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ABSTRACT In this article, a sheet-beam type ring bar slow wave structure (RBSWS) capable of working
at very low-voltage value is proposed. The structure is designed to work over the frequency range
from 14 to 18 GHz with a cathodic voltage of 2.050 kV and a current of 100 mA. Simulation results for
two 50-period sections, carried out by CST Studio Suite 2023, show a saturated output power of 30 W,
a maximum gain of 0.795 dB/mm, and a radio frequency (RF) electronic efficiency higher than 15 %. The
proposed structure is ideal for aerospace applications that usually require compact size, lowweight and power
consumption, while maintaining very high output power levels. Furthermore, this device is relatively easy
to manufacture, making it a more accessible option than other structures that require complex and expensive
manufacturing processes. Finally, the mechanical and thermal dissipation problems are kept under control
thanks to the large surface contact between the slow wave structure and the dielectric rod realized in Boron
Nitride.

INDEX TERMS High power amplifiers, traveling wave tubes, sheet-beam, low operating voltage, ring bar.

I. INTRODUCTION
Vacuum tubes are a particular class of amplifiers, using
an electron beam to amplify or generate signals with an
operating frequency up to 300 GHz. Among the different
types of vacuum tubes, the most relevant are Klystrons,
Traveling Wave Tubes (TWTs), and cross-field devices,
each one of them possessing a specific structure and a
different working principle [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. In particular, TWTs are a
class of linear vacuum tubes in which an electron beam
travels inside or in the proximity of a periodic structure.
The latter reduces the phase velocity of the electromagnetic
wave generated by the RF signal, allowing to achieve the
synchronism condition between the wave and the electron
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beam. When such a synchronism condition is achieved, the
energy transfer from the electron beam is used to amplify
the RF signal. With regard to the interaction structure
geometry, TWTs usually employ a circular section and,
hence, circular beams are required in order to obtain the
best interaction [1]. Nevertheless, the use of a rectangular
beam has several advantages. If compared to a conventional
circular beam, a sheet-beam usually allows to achieve a
stronger interaction impedance, as well as higher gain, output
power and electronic efficiency for the same voltage and
current, thus reducing the overall power consumption of
the device [3]. Moreover, it is possible to increase the
current and, at the same time, to maintain stable the beam
density, simply by increasing the beam cross-section area [4].
Finally, these devices are more compact and lighter when
compared to conventional TWTs [5]. All these characteristics
are fundamental for aerospace applications, in which one
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of the main goals is to minimize both power consumption
and weight. In the last years, several configurations of
sheet-beam TWTs have been proposed [6], [7], [8], [9],
[10], [11], [12], [13]. Some of them are able to operate
with a very low voltage, such as the one proposed by
Wen et al. [10]: a concentric arc meander line capable of
operating with a voltage of 720 V. A similar configuration,
able to work with a voltage of 791 V, has been proposed
by Wang et al. [11]. All these configurations are compact,
lightweight and efficient, and represent valid alternatives
to classical TWTs or solid-state devices. However, the
manufacturing aspect is undoubtedly a limiting factor, since,
these configurations can only be realized by means of micro-
fabrication techniques. In fact, the mentioned structures work
at relatively high frequencies and, for this reason, they have
particularly small dimensions, very difficult to be realized
with conventional techniques (such as electrical discharge
machining, EDM).

Moreover, the gain per unit length of these structures is
relatively low and most of them are subject to mechanical
stability and thermal dissipation problems. In a previous
work, we proposed a Planar Helix with Straight-Edge
Connection (PH-SEC) capable of reaching an output power
of 5.5 W at 20 GHz with a working voltage of 1.7 kV [14].
Despite the simple geometry for the proposed PH-SEC, it is
still of difficult realization and presents some mechanical
and thermal limitations [15]. The ring bar structure is a
modification of the classic contra-wound bifilar helix [19]
and usually has a larger diameter for the same working
frequency, thus allowing for an easier fabrication process.
Furthermore, this slow-wave structure exhibits a higher
interaction impedance for the fundamental forward wave than
for the backward one. Thanks to these properties, if compared
to helix SWS, the ring bar structure is able to provide higher
levels of output power over a narrower bandwidth, that can
anyway reach values of several GHz [16]. In this work,
we propose a rectangular ring bar (RRB) SWS [17], [18], [19]
which combines the advantages of a simple manufacturing
process and a high gain.

FIGURE 1. CST schematic view of the fundamental cell of the RBSWS.

The RRB was proposed for the first time by C.
Chua et al. [17], who demonstrated its multiple advantages
if compared to similar planar structures, including the
aforementioned PH-SEC. Moreover, the results reported
in [17] allow to make a qualitative assessment for similar
structures, even operating in a different frequency range.

Nevertheless, it is difficult to extrapolate from [17] both the
dimensions and the performance of a structure with a very
different aspect ratio and operating at a different voltage,
such us the one proposed in this paper. Other examples
of rectangular ring bar have been also investigated [18],
[19], [20]. Table 1 shows a comparison between the RRB
presented in this work and the most significant structures
already reported in the literature, in the field of RRBs and
low voltage SWSs. In our work, we have designed and
simulated a RRBSWS able to operate with a cathodic voltage
of 2 kV over a frequency range spanning from 14 GHz
to 18 GHz. This structure represents a more viable option,
in terms of implementation, than other SWS since it can be
easily fabricated by EDM techniques. Moreover, the use of
a large dielectric rod allows to avoid mechanical and thermal
problems, thus allowing high RF power operation. As evident
from Table 1, our structure is aimed at minimizing power
consumption (since it requires a very low operating voltage)
and shows a very compact size and the highest gain per unit
length if compared to the other entries, without considering
our previous work [14] in which, however, the output power is
significantly lower (5.5W vs. 30W). This article is organized
as follows. In section II, the design criteria of RRBSWS are
proposed. In section III, the dispersion diagram, interaction
impedance and the Brillouin diagram for both a circular and
a rectangular ring bar are shown and compared. Moreover,
in this section, the transmission characteristics of a 50-
period structure are evaluated for the RRBSWS. In this
case, a simple coupler geometry is considered. Finally,
in section IV the results of the beam-wave interaction for the
proposed structure are discussed.

II. PROPOSED STRUCTURE
In Fig. 2, the schematic view of our modified SWS is shown.

FIGURE 2. (a) CST schematic view of the periodic structure of the
fundamental cell. (b) Fundamental cell with dielectric and external
housing. (c) Six cells SWS.

The project requirements are listed in Table 2. As for
the design criteria, we considered to find the pitch and the
perimeter of the structure by considering to approximate the
RRBSWS to a helix and to use these values for a preliminary
dimensioning.
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TABLE 1. Comparison between low voltage SWS and RRB.

TABLE 2. Project requirement of the proposed structure.

Referring to Table 2. Vc is the accelerating cathodic
voltage, η is the electronic efficiency and L is the length
of the structure. Such as for the classical helix, the
operational frequency depends on the phase velocity of the
structure, which in turns depends mostly on its periodicity.
For the initial design, we considered the circular helix
equations. The main condition for obtaining amplification
is the achievement of synchronism, which means that the
velocity of the electrons in the beam must be almost equal
to the phase velocity of the RF signal, as reported in
equation (1).

vp ≈ v0 (1)

where vp is the phase velocity of the signal in the slow
wave structure, while v0 is the velocity of the electrons.
Starting from the cathodic voltage requirements, we can
obtain an approximate value of the electron velocity.
In fact, this value can be found by the energy conservation
equation (2).

1
2
mv20 = eVc (2)

where m and e are the mass and the charge of the
electron, respectively. The value of electron velocity and,
consequentially, the phase velocity at the synchronism
condition has been found to be 0.088 c (being c the
speed of light in vacuum). Theoretically, the best degree of
interaction is reached for the frequency corresponding to a
normalized phase constant of 0.5 in the Brillouin diagram.
This condition can be mathematically expressed by the
equation (3).

ωL
voπ

= 0.5 (3)

where ω = 2π f, being f the working frequency, and L is
the periodicity of the structure. Using equation (3) we
found L to be equal to 0.4 mm at the center frequency
f = 16 GHz. The next important parameter to be found is the
perimeter of the slow wave structure. For a classical helix,

this can be derived as a function of the pitch angle 9, as in
equation (4).

tan(9) =
L

2πa
(4)

in which 2πa is the perimeter of the helix. For our
approximation, we have considered the perimeter of the
proposed structure equal to that of the helix. This value
has been calculated to be equal to 4.5 mm. Starting from
these values the SWS has been designed. Considering the
power levels at which the structure should work and the
dimensions of the structure itself, it is necessary to use
materials with a high melting point, such as molybdenum or
tungsten. Instead, the outer shell can be realized in copper.
In our simulations, the outer waveguide is made of copper
(electrical conductivity σ = 58·106 S/m, melting point T =

1085 ◦C), while the material chosen for the SWS and the
couplers is molybdenum (σ = 18.7·106 S/m, melting point
T = 2623 ◦C). The dielectric employed for the support rods
is boron nitride (BN), which has a dielectric constant of
4.6 at a frequency of 8.8 GHz, with a thermal conductivity
of 20-27 W/m K. The large contact surface between the
slow wave structure and the dielectric rods guarantees a high
mechanical stability and thermal dissipation [21]. In order
to meet the project requirements, a sweep of simulations
has been performed aimed at optimizing both the periodicity
and the perimeter of the structure, as well as the dielectric
rod dimensions. Despite the initial approximation, the final
values do not differ much from the starting ones. In Fig. 3
the structure of the fundamental cell with its dimensions is
shown.

FIGURE 3. Lateral and frontal views of the fundamental cell of the
RRBSWS with its dimensions.
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III. COLD-TEST PARAMETERS RESULTS
The proposed structure has been compared to a circular
section ring-bar. Its dimensions have been defined with the
same criteria used for its planar counterpart. The interaction
impedance, Brillouin diagram and dispersion characteristics
for both the (circular) RBSWS and the RRBSWS are shown
in figures 4, 5 and 6, respectively.

FIGURE 4. Interaction impedance of the circular RBSWS (blue triangles)
and RRBSWS (orange squares).

FIGURE 5. Brillouin diagram of the circular RBSWS(blue) and rectangular
RRBSWS (orange).

As depicted in Fig. 4, in the frequency range of interest, the
RRBSWS shows an higher interaction impedance (evaluated
as the average across the cross section of the SWS).
In fact, in the 14 - 18 GHz range, the value shown by
the RRBSWS varies from 15 to 11 Ω, while for the
counterpart it varies from 6 to 3 Ω. The Brillouin diagram
(Fig. 5) shows the capability of both structures to work at
the desired frequency range. In particular, the best degree
of interaction for the rectangular one should be obtained
for 17 GHz. In addition, the phase velocity (Fig. 6) is flatter
for the RRBSWS allowing for a more stable interaction
along a wider range of frequencies. The lower degree of
dispersion and the overall higher interaction impedance
should allow for a stronger coupling between the beam

FIGURE 6. Dispersion characteristics of the circular RBSWS (blue) and
RRBSWS (orange).

and the RF signal and, hence, the output signal can reach
higher power levels. Having established the advantages of the
RRBSWSover the RBSWS,we have studied the transmission
characteristics of a structure composed of 50 fundamental
cells with two electrical ports realized by two simple
rectangular couplers.The whole structure is surrounded by a
rectangular guide, used as an external housing, as shown in
Fig. 7.

FIGURE 7. 50 periods slow wave structure with detail of couplers.

The S-parameter analysis has been performed using
discrete ports and taking in account the RF losses of all the
materials. Both their characteristic impedance (70 �) and
the dimensions of the couplers (0.8 × 3x0.1mm) have been
chosen for matching purposes, i.e. to reduce the reflection
coefficient at the input port and maximize the transmission
to the output port. The final results of this process are
shown in Fig. 8. The optimization process has allowed to
obtain a S11 parameter smaller than −10 dB and a S21
parameter higher than −1 dB in the frequency range of
interest.

IV. HOT-TEST PARAMETERS RESULTS
In order to simulate the proposed RRBSWS in terms of hot-
test parameters, we employed a structure composed by two
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FIGURE 8. S-parameters of the 50 period structure.

sections of 50 periods each, as shown in Fig. 9. The RF signal
is applied to the input port of the first section and is extracted
from the output port of the second one, while the output port
of the first section and the input port of the second one are
terminated using two matched loads (modeled as ‘‘discrete
ports’’ with an impedance of 70 �), thus providing an
idealized version of a sever. For these simulations, the cathode
is a parallelepiped with a thickness of 0.5 mm and an emitting
surface of 1.3 × 0.225 mm2. In this condition, the filling
factor of the beam inside the slow wave structure is equal to
45% and with a beam current density of 34.18 A/cm2. The
cathodic accelerating voltage and current are equal to 2.050 V
and 0.1 A respectively. The theoretical minimum value of
the focusing magnetic field (i.e., the Brillouin magnetic field,
BBri ) for a sheet electron beam can be expressed by means of
equation (5) [22].

BBri =

√√√√ √
2I0

wtγ εη3/2V 1/2
0

(5)

where ε is the vacuum permittivity, w and t are the width
and thickness of the beam, respectively, γ is the relativistic
factor, and η is the charge-to-mass ratio. By substituting
all the parameters in equation (5), the minimum value of
the focusing magnetic field results to be equal to 0.0156 T.
Anyway this is solely a theoretical minimum value, which
requires to be optimized. In fact, our simulations proved that
if we use this value, the electron beam is not correctly focused
and hits the SWS, thus preventing the proper functioning of
the TWT. For this reason, we have gradually increased the
magnetic field and the optimum results were obtained for a
uniform focusing magnetic field of 0.45 T along the entire
structure. With this value, the electron beam transmission
coefficient at the end of the second section is equal
to 100%.

The overall length of the proposed structure, taking into
account both the input and output couplers, is 4.52 cm.

FIGURE 9. CST schematic view of the proposed structure.

In Table 3 the main electrical and geometrical parameters of
the double section RRB are listed.

TABLE 3. Electrical and geometrical parameters of the two sections RRB.

For this structure, in the case of an input signal with a power
of 20 mW and a frequency of 17 GHz, an output signal with
a power of 30 W with a transient time of 5 ns was obtained.
As shown in Fig. 10, there is no disturbance on the output
signal when the steady state condition is reached.

FIGURE 10. Input (red) and output signal (green) from the RRBSWS
at 17 GHz.

The spectrum of both the input and output signal have
been obtained by means of Fast Fourier Transform (FFT)
and are shown in Fig. 11. It can be noticed that it is very
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FIGURE 11. FFT of the input (red) and output (green) signals in the
proposed RRBSWS.

FIGURE 12. Gain (blue) and Output Power (orange) Vs input power.

clear and the higher order harmonics have an amplitude
smaller than 30 dB if compared to the fundamental one.
In such conditions, oscillations and instability should be
highly suppressed, guaranteeing for the stability of the
TWT.

In Fig. 12 gain and output power at the varying of the input
power, for a fixed frequency of 17 GHz, are reported. Fig. 13,
instead, shows gain and output power of the RRBSWS as a
function of the frequency, under the hypothesis of constant
input power equal to 20 mW. A maximum output power
of 30Wwas obtained for an input signal of 20mWat 17GHz.
In this specific condition, the gain is equal to 31.8 dB,
reaching an electronic efficiency of 15.5 %. The gain for the
unit cell and unit length, in the optimal condition, is equal
to 0.318 dB and 0.795 dB/mm, respectively. The power of
the output signal overcomes 20 W in the range of frequency
from 15.5 to 17.8 GHz, and overcomes 10 W in the range

FIGURE 13. Gain (blue) and Output Power (orange) Vs frequency.

from 14.2 to 18.2 GHz. The −3 dB bandwidth is 3.2 GHz,
from 14.8 to 18 GHz.

V. CONCLUSION
In this article, the design of a low-voltage and high power
TWT, based on a modified rectangular RBSWS, is proposed.
The proposed structure has been first compared with a low
voltage version of the classic circular RBSWS, showing
a larger interaction impedance and, hence, allowing to
reach higher power output. Moreover, the proposed structure
shows a flatter phase velocity, ensuring a greater stability.
By optimizing the dimensions of the couplers, a reflection
coefficient lower than −10 dB and a transmission coefficient
higher than −1 dB were obtained in the frequency range of
interest. The beam-wave interaction is evaluated with the use
of the 3D Solver PIC of CST Studio suite 2023. The output
power of the optimized structure overcomes 30 W, with a
unit gain of 0.795 dB/mm which means a total gain higher
than 30 dB. Moreover, the proposed structure shows a great
stability with a high rejection of backward wave oscillations.
Finally, unlike other structures, our configuration presents
a very large surface between the dielectric and the SWS,
which allows a great mechanical and thermal stability. Future
activities will focus on the fabrication of the RRB-SWS
described in this paper.
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