l

is associated to phonons. It is almost analogous to the ordinary momentum,
with the important difference that it is defined up to an arbitrary constant
vector ~G, with G belonging to the reciprocal lattice. In the continuum, the
phonon velocity is given by the group velocity of the corresponding classical
waves, v = ∂ω

∂l , which can be rewritten in the form
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v = ∂ε(q)
∂q ,

where ε(q) is the energy.
In the approximation successive to the harmonic one, various elastic and

inelastic phonon collision processes occur. The latter tend to drive the system
toward equilibrium. In these processes, the energy and momentum conservation
laws must be satisfied, the latter up to an additive vector of the form ~G

∑
q =

∑
q′ + ~G,

where q and q′ are the momenta of the phonons before and after the collision.
An arbitrary number of identical phonons can be created simultaneously in

the lattice, which means that the phonon gas obeys the Bose statistics. Since
the total number of phonons is determined by the equilibrium conditions, the
phonon chemical potential is zero. Therefore, the equilibrium occupation number
g(p) of a quantum state with momentum q and energy ε(q) is determined by
the Planck distribution function

g(q) = 1
exp(ε(q)/TL)− 1 ,

where TL is the lattice temperature.
If the typical phonon wavelength is much shorter than the phonon mean

free path, phonons can be treated as semi-classical particles that obey, as said,
the Bose statistics. In this case, the state of the phonon gas can be described
through the distribution function gµ(q), whose time evolution is governed by
the Boltzmann-Peierls (BP) equation in the semiclassical approximation [17]

∂gµ

∂t
+ vµ · ∇xg

µ =
∑
η

Cµη (gµ) + Cµoth(gµ), (2.15)

the index µ labeling the several branches. The right-hand side is the collision
operator. The term

∑
η Cµη (gµ) represents the phonon-phonon collisions, and

collisions of phonons with impurities, boundaries and defects. The index η labels
the various types of scattering. The other contributions in the collision operator
are due to the interaction of phonons with other particles, e.g. electrons and
photons.

2.3 Electrons and energy band structure

The electrons are the particles responsible for charge transport in solids. A
correct analysis of the electron dynamics in crystals requires the application of
advanced many-body techniques. For the present purpose, however, we may limit
ourselves to consider a single electron subject to the potential due to the nuclei,
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to the core electrons and to the average interaction with all the other external
electrons. Let us then consider the Schrödinger equation for the Hamiltonian
eigenfunctions of a particle of mass m subject to a potential VL(x) with the
periodicity of the direct lattice:

i~∂tψ(x, t) = Hψ(x, t) (2.16)

where ψ(x, t) is the wave function, and H is the Hamiltonian, that physically
represents the energy of the system and mathematically is an operator that reads
as follows:

H = − ~2

2m∆− eVL. (2.17)

Here eVL is the potential energy. If we assume that the solution of the equation
is ψ(x, t) = ψ(x) exp(− iEt~ ), by separating the variables, we will get the time-
independent Schrödinger equation:

Hψ(x) = Eψ(x) (2.18)

The solutions of this last equation are expressed by the Bloch Theorem:

Theorem 3 Let VL be a periodic potential of period T ∈ L then the eigenvalue
problem for the Schrödinger operator

H = − ~2

2m∆− eVL, x ∈ R3,

can be reduced to an infinite set of eigenvalue problems for the Schrödinger
equation on the primitive cell D of the lattice, indexed by k ∈ B (the Brillouin
zone),

Hψk = Eψk in D, ψk(x + T) = exp(ik ·T)ψk(x), x ∈ D,T ∈ L.

(2.19)
For each k ∈ B, there exists a sequence En(k), n ≥ 1, of eigenvalues with
associated eigenfunctions ψn,k(x) = exp(ik · x)un,k(x) (named Bloch functions)
where un,k(x) is a periodic function. The eigenvalues En(k) are real functions
of k, periodic and symmetric on B. The spectrum of H is given by the union of
the closed intervals

{En(k) : k ∈ B}

for n ≥ 1. The Bloch functions are modulated plane waves. The vector k is the
wave-vector.

Observation 9 The function En(k) is called dispersion relation.
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For a proof of Bloch’s theorem see [5]. The hypothesis of periodicity of the
potential with the same periodicity of the lattice is important because a function
with the periodicity of the direct lattice can be expanded in Fourier series with
wavevectors of the reciprocal lattice. Inversely, if the Fourier expansion of a
function contains only wavevectors of the reciprocal lattice, the function is
periodic with the periodicity of the direct lattice.

The differential Schrödinger equation has been therefore transformed into an
infinite set of eigenvalue problems, one set for each k. We may therefore consider
wavefunctions whose Fourier series contains only one k and all the vectors of the
type k+ G, where G is an arbitrary vector of the reciprocal lattice. Therefore,
the Bloch functions can be written as

ψk(x) = uk(x)eik·x

where
uk(x) =

∑
G

C(k + G)eiG·x. (2.20)

Since the Fourier series in (2.20) contains only wavevectors of the reciprocal
lattice, uk(x) is a periodic function with the period of the direct lattice. The
Fourier expansion of uk(x) may be truncated at values of G large enough for all
the oscillations of the wavefunction to be correctly accounted for. The infinite
system is then reduced to a finite system, and the solutions of the secular
equation are the energy eigenvalues En(k) of our Hamiltonian, corresponding to
the vector k.

If all k’s are considered, the eigenvalues En(k) distribute themselves in
intervals of allowed values called energy bands, separated by gaps, called
energy band gaps.

If we assume periodic boundary conditions for our Bloch states, we can
calculate the density of states. The latter can be calculated by knowing the
distance δk, between k′s in the reciprocal axis. The density is

g(k) = 1
δk

and for example in three dimensional case we have g(k) = V
(2π)3 . In addition,

we have a factor of 2 in the density of states for the spin degeneracy [4]. Infact
according to the Pauli principle each eigenstate of the Hamiltonian may contain
at most two electrons.

2.3.1 Tight-Binding Approach

Electrons in the deepest atomic levels, forming the so-called atomic cores, can
be described as occupying their atomic levels without big modifications, since
their wave functions do not reach in an appreciable way the neighboring atoms.
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More external electron states, in particular those that participate in the chemical
bond, cannot be described in this simple way and require a study that takes into
account the presence of the nearby atoms. There is a very intuitive approach
to the problem of electron states, called tight-binding approach, which exploits
the above idea: let us consider, as a starting point, a fictitious crystal that
has the same structure of the real one, but with an arbitrarily large lattice
constant. Such a system can be described as a set of isolated atoms, so that
atomic wavefunctions represent exact states for all electrons. We then let the
lattice constant decrease. At a certain distance, the most external electrons start
to feel the presence of the neighboring atoms. The atomic wavefunctions overlap
and form states extended over the entire crystal. Equivalent atomic orbitals,
which are degenerate when far apart, split into different levels as consequence
of the interaction. Starting from the most outer states, as the atoms get closer,
single levels become narrow energy bands that increase and eventually overlap.
The actual lattice constant is determined by the minimum of the total energy of
the crystal.

2.3.2 Band structure calculations

As indicated above, the calculation of the eigenvalues and eigenstates of the
Hamiltonian of the electrons in a crystal is the first basic step for the theoretical
understanding of most properties of a solid. Many methods have been developed
for the solution of such a problem. Here, we can only mention the most important
of them since this subject is somewhat outside of our scope. In general terms,
the first problem to solve consists in the reduction of the many-body problem to
a one-particle equation. For this purpose, some sort of mean-field approximation
is to be performed, where the effect of all “other” electrons is embodied in an
effective potential acting on each single electron. Self-consistency is obviously
required, since the solution of the single-particle equation for one electron will
affect the mean field acting on the others. Often the potential to use in the
one-particle Schrödinger equation is given a particular analytical form on the
basis of general theoretical considerations, with some parameters fixe a posteriori
by the comparison of the theoretical results with experimental data. Many
computer programs have been developed for band-structure calcu lations, some
of which are commercially available.

The most used techinque to perform the band calculatios are:

• LCAO method (the method of linear combination of atomic orbitals,
that is the immediate quantitative application of the idea of tight binding
introduced above, and, in fact, the two phrases are often used as synonyms);

• the k · p method (the states obtained with this method are rather good
for small k, although the method can be extended to expand the band
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structure around any given value k0);

• pseudeopotential method (it was proposed for solids by Phillips and Klein-
man in 1959, it generated a significant improvement in the calculations of
band structures and it is today the approach most used for this purpose).

For further details the interested reader is referred to [4].

2.3.3 Effective mass approximation

Near a minimum of the energy of a band, the energy ε(k) can be approximated
by a quadratic form:

ε(k) = 1
2~

2
∑
ij

(
1
m

)
ij

kikj , (2.21)

where
( 1
m

)
ij

is the inverse effective-mass tensor. In case of spherical symmetry,
we have a simple effective mass m defined by

ε(k) = ~2k2

2m .

We should note, however, that this approximation is extensively used in the
theory of electron transport in semiconductors [4].

2.3.4 Bloch Wavepackets and group velocity

Before leaving the subject of Bloch states, let us analyze the properties of
wavepackets formed by superpositions of such states, representing electrons
moving inside a crystal. For simplicity, we shall assume here that the states
forming the wavepackets belong to one single band and shall omit the band
index in the equations. With the inclusion of the time dependence, a wavepacket
formed by the superposition of Bloch states has the form

ψk0(x, t) =
∑

k

ak0(k)uk(x)ei[k·x−ε(k)t/~]. (2.22)

To have a well-defined wavepacket, we assume that the coefficients of the super-
position are given by a function ak0(k) strongly peaked around a value k0. At
the same time, we wish the wavepacket itself to be significantly different from
zero in a limited region of space. From the theory of Fourier analysis, we know
that the group velocities of our wavepackets are given by

v(k0 + G) = 1
~
∇kε(k)|k=k0+G. (2.23)

Owing to the periodicity of the energy function, however, all these group velocities
are equal, so that all the wave packets travel jointly with group velocity

v(k0) = 1
~
∇kε(k)|k=k0 (2.24)
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which is therefore the velocity of our original wave packet in (2.22). Note that
the above expression for the electron wave packet is formally identical to that
for free electrons but, now, the momentum ~k is actually the crystal momentum
of the electron, and ε(k) indicates its band energy [4].

2.4 Semiconductors

2.4.1 Free dynamics of Bloch electrons

Under rather general conditions, the crystal momentum of a Bloch state subject
to an external force F changes according to the semiclassical law

d(~k)
dt

= F. (2.25)

This result is to some extent amazing if we consider that the dynamics of the
electron wave is continuously affected by the interaction with the atoms of the
crystal. The effect of the crystal periodic potential lies in the fact that ~k
appearing in (2.25) is the crystal momentum, not the real momentum, and its
relation with the energy is given by the band function ε(k). If an electric field
is applied, an electron will continuously change its k, according to (2.25), in
absence of collisions. Its velocity, given by the derivative of the band, will also
change continuously, increasing as long as the crystal momentum lies in the lower,
concave, part of the band. When the electron reaches the upper, convex, part of
the band, the velocity starts to decrease, and this is a crucial effect of the crystal
potential. When k reaches the energy maximum, the electron group velocity
vanishes. In a simple band, this happens at the BZ edge. As the effect of the
force continues, k surpasses the zone edge, and its velocity is reversed. Since
k is defined to within a vector of the reciprocal lattice, it may be considered
to reenter the BZ from the opposite side. Thus, the crystal momentum, in
presence of a constant and homogeneous electric field, performs oscillations in
the BZ, corresponding to oscillations of the wavepacket in real space, called
Bloch oscillations. It is important to remember that these oscillations occur in
absence of collisions, a situation practically unrealizable in bulk materials [4].

2.4.2 Insulators, Conductors and Semiconductors

The concepts before introduced are crucial for the solids classification. We know
that the energy eigenvalues of electrons in perfect crystals fall in intervals, the
energy bands, separated by intervals where the energy eigenvalues are absent,
called band gaps.

When at zero absolute temperature the last occupied band, in the order of
increasing energies, is totally occupied by electrons, it is called valence band,
since the corresponding electron states are the main responsible for the bonds of
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the atoms that form the crystal. The next higher band is called conduction band,
since the corresponding electron states are the main responsible for electrical
conduction.

What follows is a basic classification of the different materials from the point
of view of their electrical properties.

• If at zero absolute temperature the highest band occupied by electrons is
entirely occupied (valence band) and the energy gap between this band and
the next higher band (conduction band) is much higher than kBT , where
kB is the Boltzmann constant and T the room temperature, the conduction
band remains empty even at room temperature since the thermal energy is
not sufficient to promote electrons from the last occupied band to the next
empty band. In absence of impurities, the material is an insulator. In fact,
the totally occupied valence band does not conduct, and the conduction
band does not conduct because it is void of electrons.

• If the energy gap between the valence band, entirely occupied at zero
temperature, and the conduction band, empty at zero temperature, is
comparable with kBT at room temperature, some electrons are promoted
to the conduction band by the thermal energy. The conduction band
contains some electrons, the valence band contains an equal number of
holes, and in absence of impurities the material is an intrinsic semiconductor.
It is obvious that at zero temperature any intrinsic semiconductor becomes
an insulator.

• If at zero absolute temperature the last occupied band is only partially
occupied, the material is a metallic conductor.

If we consider that the band gap of Si is about 1.1 eV and that of GaAs is
1.4 eV , we understand that the conductivity of the intrinsic semiconductors of
most technological interest is negligible. If, however, a number of donor impurities
(i.e. atoms different from the atoms which the intrinsic semiconductior is made
of, with a greater number of electrons in the conduction band, that with a small
thermal energy ionize the impurity with the effect of leaving a fixed positive
charge in the crystal, the ionized impurity, and an electron free to move in the
conduction band) are present in the material, a significant fraction of them
can be ionized at lower temperature, and free electrons are available in the
conduction band. The conductivity of the semiconductor is increased by orders
of magnitude. Since the current is carried in this case by electrons with negative
charge, the material is called a doped semiconductor of n type.

If the impurities present in the material are acceptors (i.e. atoms different
from the atoms which the intrinsic semiconductior is made of, with a lower
number of electrons in the conduction band, that with a small thermal energy
ionize the impurity with the effect of leaving a fixed negative charge in the
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crystal, the ionized impurity, and a hole free to move in the conduction band),
the free carriers are positive holes and the doped semiconductor is of p type.

When both types of impurities are present, electrons may fall from donor
states into acceptor states; both types of impurities become ionized, but the
free charge carriers available for the conduction mechanism are reduced with
respect to the case when only one type is present. The semiconductor is said to
be compensated [4].

2.5 Graphene

A particular case of crystal is represented by the graphene, that will be analyzed
in some works published for my thesis. Here we briefly recall its structure (for
further details see [19]).

Graphene is described by a two dimensional honeycomb lattice in whose
vertices are arranged the carbon atoms. The honeycomb net is classified as
a triangular Bravais lattice with a two-point basis [4]. In this way it can
be considered as composed by two interpenetrating nonequivalent sublattices,
usually indicated by A and B. The primitive vectors are

a1 = a

2 (3,
√

3), a2 = a

2 (3,−
√

3),

where a ≈ 1.42Å is the nearest neighbor distance. Since we have a two-point
basis this is not the lattice constant, that is a

√
3 ≈ 2.46Å. Regarding the

sublattice A, the nearest neighbors are located throw the vectors

δ1 = a

2 (1,
√

3), δ2 = a

2 (1,−
√

3), δ3 = −a(1, 0),

and, similarly, for sublattice B they are

γ1 = −a2 (1,
√

3), γ2 = a

2 (−1,
√

3), γ3 = a(1, 0).

Figure 2.4: Honeycomb structure of graphene (left) and Brillouin zone (right).
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In the Figure 2.4 the above mentioned properties are depicted, where the
sublattices A and B are colored in yellow and red respectively and the unit cell
is highlighted in blue. The primitive reciprocal vectors are

b1 = 2π
3a (1,

√
3), b2 = 2π

3a (1,−
√

3).

They define an hexagonal Brillouin zone, represented in Figure 2.4. Let we
consider a reference frame whose origin is the G point, that is the center of the
Brillouin zone. The vertices of the latter, indicated by K e K ′ and called Dirac
points, are located in

K =
(

2π
3a ,

2π
3
√

3a

)
, K′ =

(
2π
3a ,−

2π
3
√

3a

)
.

2.5.1 The electronic band structure

The energy bands are derived from the tight-binding Hamiltonian for electrons in
graphene, considering that electrons can hop to both nearest- and next-nearest-
neighbor atoms [42]. They have the form

E±(k) = ±γ1
√

3 + f(k)− γ2f(k) (2.26)

with

f(k) = 2 cos
(√

3kya
)

+ 4 cos
(√

3
2 kya

)
cos
(

3
2kxa

)
, (2.27)

where γ1 ≈ 2.8 eV is the nearest-neighbor hopping energy and γ2 ≈ 0.1 eV

is the next nearest-neighbor hopping energy. We remark that the coordinates
of k are expressed with respect to the Γ point. In the Equation (2.26) the
plus sign corresponds to the conduction band and the minus sign refers to the
valence band. If we neglect the next nearest-neighbor hopping energy, that is we
assume γ2 = 0, the two bands appear to be symmetrical. In this case by simple
calculation we can assert that the two energy bands touches at the Dirac points.
It means that there is no energy gap in graphene.

Figure 2.5: Electronic dispersion in the honeycomb lattice. The full expression is
reproduced on the left, the zoom in close the Dirac points is shown on the right.
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Moreover, by expanding the full band structure (2.26) close to K (or K′) the
dispersion relation reduces to

E±(k) ≈ ±~vF |k|+O(|k|2), (2.28)

where vF is the Fermi velocity, given by

vF = 3γ1a

2~ , (2.29)

with a value of vF ≈ 106m/s. Therefore we remark that the dispersion relation
shape is conic near the Dirac points. A plot is shown in Figure 2.5.

44



Chapter 3

Phonons and electrons
transport

In this section we are going to deal with phonons and electrons transport. The
phonons transport regards only the energy, instead the electrons are responsible of
the charge transport. Phonons and electrons interact and through the scattering
terms these interactions are described.

In few words, if a semiconductor is subject to an external electric field, the
electrons will gain energy from the latter and they will produce phonons, by
losing energy. Thus, phonons and electrons will interact and from this exchange
of energy, other phonons will be generated until will be reached a balance between
lost and gained energy and the charges will move with a constant velocity, called
saturation velocity. The phonons are also linked to the temperature of the
semiconductor, through the crystal vibrations, and therefore to the heat flux.

In this chapter we will focus on both the phonons and electrons transport. In
particular, in Section 3.1 the semiclassical phonons transport will be explained
and in Section 3.2 the Wigner equation will be introduced. In Section 3.3 we
will see the Boltzmann equation and the electron transport.

3.1 Phonons transport

The phonons vary from a material to another but in any case they are grouped
in acoustic and optical phonon branches which, in turn, can oscillate in the
longitudinal or transversal direction, as already said. The complete dispersion
relations can be usually obtained by a numerical approach in the FBZ, B.
However, in the applications some standard approximations are often adopted,
for dispersion relations.

For the acoustic phonons, the Debye approximation for the dispersion relation
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εµ(q) is usually assumed, εµ(q) = cµ|q|, µ = LA, TA, where q is the phonon
momentum. cµ is the sound speed of the µ-branch. Consistently, the FBZ is
extended to Rd. Here d is the dimension of the space; d = 3 for bulk crystal while
d = 2 for graphene or similar 2D material like dichalcogenides. Sometimes also
the case d = 1 is considered but it represents an oversimplification from a physical
point of view. We remark that the standard way to express the dispersion relation
is in terms of wave-vector. However, in view of the quantum kinetic formulation
which will be devised in the next sections, the phonon momentum is a more
appropriate variable.

For the longitudinal optical and the transversal optical phonon, the Einstein
dispersion relation, εµ(q) ≈ const, with µ = LO, TO, is usually adopted. Note
that under such an assumption, the group velocity of the optical phonons is
negligible.

In some peculiar materials like graphene, it is customary to introduce also
a fictitious branch called K-phonons constituted by the phonons having wave
vectors close to the Dirac points, K or K ′, in the FBZ (taking the origin in the
center Γ of FBZ). Also in this case the Einstein approximation is used on account
of the limited variability of the phonon energy near those points. Moreover, in
graphene the phonons are classified as in-plane, representing vibration parallel
to the material, and out of plane, representing vibrational mode orthogonal to
the material. The LA, TA, LO, TO and K phonons are in plane. The out of
plane phonons belong to the acoustic branch and are named ZA phonons. For
them a quadratic dispersion relation is a good approximation: εZA(q) = α|q|2,
where α = α/~ with α = 6.2× 107m2/s (see [20]).

Observe that in all the cases considered above, the dispersion relation is iso-
tropic. Hereafter we assume such a property for εµ(q), µ = LA, TA,LO, TO,K,ZA.

The thermal transport is usually described by macroscopic models, e.g.
the Fourier one, those based on the Maximum Entropy methods [17] or on
phenomenological description [21]. A more accurate way to tackle the question
is to resort to semiclassical transport equations, the so-called Peierls-Boltzmann
equations, for each phonon branch for the phonon distributions fµ(x,q, t)

∂fµ
∂t

+ cµ · ∇xfµ = Cµ, µ = LA, TA, . . . , (3.1)

where cµ = ∇q εµ(q) is the group velocity of the µ-th phonon specie.
The phonon collision term Cµ splits into two terms

Cµ = Cµµ +
∑
ν,ν 6=µ

Cνµ, µ = LA, TA, . . . . (3.2)

Cµµ describes the phonon interaction within the same branch while Cνµ describes
the phonon-phonon interaction between different species. To deal with the
complete expressions of the Cµ’s is a very complicated task even from a numerical
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point of view [22]. So, they are usually simplified by the relaxation time
approximation

Cµ = −
fµ − fLEµ

τµ
,

which mimics the relaxation of each phonon branch towards a common local
equilibrium condition, characterised by a local equilibrium temperature TL that
is the same for each phonon population. The τµ’s are the phonon relaxation
times.

The local equilibrium phonon distributions are given by the Bose-Einstein
distributions

fLEµ = [exp(εµ(q)/kBTL)− 1]−1
, (3.3)

where kB is the Boltzmann constant.
The modern devices, e.g. the electron ones like double gate MOSFETs (see

[17]), are undergoing more and more miniaturization. This implies that the
characteristic scales are of the same order as the typical lengths where quantum
effects become more and more relevant. Therefore, quantum effects must be
included and the semiclassical phonon transport equations must be replaced by
a more accurate model.

A huge literature has been devoted to the application of the Wigner equations
to charge transport (see [1–3]) but a limited use has been made for phonon
transport. This original contribute will be presented in the Chapter 6.

3.2 Wigner equation

In the previous section, Weyl’s quantization and a set of rules to pass directly from
the mathematical world description of classical physical quantities (the phase
space) to that of quantum variables (set of operators acting in a Hilbert space)
and vice versa has been introduced. It is also underlined how the advantage
of this formalism lies precisely in its success to give a description of two very
different theories on the same geometric structure, allowing us to fully grasp
similarities and differences. To put this program into practice, it will be necessary
to identify that quantum operator which, among all, is full of informative content
about the state of our system and which, therefore, also allows to express the
expectation values of all the relevant physical parameters of the same. What we
are essentially looking for is the analogue of the probability function distribution
associated with a classical ensemble, which lives in the phase space.

One of the main point of this thesis is the kinetic description of a one-particle
quantum statistical state, given in terms of one-particle Wigner functions. Then
we want to briefly recall the basic definitions and properties (see chapter 1).

A mixed (statistical) one-particle quantum state for an ensemble of scalar
particles in Rd is described by a density operator ρ̂, i.e. a bounded non-negative
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operator with unitary trace, acting on L2(Rd,C). Given the density operator ρ̂
on L2(Rd,C), the associated Wigner function, w = w(x,p), (x,p) ∈ R2d, is the
inverse Weyl quantization of ρ̂,

w = Op−1
~ (ρ̂). (3.4)

We recall that the Weyl quantization of a phase-space function (a symbol)
a = a(x,p) is the (Hermitian) operator Op~(a) formally defined by Definition 9.
The inverse quantization of ρ̂ can be written as the Wigner transform

w(x,p) =
∫
Rd
ρ(x + ν/2,x− ν/2) exp(ip · ν/~)dν, (3.5)

of the kernel ρ(x,y) of the density density operator. The dynamics of the
time-dependent Wigner function w(x,p, t), steams directly from the dynamics of
the corresponding density operator ρ̂(t), i.e. from the Von Neumann or quantum
Liouville equation

i~∂tρ̂(t) = [Ĥ, ρ̂(t)] := Ĥρ̂(t)− ρ̂(t)Ĥ, (3.6)

where Ĥ denotes the Hamiltonian operators of the particle considered and
[·, ·] the commutator. If h = Op−1

~ (Ĥ) is the symbol associated to Ĥ, then, from
Eq.s (3.6), we obtain the Wigner equation

i~∂tw(x,p, t) = {h,w(x,p, t)}∗ := h ∗ w(x,p, t)− w(x,p, t) ∗ h. (3.7)

Since in the following we will use the limit for ~ → 0 we need to rescale
the previous equation to make ~ dimensionless. Let ~̃ = ~

kBTLt
where t is a

characteristic time and h̃ = h
kBTL

. Dividing both terms of (3.7) by kBTL and
multiplying and dividing the first member by t we get

i
~t

kBTLt
∂tw(x,p, t) = h ∗ w(x,p, t)

kBTL
− w(x,p, t) ∗ h

kBTL
.

Renaming the new quantities by using the tilde symbol we have

i~̃∂t̃w(x,p, t) = h̃ ∗ w(x,p, t)− w(x,p, t) ∗ h̃. (3.8)

that has the same form of the Wigner equation from which we start, but rescaled.
Since ~ = 6.582×10−16eV s and kBTLt ≈ 0.0259×10−12eV s at room temperature
TL = 300K and with a characteristic time of t = 10−12s, the ratio ~/kBTLt is
small enough to justify the limit for ~→ 0 and consequently the expansion in ~.
In the following, for saking of semplicity, we will omit the tilde for this equation
but the previous transformation is intended to hold.

The procedure described in this paragraph is used both for phonons and for
electrons.
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3.3 Electrons transport

In this section we will introduce the charge transport in solids. In particular, the
Boltzmann equation will be presented. This last is fundamental for the following
developments, but it is also very complex to solve, for this reason the moments
equations will be introduced.

This last procedure simplifies the equations on one hand and creates some
issues on the other hand. For this reason we need to introduce also the Maximum
Entropy method. The plan of this section is to present the equations that describe
the electron transport and then to introduce the moments equations in the last
subsection. A whole chapter will be dedicated for the Maximum Entropy Method.

3.3.1 Boltzmann equation

First, we would like to specify the meaning of semiclassical and quantum approach.
We know that the classical physics is not enough to describe all the complex
situations that can occur, because of the assumptions that characterize this
branch of physics: it is accurate only for large objects that are not extremely
massive and with speeds far from the light speed. When very small devices are
considered, the classical mechanics fails, so a semiclassical or quantum approach
is used.

The Boltzmann equation is an example of the semiclassical approach: indeed,
this equation describes a system of many particles using a distribution function.
It leads to a macroscopic semiclassical charge transport model as we will see in
the next paragraphs.

Let f(x,k, t) be the distribution function that represents the number of
particles per state in x and in k at time t. Then, if we consider a system made
by N particles, the normalization condition has to be satisfied:

2
(2π)3

∫
B

∫
R3
f(x,k, t)dkdx = N, (3.9)

while if we integrate only over dk we obtain the particle space density at time t.
Under this condition, the semiclassical Boltzmann equation for electrons in the
conduction band is

∂f

∂t
+ v(k) · ∇xf −

e

~
E · ∇kf = C[f ], (3.10)

where v is the electron velocity, E is the electric field and C[f ] is the collision
term that describes the interactions between electrons and impurites or phonons
or electrons them selves. Since the expression of the collision term is rather
complex, some collisions that don’t give a big contribution to the collisional
term are usually neglected and only the phonons-electrons collisions are taken
into account. The collisions can be intra or inter valley if after the collision the
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electrons remain in the same valley or in another one, respectively; they can
be classified also as intra or inter band for reasons analogous to the previous
explained for valleys.

Mathematically, these interactions can be expressed by using the Fermi’s
golden rule: for a generic intravalley and intraband collision, we get

C[f ] = 1
(2π)3

∫
B

[P (k,k′)f(k′)(1− f(k))− P (k,k′)f(k)(1− f(k′))]d3k′,

(3.11)

where P (k,k′) is the transition probability per unit time from the state k to
the state k′ and the two terms of the difference are respectively the gain and
the loss term, and they describe the Pauli exclusion principle.

Observation 10 The factor 1
(2π)3 is not multiplied by 2 because the collisions

doesn’t change the spin of the electron. In the normalization condition, it is
multiplied by 2 because the spin electron is taken into account.

Under the assumption that f << 1 we can linearize the collision term. Sub-
stituing f with feq that is the equilibrium state distribution (as Fermi-Dirac
distribution) and using the balance principle (for which the gain and the loss
term have to be equal), the transition rate for the scattering between electrons
and phonons can be deduced. It will depends on the dispersion relation and
different expression for each different branch of phonons will be used. Sometimes
the collision term could be calculated in the relaxation time approximation, by
introducing the relaxation time τ and it reads

C[f ] = −f − feq
τ

. (3.12)

Since the Boltzmann equation is an integro-differential equation not easy
to solve, both analitically and numerically, some macroscopic quantities can
be introduced to simplify the equation and to obtain an equivalent system of
equations easier to solve. In this way, the microscopic and the macroscopic
quantities of the physical system are linked. The number of equations and
moments introduced depend on the model that we want to consider: if we
consider the energy density and the energy flux density we obtain an energy-
transport model; if we introduce charge density, velocity, energy and energy flux
we obtain an hydrodynamical model. In the next paragraph we will introduce
them.

3.3.2 Moments equations

Starting from the Boltzmann equation (3.10) the moments equations can be
deduced, multiplying it by the weight functions and integrating over dk. But,
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how a moment is defined? Let us consider a weight function, regular enough,
Ψ(k). We define the moments as follows:

MΨ = MΨ(x, t) := 2
(2π)3

∫
B

Ψ(k)f(x,k, t)dk. (3.13)

In this way, the macroscopic quantites we need for our model by varying the
weights are obtained. Of course one of the weights is Ψ(k) = 1 to obtain the
electron density.

The next step is to use these weights to get the moments equations as follows:

∂M

∂t
+
∫
B

2Ψ(k)
(2π)3 v(k) · ∇xfdk−

e

~
E ·
∫
B

2Ψ(k)
(2π)3 ∇kfdk =

∫
B

2Ψ(k)
(2π)3 C[f ]dk.

(3.14)
Then, a system of some equations is obtained. Formally in number equal to
the number of the moments introduced but, by developing the calculation of
the integrals we can observe that some additional quantites appear. So the
advantage of this approach is that integrating over k a variable from the equation
is “eliminated” and we will deal with some easier equation to solve by getting
some macroscopic quantities that have a specific physical meaning. The price to
pay is that new additional quantities appear and then the system obtained is not
closed. The good news is that this issue is solvable in different ways. The two
most used solutions are the drift-diffusion approach or the Maximum entropy
principle.

The first approach has some limitations because it holds only for low fields
and for constant temperatures. Sometimes it could be a good compromise to
solve the closure issue by introducing a constitutive relation in which a term of
drift and a term of diffusion appear (from which the name of this approach).

The solution based on the Maximum Entropy Principle is more complex but
more general and it will be introduced in the next chapter.
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Chapter 4

Maximum Entropy
Principle

Before showing the method to close the previous system, the definition of entropy
has to be introduced, together with its properties and how to use them to infer a
distribution. We will distinguish between the discrete and continuous case, even
if for this thesis only the second case will be used. The procedure based on the
maximum entropy principle could seem complex, but will be clarified in the next
sections, also through some examples to get the Fermi-Dirac distribution and
the Bose-Einstein distribution that are fundamental to describe the fermions and
the bosons transport, respectively. The difference between fermions and bosons
is that for the first ones the Pauli exclusion principle doesn’t hold, while for the
bosons it has to be taken into account. The particles that we will consider for
our work are electrons and phonons and they are particular cases of fermions
and bosons, respectively. For these reasons this chapter is crucial for the charge
transport and to understand the link between the particles and their dynamics
by using the statistical mechanics and its main distributions. The interested
reader is referred to [17] for more details.

4.1 Entropy and its properties

The concept of entropy was introduced by Boltzmann in the statistic mechanics,
by Clausius in thermodynamics like a thermodynamical potential and by Jaynes
and Shannon in the information theory.

Mathematically the formulation of Boltzmann entropy is expressed by

S = kB logW

where W is a quantity proportional to the number of microstates of the system.

52



This formula could be seen as a link between microscopic and macroscopic
physical worlds.

From now on, we will focus on the Jaynes-Shannon definition of entropy. The
idea under the maximum entropy approach is to maximize the entropy, that in
the information theory represents the amount of ignorance of the system by the
observer. This is the crucial difference: for Boltzmann-Clausius the entropy is
a property of the system, while for Jaynes-Shannon the entropy is a property
of the observer. By maximizing this last amount of ignorance, under certain
constraints, the expressions of statistical mechanics are obtained.

There are three axioms underlie this theory. Let us consider first the discrete
case of a random variable X which takes the values in the set Ω = {x1, x2, ..., xn}
with a priori probability p1, p2, ..., pn, satisfying, of course, the condition

n∑
i=1

pi = 1.

Let consider the function S(p1, ..., pn) as the measure of the uncertainty associated
to the system, where (p1, ..., pn) is the probability distribution that we know
only partially. The first axiom guarantees the continuity of the function in its
variables, for technical reasons. The second axiom explains, intuitively, that
if we have more possible outcomes, we will have more uncertainty. The third
axiom is not very intuitive, but it is related to the conditional probability.

Formally, the axioms are expressed as follows:

• Continuity The function that represents the information entropy is con-
tinuos;

• Equally likely cases If all pi are equal, the quantity S( 1
n , ...,

1
n ) is a

monotonically increasing function of its number of arguments;

• Grouping axiom If the values of a discrete random variable X are
grouped in m disjoint sets {x11, ..., x1k1},{x21, ..., x2k2},...,{xm1, ..., xmkm},
the probabilities of these events are wj = pj1 + pj2 + ...+ pjkj , j = 1, ...,m.
The grouping axiom requires

S(p1, p2, ..., pn) = S(w1, ..., wm)+w1S

(
p11

w1
, ...,

p1k1

w1

)
+...+wmS

(
pm1

wm
, ...,

pmkm
wm

)
.

These three axioms are fundamental to recover the expression of the information
entropy that is the following:

S(p1, p2, ..., pn) = −C
n∑
i=1

pi log pi, (4.1)

where the constant C > 0 depends on the unit used.
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The expression of S is valid also if pi = 0 for some i, formally setting
0 log 0 := 0 which preserves also the continuity of S(p1, ..., pn).

It is possible to prove the following results:

Theorem 4 Let us define

H(n) = S

(
1
n
,

1
n
, ...,

1
n

)
, n = 1, 2, ...

then H(n) = C logn with C > 0.

Theorem 5 The only function that satisfies the three axioms before introduced
is the (4.1).

The Shannon-Jaynes Entropy has the following properties:
Property 1
The information entropy has

( 1
n ,

1
n , ...,

1
n

)
as point of maximum.

Property 2
The information entropy is not affected by the events of zero probability.
Property 3
The information entropy of a system is correlated to the information entropy

of its parts.
The random variable X before considered was discrete, if we consider a

continuos variable X with a probability density p(x), x ∈ Rd, we can generalize
the previous definition of entropy as follows:

S[p(x)] = −C
∫
Rd
p(x) log

[
p(x)
m(x)

]
dx. (4.2)

where we have introduced the measure m(x) to let be the entropy invariant
for coordinates transformation; indeed a relative entropy is obtained, in this way.
There is also the analougus relative entropy in the discrete case. The difference
between the two cases is that the entropy in the continuous case is not always
defined in sign and can be considered only for the calculation of decreasing or
increansing of uncertainty.

4.2 Inference of a distribution

In this section the Maximum Entropy Principle (MEP) will be introduced in
detail. Since the entropy is different if the random variable is continuos or
discrete, also for the MEP we should distinguish between these two cases. The
main goal in this procedure is to find a distribution that maximizes the entropy
under certain constraints. This procedure described mathematically, assumes
the physical meaning of maximizing the amount of ignorance of the observer by
knowing only partially the system and this information will be expressed by some
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mean values functions, that will be the constraints of our optimization problem.
From a statistical point of view, we want to find the least biased estimator of
our random variable X, that could be discrete or continuous [17].

4.2.1 Discrete case

Let us consider a discrete random variableX with n possible outcomes x1, x2, ..., xn.

Let suppose that r avarage of functions are known

〈fr(x)〉 =
n∑
i=1

pifr(xi), r = 1, ...,m.

where fr : {x1, x2, ..., xn} −→ R are assigned.
The goal is to estimate the probabilities p1, p2, ..., pn associated to the different

n outcomes, with pi = p(xi). To solve this problem the following procedure will
be used:

the least biased estimator of pi, i =, ..., n, with respect to the only knowledge
of the avarages 〈fr〉, r = 1, ...,m, is given by the maximization of the entropy
S = −C

∑
i pi log(pi/mi) under the constraints

n∑
i=1

pi = 1,

〈fr(x)〉 =
n∑
i=1

pifr(xi), r = 1, ...,m.

The idea is to convert this constrained optimization problem to a non con-
strained one, by using the Lagrangian function L that is the difference between
the objective function (the entropy in our case) and the Lagrange multipliers λr
multiplied for each constraint:

L(p1, ..., pn, λ0, ..., λr) = −C
∑
i

pi log(pi/mi)− λ0

(
n∑
i=1

pi − 1
)

(4.3)

−
m∑
r=1

λr

[
〈fr(x)〉 −

n∑
i=1

pifr(xi)
]
.

By calculating the derivative of L with respect to its variables and imposing that
these derivatives are equal to zero, we obtain a system of n+ r + 1 equations of
which r+ 1 are the constraints of the initial problem and by substituing them in
the first n equations

pi = mi exp
(
−λ0 −

m∑
r=1

λrfr(xi)
)
, i = 1, ..., n. (4.4)
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we will obtain the general solution for the pi:

pi = mi

Z
exp

(
−

m∑
r=1

λrfr(xi)
)
, λ0 = logZ, (4.5)

where we have transformed 1+λ0
C 7→ λ0, λrC 7→ λr and Z =

∑n
i=1mi exp (−

∑m
r=1 λrfr(xi))

is the partition function.
As known, this procedure leads to a possible relative extreme point, but to

be sure that this last is the maximum for S we need a direct verification.
Substituing (4.4) in S and using the result for which if we have two probability

vectors (p1, ..., pn) and (q1, ..., qn) then it holds the following inequality

−
n∑
i=1

qi log qi
mi
≤ −

n∑
i=1

qi log pi
mi

,

at the end our goal is reached.
The discrete case could be divided into finite and countable case, but we will

not enter into the details for this second case that is more daunting because
we will have series instead of simple summations, then the problem of the
convergence arises and for this reason some restrictions to the choiche of the
known avarages fr will be required.

4.2.2 Continuous case

In analogy with the discrete case, now we will speak about the continuous case.
In this case we start from a continuous random variable and for this reason a
distribution function f : Rd −→ R+

0 has to be introduced. The constraints are
the known information of the system and in this case are expressed as follows:

〈µA〉 =
∫
Rd
µA(x)f(x)dx, A = 1, .., N, (4.6)

where
µA : Rd −→ RdA , A = 1, ..., N,

are called weight functions and dA ∈ N is such that the integrals in (4.6) there
exist and they are finite. The aim is to estimate the distribution function f , by
knowing only the assigned functions µA. Also in this case we can formulate the
MEP:

Maximum Entropy Principle
The least biased estimator for f by knowing only a finite number of averages

functions is given by the maximization of the entropy

S[g] = −C
∫
Rd
g(x) log g(x)

m(x)dx,
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under the constraints

〈µA〉 =
∫
Rd
µA(x)g(x)dx, A = 1, .., N,

by letting vary g(x) : Rd −→ R+
0 in the set of distribution functions that allows

the integrals to exist and to be finite.
The procedure to follow is analogous with the discrete case. We introduce

the Lagrangian L and the Lagrange multipliers λA

L(g, λ1, ..., λN ) = S[g] +
N∑
A=1

λA

(
〈µA〉 −

∫
Rd
µA(x)g(x)dx

)
. (4.7)

Now the Lagrangian should be derived, but in this case we have a functional,
not a function, so the first variation is needed:

δL = −
∫
Rd
δg

[
C

(
log g(x)

m(x) + 1
)

+
N∑
A=1

λAµA(x)
]
dx = 0. ∀δg,

and the solution that we get is the following:

fMEP (x) = m(x) exp
(
−

(
1 +

N∑
A=1

λA
C
µA(x)

))

under the constraints

〈µA〉 =
∫
Rd
µA(x)fMEP (x)dx, A = 1, .., N.

Also in this case, as in the countable discrete case, we need some restrictions
on the weight functions in order to have the existence and the convergence of
the integrals.

4.3 Classical case: Maxwell-Boltzmann distribu-
tion

In this section, we would like to do a first example to use the above presented
procedure in order to obtain the Maxwell-Boltzmann distribution. Let consider
a random variable X that in this case is discrete and it represents the number
of particles in a certain energy level εi. The corresponding probabilities are pi
and they are the variables of our optimization problem.

At this point, some information about the system under consideration are
necessary to define the constraints. These information are, at thermal equilibrium,
the following:

• The total number of particles in the system is N ;
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• the total energy of the system is E;

• ni is the number of particles for each i-th energy level (
∑
i ni = N);

• the number of quantum states available for each energy level εi is Gi and
is called degeneracy;

• we assume that the particles are distinguishable, that they don’t interact
and they follow the laws of classical mechanics.

From these assumptions, we can write mathematically the optimization
problem:

S = −kB
∑
i

pi log pi
Gi∑

i

pi = 1,
∑
i

piεi = ε,

where ε = E/N and S is the entropy to maximize. The general constant C in
this case is equal to kB .

By following the procedure before introduced the Maxwell-Boltzmann distri-
bution will be obtained:

pi = Gi
Z

exp(−λεi), (4.8)

where Z =
∑
iGi exp(−λεi) and λ is the Lagrange multiplier relative to the

energy constraint (the constant kB is included in the multiplier as we have
already seen before).

4.4 Quantum case: Fermi-Dirac and Bose-Einstein
distributions

In these two examples we will consider a system that obeys to quantum mechanics
and made of identical and indistinguishable particles. The difference between
the two cases is that for fermions the Pauli’s exclusion principle holds, instead
for bosons not.

But we will start from the same hypothesis:

• The total number of particles in the system is N ;

• The total energy of the system is E;

• pijn is the probability that the j-th quantum state has n particles in the
i-th energy level εi;

• 〈ni〉 =
∑Gi
j=1

∑
n pijnn is the avarage number of particles in the energy

level εi.
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Known this information, the entropy to maximize is the following

S = −C
∑
i

Gi∑
j=1

∑
n

pijn log pijn

under the constraints ∑
i

〈ni〉 = N,
∑
i

〈ni〉εi = E.

The solution obtained by the MEP procedure is the following:

pijn = exp(−(λ1 + λ2εi)n)∑
r exp(−(λ1 + λ2εi)r)

,

where λ1, λ2 are the Lagrange multipliers and the constant C is included in them.
Now we have to distinguish between fermions and bosons by taking into account
the Pauli exclusion principle:

• Fermi-Dirac distribution:

In this case, since the Pauli exclusion principle is valid, we can consider
only n = 0, 1 then

〈ni〉 = Gi
1 + exp(λ1 + λ2εi)

.

• Bose-Einstein distribution:

in this case n = 0, 1, ... then

〈ni〉 =
∑Gi
j=1

∑+∞
n=0 n exp(−(λ1 + λ2εi)n)∑+∞

n=0 exp(−(λ1 + λ2εi)n)
,

by using the known sum of the series that appear in the previous expressions
we have:

〈ni〉 = Gi
exp(λ1 + λ2εi)− 1 , (4.9)

with λ1 + λ2εi > 0.

To recover the expression of the statistical mechanics we impose that
λ1 = − µ

kBT
, λ2 = 1

kBT
where µ is the chemical potential.

Finally, we can conclude that the Fermi-Dirac and Bose-Einstein distribuitions
have been obtained and they are:

f(εi) = 〈ni〉
Gi

= 1
exp( εi−µkBT

)± 1
(4.10)

where the sign “+” is for fermions and the sign “-” is for bosons.
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4.5 Quantum Maximum Entropy Principle

In this section we will present the corresponding procedure for Maximum Entropy
Principle in the quantum case, even if it’s not trivial to extend the previous
procedure. In the classical case, given a probability function f(x) the entropy is
defined as

S = −kB
∫
f(x) log f(x)dx = −kB〈log f〉.

In the quantum case, the role of the distribution function f is played by the
density operator ρ̂. One defines, in analogy with the classical case, the quantum
entropy as follows:

S(ρ̂) = −kBtr(ρ̂ log ρ̂)

where tr is the trace of an operator [23]. The expression above should be
interpreted in the following way: let us suppose that ρ̂ is written in terms of
an orthonormal basis ψi (for sake of simplicity, we consider the discrete case)
i = 0, 1, 2, ...

ρ̂ =
∑
i

ρiPψi =
∑
i

ρi|ψi〉〈ψi|;

where ∑
i

ρi = 1, ρi ≥ 0,

and Pψi is the projection on the space generated by ψi and then

S(ρ̂) = −kB
∑
i

ρi log ρi.

Let us suppose that the average energy of the system is known

〈H〉 = tr(ρ̂H).

We should remember that the evolution equation for ρ̂ is given by

dρ̂

dt
= {ρ̂, H}.

At the equilibrium the state γ of the system doesn’t change and then ρ̂ (that it’s
in one-to-one correspondence with γ) doesn’t depend on the time. So, it implies
that [ρ̂, H] = 0.

Proposition 9 Let A,B be two observables. [A,B] = 0 if and only if there
exists a basis with respect to which both A and B have a diagonal representation.

We know that [ρ̂, H] = 0 then it follows that there exists a basis with respect
to which both ρ̂ and H assume the same diagonal form. Called (ψi) this basis

ρ̂ =
∑
i

ρiPψi =
∑
i

ρi|ψi〉〈ψi|
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H =
∑
i

εiψi =
∑
i

εi|ψi〉〈ψi|

〈H〉 =
∑
i

ρiεi.

In order to get ρ̂ at the equilibrium ρ̂eq, we have to maximize SQ under the
constraints ∑

i

ρeqi = 1;
∑
i

ρeqi εi = 〈H〉,

where H is an assigned value. (It represents the average of the macroscopic
energy), ρi ≥ 0 i = 1, 2, ...

0 = δ

[
S(ρ̂)− α

(
1−

∑
i

ρeqi

)
− β

(
〈H〉 −

∑
i

ρeqi εi

)]

0 = ∂

∂ρeqj
(S(ρ̂)) + α+ βεj = −kB log ρeqj + α− kB + βεj

ρeqj = z exp
(
− β

kB
εj

)
, exp

(
− β

kB
H

)
=
∑
i

exp
(
− β

kB
εi

)
Pψi .

z is the partition function; from the first constraint

z =

∑
j

exp
(
− β

kB
εj

)−1

= tr

(
exp

(
− β

kB
H

))
.

β is expressed as β = 1
T where T is the absolute temperature in analogy with

the classical case. Therefore

ρ̂ = 1
z

∑
j

exp
(
− εj
kBT

)
Pψj = 1

z
exp

(
− 1
kBT

H

)
=

exp
(
− H
kBT

)
tr
(

exp
(
− H
kBT

)) .
The internal energy is the following:

U = tr(ρ̂H) =

∑
j εj exp

(
− εj
kBT

)
∑
j exp

(
− εj
kBT

) =

= ∂

∂σ
ln

∑
j

exp(−εjσ)

 = ∂

∂σ
ln z,

where σ = 1
kBT

.
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4.5.1 Entropy including the statistics

The starting point is the entropy for the quantum system under consideration.
We take as entropy a generalization of the classical one for bosons (upper sign)
or fermions (lower sign). Let us introduce the operator

s(ρ̂) = −kB [ρ̂ ln ρ̂∓ (1± ρ̂) ln(1± ρ̂)], (4.11)

which must be intended in the sense of the functional calculus. The corresponding
quantum entropy reads

S(ρ̂) = tr{s(ρ̂)}

which can be viewed as a quantum Bose-Einstein (Fermi-Dirac) entropy.
Also in this case, we estimate ρ̂ with ρ̂MEP which is obtained by maximizing

S(ρ̂) under the constraints that some expectation values have to be preserved.
The quantum formulation of MEP is given in terms of expectation values

E1(t) = tr {ρ̂} (t) = 1, E2(t) = tr {ρ̂H} (t),

as follows: for fixed t

ρ̂MEP = argument maxS(ρ̂) (4.12)
under the constraints

tr{ρ̂MEP } = E1(t), tr{ρ̂MEPH} = E2(t), (4.13)

in the space of the Hilbert-Schmidt operators on L2(Rd,C) which are positive,
with trace one and such that the previous expectation values there exist.

If we introduce the vector of the Lagrange multipliers

η = (η0(x, t), η1(x, t)), (4.14)

the constrained optimization problem (4.12)-(4.13) can be rephrased as a
saddle-point problem for the Lagrangian L(ρ̂, η) in the space of the admissible ρ̂
and smooth function η.

If the Lagrangian L(ρ̂, η) is Gâteaux-differentiable with respect to ρ̂, the first
order optimality conditions require

δL(ρ̂, η)(δρ̂) = 0

for each Hilbert-Schmidt operators δρ̂ on L2(Rd,C) which is positive, with trace
one and such that the previous expectation values there exist.

The existence of the first order Gâteaux derivative is a consequence of the
following Lemma.

Lemma 1 If r(x) is a continuously differentiable increasing function on R+ then
tr{r(ρ̂)} is Gâteaux-differentiable in the class of the Hermitian Hilbert-Schmidt
positive operators on L2(Rd,C). The Gâteaux derivative along δρ is given by

δtr{r(ρ̂)}(δρ̂) = tr {r′(ρ̂)δρ̂} . (4.15)
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The extremality conditions for the unconstrained optimization problem are
similar to that of the semiclassical case, as expressed by the following lemma.

Lemma 2 The first order optimality condition for the optimization problem
(4.12)-(4.13) is equivalent to

ρ̂ = (s′)−1(Op~(η ·Ψ)) (4.16)

where (s′)−1 is the inverse function of the first derivative of s and Ψ is the
vector of weights, in our example Ψ = (1, H).

Proof. By applying Lemma 3, the Gâteaux derivative of the Lagrangian is given
by

δL(ρ̂,η)(δρ̂) = tr {(s′(ρ̂)−Op~(η ·Ψ)) δρ̂}

∀δρ̂ perturbation in the class of the Hermitian Hilbert-Schmidt positive operators
on L2(Rd,C). This implies

s′(ρ̂) = Op~(η ·Ψ).

�

Since the function s(x) is concave, s′(x) is invertible. Explicitly we have

(s′)−1(z) = 1
exp(z/kB)± 1 ,

where we have rescaled the Lagrange multipliers including the factor 1/kB , and
the operator solving the first order optimality condition reads

ρ̂∗ = (s′)−1(Op~(η ·Ψ)) = 1
exp(Op~(η ·Ψ))± 1 . (4.17)

Moreover, such an operator is a point of maximum for the Lagrangian.

Now, to complete the program we have to determine, among the smooth
functions, the Lagrange multipliers η by solving the constraints.

If the constraints equations have a solution η∗, altogether the MEP density
operator reads

ρ̂MEP = 1
exp [Op~ (η∗0(x, t) + η∗1(x, t)H)]± 1 . (4.18)

To determine conditions under which the constraints equations admit solu-
tions is a very difficult task. Even in the semiclassical case there are examples of
sets of moments that cannot be moments of a MEP distribution.

We will see in the following, how to determine them, in the case of phonons
and electrons transport.
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Chapter 5

Optimized hydrodynamical
model for charge transport
in graphene

In this chapter we will present the original result [38] where an hydrodynamical
model for charge transport in suspended monolayer graphene have been devised.

Some similar models have been developed in [10, 17, 27, 39–41] where closure
relations have been obtained by adopting the Maximum Entropy Principle (MEP).
In our work, we used some physical parameters present in the production terms
such as the acoustic phonon, the optical phonon and the K-phonon coupling
constants, to optimize the previous models.

They depend on the modelling of the energy band and scattering terms.
Here, we try to improve the hydrodynamical model proposed in [39] by an
optimisation of the parameters above through a minimisation of the difference
between velocity and energy, found with the considered hydrodynamical models
and the direct solution of the Boltzmann equation obtained with a Discontinuous
Galerkin (DG) method.

5.1 Boltzmann Equation

In a semiclassical kinetic setting, the charge transport in graphene is described,
in general, by four Boltzmann equations, one for electrons in the valence (π)
band and one for electrons in the conduction (π∗) band, that in turn can belong
to the K or K ′ valley. Here, we assume that the K and K ′ valleys are equivalent.
Moreover, by applying a gate voltage transversal with respect to the graphene
sheet, it is possible to modify the Fermi energy εF and therefore the charge
density. As shown in [45], if the Fermi energy is high enough (more than about
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0.2 eV), the contribution to the current due to holes in the valence band is
negligible with respect to that of electrons in the conduction band. Therefore,
only the transport equation for electrons in the conduction band is considered
and interband transitions are neglected. It can be written as

∂f

∂t
+ v · ∇xf −

e

~
E · ∇kf = C(k) (5.1)

where f = f(t,x,k) represents the distribution function of electrons in the
conduction band at position x, time t and wave-vector k. We denote by ∇x and
∇k the gradients with respect to the position and the wave vector, respectively.
The group velocity v is related to the energy band ε by v = 1

~∇kε. With a very
good approximation [42], a linear dispersion relation holds for the energy bands
around the Dirac points; so that, choosing the origin of the reference frame in
the k-space coinciding with a Dirac point, we have ε = ~vF |k|, where vF is the
(constant) Fermi velocity and ~ the Planck constant divided by 2π.

The Brillouin zone is extended to R2. The elementary (positive) charge is
denoted by e. Here the electric field E is assumed as external, and therefore
we do not include the Poisson equation. The right hand side of Eq.(5.1) is
the collision term which takes into account scatterings between electrons and
phonons. In suspended monolayer graphene three kinds of phonons have to be
considered: acoustic, optical and K phonons. We assume that phonons are in
thermal equilibrium.

The collision term can be written as

C(k) =
∫
R2
S(k′,k)f(t,x,k′)(1− f(t,x,k))dk′ −

∫
R2
S(k,k′)f(t,x,k)(1− f(t,x,k′))dk′

(5.2)

where the total transition rate is given by the sum of the contributions of the
above mentioned types of scatterings

S(k′,k) =
∑
ν

|G(ν)(k′,k)|2
[(
n(ν)

q + 1
)
δ
(
ε(k)− ε(k′) + ~ω(ν)

q
)

+ n(ν)
q δ

(
ε(k)− ε(k′)− ~ω(ν)

q
)]

The index ν labels the ν-th phonon mode, |G(ν)(k′,k)| is the matrix element,
which describes the scattering mechanism, due to phonons of type ν. The symbol
δ denotes the Dirac distribution, ω(ν)

q is the ν-th phonon frequency, n(ν)
q is the

Bose-Einstein distribution for the phonons of type ν

n(ν)
q = 1

e~ω
(ν)
q /kBT − 1

kB is the Boltzmann constant and T is the graphene lattice temperature
which, in this article, will be assumed constant.

For acoustic phonons, one usually considers the elastic approximation [44]

2n(ac)
q |G(ac)(k′,k)|2 = 1

(2π)2
πD2

ackBT

2~σmv2
p

(1 + cosϑk,k′), (5.3)
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where Dac is the acoustic phonon coupling constant, vp is the sound speed in
graphene, σm the graphene areal density, and ϑk,k′ is the convex angle between
k and k′.

There are three relevant optical phonon scatterings: the longitudinal optical
(LO), the transversal optical (TO) and the K-phonons. The matrix elements
are [48]

|G(LO)(k′,k)|2 + |G(TO)(k′,k)|2 = 2
(2π)2

πD2
O

σmωO
, (5.4)

|G(K)(k′,k)|2 = 2
(2π)2

πD2
K

σmωK
(1− cosθk,k′), (5.5)

where DO is the optical phonon coupling constant, ωO the optical phonon fre-
quency, DK is the K-phonon coupling constant and ωK the K-phonon frequency.

5.2 Hydrodynamical model - L6MM

We will investigate the model proposed in [39] which is based on the following
moments

ρ = 2
(2π)2

∫
R2
f(t,x,k)d2k density,

ρW = 2
(2π)2

∫
R2
f(t,x,k)ε(k)d2k energy density,

ρV = 2
(2π)2

∫
R2
f(t,x,k)v(k)d2k linear momentum density,

ρS = 2
(2π)2

∫
R2
f(t,x,k)ε(k)v(k)d2k energy-flux density.

The corresponding evolution equations are given by

∂

∂t
ρ+∇x(ρV) = ρCρ,

∂

∂t
(ρW ) +∇x(ρS) + eρE ·V = ρCW ,

∂

∂t
(ρV) +∇x(ρF(0)) + eρG(0) : E = ρCV,

∂

∂t
(ρS) +∇x(ρF(1)) + eρG(1) : E = ρCS.

Besides the average densities, velocities, energies and energy fluxes, additional
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quantities appear

ρCρ = 2
(2π)2

∫
R2
C(k)d2k, (5.6)

ρCV = 2
(2π)2

∫
R2

v(k)C(k)d2k, (5.7)

ρCW = 2
(2π)2

∫
R2
ε(k)C(k)d2k, (5.8)

ρCS = 2
(2π)2

∫
R2
ε(k)v(k)C(k)d2k, (5.9)

ρ

(
F(0)

F(1)

)
= 2

(2π)2

∫
R2

(
1
ε(k)

)
v(k)⊗ v(k)f(t,x,k)d2k, (5.10)

ρ

(
G(0)

G(1)

)
= 2

~(2π)2

∫
R2
f(t,x,k)∇k

(
v(k)

ε(k)v(k)

)
d2k, (5.11)

that must be expressed as functions of the basic variables ρ, W , V, S. Regarding
the production terms, they are given by the sum of contributions arising from
the different types of phonon scattering

CM = C
(ac)
M +

∑
ν=LO,TO,K

C
(ν)
M

with M = ρ,W,V,S. We recall that the generic term due to a single scattering
from a state k to a state k′ is given by (5.2). Explicit closure relations have been
obtained in [39] by adopting MEP and by linearising the resulting distribution
fMEP with respect to the vectorial Lagrange multipliers. We will refer to this
model as L6MM.

5.3 Formulation of the problem

By inserting fMEP in the definition of the quantities appearing in L6MM one gets
a closed system of hyperbolic balance equations. In particular, the production
terms contain the electron-phonon coupling parameters Dac, DΓ, DK . We try
to improve the accuracy of L6MM with respect to the mean values of velocity
and energy obtained by a direct solution of the Boltzmann equation, considering
Dac, DΓ, DK as fitting parameters which are allowed to vary with respect to the
values present in the Boltzmann equation.

So, in the equations (5.7)-(5.10), instead of Dac, D
2
Γ, D

2
K , we consider a1Dac,

a2D
2
Γ, a3D

2
K where the coefficients ai belong to a suitable admissible set we

specify below. In the case a1 = a2 = a3 = 1 one has the value used in the
Boltzmann equation which will be assumed as initial guess in the optimisation
procedure.

Several 1D space homogeneous solutions with different values of the only
significant component of the electric field E and Fermi energy εF have been
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considered. In this case the density is constant and depends on εF (see [43, 45]).
The steady state solutions are compared.

We take the following objective function

fobj(a) = α

[∑
i,j

|VL6MM (a, Ei, εFj , t)− VDG|
2

]1/2

+ β

[∑
i,j

|WL6MM (a, Ei, εFj , t)−WDG|2
]1/2

,

(5.12)

where VL6MM (a, Ei, εFj , t) and WL6MM (a, Ei, εFj , t) are velocity and energy at
time t, electric field Ei and Fermi level εFj computed with L6MM, respectively;
these functions depend on a = [a1, a2, a3]. VDG and WDG are the reference
values calculated with the DG method.

In order to considered the steady state, we have fixed t = 3 ps. Moreover, we
have set α = 1 and β = 0.1 to give more weight to the velocity with the aim to
get an improvement of the current. The parameters ai are allowed to vary in
the range [0.4− 2.5].

The complete formulation of the problem is as follows:
min fobj(a)
a0 = [1, 1, 1]
0.4 ≤ ak ≤ 2.5 k = 1, 2, 3.

(5.13)

Ten values of the electric field have been considered, from 0.1 V/µm to 1
V/µm with increments of 0.1 V/µm, and three Fermi levels, 0.4 eV, 0.5 eV and
0.6 eV.

To solve this constrained optimization problem we have adopted three ap-
proaches: the MATLAB optimization function fmincon [78], the genetic al-
gorithm, and the simulated annealing method.

5.4 Numerical Results

In this section we show the numerical results and highlight the difference between
three models: L6MM, DG and the Hydrodynamical model optimized with the
new constants a1Dac, a2D

2
Γ and a3D

2
K . The value of the objective function in

the initial guess a0 is fobj(a0) = 2.819.
By using the MATLAB function fmincon, the optimum is given by the

vector a = [0.400, 2.115, 0.400] with fobj(a) = 2.067. The genetic algorithm with
the number of maximum generation set equal to 100, gives as optimum point
a = [0.399, 2.088, 0.399] with fobj(a) = 2.082, while the simulated annealing
furnishes the optimal solution a = [0.401, 2.093, 0.434], with fobj(a) = 2.084.
The numerical results in the different cases are very similar, but the genetic
algorithm and simulated annealing are more expensive computationally than the
function fmincon.
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In Fig. 5.1 the transient solutions obtained with the direct solution of the
Boltzmann equation with the DG method, the original L6MM model and the
optimized L6MM model are compared. We get a noticeable improvement of
the asymptotic value of the velocity, at the expenses of a slight worsening of
the asymptotic values of the energy (note that the scales are different between
velocity and energy). However, from the point of view of the steady electric
current, the overall performance of the the improved L6MM is better than the
original L6MM.
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Figure 5.1: Velocity (on the left) and Energy (on the right) of charges in graphene,
calculated by DG, L6MM and compared with the optimized L6MM (blue line)
in the cases εF = 0.4eV and E = 0.2 V/µm (top), E = 0.3 V/µm (middle),
E = 0.4 V/µm (bottom).
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Chapter 6

Wigner equations for
phonons transport and
quantum heat flux

In this chapter we will apply the equations and the concepts introduced before
to the phonons transport. In particular, starting from the quantum Liouville
equation for the density operator and applying the Weyl quantization, Wigner
equations for the acoustic, optical and Z phonons are deduced. The equations
are valid for any solid, including 2D crystals like graphene. With the use of
Moyal’s calculus and its properties the pseudo-differential operators are expanded
up to the second order in ~ (see (3.8) for details about the justification of the
expansion in ~).

An energy transport model is obtained by using the moment method with
closure relations based on a quantum version of the Maximum Entropy Principle
by employing a relaxation time approximation for the production terms of energy
and energy flux. An explicit form of the thermal conductivity with quantum
correction up to ~2 order is obtained under a long time scaling for the most
relevant phonon branches.

In this chapter, the focus is on the acoustic and optical phonons dynamics
with a general dispersion relation. In order to get insights into the quantum
corrections, moment equations are deduced from the corresponding Wigner
equation. As in the classical case, one is led to a system of balance equations
that are not closed. So, the well-known problem of getting closure relations
arises, that is the issue to express the additional fields appearing in the moment
equations in terms of a set of fundamental variables. A sound way to accomplish
this task is resorting to a quantum formulation of the maximum entropy principle
[24] (hereafter QMEP), formulated for the first time by Jaynes [23]. Recently, a
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more formal theory has been developed in a series of papers [25, 26] with several
applications, for example for charge transport in semiconductors [9, 27–29]. The
interested reader is also referred to [17].

We apply QMEP to the Wigner equations assuming the energy density and
the energy flux for each species of phonons as basic fields. By expanding up
to the second order in ~, quantum corrections to the semiclassical case [30] are
deduced. In particular, in a long time scaling an asymptotic expression for the
heat flux is obtained. The latter consists of a Fourier-like part with a highly
nonlinear second order correction in the temperature gradient. Explicit formulas
for acoustic phonons in the Debye approximation are written.

The plan of the chapter is as follows. In section 6.1 we write down the
Wigner equations for phonons. Section 6.2 is dedicated to deducing the moment
equations whose closure relations are achieved by QMEP in section 6.3. In
section 6.4 a definition of local temperature is introduced by generalizing what
has been proposed in [30] and in the last section an asymptotic expression of the
quantum correction to the heat flux is obtained for the most relevant branches
of phonons. We remark that the results of this chapter are original and have
been presented in [31].

6.1 Phonon Wigner functions

By following the equations introduced in the Section 1.2, here we will describe
the dynamics of the time-dependent phonon Wigner functions for the several
phonon branches gµ(x,q, t), µ = LA, TA, . . . steams directly from the dynamics
of the corresponding density operator ρ̂µ(t), i.e. from the Von Neumann or
quantum Liouville equation

i~∂tρ̂µ(t) = [Ĥµ, ρ̂µ(t)] := Ĥµρ̂µ(t)− ρ̂µ(t)Ĥµ, (6.1)

where Ĥµ denotes the Hamiltonian operators of the µ-th phonons. If hµ =
Op−1

~ (Ĥµ) is the symbol associated with Ĥµ, then, from Eq.s (6.1), we obtain
the Wigner equation for each phonon species

i~∂tgµ(x,q, t) = {hµ, gµ(x,q, t)}∗ := hµ ∗ gµ(x,q, t)− gµ(x,q, t) ∗ hµ. (6.2)

If we neglect, temporarily, the phonon-phonon interactions, the Hamiltonian
symbol for each phonon branch is given by

hµ(q) = εµ(q) µ = LA, TA, . . . . (6.3)

By using the Moyal calculus, one can expand the second members of the
previous Wigner equations. Up to first order in ~2, we have

∂tgµ(t) + S[hµ]gµ(t) = 0, µ = LA, TA, . . . , (6.4)
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where1

S[hµ]gµ(x,q, t) := cµ · ∇xgµ(x,q, t)− ~2

24
∂3hµ(q)
∂qi∂qj∂qk

∂3gµ(x,q, t)
∂xi∂xj∂xk

+O(~4)

(6.5)
The previous equations describe only ballistic transport and include only the

harmonic contribution to the Hamiltonian. In order to describe also intra and
inter-branch phonon-phonon interactions, an additional anharmonic term Ĥint

encompassing the high order correction to the Hamiltonian operator must be
added. So doing, one gets the so-called Wigner-Boltzmann equations

∂tgµ(x,q, t) + S[hµ]gµ(x,q, t) = Cµ(x,q, t), µ = LA, TA, . . . , (6.6)

In the quantum case the expression of Cµ is rather cumbersome. For electron
transport in semiconductors the interested reader can see [32]. In certain regimes
it is justified to retain the same form of the semiclassical collision operator as
the semiclassical case [3].

The equation (6.6) represents our starting point for the phonon transport.
Note that for the optical phonons under the Einstein approximation for the
energy bands one has formally the same transport equation as the semiclassical
case because the group velocity vanishes.

An alternative derivation of (6.6) can be obtained by explicitly writing the
von Neumann equation (see [17, 27] for the details). One obtains

S[hµ]gµ(t) = i

~(2π)d
∫
R2d

[
εµ

(
q + ~

2 ν, t

)
− εµ

(
q − ~

2 ν, t

)]
×

gµ(x′,q, t) exp(−i(x′ − x) · ν)dx′dν, (6.7)

whose expansion is of course in agreement with the Moyal calculus.

6.2 Phonon Moment equations

Getting analytical solutions to equation (6.6) is a daunting task. Therefore, viable
approaches are numerical solutions based on finite differences or finite elements
[1] or stochastic solutions, e.g. those obtained with a suitable modification of the
Monte Carlo methods for the semiclassical Boltzmann equation [2]. However, it
is possible to have simpler, even if approximate, models resorting to the moment
method for the expectation values of interest. In fact, it is well known that,
although not positive definite, the Wigner function is real and the expectation
values of an operator can be formally obtained as an average of the corresponding
symbol with respect to gµ(x,q, t). So, for any regular enough weight function

1Summation over repeated indices is understood from 1 to d.
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Ψ(q), let us introduce the short notation

〈Ψ〉µ(x, t) := 1
(2π)d

∫
Rd

Ψ(q)gµ(x,q, t)dq, (6.8)

which represents a partial average with respect to the phonon momentum q.
More in general, if a = a(x,q) is a smooth symbol then it is possible to prove

that the expectation of the (hermitian) operator A = Op~(a) satisfies2

E[A] = tr(ρ̂A) =
∫
R2d

ρ(x,y, t)kA(x,y)dxdy = 1
(2π)d

∫
R2d

a(x,q)gµ(x,q, t)dxdq

=
∫
Rd
〈a〉µ(x, t)dx,

where kA(x,y) is the kernel of A.
We want to consider a minimum set of moments whose physical meaning is

well clear. In particular, we shall consider the phonon energy density and energy
flux density of each branch

Wµ(x, t) = 〈hµ〉µ(x, t), Qµ(x, t) = 〈hµcµ〉µ(x, t). (6.9)

Note that the latter is directly related to the heat flux.
The evolution equations for Wµ(x, t) and Qµ(x, t) are obtained by multiplying

the relative Wigner equation by hµ(q), and hµ(q)cµ and integrating with respect
to q

∂tWµ(x, t) + 1
(2π)d

∫
Rd
hµ(q)S[hµ]gµ dq = 1

(2π)d
∫
Rd
hµ(q)Cµ dq,

∂tQµ(x, t) + 1
(2π)d

∫
Rd
hµ(q)cµS[hµ]gµ dq = 1

(2π)d
∫
Rd
hµ(q)cµCµ dq.

µ = LA, TA, . . . .(6.10)

We implicitly assume that the resulting integrals there exist, at least in the
principal value sense. In order to get some global insight from eq.s (6.10), we
formally assume the following expansions for each phonon branch3

gµ(x,q, t) = g(0)
µ (x,q, t) + ~2g(2)

µ (x,q, t) + o(~2). (6.11)

It is possible to prove, at least formally [7], that the semiclassical Boltzmann
equation is recovered from the Wigner equation as ~→ 0+. Therefore, g(0)

µ (x,q, t)
can be considered as the solution fµ of the semiclassical transport equation.
Accordingly, we write

Wµ = W (0)
µ + ~2W (2)

µ + o(~2), Qµ = Q(0)
µ + ~2Q(2)

µ + o(~2), (6.12)
2Here we are considering a fixed instant of time.
3The coefficients of the odd powers in ~ are assumed zero in according to the previous

Moyal expansion.
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where

W (0)
µ = 1

(2π)d
∫
Rd
hµg

(0)
µ (x,q, t)dq, W (2)

µ = 1
(2π)d

∫
Rd
hµg

(2)
µ (x,q, t)dq,

Q(0)
µ = 1

(2π)d
∫
Rd
hµcµg(0)

µ (x,q, t)dq, Q(2)
µ = 1

(2π)d
∫
Rd
hµcµg(2)

µ (x,q, t)dq.

Regarding the moments of the collision terms, only with drastic simplifications
analytical expressions can be deduced. In analogy with the time relaxation
approximation, we assume that the r.h.s. of eq.s (6.10) are expressed as relaxation
time terms

1
(2π)d

∫
Rd
hµ(q)Cµ dq = −

Wµ −WLE
µ

τWµ
= −W

(0)
µ −W (0)LE

µ

τWµ
− ~2W

(2)
µ −W (2)LE

µ

τWµ
+ o(~2),

1
(2π)d

∫
Rd
hµ(q)cµCµ dq = −Qµ

τQ
µ

= −Q(0)
µ + ~2Q(2)

µ

τQ
µ

+ o(~2),

where
WLE
µ = 1

(2π)d
∫
Rd
hµ(q)gLEµ dq.

Note that we have used the fact that the local equilibrium values of the energy-
flux QLE

µ vanishes. The energy and energy-flux relaxation times, τWµ and τQ
µ

respectively, are assumed to depends on the temperature, which will be defined
in the next section, of the relative branch. (see for example [33]).

Altogether, the resulting model is made of the following fluid-type equations
∂tWµ + ∂(Qr)µ

∂xr
− ~2

24
∂3(Tijk)µ
∂xi∂xj∂xk

= −W
(0)
µ −W (0)LE

µ

τWµ
− ~2W

(2)
µ −W (2)LE

µ

τWµ
+ o(~2)

∂t(Qr)µ + ∂(Jri)µ
∂xi

− ~2

24
∂3(Urijk)µ
∂xi∂xj∂xk

= − (Q(0)
r )µ + ~2(Q(2)

r )µ
τQ
µ

+ o(~2),

(6.13)

where Jµ = J(0)
µ + ~2J(2)

µ with components

(J(0)
ri )µ = 1

(2π)d
∫
Rd

(cµ)r(cµ)ihµ(q)g(0)
µ (x,q, t)dq,

(J(2)
ri )µ = 1

(2π)d
∫
Rd

(cµ)r(cµ)ihµ(q)g(2)
µ (x,q, t)dq,

and the complete symmetric tensors Tµ and Uµ have components

(Tijk)µ = 1
(2π)d

∫
Rd

hµ(q) ∂3hµ(q)
∂qi∂qj∂qk

g(0)
µ (x,q, t)dq,

(Urijk)µ = 1
(2π)d

∫
Rd

(cµ)rhµ(q) ∂3hµ(q)
∂qi∂qj∂qk

g(0)
µ (x,q, t)dq.
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If we split into zero and first order in ~2, the evolution equations read

∂tW
(0)
µ +∇x ·Q(0)

µ = −W
(0)
µ −W (0)LE

µ

τWµ
(6.14)

∂tW
(2)
µ +∇x ·Q(2)

µ −
1
24 (Tijk)µ = −W

(2)
µ −W (2)LE

µ

τWµ
, (6.15)

∂t(Q(0)
r )µ + ∂(J(0)

ri )µ
∂xi

= − (Q(0)
r )µ
τQ
µ

, (6.16)

∂t(Q(2)
r )µ + ∂(J(2)

ri )µ
∂xi

− 1
24(Urijk)µ = − (Q(2)

r )µ
τQ
µ

. (6.17)

The zero order equations are the model already investigated in several papers
[8, 30] (for specific materials see also [34, 35]), where is proved that it is a
hyperbolic system of conservation law, while the first order corrections in ~2

introduce dispersive terms. This is not surprising on account of the nonlocal
character of the quantum evolution equations.

6.3 QMEP for the closure relations

The evolution equations (6.14)-(6.17) do not form a closed system of balance laws.
If we assume the energies Wµ and the energy-fluxes Qµ as the main fields, in
order to get a set of closed equations we need to express the additional fields Jµ,
Tµ and Uµ as functions of Wµ and Qµ. A successful approach in a semiclassical
setting is that based on the Maximum Entropy Principle (MEP) (see also [17] for
a complete review) which is based on a pioneering paper of Jaynes [23, 24] who
also proposed a way to extend the approach to the quantum case (see Section
4.5).

Therefore, we take as entropy a generalization of the classical one for bosons.
The entropy of the µ-th phonon branch reads

S(ρ̂µ) = tr{s(ρ̂µ)}

which can be viewed as a quantum Bose-Einstein entropy.
According to MEP, we estimate ρ̂µ with ρ̂MEP

µ which is obtained by max-
imizing S(ρ̂µ) under the constraints that some expectation values have to be
preserved. In the semiclassical point case, one maximizes the entropy preserving
the values of the moments we have taken as basic field variables

(Wµ(x, t),Qµ(x, t)) = 1
(2π)d

∫
Rd

Ψµ(q)gµ(x,q, t)dq =

= 1
(2π)d

∫
Rd

Ψµ(q)gMEP
µ (x,q, t)dq, (6.18)
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where
Ψµ(q) = (hµ(q), cµhµ(q)) (6.19)

is the vector of the weight functions and gMEP
µ is the Wigner function associated

with ρ̂MEP
µ . In the previous relations the time t and position x must be considered

as fixed.
The quantum formulation of MEP is given in terms of expectation values

E1(t) = tr {ρ̂µOp~(hµ(q))} (t), E2(t) = tr {ρ̂µOp~(cµhµ(q))} (t),

as follows: for fixed t

ρ̂MEP
µ = argument maxS(ρ̂µ) (6.20)
under the constraints

tr{ρ̂MEP
µ Op~(hµ(q))} = E1(t), tr{ρ̂MEP

µ Op~(cµhµ(q))} = E2(t),(6.21)

in the space of the Hilbert-Schmidt operators on L2(Rd,C) which are positive,
with trace one and such that the previous expectation values there exist. Note
that we are applying the maximization of the entropy for each phonon branch
separately. In other words, we are requiring the additivity of the entropy.

If we introduce the vector of the Lagrange multipliers

ηµ = (η0µ(x, t),η1µ(x, t)), (6.22)

the vector of the moments

m[ρµ](x, t) := mµ(x, t) = 1
(2π)d

∫
Rd

Ψµ(q)gµ(x,q, t)dq, (6.23)

and the vector of the moments which must be considered as known

Mµ(x, t) := (Wµ(x, t),Qµ(x, t)) , (6.24)

the constrained optimization problem (6.20)-(6.21) can be rephrased as a saddle-
point problem for the Lagrangian

Lµ(ρ̂µ,ηµ) = S(ρ̂µ)−
∫
Rd
ηµ · (mµ(x, t)−Mµ(x, t)) dx

= S(ρ̂µ)− tr {ρ̂µOp~(ηµ ·Ψµ(q))}+
∫
Rd
ηµ ·Mµ(x, t) dx(6.25)

in the space of the admissible ρ̂µ and smooth function ηµ.
If the Lagrangian Lµ(ρ̂µ,ηµ) is Gâteaux-differentiable with respect to ρ̂µ,

the first order optimality conditions require

δLµ(ρ̂µ,ηµ)(δρ̂) = 0

for each Hilbert-Schmidt operators δρ̂ on L2(Rd,C) which is positive, with trace
one and such that the previous expectation values there exist.
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Using the results presented in Subsection 4.5.1, the operator solving the first
order optimality condition reads

ρ̂∗µ = (s′)−1(Op~(ηµ ·Ψµ)) = 1
exp(Op~(ηµ ·Ψµ))− 1 . (6.26)

where we have rescaled the Lagrange multipliers including the factor 1/kB.
Moreover, such an operator is a point of maximum for the Lagrangian.

Now, to complete the program we have to determine, among the smooth
functions, the Lagrange multipliers ηµ by solving the constraint

tr {ρ̂µOp~(ηµ · (hµ(q), cµhµ(q))} −
∫
Rd
ηµ ·Mµ(x, t) dx = 0. (6.27)

If such an equation has a solution η∗µ, altogether the MEP density operator reads

ρ̂MEP
µ = 1

exp
[
Op~

(
η∗0µ(x, t)hµ(q) + η∗1µ(x, t) · cµhµ(q)

)]
− 1

. (6.28)

To determine conditions under which the equation (6.27) admits solutions is
a very difficult task. Even in the semiclassical case there are examples (see [36])
of sets of moments that cannot be moments of a MEP distribution.

We will directly find out the solution at least up to first order in ~2.
Once the MEP density function has been determined, the MEP Wigner

function is given by
gMEP
µ (x,q, t) = Op−1

~ (ρ̂MEP
µ )

which can be used to get the necessary closure relations by evaluating the
additional fields with gµ replaced by gMEP

µ .
We remark that the constraints (6.27) can be more conveniently expressed as

1
(2π)d

∫
R2d
ηµ ·Ψµ(x, t)gMEP

µ (x,q, t) dq dx−
∫
Rd
ηµ ·Mµ(x, t) dx = 0

and indeed we will require, in analogy with the semiclassical case, the stronger
conditions

1
(2π)d

∫
Rd

Ψµ(x, t)gMEP
µ (x,q, t) dq = Mµ(x, t),

where the Lagrange multipliers enter through gMEP
µ (x,q, t).

6.3.1 Determination of the Lagrange Multipliers

For the sake of making lighter the notation, let us consider a single branch and
drop the index µ in the Wigner function in this section. We look formally for a
solution in powers of ~

gMEP = gMEP
0 + ~gMEP

1 + ~2gMEP
2 + ... (6.29)
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firstly without taking into account the dependence of the Lagrange multipliers
on ~.

Of course, on account of the properties of the Weyl quantization, gMEP
0 is

equal to the semiclassical counterpart [13]

gMEP
0 = 1

exp(ξ)− 1

where
ξ = η0(x, t)h(q) + η1(x, t) · ch(q).

In order to determine the higher order terms gMEP
k , k ≥ 1, given a symbol

a(x,q) let us introduce the so-called quantum exponential Exp(a) defined as

Exp(a) = Op−1
~ [exp(Op~(a))]

which can be expanded as

Exp(a) = Exp0(a) + ~Exp1(a) + ~2Exp2(a) + ... (6.30)

Proposition Let a(x,q) be a smooth symbol. Then the following expansion is
valid

Exp(a) = exp(a)− ~2

8 exp(a)
(

∂2a

∂xi∂xj

∂2a

∂qi∂qj
− ∂2a

∂xi∂qj

∂2a

∂qi∂xj
+ 1

3
∂2a

∂xi∂xj

∂a

∂qi

∂a

∂qj

−2
3

∂2a

∂xi∂qj

∂a

∂qi

∂a

∂xj
+ 1

3
∂2a

∂qi∂qj

∂a

∂xi

∂a

∂xj

)
+O(~4),(6.31)

where Einstein’s convention has been used.
The proof can be found for example in [26].
By using what is proved in [29], we have

gMEP
2n+1 = 0, n ≥ 0, (6.32a)

gMEP
2n = −

n−1∑
m=0

∑
k+l+m=n

Exp2k(ξ) ∗2l gMEP
2m

exp(ξ)− 1 , n ≥ 1 (6.32b)

where ∗2l are the even terms of the Moyal product expansion.

In particular
gMEP

1 = 0

and

gMEP
2 = −1

8
exp(ξ)

(exp(ξ)− 1)3

[
(exp(ξ) + 1)

(
∂2ξ

∂xi∂xj

∂2ξ

∂qi∂qj
− ∂2ξ

∂xi∂qj

∂2ξ

∂qi∂xj

)
− (exp(2ξ) + 4 exp(ξ) + 1)

3(exp(ξ)− 1)

(
∂2ξ

∂xi∂xj

∂ξ

∂qi

∂ξ

∂qj
− 2 ∂2ξ

∂xi∂qj

∂ξ

∂qi

∂ξ

∂xj
+ ∂2ξ

∂qi∂qj

∂ξ

∂xi

∂ξ

∂xj

)]
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Therefore, up to first order in ~2 we have

gMEP = gMEP
0 + ~2gMEP

2 .

and the constraints for each phonon branch read

W = 1
(2π)d

∫
Rd

h(q)
exp(ξ)− 1dq + ~2 1

(2π)d
∫
Rd
h(q)gMEP

2 dq, (6.33)

Q = 1
(2π)d

∫
Rd

ch(q)
exp(ξ)− 1dq + ~2 1

(2π)d
∫
Rd

ch(q)gMEP
2 dq. (6.34)

The previous equations form a nonlinear system of PDEs for the Lagrange
multipliers whose analytical solution seems very difficult to get. Indeed, the
situation is even more cumbersome because in a numerical scheme the inversion
of the constraints should be performed at each time step.

A viable strategy is to use the Lagrange multipliers as field variables by
rewriting the evolution equations (6.13) in the form

∂W

∂ηk

∂ηk
∂t

+ ∂Qi

∂ηk

∂ηk
∂xi
− ~2

24

(
∂

∂ηk

∂2Tijk

∂xj∂xk

)
∂ηk
∂xi

= −W −W
LE

τW
,(6.35)

∂Qi

∂ηk

∂ηk
∂t

+ ∂Jir
∂ηk

∂ηk
∂xr
− ~2

24

(
∂

∂ηh

∂2Uijkr

∂xk∂xr

)
∂ηh
∂xj

= −Qi
τQ , (6.36)

getting a highly nonlinear system of PDEs.
A further simplification can be obtained by expanding the Lagrange multipli-

ers as
η = η(0) + ~2η(2) + o(~2).

Therefore, the basic fields are also expanded with respect to ~2

W = W (0) + ~2W (2) + o(~2), Q = Q(0) + ~2Q(2) + o(~2)

where

W (0) = 1
(2π)d

∫
Rd

h(q)
exp(ξ(0))− 1dq,

W (2) = − 1
(2π)dη

(2) ·
∫
Rd

exp(ξ(0)) h(q)Ψ(
exp(ξ(0))− 1

)2 dq + 1
(2π)d

∫
Rd
h(q)gMEP

2 (η(0))dq,

Q
(0)
i = 1

(2π)d
∫
Rd

cih(q)
exp(ξ(0))− 1dq,

Q
(2)
i = − 1

(2π)dη
(2) ·

∫
Rd

ciΨ exp(ξ(0))h(q)
(exp(ξ(0))− 1)2 dq + 1

(2π)d
∫
Rd
cih(q)gMEP

2 (η(0))dq,

with ξ(0) = η(0) ·Ψ.
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The balance equations become

∇η(0)W (0) ∂

∂t
(η(0))T +

d∑
i=1

[
∇η(0)Q

(0)
i

∂

∂xi
(η(0))T

]
= −W

(0) −W (0)LE

τW
,(6.37)

∇η(0)Q
(0)
i

∂

∂t
(η(0))T +

d∑
j=1

[
∇η(0)J

(0)
ij

∂

∂xj
(η(0))T

]
= −Q

(0)
i

τQ , (6.38)

∂tW
(2) +∇x ·Q(2) − 1

24
∂3

∂xi∂xj∂xk
T(0)
ijk = −W

(2) −W (2)LE

τW
, (6.39)

∂tQ(2)
i +∇x · J(2)

ir −
1
24

∂3

∂xi∂xj∂xk
U(0)
rijk = −Q(2)

i

τQ . (6.40)

with

T(0)
ijk = − 1

(2π)d
∫
Rd
h(q)gMEP

0 (η(0)) ∂3

∂qi∂qj∂qk
h(q)dq

U(0)
rijk = − 1

(2π)d
∫
Rd

crh(q)gMEP
0 (η(0)) ∂3

∂qi∂qj∂qk
h(q)dq

We observe that the equations (6.37)-(6.38) decouple. Once they are solved,
one can get the second order term of the Lagrange multipliers from (6.39)-(6.40)
which form a linear system for η(2). This is rather beneficial from a computational
point of view

Proposition 10 At zero order in ~2 the map η →M(η) is (locally) invertible.

Proposition 11 The equations (6.37)-(6.38) form a symmetric hyperbolic sys-
tem of balance laws.

The proofs can be found in [17].

6.4 Local equilibrium temperature

The concept of temperature out of equilibrium is a subtle topic and still a matter
of debate. In the case of charge transport in semiconductors often the phonons
are considered as a thermal bath and under some reasonable assumptions one
can hypothesize that the electrons are in thermal equilibrium with the bath. In
general if the dynamics of the phonons must be included, a thermal bath for
these does not exist, unless a thermostated system is considered. Therefore, we
need to introduce a local equilibrium temperature for the overall phonon system.

In statistical mechanics, one of the most reasonable and adopted ways to
generalize the concept of temperature in a non-equilibrium state is that of relating
it to the Lagrange multipliers associated with the energy constraint. For the
phonon transport in graphene, an approach based on the Lagrange multipliers
was followed in [30] (which the interested reader is referred to for the details).
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Let us recall here the main features. At equilibrium, the phonon temperatures
and the corresponding Lagrange multipliers are related by

kB Tµ(x) = 1
η0,µ(x) = 1

η
(0)
0,µ(x)

− ~2 η
(2)
0,µ(x)

(η(0)
0,µ(x))2

+ o(~2).

If we assume that such relations hold, even out of equilibrium, the definition of
the local temperature can be given in terms of the Lagrangian multipliers as
follows.

Definition 11 The local temperature of a system of two or more branches of
phonons is TLE := 1

kBηLE0 (x) , where ηLE0 (x) is the common Lagrange multiplier
that the occupation numbers of the branches, taken into account, would have if
they were in the local thermodynamic equilibrium corresponding to their total
energy density, that is, the following:

W (ηLE0 (x)) :=
∑
µ

Wµ(η0,µ(x)) =
∑
µ

Wµ(ηLE0 (x)), (6.41)

where the sum runs over all the phonon branches.

At global equilibrium the temperature is constant T = T̄ and the Wigner
function reduced to the Bose -Einstein distribution

gµ =
[
exp(hµ(q)/kBT̄ )− 1

]−1
, (6.42)

with the same temperature for each phonon branch.
Let us consider a small perturbation δTµ(x) of the temperature in the sense

that δTµ(x)/T̄ � 1. We can expand gMEP
µ in powers of δTµ(x)/T̄

gMEP
µ =

[
exp(hµ(q)/kBT̄ )− 1

]−1 +
[
exp(hµ(q)/kBT̄ )− 1

]−2 exp(hµ(q)/kBT̄ )hµ(q)
kBT̄

δTµ(x)
T̄

+~2T̄
∂gMEP

2,µ (T̄ )
∂T

δTµ

T̄
+ o

(
δTµ

T̄
+ ~2 + ~2 δTµ

T̄

)
.

Note that gMEP
2,µ (T̄ ) is zero because ∂ξ

∂xi
= ∂ξ

∂T

∂T

∂xi
= 0 in the case of uniform

temperature.

6.5 Heat flux in the stationary regime

In order to have a guess of the main features of the constitutive relations deduced
with QMEP, we would like to get some asymptotic expression for the heat flux
which can be compared with that in the semiclassical case. In particular, in order
to devise a suitable coefficient of thermal conductivity, we try to put (Qr)µ in
form as close as possible to the Fourier one. Since in the semiclassical case, the
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Fourier form is obtained from the hyperbolic balance equations in the stationary
regime, we consider a steady state.

In such a case the time derivatives can be dropped and one gets

Qµ = −τQ
[
∇x · Jµ −

~2

(2π)d
∂3

∂xi∂xj∂xk

∫
Rd

cµ
hµ(q)

24 gMEP
0,µ (η(0)

µ ) ∂3hµ(q)
∂qi∂qj∂qk

dq
]

+ o(~2).

(6.43)
The relation between the Lagrange multipliers and the basic fields, as seen, can
hardly be inverted analytically but a numerical procedure is necessary. However,
if we consider a situation where the system is not too far from the equilibrium
an expansion of the Lagrange multipliers around the equilibrium state can be
performed. At equilibrium gMEP

µ is isotropic and therefore ηequil1,µ = 0 and in a
neighborhood of the equilibrium η1,µ remains small.

More in general, in the spirit of Levermore theory of moments [37], we can
consider the distribution depending on both energy density and energy-flux
density as a perturbation of the distribution when only Wµ is the macroscopic
field variable. Consistently, we assume that η1,µ remains small. Formally we
introduce an anisotropy parameter 0 < δ � 1 and require

ηµ =
(

1
kBTµ

, δη1,µ

)
. (6.44)

Note that in this way we are not necessarily restricted to situation close to
equilibrium. So the temperature can vary without any constraints. By expanding
in power of δ, one gets, at zero order in ~2,

gMEP
0,µ = [exp(hµ(q)/kBTµ)− 1]−1−δ [exp(hµ(q)/kBTµ)− 1]−2 exp(hµ(q)/kBTµ)hµ(q)η1,µ ·cµ+O(~2+δ2).

We remark that the higher order terms do not enter the constitutive relation for
Qµ and observe that ∀n ∈ Sd∫

Sd
ni1ni2 · · ·nirdΩ = 0 if r odd,

Sd being the unit sphere in Rd.
The previous relation implies∫

Rd
cµ ⊗ cµ ⊗ · · · ⊗ cµ︸ ︷︷ ︸

r times
hµ(q) [exp(hµ(q)/kBTµ)− 1]−1

dq = 0

if r is odd because the Bose-Einstein distribution is isotropic(remember that the
dispersion relation is assumed isotropic).
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At the zero order in ~2 we have

Q(0)
µ = −τQ∇x · J(0)

µ = − τQ

(2π)d∇x

∫
Rd

cµ ⊗ cµhµ(q)gMEP
0,µ (η(0)(x,q, t))dq + o(δ)

= − τQ

(2π)d∇x

∫
Rd

cµ ⊗ cµhµ(q) [exp(hµ(q)/kBTµ)− 1]−1
dq + o(δ)

= − τQ

(2π)d
∫
Rd

cµ ⊗ cµhµ(q) ∂

∂Tµ
[exp(hµ(q)/kBTµ)− 1]−1

dq∇xTµ + o(δ)

= − τQ

(2π)dkBT 2
µ

∫
Rd

cµ ⊗ cµh2
µ(q) exp(hµ(q)/kBTµ)

(exp(hµ(q)/kBTµ)− 1)2 dq∇xTµ + o(δ),

which can be written in the Fourier form

Q(0)
µ = −K(0)

µ ∇xTµ

with the thermal conductivity tensor given by

K(0)
µ = τQ

(2π)dkBT 2
µ

∫
Rd

cµ ⊗ cµh2
µ(q) exp(hµ(q)/kBTµ)

(exp(hµ(q)/kBTµ)− 1)2 dq.

It is evident that K(0)
µ is positive definite.

Therefore, if hµ(q) is isotropic then K(0)
µ is isotropic as well

K(0)
µ = 1

d
k(0)I,

with I identity matrix of order d and k(0) the zero order trace

k(0) = τQ

(2π)dkBT 2
µ

∫
Rd
|cµ|2 h2

µ(q) exp(hµ(q)/kBTµ)
(exp(hµ(q)/kBTµ)− 1)2 dq.

The second order correction in ~2 reads

Q(2)
µ = − τQ

(2π)d∇x

∫
Rd

cµ ⊗ cµhµ(q)gMEP
2,µ (η(0)(x,q, t))dq

+δ τQ

(2π)d
∂3

∂xi∂xj∂xk

∫
Rd

cµ
hµ(q)

24 [exp(hµ(q)/kBTµ)− 1]−2 exp(hµ(q)/kBTµ)hµ(q)η1,µ

·cµ
∂3

∂qi∂qj∂qk
hµ(q)dq + o(δ).

Indeed, if we are close to equilibrium the last term in the previous relation is
of order ~2δ and can be considered negligible for small deviations from local
equilibrium. In any case the remaining part gives a highly nonlinear correction
which cannot be put in a Fourier form.

In the next subsections we will analyze the quantum corrections in the most
relevant phonon branches. Of course the optical phonons, and in particular the
K-phonons in graphene, have a zero group velocity in the Einstein approximation
and, as a consequence, they do not contribute directly to the thermal diffusion
even if they play an indirect role on account of the scattering with the acoustic
branches.
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6.5.1 Acoustic phonons

In this subsection and in the next one only the zero order terms in δ are
considered. In the case of the longitudinal and transversal acoustic phonons in
the Debye approximation for a single branch the corresponding symbol of the
phonon Hamiltonian reads cac|q| and therefore

k(0)
ac = τQ

(2π)dkBT 2

∫
Rd
c4ac|q|2

exp(cac|q|/kBT )
(exp(cac|q|/kBT )− 1)2 dq

= τQc4ac
(2π)dkBT 2 meas(Sd)

∫ +∞

0
|q|d+1 exp(cac|q|/kBT )

(exp(cac|q|/kBT )− 1)2 d|q|

= kBτ
Qc2−dac

(2π)d meas(Sd) (kBT )d
∫ +∞

0
ξd+1 exp(ξ)

(exp(ξ)− 1)2 d ξ (6.45)

with now ξ = cac|q|/kBT and

meas(Sd) = 2πd/2
Γ(d/2)

the measure of Sd, Γ(x) being the Euler gamma function. The previous integral is
convergent for any d ∈ N. Observe that we get a dependence on the temperature
proportional to T d.

We observe that

gMEP
2 = −1

8
c2ac exp(ξ)

(exp(ξ)− 1)3

{
(exp(ξ) + 1)
k2
BT (x, t)4

[
2|∇xT |2 − T∆xT + ninj

(
T

∂2T

∂xi∂xj
− 3 ∂T

∂xi

∂T

∂xj

)]
−cac(exp(2ξ) + 4 exp(ξ) + 1)|q|

3k3
B(exp(ξ)− 1)T (x, t)5

[
(δij − ninj)

∂T

∂xi

∂T

∂xj
− ninjT

∂2T

∂xi∂xj

]}
.

and, therefore, the second order correction to the heat flux is given by

Q(2) = −τQ∇x · J(2)

with

J(2) = 1
(2π)d

∫
Rd

cac ⊗ cach(q)gMEP
2 dq = c2ac

(2π)d
∫
Rd
nhnkh(q)gMEP

2 dq eh ⊗ ek := J(2)
hk eh ⊗ ek

(e1, e2, · · · , ed) being an orthonormal basis of Rd.
By taking into account the well-known formulas∫

Sd

nhnkdΩ = meas(Sd)
d

δhk,∫
Sd

ninjnhnkdΩ = meas(Sd)
d(d+ 2) (δijδhk + δihδjk + δikδjh),

the components of J(2) read
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J(2)
hk = − c5ac

8(2π)d
meas(Sd)

d

1
k2
BT

4(x, t)

(
kBT

cac

)d+1

{[(
2d+ 1
d+ 2 I1(d)− d+ 1

3(d+ 2)I2(d)
)
|∇xT |2 −

(
d+ 1
d+ 2I1(d)− I2(d)

3(d+ 2)

)
T∆xT

]
δhk

+ 2
3(d+ 2)

[
(I2(d)− 9I1(d)) ∂T

∂xh

∂T

∂xk
+ (3I1(d) + I2(d))T ∂2T

∂xh∂xk

]}
,

where

I1(d) =
∫ +∞

0

exp(ξ)(exp(ξ) + 1)
(exp(ξ)− 1)3 ξddξ,

I2(d) =
∫ +∞

0

exp(ξ)(exp(2ξ) + 4 exp(ξ) + 1)
(exp(ξ)− 1)4 ξd+1dξ.

From the above results one gets the second order correction to the energy flux
density

(Q(2))h = τQ

8(2π)d c
4−d
ac

meas(Sd)
d

kd−1
B T d−4(x, t){

(d− 3)
(

2d− 5
d+ 2 I1(d)− d− 1

3(d+ 2)I2(d)
)
|∇xT |2

∂T

∂xh

−
(
d2 − d+ 4
d+ 2 I1(d)− d

3(d+ 2)I2(d)
)
T
∂T

∂xh
∆xT

+
(

6d− 8
d+ 2 I1(d)− 4

3(d+ 2)I2(d)
)
T

∂2T

∂xh∂xk

∂T

∂xk
+
(

1− d
d+ 2I1(d) + 1

d+ 2I2(d)
)
T 2 ∂∆xT

∂xh

}
.

(6.46)

The integrals I1(d) and I2(d) are divergent in the cases d = 1 and d = 2.
As a consequence, the quantum corrections are valid only in the bulk (d = 3)
case where I1(3) = π2, I2(3) = 4π2. This peculiarity is physically related to the
density of states and the form of the energy dispersion relations and cannot be
ascribed to the approximation of the FBZ with all Rd because the singularity
appears as the momentum tends to zero, that is at the center Γ of the FBZ. Since
this pathology is not present for quadratic dispersion relations (see the next
subsection) such as for Z-phonons, to overcome the divergence of the integrals
I1(d) and I2(d) a viable way could be to quadratically regularize the dispersion
relation in a suitable small neighborhood of the Γ point of the FBZ and matching
it with a linear function for higher energies.

6.5.2 Quadratic dispersion relations and Z-phonons.

The Z-phonons have a quadratic dispersion relation hZA(q) = ᾱ|q|2, which is
also a rather common approximation in a neighborhood of a energy minimum,
and the group velocity is cZA(q) = 2ᾱq.
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One gets the following zero order thermal conductivity

k
(0)
ZA = 2kBτQ

(2π)d
(kBT ) d2 +1

ᾱ
d
2−1

meas(Sd)
∫ +∞

0

exp(ξ)
(exp(ξ)− 1)2 ξ

d
2 +2dξ (6.47)

with ξ = ᾱ|q|2

kBT
. Observe that previous integral is always convergent for any d

and that k(0)
ZA depends on the temperature as T d

2 +1.
The second order correction to the distribution function reads

gMEP
2 = − 1

4
ᾱξ

kBT 3

[
exp(ξ)(exp(ξ) + 1)

(exp(ξ)− 1)3

(
2|∇xT |2 − T∆xT − 2 ∂T

∂xi

∂T

∂xj
ninj

)

+ exp(ξ)(exp(2ξ) + 4 exp(ξ) + 1)
3(exp(ξ)− 1)4 ξ

(
2T ∂2T

∂xi∂xj
ninj − |∇xT |2

)]
and one gets

J(2)
hk = − ᾱ

2− d2 k
d
2 +1
B T

d
2−1

(2π)d
meas(Sd)

2d{[(
2d+ 2
d+ 2 H1(d)− 1

3H2(d)
)
|∇xT |2 −

(
H1(d)− 2

3(d+ 2)H2(d)
)
T∆xT

]
δhk

− 4
d+ 2

[
H1(d) ∂T

∂xh

∂T

∂xk
− 1

3H2(d)T ∂2T

∂xh∂xk

]}
where

H1(d) =
∫ +∞

0

exp(ξ)(exp(ξ) + 1)
(exp(ξ)− 1)3 ξ

d
2 +2dξ,

H2(d) =
∫ +∞

0

exp(ξ)(exp(2ξ) + 4 exp(ξ) + 1)
(exp(ξ)− 1)4 ξ

d
2 +3dξ.

Note that the integrals H1(d) and H2(d) are convergent in the two and three
dimensional cases which are the relevant ones from a physical point of view. For
d = 1 they diverge but this case can be considered as an oversimplification.

By evaluating the divergence of the completely symmetric second order tensor
J(2) one finds out the second order correction to the energy-flux density

(
Q(2)

)
h

= τQ ᾱ2− d2 k
d
2 +1
B

(2π)d
meas(Sd)

2d T
d
2−2{[

d2 − 3d+ 2
d+ 2 H1(d)− d− 2

6 H2(d)
]
∂T

∂xh
|∇xT |2 −

[
d2 + 2d+ 8

2(d+ 2) H1(d)− d

3(d+ 2)H2(d)
]
T
∂T

∂xh
∆xT +

[
4d
d+ 2H1(d)− 4

3(d+ 2)H2(d)
]
T
∂T

∂xk

∂2T

∂xh∂xk
−
[
H1(d)− 2

d+ 2H2(d)
]
T 2 ∂

∂xh
∆xT

}
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Chapter 7

Quantum MEP
hydrodynamical model for
charge transport

In this chapter we use the same method of the previous one to develop a transport
model for electrons. We remark that the results of this chapter are original and
they are under review.

A way to study quantum transport is to resort to the Wigner function which
leads to a description resembling the classical or semiclassical transport models.
In fact, the mean values can be evaluated as expectation values with respect
to the Wigner function as it were a probability density. The Wigner equation
has been intensively investigated both from an analytical and numerical point
of view (the interested reader is referred to [1–3] and references therein) but
it is almost exclusively assumed a quadratic dispersion relation for the energy
while semiconductors or semimetal, e.g. graphene, obey different dispersion
relations [4, 7, 8]. Quantum hydrodynamical models for charge transport in
silicon have been devised in [9] starting from the Wigner transport equation in
the case of parabolic bands, and in [10] the case of electrons moving in graphene
has been tackled including quantum effects as second order corrections in the
scaled Planck constant arising from the equilibrium Wigner function at the same
temperature of a thermal bath of phonons.

Quantum hydrodynamical models are obtained as moment equations of
Wigner equation and as in the classical case, one gets a system of balance
equations which need some closure relations, that is one has to express the
additional fields appearing in the moment equations in terms of a set of funda-
mental variables. A sound way to accomplish this task is resorting to a quantum
formulation of the maximum entropy principle [24]. The quantum formulation
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of the maximum entropy principle was already given by Jaynes [23]. Recently, a
more formal theory has been developed in series of papers [25, 26] with several
applications, for example for charge transport in semiconductors [9, 27–29]. The
interested reader is also referred to [7, 17].

Here we consider a general dispersion relation and formulate a hydrodynamic
model for charge transport which is valid also beyond the parabolic band ap-
proximation. We apply QMEP to the moment equations deduced from the
Wigner one assuming as basic fields those typical of a hydrodynamical model,
that is the density, energy density and momentum density of charge carriers.
Expanding up to second order in ~, quantum corrections to the semiclassical case
[30] are deduced (see (3.8) for details about the justification of the expansion
in ~). Specific constitutive relations are explicitly obtained, with the aid of the
Moyal calculus, for charge transport in silicon and graphene including the main
electron-phonon scatterings. The results for graphene improve those obtained in
[27] in what concerns the expression for the Lagrange multipliers of energy, no
longer assumed to be that of a local thermal equilibrium with a bath of phonons.
With a similar approach phonon transport has been tackled in [31].

The plan of the chapter is as follows. In section 7.1 we write down the Wigner
equations for charge transport. Section 7.2 is dedicated to deducing the moment
equations whose closure relations are achieved by QMEP in section 7.3. Specific
examples of hydrodynamical models for charge transport in bulk semiconductors
and in graphene are presented in sections 7.4 and 7.5 respectively. In the last
section quantum corrections to mobilities are obtained.

7.1 Electron Wigner equation

The starting point of our derivation is the one-particle Wigner function. For the
system under consideration, given the density operator ρ̂, i.e. a bounded non-
negative operator with unit trace, acting on L2(Rd,C), the associated Wigner
function, w = w(x,p, t), evaluated at position x, momentum p, (x, p) ∈ R2d,
and time t > 0, is the inverse Weyl quantization of ρ̂,

w = Op−1
~ (ρ̂). (7.1)

We recall that the Weyl quantization of a phase-space function (a symbol)
a = a(x,p) is the (Hermitian) operator Op~(a) formally defined by [13]

Op~(a)ψ(x) = 1
(2π~)d

∫
R2d

a

(
x + y

2 ,p
)
ψ(y)ei(x−y)·p/~dy dp (7.2)

for any ψ ∈ L2(Rd,C). The inverse quantization of ρ̂ can be written as the
Wigner transform

w(x,p) = 1
~d

∫
Rd
ρ(x + ξ/2,x− ξ/2)eip·ξ/~dξ, (7.3)
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of the kernel ρ(x,y) of the density operator.
The dynamics of the time-dependent Wigner function w(x,p, t) steams

directly from the dynamics of the corresponding density operator ρ̂(t), i.e. from
the Von Neumann or quantum Liouville equation

i~∂tρ̂(t) = [Ĥ, ρ̂(t)] := Ĥρ̂(t)− ρ̂(t)Ĥ, (7.4)

where Ĥ denotes the Hamiltonian operator and [·, ·] the commutator. If h =
Op−1

~ (Ĥ) is the symbol associated with Ĥ, then, from Eq.s (7.4), we obtain the
Wigner equation

i~∂tw(x,p, t) = {h,w(x,p, t)}# := h#w(x,p, t)− w(x,p, t)#h. (7.5)

With the symbol # we have denoted the Moyal (or twisted) product which
translates the product of operators at the level of symbols according to

a#b = Op−1
~ (Op~(a)Op~(b)), (7.6)

for any pair of symbols a and b. Here, we do not tackle the analytical issues
which guarantee the existence of the previous relations but limit ourselves to
remark that if two operators are in the Hilbert-Schmidt class, that is the trace
there exists and it is not negative and bounded, then the product is still Hilbert-
Schmidt and the Moyal calculus is well defined. In the sequel, we will suppose
that such conditions are valid.

Let us consider the standard Hamiltonian symbol

h(x,p) = ε(p)− qΦ(x) (7.7)

where ε(p) is the energy band in terms of the crystal momentum p = ~k and
Φ(x) the electrostatic potential, which is assumed to be real. We do not assume
for the moment a specific form of ε(p). We have

h#w − w#h = −i~(S[ε]w − qΘ[Φ]w)

where

i~S[ε]w = w#ε(p)− ε(p)#w, (7.8)
i~qΘ[Φ]w = q(w#Φ(x)− Φ(x)#w). (7.9)

If we express the Moyal product as a power series

ε(p)#w =
∞∑
n=0

~nε(p)#nw

we get (for the details see [29, 31])

S[ε]w = ∇pε(p) · ∇xw −
~2

24∂
3
pε(p)∂3

xw +O(~4), (7.10)

Θ[Φ]w = −∇xΦ(x) · ∇pw + ~2

24
∂3Φ(x)

∂xi∂xj∂xk

∂3w

∂pi∂pj∂pk
+O(~4). (7.11)
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Altogether, the Wigner equation reads

∂

∂t
w(x,p, t) + S[ε]w(x,p, t)− qΘ[Φ]w(x,p, t) = 0, (7.12)

By adding a collision term, one has the the Wigner-Boltzmann equation

∂

∂t
w(x,p, t) + S[ε]w(x,p, t)− qΘ[Φ]w(x,p, t) = C(w). (7.13)

We suppose that the expansion

w = w(0)(x,p, t) + ~2w(2)(x,p, t) +O(~4) (7.14)

holds. Since formally as ~→ 0 the semiclassical Boltzmann equation is recovered
from the Wigner equation, w(0)(x,p, t) has to solve the first one while w(2)(x,p, t)
is solution of the equation1

∂

∂t
w(2)(x,p, t) +∇pε(p) · ∇xw

(2)(x,p, t)− 1
24

∂3ε(p)
∂pi∂pj∂pk

∂3w(0)(x,p, t)
∂xi∂xj∂xk

(7.15)

+q
(
∇xΦ(x) · ∇pw

(2)(x,p, t)− 1
24

∂3Φ(x)
∂xi∂xj∂xk

∂3w(0)(x,p, t)
∂pi∂pj∂pk

)
= C(2)(w).(7.16)

The explicit form of C(2)(w) will be specified later in the chapter.

7.2 Moment equations

One of the most interesting properties of the Wigner function is that its moments
have a direct physical interpretation in terms of macroscopic fluid quantities,
which makes Wigner function an ideal tool for the derivation of quantum fluid
equations. Analogously to previous works [17, 27], in this chapter we shall write
equations involving the following moments to devise a quantum hydrodynamical
model:

• the density
n(x, t) = y

∫
Rd
w(x,p, t)dp, (7.17)

• the momentum density

J(x, t) = y

∫
Rd

vw(x,p, t)dp, (7.18)

• the energy density

W (x, t) = y

∫
Rd
ε(p)w(x,p, t)dp, (7.19)

1Th Einstein convention on the repeated index is understood.
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where y = gsgv
(2π~)d , gs and gv being spin and valley degeneracy, respectively.

The resulting moment system is obtained by taking the moments of the
Wigner equation. Integrating with respect to p the Wigner equation (7.12) we
have the following equation for the density 2

∂

∂t
y

∫
Rd
w(x,p, t)dp + y

∫
Rd
S[ε]w(x,p, t)dp− qy

∫
Rd

Θ[Φ]w(x,p, t)dp = 0,

Multiplying by ε(p) and integrating with respect to p the (7.12) we obtain
the equation for the energy density W
∂

∂t
y

∫
Rd
ε(p)w(x,p, t)dp+y

∫
Rd
ε(p)S[ε]w(x,p, t)dp−qy

∫
Rd
ε(p)Θ[Φ]w(x,p, t)dp = y

∫
Rd
ε(p)Cdp.

while multiplying by v and integrating with respect to p the equation (7.12) we
obtain the equation for the momentum density J
∂

∂t
y

∫
Rd

vw(x,p, t)dp+y
∫
Rd

vS[ε]w(x,p, t)dp−qy
∫
Rd

vΘ[Φ]w(x,p, t)dp = y

∫
Rd

vCdp.

Observe that up to terms of order in ~2, n = n(0) + ~2n(2), where

n(0) = y

∫
Rd
w(0)(x,p, t)dp and n(2) = y

∫
Rd
w(2)(x,p, t)dp.

Similarly W = W (0) + ~2W (2) and J = J(0) + ~2J(2) with obvious meaning of
the symbols.

The moment equations split into zero and first order in ~2 read

∂

∂t
n(0)(x, t) +∇xJ(0)(x, t) = y

∫
Rd
C(0)dp, (7.20)

∂

∂t
W (0) +∇xS(0) − q∇xΦ(x) · J(0) = y

∫
Rd
ε(p)C(0)dp, (7.21)

∂

∂t
J(0) + y∇x

∫
Rd

v⊗ vw(0)(x,p, t)dp− yq∇xΦ(x)
∫
Rd
w(0)(x,p, t)∇pvdp = y

∫
Rd

vC(0)dp,(7.22)

∂

∂t
n(2)(x, t) +∇xJ(2)(x, t)− y 1

24
∂3

∂xi∂xj∂xk

∫
Rd
w(0)(x,p, t) ∂3ε(p)

∂pi∂pj∂pk
dp = y

∫
Rd
C(2)dp,(7.23)

∂

∂t
W (2) +∇xS(2) − q∇xΦ(x) · J(2) − y

24
∂3

∂xi∂xj∂xk

∫
Rd
ε(p) ∂3ε(p)

∂pi∂pj∂pk
w(0)(x,p, t)dp

+q y24
∂3Φ(x)

∂xi∂xj∂xk

∫
Rd
w(0)(x,p, t) ∂3ε(p)

∂pi∂pj∂pk
dp = y

∫
Rd
ε(p)C(2)dp, (7.24)

∂

∂t
J(2) + y

(
∇x

∫
Rd

v⊗ vw(2)(x,p, t)dp− 1
24

∂3

∂xi∂xj∂xk

∫
Rd

v ∂3ε(p)
∂pi∂pj∂pk

w(0)(x,p, t)dp
)

−qy∇xΦ(x)
∫
Rd
w(2)(x,p, t)∇pvdp + q

y

24
∂3Φ(x)

∂xi∂xj∂xk

∫
Rd

∂3v
∂pi∂pj∂pk

w(0)(x,p, t)dp

= y

∫
Rd

vC(2)dp, (7.25)

2in the unipolar case the density production term is zero for the conservation of charge.
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where

S(0) = y

∫
Rd
ε(p)vw(0)(x,p, t)dp and S(2) = y

∫
Rd
ε(p)vw(2)(x,p, t)dp.

are the zeroth and fist order terms in ~2 of the energy flux.

7.3 QMEP for the closure relations

The evolution equations do not form a closed system of balance laws. We need
to express the additional fields as functions of n, W and J. To this aim the
quantum version of the maximum entropy principle (QMEP) will be adopted.

Since electrons are fermions, let us introduce the operator

s(ρ̂) = −kB [ρ̂ ln ρ̂+ (1− ρ̂) ln(1− ρ̂)], (7.26)

which must be intended in the sense of the functional calculus. Here kB is the
Boltzmann constant. The entropy of the electrons reads

S(ρ̂) = Tr{s(ρ̂)}

which can be viewed as a quantum Fermi-Dirac entropy.
According to MEP, we estimate ρ̂ with ρ̂MEP which is obtained by maximizing

S(ρ̂) under the constraints that some expectation values have to be preserved.
In particular, in view of formulating hydrodynamical models we require that the
following average values must be preserved

y

∫
Rd
ψ(p)wMEP (x,p, t)dp = (n(x, t),W (x, t),J(x, t)) := y

∫
Rd
ψ(p)w(x,p, t)dp,

(7.27)
where

ψ(p) = (1, ε(p), ε(p)v)

is the vector of the weight functions and wMEP is the Wigner function associated
with ρ̂MEP while w is the Wigner function associated to ρ̂. In the previous
relations the time t and position x must be considered as fixed. In the moment
conditions (7.27), the first relation is a set of constraints while the second one is
just a definition.

The quantum formulation of MEP is given in terms of expectation values.
By taking into account that for a weight function ψ(p) regular enough,

tr {ρ̂Op~(ψ(p))} (t) = y

∫
Rd
ψ(p)w(x,p, t)dp,

with the choice done above, the constrains read

E1(t) = tr {ρ̂Op~(1)} (t), E2(t) = tr {ρ̂Op~(ε(p))} (t), E3(t) = tr {ρ̂Op~(v)} (t),
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and therefore, for fixed t,

ρ̂MEP = argument maxS(ρ̂) (7.28)
under the constraints

tr{ρ̂MEPOp~(1)} = E1(t), tr{ρ̂MEPOp~(ε(p))} = E2(t), tr{ρ̂MEPOp~(v)} = E3(t),(7.29)

in the space of the Hilbert-Schmidt operators on L2(Rd,C) which are positive,
with trace one and such that the previous expectation values there exist.

If we introduce the vector of the Lagrange multipliers

η = (η0(x, t), η1(x, t),η2(x, t)), (7.30)

the vector of the moments

m[ρ](x, t) := m(x, t) = y

∫
Rd
ψ(p)w(x,p, t)dp, (7.31)

and the vector of the moments which must be considered as known

M(x, t) := (n(x, t),W (x, t),J(x, t)) , (7.32)

the constrained optimization problem (7.28)-(7.29) can be rephrased as a saddle-
point problem for the Lagrangian

L(ρ̂,η) = S(ρ̂)−
∫
Rd
η · (m(x, t)−M(x, t)) dx

= S(ρ̂)− tr {ρ̂Op~(η · (1, ε(p),v))}+
∫
Rd
η ·M(x, t) dx (7.33)

in the space of the admissible ρ̂ and smooth function η.
If the Lagrangian L(ρ̂,η) is Gâteaux-differentiable with respect to ρ̂, the first

order optimality condition requires

δL(ρ̂,η)(δρ̂) = 0

for each Hilbert-Schmidt operator δρ̂ on L2(Rd,C) which is positive, with trace
one and such that the previous expectation values there exist.

The existence of the first order Gâteaux derivative is a consequence of the
following Lemma

Lemma 3 If r(x) is a continuously differentiable increasing function on R+ then
tr{r(ρ̂)} is Gâteaux-differentiable in the class of the Hermitian Hilbert-Schmidt
positive operators on L2(Rd,C). The Gâteaux derivative along δρ is given by

δtr{r(ρ̂)}(δρ̂) = tr {r′(ρ̂)δρ̂} . (7.34)

The extremality conditions for the unconstrained maximization problem (7.28)-
(7.29) are similar to that of the semiclassical case, as expressed by the following
lemma.
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Lemma 4 The first order optimality condition for the maximization problem
(7.28)-(7.29) is equivalent to

ρ̂ = (s′)−1(Op~(η ·ψ)) (7.35)

where (s′)−1 is the inverse function of the first derivative of s.

δL(ρ̂,η)(δρ̂) = tr {(s′(ρ̂)−Op~(η ·ψ)) δρ̂}

∀δρ̂ perturbation in the class of the Hermitian Hilbert-Schmidt positive operators
on L2(Rd,C). This implies

s′(ρ̂) = Op~(η ·ψ).

�

Since the function s(x) is concave, s′(x) is invertible. Explicitly we have

(s′)−1(z) = 1
ez/kB + 1

and the operator solving the first order optimality condition reads

ρ̂∗ = (s′)−1(Op~(η ·ψ)) = 1
eOp~(η·ψ) + 1 . (7.36)

Moreover, such an operator is a point of maximum for the Lagrangian. �

Now, to complete the program we have to determine, among the smooth
functions, the Lagrange multipliers η by solving the constraint

tr {ρ̂Op~(η · (1, ε(p),v)} −
∫
Rd
η ·M(x, t) dx = 0. (7.37)

If such an equation admits a solution η∗, the MEP density operator reads

ρ̂MEP = 1
exp [Op~ (η∗0(x, t) + η∗1(x, t)ε(p) + η∗2(x, t) · v)] + 1 , (7.38)

where we have rescaled the Lagrange multipliers by the factor 1/kB .
To determine conditions under which the equation (7.37) admits solutions is

a very difficult task. Even in the semiclassical case there are examples of sets of
moments that cannot be moments of a MEP distribution.

We will look for the solution up to first order in ~2. Once the MEP density
function has been determined, the MEP Wigner function is given by

wMEP (x,p, t) = Op−1
~ (ρ̂MEP )
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which can be used to get the necessary closure relations by evaluating the
additional fields with w replaced by wMEP .

We remark that the constraints (7.37) can be more conveniently expressed as

y

∫
R2d
η ·ψ(x, t)wMEP (x,p, t) dp dx−

∫
Rd
η ·M(x, t) dx = 0

but we require, in analogy with the semiclassical case, the stronger conditions

y

∫
Rd
ψ(x, t)wMEP (x,p, t) dp = M(x, t),

where the Lagrange multipliers enter through wMEP (x,p, t).

7.3.1 Determination of the Lagrange Multipliers

We look formally for a solution in powers of ~

wMEP = wMEP
0 + ~wMEP

1 + ~2wMEP
2 + ... (7.39)

firstly without taking into account the dependence of the Lagrange multipliers
on ~.

Of course, on account of the properties of the Weyl quantization, wMEP
0 is

equal to the semiclassical counterpart

wMEP
0 = 1

1 + exp(ξ) (7.40)

with
ξ = η0(x, t) + η1(x, t)ε(p) + η2(x, t) · v

where the Lagrange multipliers have been rescaled by the factor 1/kB .
On account of the properties of Moyal product [29], wMEP

1 = 0 and

wMEP
2 (ξ) = eξ

8(eξ + 1)3

[
(1− eξ)

(
∂2ξ

∂xi∂xj

∂2ξ

∂pi∂pj
− ∂2ξ

∂xi∂pj

∂2ξ

∂xj∂pi

)
+
(

∂2ξ

∂xi∂xj

∂ξ

∂pi

∂ξ

∂pj
− 2 ∂2ξ

∂xi∂pj

∂ξ

∂pi

∂ξ

∂xj
+ ∂2ξ

∂pi∂pj

∂ξ

∂xi

∂ξ

∂xj

)
(e2ξ − 4eξ + 1)

3(eξ + 1)

]
. (7.41)

Consistently, if we also expand the Lagrange multipliers as

η = η(0) + ~2η(2) + o(~2), (7.42)

one has

wMEP
2 (ξ(0), ξ(2)) ' − eξ

(0)

(eξ(0) + 1)2 ξ
(2) + eξ

(0)

8(eξ(0) + 1)3

[
(1− eξ

(0)
)
(
∂2ξ(0)

∂xi∂xj

∂2ξ(0)

∂pi∂pj
− ∂2ξ(0)

∂xi∂pj

∂2ξ(0)

∂xj∂pi

)
+
(
∂2ξ(0)

∂xi∂xj

∂ξ(0)

∂pi

∂ξ(0)

∂pj
− 2 ∂

2ξ(0)

∂xi∂pj

∂ξ(0)

∂pi

∂ξ(0)

∂xj
+ ∂2ξ(0)

∂pi∂pj

∂ξ(0)

∂xi

∂ξ(0)

∂xj

)
(e2ξ(0) − 4eξ(0) + 1)

3(eξ(0) + 1)

]
, (7.43)
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where

ξ(0) = η
(0)
0 (x, t) + η

(0)
1 (x, t)ε(p) + η2

(0)(x, t) · v, (7.44)
ξ(2) = η

(2)
0 (x, t) + η

(2)
1 (x, t)ε(p) + η2

(2)(x, t) · v. (7.45)

Let us suppose now a small anisotropy in the distribution by assuming that
η2 is a quantity of order δ with |δ| � 1. This can be also justified by observing
that at equilibrium η2 ≈ 0. Therefore we formally write

ξ(0) = η
(0)
0 (x, t) + η

(0)
1 (x, t)ε(p) + δη

(0)
2 (x, t) · v := ξ

(0)
0 + δη

(0)
2 (x, t) · v,

ξ(2) = η
(2)
0 (x, t) + η

(2)
1 (x, t)ε(p) + δη

(2)
2 (x, t) · v := ξ

(2)
0 + δη

(2)
2 (x, t) · v. (7.46)

Expanding also with respect to δ, we get

wMEP
0 = 1

eξ
(0)
0 +δη

(0)
2 ·v + 1

' 1
eξ

(0)
0 + 1

− eξ
(0)
0

(eξ(0)
0 + 1)2

δη
(0)
2 · v ' wMEP

0,0 + δwMEP
0,1 ,(7.47)

wMEP
2 = wMEP

2,0 + δwMEP
2,1 , (7.48)

where

wMEP
2,0 = − eξ

(0)
0

(eξ(0)
0 + 1)2

ξ
(2)
0 + eξ

(0)
0

8(eξ(0)
0 + 1)3

[
(1− eξ

(0)
0 )
(
∂2ξ

(0)
0

∂xi∂xj

∂2ξ
(0)
0

∂pi∂pj
− ∂2ξ

(0)
0

∂xi∂pj

∂2ξ
(0)
0

∂xj∂pi

)

+
(
∂2ξ

(0)
0

∂xi∂xj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂pj
− 2 ∂

2ξ
(0)
0

∂xi∂pj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂xj
+ ∂2ξ

(0)
0

∂pi∂pj

∂ξ
(0)
0

∂xi

∂ξ
(0)
0

∂xj

)
e2ξ(0)

0 − 4eξ
(0)
0 + 1

3(eξ(0)
0 + 1)

]
,(7.49)
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wMEP
2,1 = − eξ

(0)
0

(eξ(0)
0 + 1)2

δη
(2)
2 · v + eξ

(0)
0

(eξ(0)
0 − 1)2

ξ
(2)
0 δη

(0)
2 · v

+ eξ
(0)
0

8(eξ(0)
0 + 1)3

{(
1− eξ

(0)
0

)( ∂2ξ
(0)
0

∂xi∂xj
δη

(0)
2 ·

∂2v
∂pi∂pj

+ ∂2ξ
(0)
0

∂pi∂pj
δ
∂2η

(0)
2

∂xi∂xj
· v

− ∂2ξ
(0)
0

∂xj∂pi
δ
∂η

(0)
2

∂xj
· ∂v
∂pi
− ∂2ξ

(0)
0

∂xj∂pi
δ
∂η

(0)
2

∂xi
· ∂v
∂pj

)
− eξ

(0)
0 δη

(0)
2 · v

(
∂2ξ

(0)
0

∂xi∂xj

∂2ξ
(0)
0

∂pi∂pj

− ∂2ξ
(0)
0

∂xi∂pj

∂2ξ
(0)
0

∂xj∂pi

)
+
[

2 ∂
2ξ

(0)
0

∂xi∂xj

∂ξ
(0)
0

∂pi
δη

(0)
2 ·

∂v
∂pj

+ ∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂pj
δ
∂2η

(0)
2

∂xi∂xj
· v

− 2
(
∂2ξ

(0)
0

∂xi∂pj

∂ξ
(0)
0

∂pi
δ
∂η

(0)
2

∂xj
· v + ∂2ξ

(0)
0

∂xi∂pj

∂ξ
(0)
0

∂xj
δη

(0)
2 ·

∂v
∂pi

+ ∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂xj
δ
∂η

(0)
2

∂xi
· ∂v
∂pj

)

+ 2 ∂
2ξ

(0)
0

∂pi∂pj

∂ξ
(0)
0

∂xi
δ
∂η

(0)
2

∂xj
· v + ∂ξ

(0)
0

∂xi

∂ξ
(0)
0

∂xj
δη

(0)
2 ·

∂v
∂pi∂pj

]
e2ξ(0)

0 − 4eξ
(0)
0 + 1

3(eξ(0)
0 + 1)

+ eξ
(0)
0 (e2ξ(0)

0 + 2eξ
(0)
0 − 5)

3(eξ(0)
0 + 1)2

δη
(0)
2 · v

(
∂2ξ

(0)
0

∂xi∂xj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂pj
− 2 ∂

2ξ
(0)
0

∂xi∂pj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂xj

+ ∂2ξ
(0)
0

∂pi∂pj

∂ξ
(0)
0

∂xi

∂ξ
(0)
0

∂xj

)}

+ eξ
(0)
0 (1− 2eξ

(0)
0 )

8(eξ(0)
0 + 1)4

δη
(0)
2 · v

[
(1− eξ

(0)
0 )
(
∂2ξ

(0)
0

∂xi∂xj

∂2ξ
(0)
0

∂pi∂pj
− ∂2ξ

(0)
0

∂xi∂pj

∂2ξ
(0)
0

∂xj∂pi

)

+
(
∂2ξ

(0)
0

∂xi∂xj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂pj
− 2 ∂

2ξ
(0)
0

∂xi∂pj

∂ξ
(0)
0

∂pi

∂ξ
(0)
0

∂xj
+ ∂2ξ

(0)
0

∂pi∂pj

∂ξ
(0)
0

∂xi

∂ξ
(0)
0

∂xj

)
e2ξ(0)

0 − 4eξ
(0)
0 + 1

3(eξ(0)
0 + 1)

]

The constraints

n(x, t) = y

∫
Rd
wMEP (x,p, t)dp,

W (x, t) = y

∫
Rd
ε(p)wMEP (x,p, t)dp,

J(x, t) = y

∫
Rd

v(p) wMEP (x,p, t)dp.

can be split into two systems: one at zero order in ~2

n(0)(x, t) = y

∫
Rd
wMEP

0 (ξ(0)
0 (x, t),p)dp, (7.50)

W (0)(x, t) = y

∫
Rd
ε(p)wMEP

0 (ξ(0)
0 (x, t),p)dp, (7.51)

J(0)(x, t) = y

∫
Rd

v(p) wMEP
0 (ξ(0)

0 (x, t),p)dp, (7.52)
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and one at first order in ~2

n(2) = y

∫
Rd
wMEP

2 (ξ(0)(x, t), ξ(2)(x, t),p) dp, (7.53)

W (2) = y

∫
Rd
ε(p)wMEP

2 (ξ(0)(x, t), ξ(2)(x, t),p) dp, (7.54)

J(2) = y

∫
Rd

v wMEP
2 (ξ(0)(x, t), ξ(2)(x, t),p) dp. (7.55)

The system (7.50)-(7.52) is a set of nonlinear algebraic equations; the system
(7.53)-(7.55) form a nonlinear system of PDEs for the Lagrange multipliers whose
analytical solution seems very difficult to get. Indeed, the situation is even more
cumbersome because in a numerical scheme the inversion of the constraints
should be performed at each time step.

It is possible to prove the following properties (see for example [9])

Proposition 1 At zero order in ~2 the map η →M(η) defined by the system
(7.50)-(7.52) is (at least locally) invertible.

Proposition 2 The equations (7.20)-(7.22) form a symmetric hyperbolic system
of balance laws when the closure relation is that given by MEP.

In order to have an analytical guess about the solution of the system (7.50)-
(7.52) we adopt the same strategy used in [9, 27, 31] and expand the equations
(7.50)-(7.52) up to first order in δ

n(0) ' y

∫
Rd

1
eξ

(0)
0 + 1

dp, (7.56)

W (0) ' y

∫
Rd

ε(p)
eξ

(0)
0 + 1

dp, (7.57)

J(0) ' −y
∫
Rd

ve
ξ

(0)
0 η2(x, t) · v(
eξ

(0)
0 + 1

)2 dp (7.58)

Since we are requiring that for ~ = 0 one recovers the semiclassical distribu-
tion, the approximation is valid provided

0 ≤ wMEP
0 ≤ 1 ⇐⇒ 0 ≤ 1

eξ
(0)
0 + 1

− eξ
(0)
0 η2(x, t) · v(
eξ

(0)
0 + 1

)2 ≤ 1. (7.59)

Now we can not apply directly proposition 1 because of the expansion.
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However, the Jacobian matrix

∂
(
n(0),W (0))

∂
(
η

(0)
0 , η

(0)
1

) =


−y
∫
Rd

eξ
(0)
0(

eξ
(0)
0 + 1

)2 dp −y
∫
Rd

eξ
(0)
0 ε(p)(

eξ
(0)
0 + 1

)2 dp

−y
∫
Rd

eξ
(0)
0 ε(p)(

eξ
(0)
0 + 1

)2 dp −y
∫
Rd

eξ
(0)
0 ε2(p)(

eξ
(0)
0 + 1

)2 dp


is negative defined and therefore, by taking into account that the third equation
is linear in η(0)

2 , we have what follows.

Proposition 3 The constraints (7.56)-(7.58) are at least locally invertible.

Once the equations (7.50)-(7.52) or the approximated equations (7.56)-(7.58)
are solved, the equations (7.53)-(7.55) are a linear sytems for the second order
correction in ~ to the Lagrange mltipliers.

In the next section we will investigate some specific examples.

7.4 Hydrodynamical model for charge transport
in semiconductors

Let us consider a bulk (3d) semiconductor whose energy band in each valley can
be approximated by the Kane dispersion relation

ε(p) (1 + αε(p)) = p2

2m∗ , k ∈ B,

where B is the first Brillouin zone, expanded to all R3, α is the non parabolicity
parameter and m∗ is the effective mass. The previous parameter depends on the
specific material one are dealing with, e.g. silicon, GaAs, etc.. Sometimes the
simple parabolic approximation (α = 0) is adopted.

The group velocity is given by

v = 1

m∗
√

1 + 2α
m∗

p2
p.

Note that it is limited; indeed

|v| ≤ v∞ = 1√
2m∗α

.

In the sequel we first study the first order terms and then the second order
corrections in ~2.

Proposition 4 For the Kane dispersion relation a sufficient condition to satisfy
(7.59) is

|η2| ≤
(
eξ0 + 1

)
v∞eξ

(0)
0

(7.60)
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Proof. First we observe that

1
eξ

(0)
0 + 1

− eξ
(0)
0 η2(x, t) · v(
eξ

(0)
0 + 1

)2 ≥ 0 ⇐⇒ η2(x, t) · v ≤ eξ
(0)
0 + 1
eξ

(0)
0

,

which is satisfied if (7.60) is true.
On the other hand

1
eξ

(0)
0 + 1

− eξ
(0)
0 η2(x, t) · v(
eξ

(0)
0 + 1

)2 ≤ 1 ⇐⇒ −η2(x, t) · v ≤ eξ
(0)
0 + 1,

which surely holds if

|η2| ≤
eξ

(0)
0 + 1
v∞

. (7.61)

Since

(
eξ

(0)
0 + 1

)
v∞eξ

(0)
0

≤ eξ
(0)
0 + 1
v∞

, the proposition is proved. �

By taking into account the density of state for the Kane dispersion relation,
one has

dp = p2dp sin θ dθ dφ = (m∗)3/2(1+2αε)
√

2ε(1 + αε)dε sin θ dθ dφ, ε ∈ [0,+∞[, θ ∈ [0, π], φ ∈ [0, 2π].

By using the relation ∫
S2

n⊗ n dS2 = 4π
3 I

where S2 is the unit sphere of R3 and I the identity tensor, and by taking into
account that ∫

S2

n⊗ n · · · ⊗ n︸ ︷︷ ︸
k times

dS2 = 0 if k odd,

the constraints read

n(0) = 4πy
∫ +∞

0
(m∗)3/2 1 + 2αε

exp (η(0)
0 + η

(0)
1 ε) + 1

√
2ε(1 + αε)dε, (7.62)

W (0) = 4πy
∫ +∞

0
(m∗)3/2 ε(1 + 2αε)

exp (η(0)
0 + η

(0)
1 ε) + 1

√
2ε(1 + αε)dε, (7.63)

J(0) = −8π
3 y

∫ +∞

0

exp (η(0)
0 + η

(0)
1 ε)[

exp (η(0)
0 + η

(0)
1 ε) + 1

]2 ε(1 + αε)(1 + 2αε)
1 + 4αε(1 + αε)

√
2m∗ε(1 + αε)dεη(0)

2 .(7.64)

The first two equations are a nonlinear system for the Lagrange multipliers η0

and η1 while the third equation gives η2 which results proportional to J(0).
Thanks to proposition 3 equations (7.62), (7.63) are locally invertible.
Once we have obtained the Lagrange multipliers (likely with a numerical

procedure), we can evaluate the additional tensorial quantities appearing in eqs.
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(7.20)-(7.22). Regarding the energy-flux, the pressure tensor and the tensor
gradient of the velocity, one has

S(0) = y

∫
R3
ε(p)v(p)wMEP

0 (x,p, t)dp =

−8π
3 y

∫ +∞

0

exp (η(0)
0 + η

(0)
1 ε)[

exp (η(0)
0 + η

(0)
1 ε) + 1

]2 ε2(1 + αε)(1 + 2αε)
1 + 4αε(1 + αε)

√
2m∗ε(1 + αε)dεη(0)

2 . (7.65)

∫
R3

v⊗ vwMEP
0 (x,p, t)dp = 8π

3 y

∫ +∞

0

ε(1 + αε)(1 + 2αε)
1 + 4αε(1 + αε)

√
2m∗ε(1 + αε)

exp (η(0)
0 + η

(0)
1 ε) + 1

dε I,(7.66)∫
R3
wMEP

0 (x,p, t)∇pvdp =

4π
√
m∗y

∫ +∞

0

(1 + 2αε)
√

2ε(1 + αε)
(exp (η(0)

0 + η
(0)
1 ε) + 1)

√
1 + 4αε(1 + αε)

[
1− 4αε(1 + αε)

3(1 + 4αε(1 + αε))

]
dε I.(7.67)

In the parabolic band approximation the constraints can be written in terms
of the Fermi integrals of order k

Fk(η) = 1
Γ(k + 1)

∫ +∞

0

χk

1 + eχ−η
dχ,

with Γ(x) Euler gamma function, as

n(0) = 4πy
∫ +∞

0
(m∗)3/2

√
2ε

exp (η(0)
0 + η

(0)
1 ε) + 1

dε = y∗

2
(
η

(0)
1

)3/2F1/2(−η(0)
0 ),(7.68)

W (0) = 4πy
∫ +∞

0
(m∗)3/2 ε

√
2ε

exp (η(0)
0 + η

(0)
1 ε) + 1

dε = 3y∗
√
π

4
(
η

(0)
1

)5/2F3/2(−η(0)
0 ),(7.69)

J(0) = −8π
3 y

∫ +∞

0

exp (η(0)
0 + η

(0)
1 ε)[

exp (η(0)
0 + η

(0)
1 ε) + 1

]2 ε√2m∗εdεη(0)
2 . (7.70)

where y∗ = 4πy(m∗)3/2√2.
Once the Lagrange multipliers have been determined at the zero order in ~,

the constraints (7.53)-(7.55) are a linear system for η(2). In fact we can write

wMEP
2 = − eξ

(0)
0

(eξ(0)
0 + 1)2

(
ξ

(2)
0 + η(2)

2 · v
)

+ eξ
(0)
0

(eξ(0)
0 − 1)2

ξ
(2)
0 δη

(0)
2 ·v+Ψ(η(0),∇η(0)).

for a suitable scalar function Ψ. Note that also the derivatives of η(0) enter the
system. So, at variance with the semiclassical case, the constraints are nonlocal
even by expanding in power of ~.
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The equations (7.53)-(7.55) give

y

∫
R3

eξ
(0)
0

(eξ(0)
0 + 1)2

(
η

(2)
0 + η

(2)
1 ε(p)

)
dp = −n(2) + y

∫
R3

Ψ(η(0),∇η(0))dp, (7.71)

y

∫
R3
ε(p) eξ

(0)
0

(eξ(0)
0 + 1)2

(
η

(2)
0 + η

(2)
1 ε(p)

)
dp = −W (2) + y

∫
R3
ε(p)Ψ(η(0),∇η(0))dp,(7.72)

(
y

∫
R3

eξ
(0)
0

(eξ(0)
0 + 1)2

v⊗ v dp
)
η

(2)
2 = −J(2) + y

∫
R3

v Ψ(η(0),∇η(0))dp. (7.73)

Proposition 5 The constraints relations (7.71)-(7.72) are invertible.

Proof. In fact, the matrix of the coefficients of the subsystem for η(2)
0 and η(2)

1 is
the same of that appearing in Proposition 3 and therefore invertible. Moreover
the tensor ∫

R3

eξ
(0)
0

(eξ(0)
0 + 1)2

v⊗ v dp

is positive defined. �

Regarding the collisions, we require the conservation of charge in the unipolar
case3. The general form of the scattering terms is rather cumbersome and very
difficult to tackle. So, some simplification is adopted also in direct numerical
integrations of the Wigner-Boltzmann equation. An approach is to consider the
collisions as semiclassical, that is the correction in ~2 is neglected (an analysis
about the validity of such an approximation can be found in [3]).

The main scattering mechanism in semiconductors is that between electrons
and phonons. If the latter are considered as a thermal bath, and therefore
obeying a Bose-Einstein statistics with lattice temperature TL, the corresponding
scattering has the expression

C(w) ' 1
(2π)3

∫
R3

[
P (p̃,p)wMEP

0 (p̃)
(
1− wMEP

0 (p)
)
− P (p, p̃)wMEP

0 (p)
(
1− wMEP

0 (p̃)
)]

dp̃(7.74)

where P (p̃,p) is the transition probability per unit time to change the state
of momentum p̃ into that of momentum p. The terms

(
1− wMEP

0 (p)
)

and(
1− wMEP

0 (p̃)
)

account for the Pauli exclusion principle. Note that wMEP
0 is

the semiclassical distribution, so the collision term is well defined.
The general expression of the transition rate reads

P (p̃,p) = G(p̃,p) [(NB + 1) δ (ε(p)− ε(p̃) + ~ω) +NBδ (ε(p)− ε(p̃)− ~ω)]

where G(p̃,p) is the so-called overlap factor, which enjoys the symmetry property
G(p̃,p) = G(p, p̃), and NB is the Bose-Einstein distribution

NB = 1
exp(~ω/kBTL)− 1 ,

3in the bipolar case the presence of generation and recombination terms should be included.
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kB being the Boltzmann constant and δ the Dirac distribution. The first term
represents an emission process of a quantum of energy ~ω, the second one
represents an absorption process of a quantum of energy ~ω.

In the specific case of silicon, one has G(p̃,p) = Λ = constant4 and one gets
the following expressions for the moments of the optical collision term Cop in
the Einstein approximation (~ω = constant)

Cn = 0,

CW = 4yΛ~ωm∗3NB
π

∫ +∞

0

[
fi(ε, ε+ ~ω)− fi(ε+ ~ω, ε)e~ω/kBT

]
(1 + 2αε)(1 + 2α(ε+ ~ω))√

ε(ε+ ~ω)(1 + αε)(1 + α(ε+ ~ω)) dε,

CV = yΛm∗3NB
3π2

∫ +∞

0
(1 + 2αε)(1 + 2α(ε+ ~ω))

√
ε(ε+ ~ω)(1 + αε)(1 + α(ε+ ~ω))[

(E(ε+ ~ω)F1(ε, ε+ ~ω)− E(ε)F2(ε, ε+ ~ω)) + e~ω/kBT (E(ε)F1(ε+ ~ω, ε)− E(ε+ ~ω)F2(ε+ ~ω, ε))
]
dε

δη
(0)
2 ,

with

fi(ε̃, ε) = 1
eη

(0)
0 +η(0)

1 ε̃ + 1
eη

(0)
0 +η(0)

1 ε

eη
(0)
0 +η(0)

1 ε + 1
,

F1(ε̃, ε) = eη
(0)
0 +η(0)

1 ε

(eη(0)
0 +η(0)

1 ε̃ + 1)(eη(0)
0 +η(0)

1 ε + 1)2
,

F2(ε̃, ε) = eη
(0)
0 +η(0)

1 ε̃

eη
(0)
0 +η(0)

1 ε̃ + 1

(
1

(eη(0)
0 +η(0)

1 ε + 1)2
− 1
eη

(0)
0 +η(0)

1 ε̃

)
,

E(ε) =

√
2ε(1 + αε)

m[1 + 4αε(1 + αε)]

In the limit ~ω → 0, one recovers the contribution to the production terms
in the elastic approximation, often used for the acoustic phonons.

Remark 1 We remark that the use of MEP adopted here differs from the way
it has been used in [25, 26, 28]. Indeed, in the quoted references the collision
terms of the Wigner equations are written in a relaxation time form with a local
equilibrium distribution which is estimated by MEP. This along with a Chapmann-
Ensgok expansion allows to get macroscopic models like drift-diffusion, energy-
transport or hydrodynamical ones. Here, we fix a set of fundamental variables and
apply MEP to express the Wigner function in terms of the Lagrange multipliers.
The resulting estimation is used to get closure relations both for the additional
fluxes and production terms, without assuming for the latter a relaxation time
form.

4More in detail for the optical phonon scattering Λ = Zif
π(DTK)2

ρω
, where Zif is the

degeneracy of the final valley, ρ is the density of the material, DTK the optical coupling
constant, ω the phonon angular frequency.
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7.5 Hydrodynamical model for charge transport
in graphene

Now we apply the theory developed above to devise a hydrodynamical model for
charge transport in graphene which is a 2D semimetal.

Let us assume the following dispersion relation

ε(p) = vF p̃ (7.75)

where p̃ =
√
|p|2 + c2 with p ∈ R2, c being a positive constant that represents

a possible half gap between the valence and the conduction band. Usually the
gapless dispersion relation (c = 0) is considered but apparently a (even if small)
gap could be present from the general point of view [42].

The group velocity reads

v = ∇pε(p) = vF
p̃

p. (7.76)

The Proposition 4 is still valid with vF instead of v∞.
Assuming also in this case small anisotropy, we get the same expansions as

for bulk (3d) semiconductors. The closure relations for the energy-flux, pressure
tensor and tensor gradient of the velocity at the zeroth order ~2 in are given by

S(0) = −yπ
∫ +∞

vF c

eξ
(0)

(eξ(0) + 1)2 (ε2 − v2
F c

2)dε δη(0)
0 ,∫

R2
v⊗ vwMEP

0 (x,p, t) = π

∫ +∞

vF c

ε2 − v2
F c

2

ε2
1

eξ(0) + 1
dε I,∫

R2
wMEP

0 (x,p, t)∇pv = π

∫ +∞

vF

(
2− ε2 − v2

F c
2

ε2

)
1

eξ(0) + 1
dε I.

The second order corrections can be obtained with the same procedure for bulk
semiconductors as well.

Regarding the production terms, the main scattering mechanisms in graphene
are those of electrons with acoustic, optical and K phonons (see [? ]). By using
the MEP estimation of the Wigner function one can evaluate the closure relations
for the production terms.

For the acoustic phonons one finds

C(ac)
n = 0,

C
(ac)
W = 0,

C
(ac)
V = −yA

(ac)

4πv2
F

∫ +∞

vF c

ε

√
ε2

v2
F

− c2 eη
(0)
0 +η(0)

1 ε

(eη(0)
0 +η(0)

1 ε + 1)2
dεη

(0)
2 ,
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with A(ac) = 2πD2
ackBT

σ~v2
ac

where D2
ac is the acoustic phonon coupling constant, vac

is the sound speed in graphene, σ is the graphene areal density and TL is the
graphene lattice temperature.

For the optical phonons we have

C(opt)
n = 0,

C
(opt)
W = 2yD2

Γ
σωv4

F

NB~ω
∫ +∞

vFC

ε(ε+ ~ω)
[
fi(ε, ε+ ~ω)− e

~ω
kBT fi(ε+ ~ω, ω)

]
dε,

C
(opt)
V = yD2

ΓNB
4σωπv2

F{∫ +∞

vFC

e
~ω
kBT [F1(ε+ ~ω, ε)G(ε+ ~ω, ε)− F2(ε+ ~ω, ε)G(ε, ε+ ~ω)] dε

+
∫ +∞

vFC

[F1(ε, ε+ ~ω)G(ε, ε+ ~ω)− F2(ε, ε+ ~ω)G(ε+ ~ω, ε)] dε
}
δη

(0)
2 ,

with

fi(ε̃, ε) = 1
eη

(0)
0 +η(0)

1 ε̃ + 1
eη

(0)
0 +η(0)

1 ε

eη
(0)
0 +η(0)

1 ε + 1
,

F1(ε̃, ε) = eη
(0)
0 +η(0)

1 ε

(eη(0)
0 +η(0)

1 ε̃ + 1)(eη(0)
0 +η(0)

1 ε + 1)2
,

F2(ε̃, ε) = eη
(0)
0 +η(0)

1 ε̃

eη
(0)
0 +η(0)

1 ε̃ + 1

(
1

(eη(0)
0 +η(0)

1 ε + 1)2
− 1
eη

(0)
0 +η(0)

1 ε̃

)
,

G(ε̃, ε) = ε̃

ε
(ε2 − v2

FC
2),

where D2
Γ is the optical phonon coupling constant, NB is the Bose-Einstein

distribution
NB = 1

e~ω/kBTL − 1
with ~ω the phonon energy (here assumed the same for LO and TO branches).

At last, the production terms given due to the optical K-phonons reads

C(K)
n = 0,

C
(K)
W = yD2

K

2σωv4
F

NB~ω
∫ +∞

vFC

ε(ε+ ~ω)
[
fi(ε, ε+ ~ω)− e

~ω
kBT fi(ε+ ~ω, ω)

]
dε,

C
(K)
V = yD2

KNB
4σωπv2

F{∫ +∞

vFC

e
~ω
kBT [F1(ε+ ~ω, ε)G(ε+ ~ω, ε)− F2(ε+ ~ω, ε)G(ε, ε+ ~ω)] dε

+
∫ +∞

vFC

[F1(ε, ε+ ~ω)G(ε, ε+ ~ω)− F2(ε, ε+ ~ω)G(ε+ ~ω, ε)] dε
}
δη

(0)
2 ,

where D2
K is the K-phonon coupling constant.
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7.6 Quantum correction to mobility

The model devised in the previous sections allow us to get corrections to the
mobilities due to quantum effects. As well known, mobilities are crucial for the
design of electron devices and, therefore, it is a crucial question to investigate
the influence of quantum effects on them.

In Sec.s 7.4 and 7.5, the collisions have been considered as semiclassical,
neglecting the terms in ~2. To face with the complete second order correction of
the collision operator in the Wigner equation is a formidable task, so, in view of
getting highlights on the mobilities, we adopt the following approach. The ~2

correction of the production term of the momentum balance equation (7.25) is
modeled in a relaxation time form

y

∫
Rd

vCdp = −J
τ

where τ is a relaxation time which can be obtained from (7.22) by imposing

−J(0)

τ
= y

∫
Rd

vC(0)dp

Moreover, let us suppose to have a homogenous semiconductor undergoing a
constant electric field, i.e. ∇xΦ(x) = constant, while the other spacial derivatives
are zero. Under such an hypothesis, the momentum balance equation up to
order ~2 reads

∂

∂t
J− qy

∫
Rd

[
w(0)(x,p, t) + ~2w(2)(x,p, t)

]
∇pvdp E = −J

τ
.

In a long time scaling, one reaches a steady state and therefore

−τqyE
∫
Rd

[
w(0)(x,p, t) + ~2w(2)(x,p, t)

]
∇pvdp = J. (7.77)

Recalling that the mobility µ, which is in general a tensor, is defined from the
relation5

v = µ : E,

and that
J = nµ : E. (7.78)

We expand the latter as

J(0) + ~2J(2) =
(
n(0) + ~2n(2)

)(
µ(0) + ~2µ(2)

)
: E,

= n(0)µ(0) : E + ~2
(
n(0)µ(2) + n(2)µ(0)

)
: E + o(~2).

so

J(0) = n(0)µ(0),

J(2) = n(0)µ(2) + n(2)µ(0).

5We denote with µ : E the vector whose components are vk = µkhEh.
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From (7.77) one finds

µ(0) = − τqy
n(0)

∫
Rd
wMEP

0 ∇pvdp,

µ(2) = −n
(2)

n(0) µ(0) − τqy

n(0)

∫
Rd
wMEP

2 ∇pvdp.

Specifically, the contributions to mobility in the case of Kane dispersion
relation reads

µ(0) = − τqy
n(0) 4π

√
m∗y

∫ +∞

0

(1 + 2αε)
√

2ε(1 + αε)
(exp (η(0)

0 + η
(0)
1 ε) + 1)

√
1 + 4αε(1 + αε)

[
1− 4αε(1 + αε)

3(1 + 4αε(1 + αε))

]
dε I,

µ(2) = −n
(2)

n(0) µ(0) − τqy

n(0) 4π
{∫ ∞

0

eξ
(0)
0

eξ
(0)
0 + 1

ξ
(2)
0

√
2m∗ε(1 + αε)

1 + 4αε(1 + αε) (1 + 2αε)dε

−1
3

∫ ∞
0

eξ
(0)
0

eξ
(0)
0 + 1

ξ
(2)
0 [2m∗ε(1 + αε)]5/2m∗(1 + 2αε)dε

}
I,

while in the case of graphene we get

µ(0) = − τqy
n(0)π

∫ +∞

cvF

(
2− ε2 − v2

F c
2

ε2

)
1

eξ(0) + 1
dε I,

µ(2) = −n
(2)

n(0) µ(0) − τqy

n(0)
π

vF

∫ ∞
cvF

eξ
(0)
0

eξ
(0)
0 + 1

ξ
(2)
0

(
2− ε2 − c2v2

F

ε2

)√
ε2 − c2v2

F dεI.

Conclusions and acknowledgements

The Wigner equation for electrons moving in a d-dimensional crystal has been
written in the case of a generic dispersion relation. Moment equations have been
deduced and closed by QMEP taking into account the Fermi-Dirac statistics.
Explicit closure relations have been obtained for bulk semiconductors and for
graphene under a suitable expansion both in ~ and in a parameter measuring
the anisotropy of the Wigner functions. The devised models seem very useful
for the simulation of charge transport in regime where quantum effects cannot
be neglected.
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Chapter 8

Optimized Quantum Drift
Diffusion Model for a
Resonant Tunneling Diode

In this chapter an optimized Quantum Drift Diffusion model (QDD) [29, 54, 55]
is presented. Comparing it with the Boltzmann-Wigner Transport Equation
(BWTE) [56] solved using a signed Monte Carlo method [57], an improved
QDD model will be obtained. A situation of high non equilibrium regime is
investigated: electron transport in a Resonant Tunneling Diode (RTD) made of
GaAs with two potential barriers in GaAlAs. The range of the suitable voltage
bias applied to the RTD is analyzed.

We find an acceptable agreement between QDD model and BWTE when the
applied bias is low or moderate with a threshold of about 0.225 V over a length
of 150 nm; it is found out that the use of a field dependent mobility is crucial
for getting a good description of the negative differential conductivity in such a
range. At higher bias voltages, we expect that QDD model loses accuracy.

We remark that the results presented in this chapter are original and have
been published in [58].

8.1 Introduction

The RTD has been widely studied because of its importance in the field of
nanoelectronic science and technology and its potential applications in very high
speed/functionality devices and circuits [59]. Usually in engineering design a
QDD model is adopted to describe the charge transport in a RTD. The approaches
based on the BWTE are physically more accurate but computationally very
expensive and not suitable for CAD purposes. A RTD represents a situation
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of high non thermodynamical equilibrium and therefore it is interesting, both
from a theoretical and an applicative point of view, to investigate the validity of
QDD models.

We consider a RTD in GaAs with two potential barriers in GaAlAs. The
QDD model is given by the continuity equation for the charge in the unipolar
case (in the investigated situation the current due to the holes is negligible)
coupled to the Poisson equation; in the constitutive relation for the current, the
quantum effect is given by the Bohm potential. The scattering terms are taken
into account through the expression of the mobility. A mobility model based
on that proposed in [60] has been used. The interested reader can find articles
related to QDD model for example in [54, 55, 61, 62]. An application of a QDD
model to two dimensional materials can be found in [63].

The more accurate BWTE has been solved by using a signed Monte Carlo
method (see [57] for the details on the approach) as in [56, 64–66]. In order
to make a fair comparison, some parameters of the QDD model present in the
expression of the mobility and in the Bohm potential have been optimized by
comparing the characteristic curves obtained with the BWTE and QDD model.

We find two different situations when the QDD model and BWTE are
compared, depending on the values of applied bias voltage. There is a good
agreement for low or moderate fields, roughly below 15 kV/cm. It is found out
that the use of a field dependent mobility is crucial for getting a good description
of the negative differential conductivity in such a range of applied fields. At
higher fields more sophisticated models should be employed, e.g. quantum
energy-transport or more general models based on the moment method and the
quantum version of the maximum entropy principle (see [27, 29]).

The plan of the chapter is as follows. In Sec. 8.2 the BWTE is introduced
and the signed Monte Carlo method is sketched while in Sec. 8.3 the QDD
equations together with the mobility model are presented. In Sec. 8.4 the RTD
considered for the comparison is described. In Sec. 8.5 the numerical scheme
used to solve the QDD model is introduced. In the last section the optimization
procedure is explained and the numerical results are discussed.

8.2 The Boltzmann-Wigner transport equation

An accurate way to deal with quantum transport phenomena is to resort to the
BWTE [3]

∂

∂t
fw(t,x,k) + ~

m∗
k · ∇xfw(t,x,k) + e

~
∇xφ · ∇kfw(t,x,k) = Q(fw) + C(fw) ,

(8.1)
where fw(t,x,k) is the Wigner quasi-distribution function which generalises
the semiclassical Boltzmann distribution function, x = (x1, x2, x3) ∈ R3 and
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~k = (~k1, ~k2, ~k3) ∈ R3 are the electron position and momentum respectively,
m∗ is the electron effective mass, ~ is the reduced Planck constant and e > 0 is
the elementary charge; indeed k belongs to the first Brillouin zone but we will
adopt analytical approximation for the energy bands. In eq. (8.1) ∇x denotes
the gradient with respect to x while ∇k denotes the gradient with respect to k.
φ is the slowly-varying potential satisfying the Poisson equation

∇x · [ε0εr∇xφ(x)] = −e(ND −NA − n) , (8.2)

ε0 the vacuum dielectric constant, εr the relative dielectric constant. ND, NA
are the donors and acceptors doping profiles and n is the particle density which
is related to the Wigner function as

n(t,x) =
∫
fw(t,x,k) dk. (8.3)

C(fw) is the collision term, whose formulation is itself a very complex problem.
In this paper the effects of scattering with phonons are taken into account via
a semiclassical Boltzmann collision operator, which employs transition rates
calculated by using Fermi’s golden rule. In the not-degenerate case we have [67]

C(fw) =
∫

[ws(k′,k)fw(k′)− ws(k,k′)fw(k)] dk′ , (8.4)

where ws(k,k′) is the rate of the scatterings with phonons and impurities
electrons undergo. In the evolution the quantum effect is given by the term

Q(fw) =
∫
Vw(x,k− k′)fw(t,x,k′) dk′. (8.5)

Here Vw is the Wigner potential

Vw(x,k) = −e 1
i~(2π)3

∫
dx′ e−ik·x

′
[
B

(
x + x′

2

)
−B

(
x− x′

2

)]
, (8.6)

and −eB(x) is the rapidly-varying term of the potential energy, which models
the potential barriers in hetero-junctions and is a prescribed function of the
position.

A parabolic band will be adopted according to which the electron energy ε is
assumed to be similar to that of a classical free particle,

ε(k) = ~2|k|2

2m∗ , (8.7)

where m∗ is the effective electron mass. Therefore, the electron group velocity is

v(k) = (v1, v2, v3) = 1
~
∇kε = ~k

m∗
. (8.8)

Solving the BWTE, from the numerical point of view, is a quite difficult task.
The main complication, arising in the direct solution based on finite-difference
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schemes or finite elements, is the discretization of the diffusion term k · ∇xfw

due to the typically fast variation in the phase space. Particle based Monte
Carlo techniques do not require the discretization of this term, but they need
costly computational times.

According to the so-called Signed particle Monte Carlo approach developed
initially in [68], the quantum evolution term (8.5) looks like the Gain term of
a collisional operator in which the Loss term is missing. However, since the
Wigner potential (8.6) is not always positive, (8.5) cannot be considered a real
scattering term. For this reason, it is separated into positive and negative parts
V +
w , V

−
w such that

Vw = V +
w − V −w , V +

w , V
−
w ≥ 0. (8.9)

In this way, we can define an integrated scattering probability per unit time as

γ(x) =
∫
dk′ V +

w (x,k− k′) =
∫
dk′ V −w (x,k− k′) (8.10)

(not that the two integrals are equal) and rewrite the quantum evolution term
as the difference between Gain and Loss terms, i.e.

Q(fw) =
∫
dk′w(k′,k)fw(t,x,k′)− γ(x)fw(t,x,k) (8.11)

w(k′,k) = V +
w (x,k− k′)− V −w (x,k− k′) + γ(x)δ(k− k′). (8.12)

The term w(k′,k) is interpreted as a scattering rate which produces, from the
old particle, a pair of new particles having weights u and −u. This interpretation
gives rise to the following scheme: an initial parent particle (with sign) evolves on
a free-flight trajectory and, according to a generation rate given by the function
γ(x), two new signed particles are generated in the same position having weight
u and −u respectively. The momentum of the new particles is generated with
probability V +

w (x,k)/γ(x). However this procedure suffers from an efficiency
issue in particle generation, because γ usually is a rapidly oscillating function
and leads to an exponential growth of the number of particles. In order to
contain the particle number, a cancellation procedure is introduced: if the total
number of particles exceeds a certain bound Ncanc , then pairs of particles with
similar positions and wave-vectors, but with opposite signs, are removed from
the system. For details about the procedure the interested reader is referred to
[56]. In the sequel, for the simulation of the RTD, we have used ohmic boundary
conditions, assuming carriers are in thermal equilibrium at the contacts. At level
of Monte Carlo approach this is obtained as follows. When a carrier flows out
the contact another particle is injected into the device in order to ensure charge
neutrality. The wave-vector k of the incoming particle is chosen randomly with
a probability density given by a Fermi-Dirac distribution.
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8.3 Quantum Drift-Diffusion Model

Although very accurate, the BWTE is not suited for CAD purposes and usually
for the design of electron devices simpler macroscopic models are used. Among
these, the most known is the quantum drift-diffusion model which, in the unipolar
case, is given by the continuity equation for the electron density n

∂n

∂t
+∇x · J = 0, (8.13)

coupled to the Poisson equation (8.2) and supplemented with a constitutive
relation for the current density J, which is expressed as the sum of a diffusion
and a drift

J = −µkBT
e
∇xn+ nµ∇x(φ+Q+B), (8.14)

where kB is the Boltzmann constant, T is the lattice temperature kept at
equilibrium, µ is the high field mobility and B is the potential barrier. The
quantum effects are encoded in the presence of the Bohm potential Q, given by

Q = ~2

βm∗e
√
n

∆x(
√
n). (8.15)

In the original Magdelung quantum fluid model β = 2 but often in semiconductors
one takes β = 6. In commercial simulators β is considered as a fitting parameter,
usually assumed to vary from two to six. The mobility µ is taken as a function
of the modulus of the electric field E = −∇xφ. We adopt the mobility model
proposed in [60], that is

µ(|E|) = µ0 + vsat(|E|δ−1/Eδc )
1 + α(|E|/Ec)γ + (|E|/Ec)δ

. (8.16)

where µ0 is the low field mobility, vsat is the saturation speed, Ec is the critical
electric field. These parameters, along with α, δ, γ, β will be used like fitting
parameters to optimize the QDD model.

The drift-diffusion model (8.13)-(8.14) must be supplemented with boundary
conditions. Ohmic contacts and zero quantum effects at the edges of the diode
are assumed [69], that is

n(0) = ND(0), n(L) = ND(L), Q(0) = Q(L) = 0, (8.17)

where we have identified the device with the interval [0, L].
The derivation of the QDD model assumes that electrons are in thermal

equilibrium with the phonon bath of the crystal and the validity of the Einstein
relation for the diffusion coefficient. Moreover, for the evaluation of the density
the Fermi-Dirac distribution function or the limiting Maxwell-Boltzmann one in
the non-degenerate case is adopted. The QDD model can be regarded as the
minimal set of moment equations arising from the BWTE with phenomenological
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closure relations based on the previous assumptions. Therefore, it is interesting
from a thermodynamic point of view to investigate the range of validity of the
QDD model.

Before proceeding, it is useful to rewrite our system in a scaled form. The
scaling has the advantage to emphasize the singularly perturbed nature of the
equations. Since the device that we will consider is 1-d in space, if we denote by
x the only relevant abscissa, our choice for the scaling parameters is as follows:
n 7→ n

n
= ñ, t 7→ t

t
= t̃, φ 7→ φ

kBT/e
= φ̃, Q 7→ Q

kBT/e
= Q̃, B 7→ B

kBT/e
= B̃,

x 7→ x

x
= x̃ and µ 7→ µ

kBTt

ex2 = µ̃ where n is the low doping concentration
(103µm−3), t = 1 ps, x = 1µm.

The significant component of the electric field and the current density is only
that along x and non-dimensional form of equation (8.13) reads

∂ñ

∂t̃
+ ∂J̃

∂x̃
= 0, (8.18)

where

J̃ = −µ̃∂ñ
∂x̃

+ µ̃ñ
∂

∂x̃

(
φ̃+ Q̃+ B̃

)
, (8.19)

Q̃ = ~2

βm∗kBTx
2√ñ

∂2

∂x̃2

(√
ñ
)
, (8.20)

µ̃(|E|) = kBT

e

(
µ0 + vsat(|E|δ−1/Eδc )

1 + α(|E|/Ec)γ + (|E|/Ec)δ

)
. (8.21)

The non-dimensional Poisson equation reads(
ε0kBT

e2x2n

)
∂

∂x̃

(
εr
∂φ̃

∂x̃

)
= (ñ− c̃(x̃)), (8.22)

where c̃(x̃) = ND −NA
n

. In the following sections, for the sake of simplifying
the notation, we will omit the tilde symbol in the non-dimensional quantities.

8.4 Resonant Tunneling Diode

We consider the RTD structure introduced in [65], but with a simplified physical
setup. The device simulated is 1-d in space and its total length is L = 150
nm. It consists of two barriers with width a = 3 nm and height B = −0.3 V
surrounding a quantum well with width bw = 5 nm, see Fig.8.1. The barrier
structure is centered in a 30 nm lightly doped (ND = 1016 cm−3) spacer region
that is connected to 60 nm highly doped (ND = 1018 cm−3) drift regions in
either side.
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Figure 8.1: Quantum well region.

The quantum well region is symmetric with respect to the mid-point L/2,
as shown in Fig.8.1, where the distance between each barrier center and the
mid-point is

|d| = a+ bw
2 = 4 nm.

The barrier potential can be expressed as a piecewise constant function, as
follows:

B(x) =
{
−0.3 V 69.5 nm < x < 72.5 nm ∨ 77.5 nm < x < 80.5 nm

0 otherwise
(8.23)

The scattering mechanisms include polar optical phonons within a single Γ
valley band [67]. The parameter εr is taken constant and equal to that for GaAs.
The temperature is 300 K. The effective electron mass is m∗ = 0.067me, where
me is the bare electron mass. The schematic of the considered device is depicted
in Fig.8.2.
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Figure 8.2: Simulated resonant tunneling diode.

8.5 Numerical Schemes for the QDD model

In order to compare the characteristic curves obtained with the BWTE and
QDD models we will consider the stationary solutions. To solve the steady
QDD equations, one needs numerical approximations for the continuity and the
Poisson equations. We start with the discretization of Poisson’s equation.

Let us consider a uniform spatial grid 0 = x1 < x2 < ... < xN = L, where
∆x = xi+1 − xi, ∀i = 1, ..., N − 1, and discretize the second derivatives in the
Poisson equation with standard central differencing

φxx(xi) = φi−1 − 2φi + φi+1

∆x2 + o(∆x). (8.24)

By substituting into the scaled Poisson equation and by taking into account that
ε = ε0εr is piecewise constant, we obtain

φi−1 − 2φi + φi+1 = e∆x2

ε
(ni − ci), ∀i = 2, ..., N − 1 (8.25)

with boundary conditions: φ1 = 0 and φN = Vb where Vb is the bias voltage.
In order to discretize the continuity equation and to get a second order

numerical scheme, we need also the intermediate grid points xi+1/2 = xi + ∆x
2 .

We set ni ≈ n(xi) and Ji ≈ J(xi). The stationary continuity equation (8.13) is
discretized as

Ji+1/2 − Ji−1/2

∆x = 0 (8.26)

In order to approximate J we expand respect to the space variable x

J(x) = Ji+1/2 + (x− xi+1/2)
(
∂J

∂x

)
i+1/2

+ o(∆x).
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and introduce the thermal voltage UT = kBT
e and the Slotboom variable

s = ne

(
−G
UT

)
where G = φ+Q+B. We take

G(0) = φ(0) +B(0), G(L) = φ(L) +B(L), (8.27)

assuming that the quantum effects are null at the boundary, that is Q(0) =
Q(L) = 0 [70].

In terms of the Slotboom variable the current reads J = µkBTe
G/UT

∂s

∂x
wherefrom

µkBT
∂s

∂x
= e−G/UT J(x) = e−G/UT

[
Ji+1/2 + (x− xi+1/2)

(
∂J

∂x

)
i+1/2

+ o(∆x)
]
.

(8.28)

In each interval [xi, xi+1] we suppose that the mobility and the current are
constants

µ(x) ≈ µi+1/2 ∀x ∈ [xi, xi+1], J(x) ≈ Ji+1/2 ∀x ∈ [xi, xi+1].

The potential G is approximated in [xi, xi+1] by a piecewise linear function

G(x) ≈ Gi + x− xi
∆x (Gi+1 −Gi).

In particular, we discretize the Bohm potential by using finite difference

Qi = ~2

βm∗e

(√ni+1 − 2√ni +√ni−1)
∆x2√ni

Integrating over [xi, xi+1], one has

µi+1/2kBT (si+1 − si) =
∫ xi+1

xi

e−G/UT Ji+1/2dx+ o(∆x) =

= Ji+1/2
∆xUT

Gi+1 −Gi

(
e−Gi/UT − e−Gi+1/UT

)
+ o(∆x)

which after some algebra, gives the Scharfetter-Gummel discretization of the
current

Ji+1/2 ≈
UTµi+1/2σi+1/2

∆x [e(ni+1 − ni) coth(σi+1/2)− e(ni+1 + ni)] (8.29)

where σi+1/2 = Gi+1−Gi
2Ut .

We remark that the barrier is not a regular function and its derivatives must
be intended in a distributional sense. Indeed, what we evaluate is a numerical
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regularization of B. By substituting this expression of current density in (8.26)
we obtain the overall scheme (for more details see [71])

φi−1 − 2φi + φi+1 = e∆x2

ε
(ni − ci),

µi+1/2σi+1/2[(ni+1 − ni) coth(σi+1/2)− (ni+1 + ni)]
∆x2 ,

−
µi−1/2σi−1/2[(ni − ni−1) coth(σi−1/2)− (ni−1 + ni)]

∆x2 = 0,

(8.30)

i = 2, ..., N − 1, augmented with the boundary conditions (8.27).
In order to decouple the system we adopt the following iterative scheme.

1. Set as initial guess n1(x) = c(x).

2. For each iteration k ≥ 1:

(a) solve the Poisson equation to find φk+1;

(b) solve the second equation of the system (8.30) to find nk+1.

3. Iterate step 2 until convergence, according to a suitable stopping criterion.

8.6 Optimization procedure and numerical res-
ults

For the optimization procedure, we take the current density calculated by the
BWTE as reference and introduce the objective function

fobj(a) =
[∑

i

|JQDD(a, (Vb)i)− JBWTE((Vb)i)|2
]1/2

. (8.31)

Here JBWTE((Vb)i) is the reference current density given by the BWTE at
applied bias (Vb)i running from 0.025 V to 0.275 V with increment 0.025 V,
while JQDD(a, (Vb)i) is the current computed with the QDD mode at applied
bias (Vb)i and value

a = [µ0, Ec, vsat, δ, α, γ, β]

of the vector of the parameters to be optimized.
As initial guess we take a0 = [1.066, 5.659, 0.253, 14.93,−0.045, 0.564, 1.775]

which has been inferred by the original values in [60]. In order to write the set
of admissible values equal to [0, 1] for each component of a, we introduce the
transformation

µ0 = 1.5t1 + 0.5, Ec = 7.5t2 + 2.5, vsat = 0.38t3 + 0.12,
δ = 10t4 + 10, α = 3t5, γ = t6, β = 2t7 + 1,
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where t ∈ [0, 1]7 and, consequently, µ0 ∈ [0.5, 2], Ec ∈ [2.5, 10], vsat ∈ [0.12, 0.5],
δ ∈ [10, 20], α ∈ [0, 3], γ ∈ [0, 1], β ∈ [1, 3]. The intervals for the constraints have
been chosen in order to have the initial point in the middle of the interval.

The complete formulation of the problem reads as follows:
min fobj(t)
t0 = [0.38, 0.42, 0.35, 0.49, 0.015, 0.56, 0.39];
0 ≤ tk ≤ 1 k = 1, ..., 7.

(8.32)

where fobj(t) is obtained from (8.2)-(8.13) which represent PDE constraints.
To solve this constrained optimization problem we have adopted the MATLAB

optimization function fmincon [78] with tolerance 10−6. The numerical procedure
gives the following optimal values for t

tmin = [0.955, 0.399, 0.227, 0.363, 0.192, 8.141× 10−6, 0.852]

to which the optimal value

amin = [1.933µm2/V ps, 5.493V/µm, 0.206µm/ps, 13.63, 0.576, 8.141×10−6, 2.704]

corresponds.
In Fig. 8.3 the reference characteristic curves obtained by solving the BWTE

are compared with those deduced from the QDD model with the initial guess
of the parameters and with the optimized ones. For applied voltages lower
than 0.225 V an acceptable agreement is obtained. The main finding is that
at variance with the results presented in [54] it is indeed possible to get a
negative differential conductivity even with a QDD model. The lack of such
an effect in [54] is presumably ascribable to the use of constant mobility which,
although coherent with the derivation of the QDD model expanding around
a local equilibrium, is too simplistic for performing accurate simulations at
moderate or high fields.

In Figure 8.4 the simulation of the RTD is shown in the case Vb = 0.175V.
The qualitative behavior is in agreement with the results present in the literature.

Of course, the optimized parameters are calibrated on the specific resonant
diode under consideration and cannot be considered as general values for any
simulations. To this aim a more extensive campaign of simulations should be
performed. However, we would like to remark that in any case several applied
electric fields have been considered (those present in the characteristic curve)
and also the fitted parameters obtained from experimental data suffer from
a lack of generality because they are usually obtained from measures in bulk
semiconductors which include only the drift contribution. The diffusive and,
more stringently, the quantum effects require the simulation or a set of measures
of the specific device under investigation. Therefore, it is intrinsically unavoidable
a limitation of any set of optimized parameters. The only theoretical general
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way to get universal transport coefficient is to deduce them directly from the
scattering term in the BWTE but this is a daunting task which goes beyond the
scope of the present paper.

We tried to consider also higher fields (see Fig. 8.3) but a certain discrepancy
is present both qualitatively and quantitatively, casting doubts on the use of
the QDD model in situations of high non-equilibrium. It is likely that thermal
effects must be included, e.g. considering an energy-transport or hydrodynamical
model.
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Figure 8.3: Comparison of the characteristic curves.
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model with Vb = 0.175V .

In [72] we improved the optimization adopting the following procedure. As
initial guess a0 we choose the parameters present in the literature,

a0 = (0.85µm2/V ps, 22.09 V/µm, 0.1907µm/ps, 7.144, 5.362, 0.783, 2)

At variance with reference [58], as second step, we perform a Particle Swarm
Optimization (PSO) procedure [73–75]. This algorithm is gradient free and it
is designed for large parameter spaces. A candidate optimum a1 is found. As
third step, we perform an unconstrained optimization procedure by means of the
Nelder-Mead algorithm [76, 77], starting from a1 as initial guess. The optimum
is obtained at

aopt = (1.1393µm2/V ps, 5.3075 V/µm, 0.1878µm/ps, 6.8461, 0.0512, 0.8094, 1.6660)

About the validity of QDD model, we observe that for high voltages than 0.3
V the QDD model does not predict accurately the value of the current (see
Fig. 8.5), even if this improves the results in [58] where the discrepancy was
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already evident for applied voltage greater than 0.25 V. In any case, since the
underlying hypotheses of the QDD models require that the system is close to
equilibrium, it is not surprising a limitation on the applied field in order to
guarantee acceptably accurate results. A possible way to improve the simulation,
with still computationally feasible computing time, is to adopt more sophisticated
models such as quantum energy-transport or hydrodynamical ones.
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Figure 8.5: New optimization results for high voltages.
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Chapter 9

Additional topics

9.1 A time delayed deterministic model for the
spread of COVID-19 with calibration on a
real dataset

During the evolution of the COVID-19 pandemic, each country has adopted
different control measures to contrast the epidemic diffusion. Restrictions to
mobility, public transport, and social life in general, have been actuated to contain
the spread of the pandemic. In this chapter, we consider the deterministic SIRD
model with delays proposed in [79] which is improved by adding the vaccinated
compartment V (SIRDV model) and considering a time dependent contact
frequency. The three delays take into account the incubation time of the disease,
the healing and the death time. The aim of this work is to study the effect of
the vaccination campaigns in Great Britain (GBR) and Israel (ISR) during the
pandemic period. The different restriction periods are included by fitting the
contact frequency on real datasets as a piecewise constant function. As expected,
the vaccination campaign reduces the amount of deaths and infected people.
Furthermore, for the different levels of restriction policy, we find specific values
of the contact frequency, that can be used to predict the trend of the pandemic.

We remark that the results presented in this section are original and have
been published in [80].

9.1.1 Introduction

The COVID-19, acronym of COronaVIrus Disease 19, is a respiratory infectious
disease caused by the virus called SARS-CoV-2 belonging to the coronavirus
family. It has spread rapidly and has taken millions of lives worldwide since the
end of 2019 [81].
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Epidemic models can be devised with the aim to predict the pandemic
evolution. They represent a class of mathematical models that are used not
only to study epidemics properly but also to predict social phenomena or the
behavior of biological systems and, for these reasons, they have been a branch
of interest in applied mathematics for several years. Epidemic models can help
the governments to decide the best restriction policy to adopt so that the virus
spreading can be contained in a better way [82, 83]. The crucial point consists
to determine suitable parameters of such models that are able to represent and
predict accurately the behavior of the illness.

Regarding the COVID-19 pandemic, many mathematical models have been
proposed. Epidemic models based on ordinary differential equations have been
introduced in [82, 84, 85]. Stochastic models have been proposed in [79, 86].
For models based on stochastic differential equations see e.g. [87, 88]. A model
based on an operatorial approach as in quantum mechanics can be found in [89].
A continuous space-time non-linear probabilistic model has been proposed in
[90], where the interpretation is given in analogy with quantum mechanics.

In [79] a deterministic model based on differential equations with time delays
has been devised, although it was introduced only to validate the stochastic
one and no applications have been provided by using such a model. In [91, 92]
mathematical models with only a delay regarding the incubation time are
presented. In the present work, we consider a compartmental model consisting
in dividing the population in four categories: susceptible S, infected I, recovered
R, and dead D (SIRD model). The transitions between classes are governed
by a system of differential equations with delays. The adopted model considers
three time delays: the incubation time, the healing time, and the death time.
The use of time delays allows to include characteristics of the disease under
consideration, such as incubation, and also possible delays due to the data
communication and recording. Moreover, we provide an application of the model
mentioned above to the cases of the COVID-19 spread in Great Britain (GBR)
and Israel (ISR). The parameters are extracted from real data collected in [93]
by a fitting procedure and a comparison with the policy measures to prevent the
pandemic diffusion is done. Furthermore, the effect of vaccination is a key point
for the pandemic evolution and therefore several studies are carried out (see
e.g. [94]). For this reason, we include in the examined SIRD model the further
category of vaccinated people V which time evolution is provided by data, thus
defining a SIRDV model. In this way, we include the effect of vaccination in
the examined model for the countries under investigation to predict different
scenarios depending on whether it is considered or not.

The plan of the chapter is as follows. In Sec. 9.1.2 the SIRD and SIRDV
mathematical models are introduced; in Sec. 9.1.2 the numerical approach to
simulate the previous models is presented and applied for a specific analysis of
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the single country under consideration. In particular, in Subsec. 9.1.3 we perform
a data fitting for ISR to obtain the SIRDV model parameters and we get also
numerical simulations, and in Subsec. 9.1.3 the same analysis is done for GBR;
in Sec. 9.1.4 we perform a comparison between the parameters of the model
found for the two countries and we show the results of simulations. Furthermore,
we use two statistical tests, i.e. ANOVA and Kruskal-Wallis, to confirm the
dependence between the values of the contact frequency and the containment
measures.

9.1.2 Mathematical model

The simplest epidemic model is the well-known SIR model [95, 96]. It arises as a
deterministic model, that consists of a system of ordinary differential equations,
describing the time evolution of three classes: Susceptible (S), Infected (I) and
Recovered (R). If the class of Dead (D) people is also considered, the model
takes the name of SIRD. Since the COVID-19 has a relevant incubation period
[97] and an identifiable period from infection to recovery [98], in [79] a SIRD
model with time delays has been proposed as follows.

We suppose that the disease has an incubation time τ1, a healing time τ2
and a death time τ3. Let t ≥ τ1. At time t+ ∆t the number of the susceptibles,
S(t+∆t), decreases because some of the susceptibles at time t, S(t), get infected.
The number of the susceptibles that become infected over the time frame ∆t is
proportional to S(t) times the fraction of infected people at the previous time
t− τ1, I(t− τ1)/N , due to the incubation time, where N is the entire population
size. The proportionality factor is the contact frequency β of a susceptible
individual that leads to an infection. Moreover, for t < τ1 we suppose that new
infections do not occur over the time frame ∆t and, to include this assumption,
we multiply for H(t− τ1), where H(·) is the Heaviside step function. Therefore
we have

S(t+ ∆t)− S(t)
∆t = −βS(t)I(t− τ1)

N
H(t− τ1), (9.1)

and for ∆t going to 0 we get

S′(t) = −βS(t)I(t− τ1)
N

H(t− τ1).

Let α be the mortality rate which is defined as the Infection Fatality Ratio
(IFR), i.e. the ratio between the number of deaths from disease and the number
of infected individuals. To describe the recovering mechanism we assume that
the increase of recovered people at time t is due to the decrease of susceptible
people at time t− τ2 multiplied by 1− α, that is

R′(t) = −(1− α)S′(t− τ2).

In a similar way, we model the death mechanism, obtaining

D′(t) = −αS′(t− τ3).
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Finally, the variation of infected is obtained by the sum of three contributions:
the first one is the opposite of the variation of the susceptibles, the second one
is the opposite of the variation of the recovereds and the last one is the opposite
of the variation of the deads. Indeed, an individual who gets infected leaves the
S class and joins the I class; an infected individual that recovers, passes from
the I class to the R class; an infected individual that dies passes from the I class
to the D class.

From these considerations, the following equations of the SIRD deterministic
model are proposed

S′(t) = −βS(t)I(t− τ1)
N

H(t− τ1),

I ′(t) = βS(t)I(t− τ1)
N

H(t− τ1) + (1− α)S′(t− τ2) + αS′(t− τ3),

R′(t) = −(1− α)S′(t− τ2),
D′(t) = −αS′(t− τ3).

(9.2)

This model falls into the class of differential delay equations with multiple
time lags. The theory of time-delayed differential equations is an active research
topic. The interested reader can be referred to [99] for an overview. Regarding
the specific problem of this chapter, a qualitative theoretical analysis is not
provided. Some analytic results valid in a more general class can be found in
[100].

By substituting the expression of S′ given by the first equation of the system
(9.2) in the remaining equations of the system, this latter can be rewritten as

S′(t) = −βS(t)I(t− τ1)
N

H(t− τ1),

I ′(t) = βS(t)I(t− τ1)
N

H(t− τ1)+

−(1− α)
[
βS(t− τ2)I(t− τ1 − τ2)

N
H(t− τ1 − τ2)]

−α
[
βS(t− τ3)I(t− τ1 − τ3)

N
H(t− τ1 − τ3)

]
,

R′(t) = (1− α)
[
βS(t− τ2)I(t− τ1 − τ2)

N
H(t− τ1 − τ2)

]
,

D′(t) = α

[
βS(t− τ3)I(t− τ1 − τ3)

N
H(t− τ1 − τ3)

]
.

(9.3)

Moreover, to include the effect of the vaccination campaign we improve the model
by introducing the variable V which represents the total number of cumulative
vaccinated people. The aim of the vaccination campaign is to decrease the
number of susceptible individuals and to weaken the pandemic. Let us consider
eq. (9.1) and we subtract at the right-hand side the variation of vaccinated
people over the time frame ∆t, that is

S(t+ ∆t)− S(t)
∆t = −βS(t)I(t− τ1)

N
H(t− τ1)− V (t+ ∆t)− V (t)

∆t
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and for ∆t going to 0 we get

S′(t) = −βS(t)I(t− τ1)
N

H(t− τ1)− V ′(t).

We do not provide a model for V (t) because in the applications of the next
sections we get its values from data. Another improvement of the model consists
to consider β as a function of time, whose expression will be explained below.

Therefore, we propose the following SIRDV model

S′(t) = −β(t)S(t)I(t− τ1)
N

H(t− τ1)− V ′(t),

I ′(t) = β(t)S(t)I(t− τ1)
N

H(t− τ1)

−(1− α)
[
β(t− τ2)S(t− τ2)I(t− τ1 − τ2)

N
H(t− τ1 − τ2)]

−α
[
β(t− τ3)S(t− τ3)I(t− τ1 − τ3)

N
H(t− τ1 − τ3)

]
,

R′(t) = (1− α)
[
β(t− τ2)S(t− τ2)I(t− τ1 − τ2)

N
H(t− τ1 − τ2)

]
,

D′(t) = α

[
β(t− τ3)S(t− τ3)I(t− τ1 − τ3)

N
H(t− τ1 − τ3)

]
.

(9.4)

In (9.4) the function β(t) is modeled as a piecewise constant function, that
depends on the more or less restrictive policies along all the days considered,
that is

β(t) =



β0, Tmin ≤ t ≤ t0,

β1, t0 < t ≤ t1,
...

...
βi, ti−1 < t ≤ ti,
...

...
βn, tn−1 < t ≤ Tmax,

(9.5)

where β0, β1, · · · , βi, · · · , βn and t0, t1, · · · , ti, · · · , tn−1 are parameters to
be estimated, and Tmin and Tmax correspond to the first and last day of the
investigated period, respectively. We note that 0 ≤ β(t) ≤ 1 and if β(t) ≈ 1
it means that the contact frequency is greater and there are few restrictive
measures; on the contrary, if β(t) ≈ 0 it implies a lockdown period.

Upon these considerations, we would like to find the parameters needed
in the proposed model by a non-linear optimization procedure based on the
Nelder-Mead method , implemented in MATLAB [101]. Some convergence
properties of the method in low dimensions can be found in [102]. The target is
the minimization of the functional

J = ‖I − Id‖+ ‖R−Rd‖+ ‖D −Dd‖,

where ‖ · ‖ is the 2-norm, I, R and D are the numerical solutions of the model
and Id, Rd and Dd are the same quantities given by official data for GBR and
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ISR, i.e. the actual number of infected, the cumulative number of recovered and
the cumulative number of deaths.

9.1.3 Simulations and results

In this section, the numerical approach is presented and the results of the
simulations are reported and commented. We analyze the COVID-19 epidemic
behavior in two different countries: ISR and GBR. The time interval goes from
the onset of the pandemic and includes several waves of infection. The dataset
used for both countries has been taken from [93].

Numerical approach

In order to find numerical solutions of the system (9.4), we adopt a first-order
finite differences scheme. Let us fix a temporal grid Tmin = t0 < t1 < ... < tM =
Tmax of constant time step ∆t small enough to guarantee the numerical stability.
We introduce the numerical approximations Sk ≈ S(tk), Ik ≈ I(tk), Rk ≈ R(tk),
Dk ≈ D(tk), Vk ≈ V (tk), βk ≈ β(tk) for k = 0, 1, ...,M , and we discretize the
system (9.4) as follows

Sk+1 =Sk −
∆t
N
βkSkIk1H(tk − τ1)− (Vk+1 − Vk),

Ik+1 =Ik + ∆t
N
βkSkIk1H(tk − τ1)

− (1− α)∆t
N
βk2Sk2Ik12H(tk − τ1 − τ2)

− α∆t
N
βk3Sk3Ik13H(tk − τ1 − τ3),

Rk+1 =Rk + ∆t
N

(1− α)βk2Sk2Ik12H(tk − τ1 − τ2),

Dk+1 =Dk + α
∆t
N
βk3Sk3Ik13H(tk − τ1 − τ3),

where the indexes k1, k2, k3, k12 and k13 are given by

kj = max
{

0,
⌊
tk − τj

∆t

⌋}
j = 1, 2, 3,

k1m = max
{

0,
⌊
tk − τ1 − τm

∆t

⌋}
m = 2, 3,

with b·c the floor function.

ISR analysis

We consider the data in the temporal range that goes from the day of detection of
the first infected, i.e. February 21, 2020, until April 30, 2021. For each variable,
the dataset contains a value for each of the 435 days, but for the numerical
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solutions of the system (9.4) it is needed to fix a temporal grid with a smaller
step size ∆t. For this reason, we use the spline interpolation of data to have a
match with different vector lengths.

In the dataset the number of vaccines is reported, that is the cumulative
number of administrated doses. In the proposed model the number of vaccinated
people is needed. Therefore, in order to estimate the number of vaccinated
people, we divide the number of doses by 1.7, considering the number of people
that have received two doses of vaccine.
In Tab. 9.1 the adopted values of α, τ1, τ2, τ3 are reported. The value of α is
estimated by dividing the number of deaths by the number of infected people
and averaging the result.

Parameter Value
α 0.0085
τ1 5.5 d
τ2 17 d
τ3 20 d

Table 9.1: Parameters adopted for the simulation in the case of ISR.

In order to have a more precise agreement between our model and data, we
divide the investigated period of time into several periods. In this case, we select
four periods: the first one from day 1 until day 98, the second one from day 99
until day 200, the third one from day 201 until day 300, the fourth one from day
301 until day 435. Each period is associated with an epidemic wave in which
we recognize a proper number of phases of diffusion depending on the different
restriction policies adopted. In particular, stronger restrictions correspond to
lower values of β(t) and vice versa. More precisely, we consider 2 phases for the
first and third wave, and 3 phases for the second and fourth one.

For the optimization procedure, we adopt the following strategy. We find the
fitting parameters in each period corresponding to a single epidemic wave. Then
the data are merged and the optimization is applied to the entire dataset. The
overall results are shown in Fig. 9.1 and the corresponding fitting parameters
are reported in Tab. 9.2. We observe that the proposed model is able to keep
the several waves of infection. This is primarily due to the fine modeling of β(t).
We notice a good agreement between the simulated curves and the data.

In order to quantify the importance of vaccines, we compare the results with
the solutions of system (9.3), adopting the same parameters of Tab. 9.2. The
obtained results are shown in Fig. 9.2. We observe that without vaccines the
number of infected and dead people would increase exponentially. This is due
to a quite high value of the contact frequency in the last intervals of time. We
deduce that an increasing number of vaccinated people allow the governments
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Figure 9.1: Comparison between SIRDV model (system (9.4)) with parameters
of Tab.9.2 (continuous lines) and ISR data (dashed lines). In the inset, the curve
of the deaths is magnified.
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Figure 9.2: Comparison between SIRD model (9.3), with parameters of Tab. 9.2
(continuous lines), and ISR data (dashed lines). In the inset, the curve of the
deaths is magnified.

to adopt a less restrictive policy, remarking in this way the importance of the
vaccination campaign.
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Estimated parameters

β Value t Value

β0 0.72152 d−1 t0 45.04975 d
β1 0.026274 d−1 t1 98.01835 d
β2 0.14467 d−1 t2 146.0086 d
β3 0.046757 d−1 t3 170.0053 d
β4 0.0969 d−1 t4 195.0024 d
β5 0.0645 d−1 t5 224.9946 d
β6 0.0444 d−1 t6 289.993 d
β7 0.13793 d−1 t7 323.0012 d
β8 0.080843 d−1 t8 389.9505 d
β9 0.12619 d−1

Table 9.2: Fitting parameters for the SIRDV model (9.4) applied to ISR.

Since the crucial point for containing the spread of the disease consists to
prevent new cases, some parameters can be defined to provide insight into the
state of the pandemic. One of the parameters used for that purpose is the
basic reproduction number R0. It represents the average number of infections
generated by a single infected individual if all the individuals are susceptible.
In the case of an ongoing outbreak, it is defined the effective reproduction
number Rt, which is the average number of new infections generated by a single
infected individual at time t considering the part of the population of susceptible
individuals. Following [103], we calculate the Rt numerically by using the results
of our simulations. In particular, from the first two equations of system (9.2) we
get

dI
dS = −1 + 1

Rt(t)
.

It can be discretized in an interval [ti, ti+1] where Rt is constant obtaining

Rt(ti) = 1
∆iI
∆iS

+ 1
,

where ∆iI = I(ti)− I(ti−1) and ∆iS = S(ti)− S(ti−1).
In the case of ISR, we show the results of the numerical evaluation of Rt in

Fig. 9.3. It is calculated daily. The plotted time interval starts from April 11,
2020, that is after 50 days from the detection of the first infection. This choice is
due to the fact that in the first period the curves are flat, leading to inaccurate
evaluation of Rt. We observe that after approximately 300 days the effect of
vaccination becomes relevant in order to reduce the Rt values.
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Figure 9.3: Daily trend of Rt for ISR. Both the cases of SIRD and SIRDV models
are investigated.

GBR analysis

We consider the data in the temporal range that goes from the day of detection
of the first infected, i.e. January 31, 2020, until April 30, 2021. As in the case of
ISR, we perform the spline interpolation of the data.

Similar to ISR, to estimate the number of people vaccinated, we divide the
number of doses provided by data by 1.45, taking into account the number of
people that have received two doses of vaccine. Since GBR does not report the
number of people recovered from COVID-19, to obtain the missing data we
adopt the following formula

Rd(t) = (1− α)Id(t− τ1 − τ2),

where Rd(t) represents the number of recovered people at the time t, α represents
the mortality rate and Id represents the number of infected people at previous
time t− τ1 − τ2.

In Tab. 9.3 we report the adopted values of α, τ1, τ2, τ3 in the simulation. In
this case, the value of α is estimated by dividing the number of total deaths by
the number of total infected people.

As we have done for ISR, to have a more precise agreement between our
model and data, we split the investigated period of time into three parts: the
first one from day 1 until day 221, the second one from day 222 until day 318,
the third one from day 319 until day 456. Each period is associated with a
wave of infection, in which we recognize a proper number of phases of diffusion.
More precisely, we consider three phases for the first and the second wave and
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Parameter Value
α 0.0289
τ1 5.5 d
τ2 20 d
τ3 20 d

Table 9.3: Parameters adopted for the simulation in the case of GBR

four phases for the third one. After finding in each period the best parameters
thanks to the optimization, the data are merged again and the optimization is
applied to the entire dataset. The results are shown in Fig. 9.4 and the final
fitting parameters are reported in Tab. 9.4. In this case, a very good agreement
between the numerical results and the data is noticeable.
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Figure 9.4: Comparison between SIRDV model (9.4) with parameters of Tab. 9.4
(continuous lines) and GBR data (dashed lines). In the inset, the curve of the
deaths is magnified.

To understand the importance of vaccines, we solve system (9.3), which does
not take into account the presence of vaccines, with the parameters of Tab. 9.4,
obtaining the results of Fig. 9.5. We can deduce that without a vaccination
campaign the infected curve does not substantially increase in the short time
because it is affected by the effects of the last lockdown. However, in the medium
and long time, we expect a different behaviour.

The analysis of Rt is performed with the same technique presented in the
previous section for ISR. The numerical results are plotted in Fig. 9.6. Here
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Estimated parameters

β Value t Value

β0 0.3746 d−1 t0 73.0302 d
β1 0.0483 d−1 t1 110.0003 d
β2 0.0183 d−1 t2 220.9293 d
β3 0.3239 d−1 t3 249.5555 d
β4 0.0771 d−1 t4 281.6010 d
β5 0.0393 d−1 t5 318.0524 d
β6 0.1054 d−1 t6 340.9996 d
β7 0.0583 d−1 t7 357.9999 d
β8 0.0254 d−1 t8 377.9999 d
β9 0.0409 d−1

Table 9.4: Fitting parameters for the SIRDV model (9.4) applied to GBR.

the considered time interval starts from March 21, 2020, after 50 days from the
detection of the first infection. In this case, we notice the presence of high peaks.
This is a numerical effect because the peaks correspond to the time periods in
which a low number of infections are registered (see Fig. 9.4). In this situation,
the numerical estimation of Rt does not result accurate.

9.1.4 Pandemic containment measures effects comparis-
ons

The most influential pandemic containment measure is the vaccination campaign
which affects the contact frequency reduction described by the function β.

In ISR the vaccination campaign has been really effective because most
of the population has received two doses of vaccine until 30 April 2021. At
the same time, the pandemic containment measures during the vaccination
period had been less restrictive with respect to the lockdown periods; for these
reasons, it is possible to notice a substantial difference between the SIRD and
the SIRDV model in ISR. In the SIRD model, the combination of the absence
of the vaccination campaign with a high β value caused an additional infection
wave.

In GBR the vaccination campaign has been less effective because most of
the population has received only one dose of vaccine, while simultaneously the
pandemic containment measures have been more stringent than in ISR during the
vaccination campaign. From Fig.9.5 we can deduce that without a vaccination
campaign the infected curve does not substantially increase in the short time
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Figure 9.5: Comparison between SIRD model (9.3) with parameters of Tab.9.4
(continuous lines) and GBR data (dashed lines). In the inset, the curve of the
deaths is magnified.
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Figure 9.6: Daily trend of Rt for GBR. Both the cases of SIRD and SIRDV
models are investigated.

because social distancing measures are still adopted in GBR in such a period,
corresponding to a low value for β. However, in medium and long time, we
expect a spread increment in both cases with and without vaccination, especially
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if restrictions are released.
The crucial issue for the model is the function β(t). Its values depend on

specific restriction measures. It is possible to recognize four levels of restrictions
in each country: total opening, corresponding to an absence of restrictions;
partial opening, which implies an opening but controlled phase to isolate the
infected individuals; partial closure, describing a restrictive situation but not
totally; lockdown, that is the most restrictive level. In Tab. 9.5 we report the
values of β(t) corresponding to the four restriction levels explained before, for
both countries analyzed in this study.

Policy measure β Value

Total opening β0 0.3746 d−1

Partial closure β1 0.0483 d−1

Lockdown β2 0.0183 d−1

Partial opening β3 0.3239 d−1

Partial closure β4 0.0771 d−1

Lockdown β5 0.0393 d−1

Partial opening β6 0.1054 d−1

Partial closure β7 0.0583 d−1

Lockdown β8 0.0254 d−1

Partial closure β9 0.0409 d−1

Policy measure β Value

Total opening β0 0.7215 d−1

Lockdown β1 0.0262 d−1

Partial opening β2 0.1446 d−1

Partial closure β3 0.0467 d−1

Partial opening β4 0.0969 d−1

Partial closure β5 0.0645 d−1

Lockdown β6 0.0444 d−1

Partial opening β7 0.1379 d−1

Partial closure β8 0.0808 d−1

Partial opening β9 0.1261 d−1

Table 9.5: GBR (left table) and ISR (right table) function β(t) values related to
the restriction measures.
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Policy measure β values for GBR β values for ISR
Total opening 0.3746 d−1 0.7215 d−1

Partial opening 0.1054 d−1, 0.3239 d−1 0.0969 d−1, 0.1261 d−1,
0.1379 d−1, 0.1446d−1

Partial closure 0.0409 d−1, 0.0483 d−1,
0.0583 d−1, 0.0771 d−1

0.04675 d−1, 0.0645 d−1,
0.0808 d−1

Lockdown 0.0183 d−1,0.0254 d−1 ,
0.0393 d−1 0.0262 d−1, 0.0444 d−1

Table 9.6: β(t) values grouped by total opening, partial opening, partial closure
and lockdown for the two countries.

In order to have a confirmation of the dependence between the β values and
the policy measures, a one-way ANalysis Of VAriance (ANOVA) is performed.
To apply this test the data are organized into several groups representing a
sample extracted from a proper population and each population represents the
results of a specific factor level.
In this case, both for GBR and ISR, the factor is the policy measure and its
levels are: total opening, partial opening, partial closure, and lockdown. Instead
of a sample extracted from a certain population, the β values grouped as in
Tab. 9.6 have been used.
The Fisher statistic (F) value is computed both for GBR and ISR, and it is
compared with the quantile of order 0.95 of the Fisher distribution with (3,6)
degrees of freedom (fF0.95(3, 6) = 4.7571). The results are reported in Tab. 9.7.

ANOVA test results
GBR ISR

p-value 0.0095 3.61 ·10−7

F 9.97 362.36

Table 9.7: ANOVA test results for GBR and ISR.

It is evident that there is a strong dependence of the β values on the policy
measures, because of a very low significance level (p-value).

Since the number of β values, grouped according to the policy measures, is
not so high, we performed the ANOVA test also in a non-parametric way, by
means of the Kruskal-Wallis test. The results are reported in Tab. 9.8.
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Kruskal-Wallis test results
GBR ISR

p-value 0.0424 0.0424
Statistics 8.18 8.18

Table 9.8: Kruskal-Wallis test results for GBR and ISR.

In this case, the dependence of β on the policy measures is still strong but
with a higher p-value. We remark that the same values both for GBR and ISR
are obtained because the Kruskal-Wallis test works with ranks instead of data
and in this case the statistic results are similar.

Thanks to these considerations, the values in Tab. 9.6 can be useful initial
guesses to predict the pandemic trend based on the particular policy measures
applied by the governments.

9.2 AMBEATion: Analog Mixed-Signal Back-
End Design Automation with Machine Learn-
ing and Artificial Intelligence Techniques

For the competitiveness of the European economy, automation techniques in
the design of complex electronic systems are a prerequisite for winning the
global chip challenge. Specifically, while the physical design of digital Integrated
Circuits (ICs) can be largely automated, the physical design of Analog-Mixed-
Signal (AMS) ICs built with an analog-on-top flow, where digital subsystems
are instantiated as Intellectual Property (IP) modules, is still carried out pre-
dominantly by hand, with a time-consuming methodology. The AMBEATion
consortium, including global semiconductor and design automation companies
as well as leading universities, aims to address this challenge by combining
classic Electronic Design Automation (EDA) algorithms with novel Artificial
Intelligence and Machine Learning (ML) techniques. Specifically, the scientific
and technical result expected at the end of the project will be a new methodology,
implemented in a framework of scripts for AMS placement, internally making
use of state-of-the-art AI/ML models, and fully integrated with Industrial design
flows. With this methodology, the AMBEATion consortium aims to reduce
the design turnaround-time and, consequently, the silicon development costs of
complex AMS ICs.

We remark that the results of this section are original and they have been
accepted as a conference paper by DATE2024 Multi-Partner Projects Co-Chairs.
The authors are: Giulia Elena Aliffi, Joao Baixinho, Dalibor Barri, Francesco
Daghero, Nicola Di Carolo, Gabriele Faraone, Michelangelo Grosso, Daniele Jah-
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ier Pagliari, Jiri Jakovenko, Vladimı́r Jańıček, Dario Licastro, Vazgen Melikyan,
Matteo Risso, Vittorio Romano, Eugenio Serianni, Martin Štastný, Patrik Vacula,
Giorgia Vitanza, Chen Xie. The authors come from different institutions like
University of Catania, Czech Technical University, Prague, Politecnico di Torino,
STMicroelectronics and Synopsys. Everyone is involved in the AMBEATion
project.

9.2.1 Introduction

Improving the development process of electronic systems is an essential factor
for the competitiveness of the European economy. In fact, most key technology
areas at the forefront of tomorrow’s society, including among others the Internet
of Things (IoT), Smart Driving, Industry 4.0, and Active Assisted Living (AAL),
rely on complex electronic devices. These Smart Systems, are composed of
heterogeneous parts, providing different functionalities, including digital and
analog blocks, sensors, actuators, power generation and storage, etc. In this
context, on-chip heterogeneous integration is fundamental to improve. Therefore,
a leading role is held by Analog Mixed-Signal Integrated Circuits (AMS-ICs)
where Analog and Digital domains are strictly intertwined.

In AMS ICs, digital blocks usually carry out computational tasks, and their
design and physical implementation are highly automated by means of highly
specialized flows and optimized standard cell libraries [104]. On the other
hand, analog parts realize functionalities. Despite numerous efforts [105–107],
automated and universally valid analog physical design flows are not yet available.
The reason for this discrepancy is rooted in the inherently higher difficulty of
the analog layout problem. In fact, not only are analog circuits more sensitive
to noise and variability effects but they also have larger and more complex
sets of constraints (e.g., gain, bandwidth, distortion, etc), all of which affect
performance [108, 109]. Additionally, different specific classes of analog circuits
require different metrics and trade-offs [109].

Machine Learning (ML) and Artificial Intelligence (AI) techniques have been
introduced in the Electronic Design Automation (EDA) industry since several
years to improve the efficiency and scalability, as well as the Quality of Results
(QoR) of design and verification tools. ML has been applied ubiquitously, from
synthesis to floorplanning, place&route, timing analysis, analog design and
simulation [110, 111]. However, while digital flows greatly benefits from the
integration with ML and AI techniques [110, 111], a wide gap still exists in this
respect within the analog domain [112].

This paper introduces the Marie Sk lodowska-Curie Research and Innovation
Staff Exchange project AMBEAtion (Analog Mixed-signal Back-End design
Automation with Machine Learning and Artificial Intelligence Techniques). The
project aims to improve the quality and productivity of AMS physical design,
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Figure 9.7: The AMBEATion flow.

with particular focus on device placement, by developing a new methodology
implemented in a framework of scripts, code parsers, automated processes
and simulation tools, internally making use of a combination of classic EDA
algorithms, and novel AI and ML models. A further intent of the AMBEATion
project is to reach full integration with Industrial Design flows by leading EDA
tool providers, thus allowing a seamless addition of the methodology to existing
AMS designers’ workflows, as well as easing the access to large databases of past
designs.

The scientific contributions within the AMBEATion consortium are, therefore,
strongly driven by the needs of industrial partners, while academic partners
contribute with their expertise on AI/ML. The presence in the consortium of
world leaders in EDA, System on Chip (SoC) and System in Package (SiP)
design such as Synopsys and STMicroelectronics gives the partners access to a
large database of existing designs on which data-driven ML algorithms can be
trained. This allows to overcome one of the main limitations of current academic
efforts in using AI and ML for back-end, i.e., the very limited availability of
training data.

Given that the main goal of the AMBEATion project is the development of
a new EDA flow for analog layout, we believe that it fully aligns with the scope
of the DATE 2024 conference. With respect to the Call for Paper, the project
relates perfectly to tracks DT4 (“Design and Test for Analog and Mixed-Signal
Circuits and Systems, and MEMS”) and D14 (“Physical Analysis and Design”).

The remainder of this paper is organized as follows. In Section II we illustrate
the AMBEATion flow concept, providing a general overview of all the steps
and abstraction levels involved. Then, Section III, provides an overview on the
current implementation of each step. Perspectives, future research directions
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and lessons learned from the past months of the project are discussed in Section
IV.

9.2.2 The AMBEATion Concept

At the highest level the AMBEATion Back-end flow focuses on the IC AMS
placement phase. Therefore, the main element of the flow consists in a placer
tool together with a set of supporting tools for realizing auxiliary functions
which will be briefly described in the following section. The flow implements
a novel mix of top-down placement steps, inspired by the techniques used in
digital design, and bottom-up ones, specific of the analog domain [109].

Specifically, as illustrated in Figure 9.7, the AMBEATion flow is divided into
three main sections: the first part processes the IC schematic, and is highlighted
in pink; the second, generates the corresponding layout (green); finally, an offline
phase is also included (blue) to train ML algorithms on a database of pre-existing
designs. The schematic and layout processing sections are further split into
five “levels”, associated with an input-to-output flow with increasing abstraction
levels:

The Input Level deals with the processing of input schematic/netlist and
layout database files. Layouts can also be an input to the flow during the
training phase of ML algorithms, whereas they are only an output during normal
usage. The flow supports several industrial standards in terms of file format
for schematic and layouts, including the IC CAD Open Access (OA) database
format, as well as Circuit Design Language (CDL) netlists, and GDS-II layouts.

Level 0 contains simple pre-processing scripts aimed at simplifying the sub-
sequent steps of the flow. In particular, it aims to recognize all classes of IC
components which are present in the schematic and to differentiate devices based
on different voltage classes or bulk connections. This level adds a layer of abstrac-
tion that makes the flow at least partially independent from the considered IC
technology and device details. After Level 0, the rest of the flow is entirely real-
ized with internal technology-independent netlist and layout database formats,
based on JSON.

Level 1 is in charge of the generation of individual devices by processing PCells
(or similar), and of their placement onto small topologies (such as current mirrors,
differential pairs, capacitor dividers, etc). In order to do so, at the netlist level, a
Topology Recognition script identifies different elementary functional topologies in
the input schematic/netlist. At layout level, a Device Placer positions the devices’
layouts generated by PCells within each identified topology, by respecting both
general technology constraints and additional topology-specific constraints.

141



Level 2 deals with the placement of devices and elementary topologies identi-
fied at Level 1 onto an IP or block. At netlist level, the IP Recognition block
identifies the parts of the netlist belonging to each IP. At layout level, the Group
Placer positions them in the layout. This placement process is closely intercon-
nected with the device placement of Level 1, and multiple feedback iterations
between the two are foreseen.

The Output Level it’s where the final placement layout is produced, as well
as and detailed reports on the flow execution.

The of multiple IPs in the top-level circuit, considering signal/supply domains,
clock routing for the digital part, etc, as well as packaging and bonding issues,
are out of the scope of the automation flow foreseen in the AMBEATion project.
However, the flow can be conceptually extended with additional abstraction
levels (Level 3, 4, etc) to deal with these aspects in the future. As mentioned,
the flow does not simply go from one level to the next in a “linear” way. Rather,
the levels provide feedback to each other in an iterative way (e.g., the group
placement will depend on the individual topologies placement, but will also
influence the latter).

The offline training phase processes databases of human-generated inputs and
outputs for any step that needs to be implemented by means of ML techniques,
be it related to digital or analog components, and to any abstraction level. The
obtained trained models are then used in inference-mode in various schematic-
or layout-processing steps of the flow. In particular, Figure 9.7 is annotated with
a “brain” icon to identify steps that internally use ML, and with a “wheel” icon
to indicate classic rule-based algorithms. As can be seen, for many steps, both
classic and ML-based solutions are available, enabling a precise comparative
assessment of the benefits of AI in this domain. Lastly, a “hand” icon indicates
human-generated inputs. In the next section, we go in more detail on the flow
steps implemented at the current state of the project.

9.2.3 Implementation

Similar to industrial EDA tools, the AMBEATion flow can be accessed both with
a Command Line Interface (CLI) and with a simple Graphical User Interface
(GUI), shown in Figure 9.8. The flow is built as an interconnection of modular
software components, to simplify extensibility and maintainability, and to permit
an easy swap between multiple implementations of the same step (e.g., classical
vs ML-based, for comparison). To this end, all exchange of information between
steps occurs through a unified file format based on the JSON standard. At
Input Level, the JSON is substantially a translation of a common netlist format
(CDL, OA, etc). Then, each step modifies or enriches this internal database,
e.g., adding physical device information, placement coordinates, etc. The entire
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Figure 9.8: An overview of the AMBEAtion GUI with main components high-
lighted. The navigation pane contains an entry for each pass of the AMBEATion
flow currently implemented. Clicking on each item will display a different set of
configuration options in the main window, which can then be changed by users.
It also permits opening plots, log files, etc.
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AMBEATion codebase is written in Python. In the following we briefly illustrate
the functionality of each component of the flow.

Level 0 (Schematic): Input Conversion and Pre-processing

To implement Level 0 of Figure 9.7, a set of scripts have been developed to convert
standard netlist formats into our internal JSON-based, vendor-independent
“lingua franca”, and assign each device to its respective class and voltage group,
thus reducing the dependency on a specific technology node.

The main entities described in the internal database at this stage include:
a) cells, i.e., sub-circuit definitions; b) instances of elementary devices or other
sub-circuits within a cell; c) libraries, i.e., sets of cells, usually grouped by
common functionality. Each entity contains several attributes, depending on
its type. In later stages, the database will be enhanced with new entities, such
as topologies, i.e., groups of devices identified at Level 1, forming a higher-level
structure (e.g., a current mirror). Further, existing entities will receive new
attributes, e.g., x/y layout coordinates for each device.

Level 1 (Schematic): Topology Recognition

The objective of this step is to identify functional topologies within the schematic,
e.g., current mirrors, differential pairs, etc. This identification process is essential
for accurately specifying constraints in the layout placement phase. Topology
recognition can be converted to a subgraph isomorphism problem between a
template graph (e.g. a current mirror) and the target graph (e.g., an operational
amplifier). Namely, following [113], we adopt a bipartite graph representation
for netlists, with two sets of nodes, one for devices and one for nets, as shown in
Figure 9.9. The AMBEATion flow currently supports two topology recognition
implementations: a classical one, based on the VF2 matching algorithm [114] and
a ML-based alternative using Relational Graph Convolutional Neural Networks
(RGCNs) [113, 115].

The main limitation of the VF2 implementation lies in its complexity, implying
very long running time on large flattened netlists. Therefore, the orders of
magnitude faster RGCN version can provide significant benefits in terms of
efficiency for real world use-cases. On the other hand, the ML-approach can
lead to significant accuracy degradations, which can be partially coped with by
means of pre- and post-processing steps, as detailed in Section 9.2.4. The output
file produced by topology recognition is a JSON database containing the original
netlist enriched with the extracted topologies, with their associated type, device
group, and nets.
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Current Mirror

(a) (b)

Current Mirror

Figure 9.9: Topology recognition. An NMOS current mirror primitive (a) is
represented by a pattern graph, where vertices on the left side represent devices
M0 and M1 respectively and those on the right side represent nets D1, D2 and S.
Similarly, a fully differential Telescopic operational transconductance amplifier
(OTA) (b) is converted into a bipartite graph and one subgraph is matched the
current mirror pattern graph, highlighted by red.

Level 1 (Layout): PCell Processing and Device Placement

For what concerns the layout processing, Level 2 comprises two main steps:
PCell processing and device placement. The former reconstructs the polygons
comprising the device’s layers, extracting the correspondence between spatial
coordinates in the schematic and layout representations. Additionally, it can
incorporate technology-specific constraints, such as spacing requirements, into
the design. Currently, AMBEATion supports PCells [116].

The Device Placer then elaborates the internal layout of each topology
identified in the corresponding recognition step, using the geometrical information
extracted from PCells, as well as technology-dependent constraints from a tech
file. Furthermore, this step processes additional inputs relative to the type of
dummy insertion required, and to the desired aspect ratio for each topology.
The script then positions devices in matrix arrays which respect the user defined
constraints. Moreover, to suppress the layout dependent effects (such as WPE,
STI-stress etc) it reserves the necessary extra area around the matrix array. The
optimization is purely analytical, and aims at approximating as well as possible
the target aspect ratio, positioning devices in the appropriate number of rows.

The output of the script is an updated JSON netlist, where each device is
annotated with the minimum (xmin, ymin) and maximum (xmax, ymax) coordin-
ates of its bounding box within the topology it belongs to (if any). Coordinates
are referred to (0,0) for each topology since this module does not deal with
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inter-topology placement, which is handled by the Level 2 Group Placer. The
Device Placer is designed so that it can be iteratively invoked from within the
optimization loop of the higher-level Group Placer, each time with different input
parameters (e.g., different target aspect ratios). This gives the Group Placer the
freedom to “re-shape” some topologies’ bounding boxes to better fit the overall
IP layout.

Importantly, digital blocks within an AMS IC are treated separately for what
concerns device placement. Namely, they are not placed by the AMBEATion
flow directly, but rather, after being identified by topology recognition, they are
offloaded to a state-of-the-art digital EDA Place And Route (PnR) tool, given
their high level of automation and QoR. Therefore. However, the placer should
have the freedom to reshape/resize digital blocks, similarly to the case of analog
topologies. To allow this, while avoiding time-consuming iterations including full
digital PnR executions, the AMBEATion flow includes a fast ML-based PnR
Fesibility estimator for digital logic.

Digital PnR Feasibility Estimation

The role of this component is to assess whether a digital block within an AMS
design can be accommodated effectively within the designated layout area,
without the need of a full PnR run.

In the current version of the AMBEATion flow, the Digital PnR Feasibility
module has been implemented with a Decision Tree (DT) ML model, trained to
assign a feasibility score to a design, based on high-level netlist and (expected)
layout characteristics, as well as technology information. A DT was selected
due to its simplicity, explainability, and effectiveness with limited training
samples [117]. The model is trained in a supervised way, given examples of
both successful and failed back-end executions of past designs. Its inputs are
features that influence the chances of successfully closing a PnR, based on domain
knowledge, e.g, the layout area hypothesis and its shape factor, the initial row
utilization, the number of sequential cells in the design, the clock frequency,
and the total number and density of pins. Technology information, such as
the number of available routing layers is also provided. Once all features are
available, a feature selection step based on cross-validation can then be applied
to select the subset that best generalizes on unseen data.

After training, the model learns simple if-then-else rules that assign each
new design to a “bin” (leaf node) by recursively comparing its features with
learned thresholds. The leaf node value is a feasibility score (in [0:1]), as shown
in Figure 9.10.
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Figure 9.10: Digital Area Estimation flow overview, consisting of a first feature
selection step followed by the Decision Tree inference. The output of the flow is
a probability of successful PnR.

Level 2 (Schematic): IP Recognition

The goal of IP Recognition is to identify higher level structures in the circuit, such
as operational amplifiers, oscillators, etc, and then constrain them accordingly
for placement. Currently, this stage is not implemented, but techniques similar
to those applied for Topology Recognition can be used for it too. The input, in
this case, will include both individual devices and topologies identified at Level 1.
ML-based approaches leveraging Graph Neural Networks are expected to work
effectively in this case too, as demonstrated in [113].

Level 2 (Layout): Group Placer

The group placer (Level 2) places topology rectangles prepared by the device
placer relative to each other. Thus, it forms the complete layout of a single IP
block. Two alternative implementations are supported, leveraging respectively
Simulated Annealing (SA) [118, 119], and Non-Linear Programming (NLP) [120,
121], two of the optimization methods considered state-of-the-art for this problem.

The SA placer leverages a “Sequence Pair” representation of the layout [122],
which identifies virtual non-crossing pathways in the floorplan. Conversely, the
NLP solution simply represents the x and y coordinates of the bottom-left
corner of each group of devices as floating-point vectors, whose values are to
be determined in the optimization process using gradient descent with adaptive
estimation of first- and second-order moments [123].

Both placers can support the same optimization objectives, including area
minimization, routability (e.g., Half-Perimeter Wire-Length or HWPL), etc.
However, they are quite sensitive to their input hyper-parameters, as well as
being entirely dependent on the L1 Placer results. To solve this, an agent-based
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approach is considered to optimize the placement of each IP. Namely, the group
placement process can be controlled by an AI agent (e.g., a neural network
trained with Reinforcement Learning, or an Evolutionary Algorithm), which
will internally invoke the Device Placers with different input parameters (e.g.
aspect ratio targets), and change the hyper-parameters of the SA and NLP
optimizers, until all constraints are respected, and a combined objective function
is minimized.

At the end, the output layout for each IP is exported both in the internal
JSON database format, as well as in the standard GDS-II format. Other Output
Layer adapter scripts allow the import of the generated layout into industrial
EDA tools, to implement the following design phases (routing, signoff, etc).

Utilities

Besides the main scripts to implement key placement operations, the AM-
BEATion flow also includes several utilities, including basic scripts such as
netlist flattening using the internal JSON format, as well as an interactive layout
plotter, and several other import/export and conversion tools.

9.2.4 Conclusions and Future Outlooks

Being a MSCA-RISE action, the main goal of the AMBEATion project is to
put in contact European academic staff with leading industries, and vice versa,
through the mechanism of secondments. In parallel, the overarching technical
objective is to strengthen the competencies on AI-based AMS placement in
Europe. To this end, the project takes strong inspiration from other non-EU
initiatives, mainly from the U.S. NSF and DARPA programs [106, 107], building
upon their work, and trying to further improve it. At the current stage, the
main result achieved by the project is that of having built a flexible, modular
AMS placement framework, which can function as foundational infrastructure
for future research. Not only in the direction of developing new ML-enhanced
EDA algorithms, but also in quantitatively and thoroughly comparing existing
solutions, and in extensively evaluating them on real-world industrial use cases.
To this end, the AMBEATion platform has been designed around a rich and
easy-to-use language such as Python, and using an open, extensible and human-
readable JSON-based database format. The flow is built for usability and
extensibility, and is entirely cross platform. While the main evaluations have
been performed on BCD8 technology by ST Microelectronics, the platform is
also designed with technology independence in mind.

The most interesting results obtained up to the current stage concern the “real-
world effectiveness” of ML-based AMS placement techniques. In fact, preliminary
validation experiments on the flow revealed interesting insights, and highlighted
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key limitations. We report here three of the main issues that have been identified
during the project journey. Addressing these issues will also be the main direction
of our future research in the remaining years of the project.

Data Quality and Variety while the industrial partners involved in AM-
BEATion have access to large databases of past designs, the main obstacle
towards obtaining highly accurate with ML-based placement approaches is data
quality rather than quantity. The available datasets are often highly imbalanced,
and contain many similar samples, that do not cover the design space entirely. For
instance, input graphs used to train our RGCN models for topology recognition,
despite including hundreds of thousands of nodes, contain very few examples
of “uncommon” topologies (all structures except current mirrors are present in
far less than 1% of the total nodes). Despite applying several countermeasures
at training level, such as loss function weighting, oversampling, or treating the
problem as a one-class anomaly detection, this imbalance still negatively affects
performance in many cases. Similarly, the training data used for Digital PnR
Feasibility Estimation contains many more examples of successful runs than
failed ones, because the outputs and logs for the latter are usually not preserved
by designers. One solution we envision and we explore in the future, is the use of
synthetic data generation by means of scripts that create from scratch or modify
existing netlists and layouts. This approach has proven effective in several other
domains [124]. More broadly, these limitations also provides guidance on possible
updates company policies on data storage and management.

Technology Independence Many previous efforts on ML-based AMS layout
focused on single technology nodes [106, 107, 113]. In AMBEATion, we found
that one of the key issues in applying techniques from the state-of-the-art to
build a general tool is that ML-based approaches, and often also classic ones, do
not generalize well across technologies. As an example, the template library used
by the VF2 algorithm for topology recognition had to be completely rewritten
with respect to previous works [113] to make it work on BCD8, and new post-
processing rules had to be designed to avoid false positive matches. Similar issues
apply to ML models trained on one technology and applied to a different one.
Similar to other domains, possible directions to address this issue for ML-based
components are domain adaptation and transfer learning [125].

Scalability The main practical limitation of many of the algorithms imple-
mented in the AMBEATion flow is their limited scalability to large designs with
hundreds of thousands of devices. Scalability has been addressed in digital design
for years, and many of the same solutions (hierarchical placement, parallelization,
etc) can be applied on AMS too. However, there are also some peculiarities. For
example, the VF2 algorithm for topology recognition scales extremely well if it
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is applied independently, and possibly in parallel, to hierarchical blocks of the
netlist (most of which correspond to small bipartite graphs). Conversely, it scales
poorly on large flattened netlists. However, the hierarchical approach cannot
identify topologies spread across multiple sub-circuit blocks, thus it requires
designers to fully trust the goodness of their human-made hierarchy. The RGCN
approach, conversely, executes fast even on flat netlists. In this sense, here and
in many other parts of the flow, ML can be seen more as a way to improve
performance by means of computational approximation, rather than a way to
solve otherwise unsolvable problems.
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