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Abstract: Background: Telomerase, a reverse transcriptase, maintains telomere and chromosomes 
integrity of dividing cells, while it is inactivated in most somatic cells. In tumor cells, telomerase is 
highly activated, and works in order to maintain the length of telomeres causing immortality, hence it 
could be considered as a potential marker to tumorigenesis.A series of 1,3,4-oxadiazole derivatives 
showed significant broad-spectrum anticancer activity against different cell lines, and demonstrated 
telomerase inhibition.  
Methods: This series of 24 N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-oxadiazol-2yl)thio)acetohydra-
zide derivatives as telomerase inhibitors has been considered to carry out QSAR studies. The endpoint 
to build QSAR models is determined by the IC50 values for telomerase inhibition, i.e., the 
concentration (µM) of inhibitor that produces 50% inhibition. These values were converted to pIC50 (-
log IC50) values. We used the most common and transparent method, where models are described by 
clearly expressed mathematical equations: Multiple Linear Regression (MLR) by Ordinary Least 
Squares (OLS).  
Results: Validated models with high correlation coefficients were developed. The Multiple Linear 
Regression (MLR) models, by Ordinary Least Squares (OLS), showed good robustness and predictive 
capability, according to the Multi-Criteria Decision Making (MCDM = 0.8352), a technique that 
simultaneously enhances the performances of a certain number of criteria. The descriptors selected for 
the models, such as electrotopological state (E-state) descriptors, and extended topochemical atom 
(ETA) descriptors, showed the relevant chemical information contributing to the activity of these 
compounds.  
Conclusion: The results obtained in this study make sure about the identification of potential hits as 
prospective telomerase inhibitors. 
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1. INTRODUCTION

Telomerase, a reverse transcriptase, maintains telomere 
and chromosomes integrity of dividing cells, while it is 
inactivated in most somatic cells  [1, 2]. In tumor cells, 
telomerase is highly activated and works in order to maintain 
the length of telomeres causing immortality, hence it could 
be considered as a potential marker to tumorigenesis  [3-5]. 
The great advantage of targeting this reverse transcriptase, 
with respect to other cancer targets, is due to its strict 
specificity for cancer cells. In fact, it is expressed in up to the 
90% of cancers  [6, 7]. Human telomerase consists of two 
portions: a template-encoding RNA (TER), and a reverse 
transcriptase part (TERT) which also consist of an essential 
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N-terminal domain (TEN), a telomerase RNA binding 
domain (TRBD), a reverse transcriptase domain (RT), and a 
C-terminal domain  [8, 9]. In the past decades, several 
classes of inhibitors have been identified: oligonucleotides 
targeting the telomerase RNA templates  [10], compounds 
targeting telomeric DNA  [11], nucleosidic transcriptase 
inhibitors  [12] and G-quadruplex stabilizing compounds as 
telomerase inhibitors  [13, 14]. Among this range of 
compounds’ classes, different substituted 1,3,4-oxadiazoles 
showed potent anti-tumor activities  [15-18], and in 
particular telomerase inhibitory activity  [18, 19]. Moreover, 
oxazole bioisostere of 1,3,4-oxadiazole ring is the scaffold of 
telomestatin, which is a natural product isolated from 
Streptomyces anulatus, with potent telomerase inhibitory 
activity  [20]. The emphasis of recent efforts to develop new 
telomerase inhibitors has been focused on structure-based 
design  [18, 19, 21-23]. Ligand-based design by means of 
Quantitative Structure-Activity Relationships (QSAR), an 
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important application of chemometrics, revealed in the last 
years to be useful to obtain information in the designof new 
molecules against a specific target  [24-26]. Nevertheless, 
QSAR modeling is affected by one severe problem: model 
validation. In fact, in the past, many QSAR models have 
been published as predictive, although not all the validation 
checks have been done. Therefore, model validation has 
been the subject of many debates in scientific and regulatory 
communities. To date, to consider a QSAR model as 
predictive, this latter should be associated with defined 
OECD principles  [27]. A QSAR model, for regulatory 
purposes, and for the identification of new chemical entities 
in all the field of chemistry, should be associated with the 
following information: (1) a defined endpoint; (2) an 
unambiguous algorithm; (3) a defined domain of 
applicability; (4) appropriate measures of goodness-of-fit, 
robustness and predictivity; (5) a mechanistic interpretation, 
if possible. Our interest in the chemistry of oxadiazoles  [28], 
and the burgeoning pharmaceutical interest in this 
outstanding scaffold  [29] have directed our attention to the 
structure-activity relationships, with the aim of underlining 
the features which could increase anti-tumor activity. Even 
though other attempts have been carried out  [18, 19, 21, 23, 
30], no validated models have been built according to OECD 
principles for 1,3,4-oxadiazoles as telomerase inhibitors, 
making predictive power and mechanistic interpretation 
unreliable. In this paper, our main aim is to develop 
validated and predictive models for 1,3,4-oxadiazole 
derivatives as telomerase inhibitors, according to the OECD 
principles, exploiting agreat amount of available biological 
data. The developed models are commented by means of 
selected descriptors, and some interesting mechanistic 
interpretations could be stated. 

2. MATERIALS AND METHOD 

2.1. Dataset 

A series of 24 N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-
oxadiazol-2yl)thio)aceto-hydrazide derivatives as telomerase 
inhibitors have been considered to carry out QSAR studies 
(30). The endpoint to build QSAR models is determined by 
the IC50 values for telomerase inhibition, i.e., the 
concentration (µM) of inhibitor that produces 50% 
inhibition. These values were converted to pIC50 (-log IC50) 
values. In Table 1, the structure of the 24 compounds is 
reported together with their biological data related to 
telomerase inhibition. 

2.2. Calculation of Descriptors 

A QSAR study requires the calculation of molecular 
descriptors. In order to have mechanistically interpretable 
descriptors, we limited the calculation of 1D-2D descriptors, 
since this study used a ligand-based approach instead of 3D 
descriptors which could be highly influenced by bound 
ligand conformations  [31, 32]. A total of 1444 1D and 2D 
molecular descriptors were calculated using PADEL 2.1 
software  [33]. Constant and semi-constant values (>80%), 
and correlated pairwise descriptors were excluded in a 
cleaning preliminary step (one of any two descriptors with a 
correlation greater than 0.95 was removed to reduce 

redundant information), and a final set of 195 molecular 
descriptors was used as input variables for model generation. 

2.3. Model Generation 

Dataset was randomly split into a training set (19 
compounds) for model generation, and a prediction set (5 
compounds) for the validation of developed models, as 
reported in Table 1. First, the models were generated by the 
all-subset procedure with two variables, and subsequently by 
using a genetic algorithm (GA) up to three variables, 
respecting the objects/descriptors ratio ≥ 5 (27). We used the 
most common and transparent method, where models are 
described by clearly expressed mathematical equations: 

Table 1. Structures of 1,3,4-oxadiazole derivatives with 
activities. 

 
Comp No. R Exp pIC50

a QSAR setb 

1 Ph- 5.012 Training 

2 4-F-C6H4- 4.992 Training 

3 4-Cl-C6H4- 4.925 Prediction 

4 4-Br-C6H4- 4.907 Training 

5 4-O2N-C6H4- 4.778 Training 

6 4-HO-C6H4- 5.271 Prediction 

7 4-MeO-C6H4- 5.044 Training 

8 4-H3C-C6H4- 5.070 Training 

9 3-F-C6H4- 4.803 Training 

10 3-F3C-C6H4- 5.286 Training 

11 3-MeO-C6H4- 5.123 Training 

12 2-F-C6H4- 4.837 Training 

13 2-O2N-C6H4- 4.741 Training 

14 2-HO-C6H4- 5.401 Training 

15 2-HO-5-Cl-C6H3- 5.504 Training 

16 2-HO-5-Br-C6H3- 5.369 Training 

17 2-HO-3,5-2Cl-C6H3- 5.319 Prediction 

18 2-HO-3,5-2Br-C6H3- 5.148 Training 

19 3,4-2HO-C6H3- 5.928 Prediction 

20 3-MeO-4-HO-C6H3- 5.539 Training 

21 2,4-2Cl-C6H3- 4.749 Prediction 

22 2-Furan- 5.016 Training 

23 2-Thiophene- 4.871 Training 

24 (E)-styryl- 5.182 Training 
a -log IC50; b the compounds considered for training and prediction set for 
QSAR study 
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Multiple Linear Regression (MLR) by Ordinary Least 
Squares (OLS). 

2.4. Models Validation 

The generated models were measured according to 
appropriate measures of goodness-of-fit, robustness, and 
predictive capability. Used statistics for goodness-of-fit are: 
R2 > 0.7, concordance correlation coefficient (CCCtr) > 0.85  
[34], RMSE, R2

adj, and R2-R2
adj. Used statistics to measure 

the robustness of the model are: Q2(eq.1) > 0.7, CCCcv, 
RMSEcv, Q2

LMO, and R2 calculated according to the Y-
scrambling procedure. 

𝒒𝟐 = 𝟏 −   𝒚𝒊!𝒚! 𝟐
𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝒊!𝟏

𝒚𝒊!𝒚 𝟐𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈
𝒊!𝟏

 (1) 

Where 𝒚𝒊 𝒚! are the actual and predicted activities of the 
ith molecule, respectively, and 𝒚 is the average activity of all 
molecules. 

Predictive capability of the models generated was 
assessed by means of the external validation of the prediction 
set. Used statistics for external validation are: Q2

ext > 
0.70(eq.2), Q2

F1 > 0.70  [35], Q2
F2 > 0.70  [36], Q2

F3 > 0.70  
[37], Golbraikh and Tropsha parameters k and k’  [38], r2

m 
metrics >0.65  [39], CCCext > 0.85  [40] 

𝒒𝒆𝒙𝒕𝟐 = 𝟏 −   𝒚𝒊!𝒚! 𝟐
𝒕𝒆𝒔𝒕
𝒊!𝟏

𝒚𝒊!𝒚𝒕𝒓 𝟐𝒕𝒆𝒔𝒕
𝒊!𝟏

 (2) 

Where  𝒚𝒊 𝒚! are the actual and predicted activities of the 
ith molecule, respectively, and 𝒚𝒕𝒓 is the average activity of 
all molecules in the training set. 

With the aim to choose indeed the best performing 
model, excluding bias due to evaluating many statistic 
parameters at the same time, we decided to use the Multi-
Criteria Decision Making (MCDM)  [41]. MCDM is an 
approach that sums up the performances of many criteria 
simultaneously. This is realized, associating a desirability 
function, in which the values are ranged from 0 to 1 (where 0 
represents the worst validation criteria value and 1 the best), 
to every validation criterion. The MCDM scores reported in 
this paper are: MCDMfit regarding fitting criteria 
(maximizing R2, R2

adj, and CCCtr, and minimizing R2-R2
adj), 

MCDMcv regarding internal validation (maximizing Q2, 
Q2LMO, CCCcv, and minimizing R2yscr), and MCDMext 
regarding external validation (maximizing Q2

F1, Q2
F2, Q2

F3, 
and CCCext). MCDMall, calculated with all the previous 
criteria, is able to determine the best compromise models 
among the selected validating criteria. 

2.4. Applicability Domain 

Prediction capability of modeled properties for the whole 
domain of chemicals is still not expected, even if robust and 
validated models are developed  [42]. QSAR models must be 
verified for their applicability domain. The latter has the 
ability to provide predicted data for compounds that are 
similar to chemicals used to generate the model. The 
applicability domain of the model was verified by the 
leverage approach, and fixed thresholds have been used to 
define both structural and response outliers. The Williams 

plot verified the presence of response outliers (compounds 
with cross-validated standardized residuals greater than 3.0 
standard deviation units), and chemicals very structurally 
influent in determining model parameters. These latter are 
compounds with a leverage value (h) greater than 3p'/n (h*) 
where p' is the number of model variables plus one, and n is 
the number of the objects used to calculate the model. 

3. RESULTS AND DISCUSSION 

For the development of the QSAR models for 1,3,4-
oxadiazole derivatives, MLR with OLS was applied. 
Initially, we generated models considering only one 
descriptor. Then, we extended the calculation to two 
variables using the “all-subset” procedure, and finally, we 
proceeded to the third variable with GA. According to the 
fitness, robustness and predictive parameters, explained in 
materials and methods, some statistically significant models 
have been selected for discussion and mechanistic 
interpretation. 

Model 1: pIC50 = +6.50 (±0.74) Intercept 
+0.12 (±0.04) naaCH 
+25.5 (±3.54) ETA_dEpsilon_D 
-3.70 (±0.79) ETA_BetaP_ns 
N = 19, R2 = 0.85, CCCtr = 0.92, RMSEtr = 0.09, R2

adj 
0.82, R2-R2

adj=0.03 fitness 
Q2 = 0.73, CCCcv = 0.86, RMSEcv = 0.12, Q2

LMO = 0.71 
R2

yscr = 0.16 robustness 
Q2

ext = 0.95, Q2
F1 = 0.93, Q2

F2 = 0.92, Q2
F3 = 0.78, 

CCCext = 0.78, r2
m = 0.87, k = 1.01, k’ = 0.99 predictive 

In Fig. (1) is shown the plot of experimental versus 
calculated endpoint. 

 

 
Fig. (1). Plot of experimental versus calculated endpoint for model 
1. 

Model 1 is represented by a three parametric expression. 
This model built using the GA-OLS method, has good 
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measures of fitness above the optimal thresholds, and it 
shows an internal predictive power of 73% (Q2 = 0.73) with 
a very low probability of random correlation among activity 
values and independent variables (R2

yscr = 0.16). The external 
predictive power on the test set is good (Q2

ext = 0.95), and all 
the other predictive parameters are above the considered 
significant thresholds. Descriptors are ordered according to 
their importance, based on their standardized coefficient 
values, which are reported in brackets after each descriptors 
symbol: ETA_dEpsilon_D (+0.93) is a measure of 
contribution of hydrogen bond donor atoms; ETA_BetaP_ns 
(-0.47) is a measure of electron-richness of the molecule 
relative to molecular size; naaCH (+0.37) is an electro-
topological state index related to the aromatic CH group. 

In terms of the applicability domain, one structural 
outlier has been identified (compound #10) based on 
h*=0.632 (Fig. 2). 

 

 

Fig. (2). Applicability domain for model 1, Model 2: pIC50 = +7.67 
(±0.74) Intercept, -2.77 (±1.36) VCH-7, +22.49 (±3.46) 
ETA_dEpsilon_D, -3.55 (±0.87) ETA_BetaP_ns, N=19, R2 = 0.82, 
CCCtr = 0.90, RMSEtr = 0.10 R2

adj = 0.78, R2-R2
adj=0.04 fitness, Q2 

= 0.72, CCCcv = 0.85, RMSEcv = 0.12, Q2
LMO = 0.70 R2

yscr = 0.16 
robustness, Q2

ext = 0.96, Q2
F1 = 0.94, Q2

F2 = 0.93, Q2
F3 = 0.80, 

CCCext = 0.96, r2
m = 0.87, k = 1.01, k’ = 0.99 predictivity. 

 
In Fig. (3) the plot of experimental versus calculated 

endpoint for model 2 is shown. 
Model 2 is also represented by a three parametric 

expression, and it was obtained using the same method of 
model 1. Model 2 has measures of fitness above the optimal 
thresholds too, and it shows an internal predictive power of 
72% (Q2 = 0.72), with a very low probability of random 
correlation among activity values and independent variables 
(R2

yscr =0.16). The external predictive power on the test set is 
good (Q2

ext = 0.95), and all the other predictive parameters 
are above the considered significant thresholds. Two of the 
descriptors correlated with the endpoint, are of the same 
model 1: ETA_dEpsilon_D (+0.81), and ETA_BetaP_ns 

(-0.45); the third descriptor is VCH-7 (-0.25), a topochemical 
descriptor related to Kier-Hall indices (valence chain order 
7), which is known for its importance in the anticancer drug 
design  [43]. 

In terms of the applicability domain, the same structural 
outlier of model 1 has been identified (compound #10) based 
on h*=0.632 (Fig. 4). 

 

 
Fig. (4). Applicability domain for model 2, Model 3: pIC50 = +5.96 
(±1.17) Intercept, +21.22 (±3.38) ETA_dEpsilon_D, -4.81 (±1.21) 
ETA_BetaP_ns, +8.68 (±5.10) ETA_EtaP_F_L, N=19, R2 = 0.81, 
CCCtr = 0.89, RMSEtr = 0.10 R2

adj = 0.77, R2-R2
adj=0.04 fitness, 

Q2 = 0.70, CCCcv = 0.89, RMSEcv = 0.13, Q2
LMO = 0.68 R2

yscr = 
0.17 robustness, Q2

ext = 0.96, Q2
F1 = 0.92, Q2

F2 = 0.91, Q2
F3 = 0.75, 

CCCext = 0.95, r2
m = 0.80, k = 1.01, k’ = 0.99 predictivity. 

 

Fig. (3) the plot of experimental versus calculated endpoint for 
model 2. 
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As the previous models, Model 3 is also represented by a 
three parametric expression and has measures of fitness 
above the optimal thresholds. In fact, it shows an internal 
predictive power of 70% (Q2 = 0.70), with a very low 
probability of random correlation among activity values and 
independent variables (R2

yscr = 0.17). The external predictive 
power on the test set is good (Q2

ext = 0.96), and all the other 
predictive parameters are above the considered significant 
thresholds. This model comprises two previously retrieved 
descriptors: ETA_dEpsilon_D (+0.77), and ETA_BetaP_ns (-
0.61); the third descriptor is ETA_EtaP_F_L, another 
extended topochemical atom descriptor, which correlates local 
functionality contribution (EtaF_local) with molecular size. 
The local functionality index was proposed to measure the 
molecule functionality, intended as the presence of 
heteroatoms and multiple bonds  [44]. In Fig. (5), the plot of 
experimental versus calculated endpoint for Model 3 is shown. 

 
Fig. (5). Plot of experimental versus calculated endpoint for Model 
3. 

In terms of applicability domain, Model 3 is quite similar 
to the previous two, with only compound #10 as a structural 
outlier (Fig. 6). 

All the three models identified showed good parameters 
of fitness, robustness and predictive capability. They differ 
from each other by a single descriptor, and in terms of the 
applicability domain, they have a quite similar behavior. 
Therefore, in such a landscape of QSAR models, the choice 
of the best performing model to identify new and more 
potent compounds could be very difficult. For this reason, 
we decided to entrust the management of the best performing 
model to the MCDM criteria. In Table 2, predicted and 
residuals for the three QSAR models are reported. In Table 
3, the MCDM values are shown. Model 1 could have, in 
terms of MCDMall, the best performing capability, even 
though with a slight difference compared to the other two 
models. As the last choice criteria, we decided to consider 
the significance (p-value) of descriptors coefficients in each 
model. In Model 1, all the descriptor coefficients have p-
value<0.05; in model 2, VCH-7 has p-value > 0.05, such as 
in model 3, ETA_EtaP_F_L has p-value > 0.10. When p-
value for descriptors coefficients is under the confidence 
threshold of 95%, models should be considered with caution. 
In light of this latter consideration, Model 1, in virtue of the 
best MCDMall value, and in virtue of p-values < 0.05, could 
be definitively considered as the QSAR model of choice for 
1,3,4-oxadiazole derivatives as telomerase inhibitors. 

 
Table 2. Predicted and residuals for the three QSAR models  

ID STATUS EXP.  
MODEL 1 MODEL 2 MODEL 3 

Pred.  Res. Pred.  Res. Pred.  Res. 

1 Training 5.012 5.023 0.011 4.939 -0.073 4.910 -0.102 

2 Training 4.992 4.968 -0.024 4.981 -0.011 4.974 -0.018 

3 Prediction 4.925 4.951 0.026 4.908 -0.017 4.925 0.000 

4 Training 4.907 4.927 0.020 4.823 -0.084 4.845 -0.062 

5 Training 4.778 4.828 0.050 4.824 0.046 4.856 0.078 

6 Prediction 5.271 5.483 0.212 5.431 0.160 5.399 0.128 

(Table 2) Contd… 

 
Fig. (6). Applicability domain for model 3. 
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ID STATUS EXP.  
MODEL 1 MODEL 2 MODEL 3 

Pred.  Res. Pred.  Res. Pred.  Res. 

7 Training 5.044 5.046 0.002 5.057 0.013 5.072 0.028 

8 Training 5.070 4.998 -0.072 4.966 -0.104 4.960 -0.110 

9 Training 4.803 4.968 0.165 4.981 0.178 4.974 0.171 

10 Training 5.286 5.358 0.072 5.346 0.060 5.339 0.053 

11 Training 5.123 5.046 -0.077 5.057 -0.066 5.072 -0.051 

12 Training 4.837 4.968 0.131 4.981 0.144 4.980 0.143 

13 Training 4.741 4.828 0.087 4.824 0.083 4.861 0.120 

14 Training 5.401 5.483 0.082 5.431 0.030 5.404 0.003 

15 Training 5.504 5.404 -0.100 5.408 -0.096 5.414 -0.090 

16 Training 5.369 5.361 -0.008 5.315 -0.054 5.321 -0.048 

17 Prediction 5.319 5.319 0.000 5.400 0.081 5.427 0.108 

18 Training 5.148 5.239 0.091 5.233 0.085 5.250 0.102 

19 Prediction 5.928 5.904 -0.024 5.895 -0.033 5.859 -0.069 

20 Training 5.539 5.472 -0.067 5.525 -0.014 5.536 -0.004 

21 Prediction 4.749 4.873 0.124 4.894 0.145 4.943 0.194 

22 Training 5.016 4.866 -0.150 5.044 0.028 5.023 0.007 

23 Training 4.871 4.843 -0.028 4.967 0.096 4.929 0.058 

24 Training 5.182 4.999 -0.183 4.921 -0.262 4.903 -0.280 

 
Table 3. MCDM values for the QSAR models 

- MCDM FIT MCDM CV MCDM EXT MCDM ALL 

MODEL 1 0.871 0.753 0.888 0.835 

MODEL 2 0.843 0.742 0.901 0.826 

MODEL 3 0.831 0.726 0.871 0.807 
    
CONCLUSION 

In this paper, we have successfully developed robust and 
predictive QSAR models for 1,3,4-oxadiazole derivatives as 
telomerase inhibitors. The results obtained in this study 
suggest that QSAR models developed with 1D and 2D 
molecular descriptors can be used for the design of new 
analogs with more potent telomerase inhibitory activity as 
anticancer drugs. In particular, Model 1 revealed to be the 
most reliable. A posteriori mechanistic interpretation of 
descriptors included in the model suggests important 
structural information. The ETA (Extended topochemical 
atom) descriptor ETA_dEpsD, which takes into account the 
contribution of H-donor atoms, increases according to the 
presence of donor atoms into the aromatic ring. At the same 
time, the Electrotopological-state descriptor naaCH, which 
considers the aromatic CH, has a positive coefficient which 
suggests that too many substitutions on the aromatic ring 
could lead to non-active compounds. The last descriptor, the 
ETA descriptor ETA_dEpsD, which takes into account the 
electron-richness of the molecule relative to molecular size, 
slightly decreases related to the endpoint, so this suggests 
that electron-rich substituents do not have to be in excessive 
number related to the dimension of the compounds. 
Therefore, we hope that this theoretical approach, and 

obtained structural information, could be an important aid for 
the design of novel compounds, to boost the identification of 
lead compounds to be tested in vitro and in vivo. 
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