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Abstract. We investigate the large-time behavior of solutions for a class of inho-
mogeneous semilinear wave equations involving double damping and potential terms.
Namely, we first establish a general criterium for the absence of global weak solu-
tions. Next, some special cases of potential and inhomogeneous terms are studied.
In particular, when the inhomogeneous term depends only on the variable space, the
Fujita critical exponent and the second critical exponent in the sense of Lee and Ni
are derived.

1. Introduction

In this paper, we investigate the large-time behavior of solutions to the following
Cauchy problem for the inhomogeneous semilinear wave equation

(1.1) utt −∆u+ ut −∆ut = V (x)|u|p +W (t, x), t > 0, x ∈ RN ,

where N ≥ 2, p > 1 and ∆ is the Laplacian operator. Here, the left-hand side of (1.1)
presents two types of damping terms. In the right-hand side, we have the combined
effects of a potential term V = V (x) > 0 and an inhomogeneous term W = W (t, x) ≥ 0
with W 6≡ 0 (i.e. not identically zero).

Concerning the semilinear wave equation with frictional damping

(1.2) utt −∆u+ ut = |u|p, t > 0, x ∈ RN ,

we know from the literature that such an equation admits a critical behavior. Precisely,
there exists an exponent value pc > 1 leading to a bifurcation in the following sense:

(i) if p ≤ pc, then problem (1.2) does not admit any nontrivial global solution for
some initial data;

(ii) if p > pc, then problem (1.2) has a small data global in time solution.

Notice that pc = 1 + 2
N , which is called Fujita exponent in the semilinear heat equation

case. For more details on those mentioned results, we refer the reader to [3,7,8,12,13,15]
and the references therein.

In the viscoelastic damping case, i.e.

utt −∆u−∆ut = |u|p, t > 0, x ∈ RN ,
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the exact value of the critical exponent is still an open question. For some discussion
about this problem, see, for example, [2, 10,11] and the references therein.

In [4], the authors studied the special case of (1.1) when V ≡ 1 and W ≡ 0. Namely,
it was shown that the number 1 + 2

N is critical when N ∈ {1, 2}. Later, in [5], it was

shown that 1 + 2
N is still critical in the case N = 3. In [1], the question of the critical

exponent for this problem has been solved in any space dimension, requiring suitable
assumptions on the data, and L1-regularities.

Motivated by the above mentioned contributions, the nonexistence of global weak
solutions and the existence of stationary solutions to (1.1) are investigated in this paper.
Namely, we first obtain a general criterium for the absence of global weak solutions to
(1.1). Next, some special cases of V and W are studied. In particular, when W depends
only on the variable space, the Fujita critical exponent and the second critical exponent
in the sense of Lee and Ni are derived. To the best of our knowledge, problems of type
(1.1) were not previously investigated.

Before stating our main results, we first fix some notations and define the notion of
solutions to (1.1). Let Q = (0,∞)×RN . By C2

c (Q), we mean the space of C2 real valued
functions compactly supported in Q. It is supposed that the potential term V > 0 is
continuous and the inhomogeneous term W ≥ 0 is a nontrivial L1

loc(Q)-function.

Definition 1.1. We say that u ∈ Lploc(Q) is a global weak solution to (1.1), if

(1.3)

∫
Q
u(ϕtt −∆ϕ− ϕt + (∆ϕ)t) dx dt =

∫
Q
V (x)|u|pϕdx dt+

∫
Q
W (t, x)ϕdx dt,

for every ϕ ∈ C2
c (Q).

Our first main result is the following.

Theorem 1.1. Suppose that there exist 0 < c1 < c2 < 1 such that
(1.4)

lim sup
T→∞

T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1 ∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt =∞.

Then (1.1) admits no global weak solution.

Remark 1.1. We point out that Theorem 1.1 does not need any assumption about
the initial values. This is due to the definition of global weak solutions to (1.1) that
we considered, where (1.3) is satisfied for all ϕ ∈ C2

c ((0,∞) × RN ). Notice that for
such test functions, one has ϕ(0, x) = ϕt(0, x) = ∆ϕ(0, x) = 0, for all x ∈ RN . On
the other hand, it is possible to define a global weak solution to (1.1) subject to the
initial conditions (u(0, x), ut(0, x)) = (u0(x), u1(x)), x ∈ RN , as a function u ∈ Lploc(Q)
satisfying ∫

Q
u(ϕtt −∆ϕ− ϕt + (∆ϕ)t) dx dt

= L(u0, u1, ϕ) +

∫
Q
V (x)|u|pϕdx dt+

∫
Q
W (t, x)ϕdx dt,
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for all ϕ ∈ C2
c (Q), where Q = [0,∞)× RN and

L(u0, u1, ϕ) =

∫
RN

u0(x) (ϕ(0, x)− ϕt(0, x)−∆ϕ(0, x)) dx+

∫
RN

u1(x)ϕ(0, x) dx.

In this case, following exactly the proof of Theorem 1.1, one can show that the result
given by this theorem holds true under the additional assumption: u0, u1 ∈ L1

loc(RN ).
Notice that this assumption is needed only to to guarantee that L(u0, u1, ϕ) < ∞, for
all ϕ ∈ C2

c (Q).

Remark 1.2. In this paper, we are concerned essentially with the existence and nonex-
istence of global weak solutions in the sense of Definition 1.1. For the local existence
of solutions, see, for example [6].

Consider now the functions V and W defined by

(1.5) V (x) = (1 + |x|2)
α
2 , x ∈ RN

and

(1.6) W (t, x) = tσW(x), t > 0, x ∈ RN ,
where α > −2, −1 < σ ≤ 0 and W is a nontrivial L1

loc(RN )-function. Such a kind of
fuctions recall, and are inspired, to usual forms of perturbation terms (nonlinearity)
exhibiting a polynomial-type growth condition. Also, the use of (locally) integrable
functions is related to the decay properties as z goes to infinity.

We first discuss the case σ 6= 0.

Corollary 1.1. Let V and W be the functions defined respectively by (1.5) and (1.6),
where α > −2 and −1 < σ < 0. If

(1.7) 1 < p < 1 +
α+ 2

N − 2σ − 2
,

then (1.1) admits no global weak solution.

Remark 1.3. In the case p ≥ 1 + α+2
N−2σ−2 , we do not know whether global solutions

exist or not. This question is open.

Next, we consider the case σ = 0.

Corollary 1.2. Let V and W be the functions defined respectively by (1.5) and (1.6),
where α > −2 and σ = 0. If

(1.8) 1 < p < p∗(α,N),

where

p∗(α,N) =

{
∞ if N = 2,
N+α
N−2 if N ≥ 3,

then (1.1) admits no global weak solution.

Remark 1.4. Note that (1.8) is optimal, i.e. p∗(α,N) is critical (in the sense of
Fujita) for problem (1.1). Namely, if N ≥ 3 and p > p∗(α,N), then (1.1) admits
stationary solutions for some W > 0 (see e.g. [14]), and hence global solutions. In the
critical case p = p∗(α,N) and N ≥ 3, we do not know whether global solutions exist or
not. This question is open.
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For N ≥ 3 and a < N , let

I+a =
{
W ∈ C(RN ) : W ≥ 0,W(x) ≥ C|x|−a for |x| large

}
and

I−a =
{
W ∈ C(RN ) : W ≥ 0,W(x) ≤ C|x|−a for |x| large

}
,

where C > 0 is a constant (independent of x). The next result provides the second
critical exponent for (1.1) in the sense of Lee and Ni [9]. Namely, for N ≥ 3 and
p > p∗(α,N), a second critical exponent is obtained when W is independent of t and it
decays/grows as |x|−a, for some a < N . Consequently, there exists a critical parameter
value a∗ leading to a bifurcation in the sense of Theorem 1.2 below. To this end, here
we define the critical parameter

a∗ =
α+ 2p

p− 1
.

Theorem 1.2. Let V and W be the functions defined respectively by (1.5) and (1.6),
where α > −2 and σ = 0. Let N ≥ 3 and p > p∗(α,N).

(i) If a < a∗ and W ∈ I+a , then (1.1) admits no global weak solution.
(ii) If a∗ ≤ a < N , then (1.1) admits stationary solutions (then global solutions)

for some W ∈ I−a .

The rest of the paper is organized as follows. In Section 2, after establishing some
preliminary estimates, we give the proof of the general nonexistence result given by
Theorem 1.1. In Section 3, we prove Corollaries 1.1 and 1.2. Finally, Section 4 is
devoted to the proof of Theorem 1.2.

2. General nonexistence result

We first introduce two cut-off functions λ, µ ∈ C∞(R+) satisfying

(2.1) λ ≥ 0, supp(λ) ⊂ (0, 1), λ(t) = 1, c1 ≤ t ≤ c2
and

(2.2) 0 ≤ µ ≤ 1, µ(σ) =

{
1 if 0 ≤ σ ≤ 1,
0 if σ ≥ 2,

where 0 < c1 < c2 < 1.
For T > 0, let

(2.3) ξ(t, x) = λ
( t
T

)k
µ
( |x|2
T 2ρ

)k
:= aT (t)bT (x),

where k ≥ 2 and ρ > 0 are constants.

2.1. Some preliminaries.

Lemma 2.1. Let k ≥ 2p
p−1 . There exists a constant C > 0 such that∫

Q
V (x)

−1
p−1 ξ

−1
p−1 |ξtt|

p
p−1 dx dt ≤ CTNρ−

p+1
p−1

∫
0<|y|<

√
2
V (T ρy)

−1
p−1 dy.
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Proof. By (2.3), one has
(2.4)∫
Q
V (x)

−1
p−1 ξ

−1
p−1 |ξtt|

p
p−1 dx dt =

(∫ ∞
0

aT (t)
−1
p−1 |a′′T (t)|

p
p−1 dt

)(∫
RN

V (x)
−1
p−1 bT (x) dx

)
.

By (2.1), one obtains∫ ∞
0

aT (t)
−1
p−1 |a′′T (t)|

p
p−1 dt = T

−2p
p−1

∫ T

0
λ
( t
T

)k− 2p
p−1

∣∣∣∣θ( t

T

)∣∣∣∣ p
p−1

dt,

where

θ(s) = k
[
(k − 1)λ′(s)2 + λ(s)λ′′(s)

]
, 0 < s < 1.

Hence, one deduces that∫ ∞
0

aT (t)
−1
p−1 |a′′T (t)|

p
p−1 dt ≤ CT

−2p
p−1

∫ T

0
λ
( t
T

)k− 2p
p−1

dt

= CT
−
(
p+1
p−1

) ∫ 1

0
λ(s)

k− 2p
p−1 ds,

which yields (since k ≥ 2p
p−1)

(2.5)

∫ ∞
0

aT (t)
−1
p−1 |a′′T (t)|

p
p−1 dt ≤ CT−

(
p+1
p−1

)
.

Here and below, C > 0 is a generic suitable constant whose value may change from line
to line. Next, using (2.2), one obtains∫

RN
V (x)

−1
p−1 bT (x) dx =

∫
0<|x|<

√
2T ρ

V (x)
−1
p−1µ

( |x|2
T 2ρ

)k
dx.

Using the change of variable x = T ρy, it holds that∫
RN

V (x)
−1
p−1 bT (x) dx = TNρ

∫
0<|y|<

√
2
V (T ρy)

−1
p−1µ(|y|2)k dy,

which yields

(2.6)

∫
RN

V (x)
−1
p−1 bT (x) dx ≤ TNρ

∫
0<|y|<

√
2
V (T ρy)

−1
p−1 dy.

Therefore, using (2.4), (2.5) and (2.6), the desired estimate follows. �

Lemma 2.2. Let k ≥ p
p−1 . There exists a constant C > 0 such that∫

Q
V (x)

−1
p−1 ξ

−1
p−1 |ξt|

p
p−1 dx dt ≤ CTNρ−

1
p−1

∫
0<|y|<

√
2
V (T ρy)

−1
p−1 dy.

Proof. By (2.3), one has
(2.7)∫
Q
V (x)

−1
p−1 ξ

−1
p−1 |ξt|

p
p−1 dx dt =

(∫ ∞
0

aT (t)
−1
p−1 |a′T (t)|

p
p−1 dt

)(∫
RN

V (x)
−1
p−1 bT (x) dx

)
.
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On the other hand, by (2.1), one obtains∫ ∞
0

aT (t)
−1
p−1 |a′T (t)|

p
p−1 dt = k

p
p−1T

−p
p−1

∫ T

0
λ
( t
T

)k− p
p−1

∣∣∣∣λ′( t

T

)∣∣∣∣ p
p−1

dt

≤ CT 1− p
p−1

∫ 1

0
λ(s)

k− p
p−1 ds,

which yields

(2.8)

∫ ∞
0

aT (t)
−1
p−1 |a′T (t)|

p
p−1 dt ≤ CT

−1
p−1 .

Hence, using (2.6), (2.7) and (2.8), the desired estimate follows. �

Lemma 2.3. Let k ≥ 2p
p−1 . There exists a constant C > 0 such that∫

Q
V (x)

−1
p−1 ξ

−1
p−1 |∆ξ|

p
p−1 dx dt ≤ CT

−2ρp
p−1

+Nρ+1
∫
1<|y|<

√
2
V (T ρy)

−1
p−1 dy

Proof. By (2.3), one has
(2.9)∫
Q
V (x)

−1
p−1 ξ

−1
p−1 |∆ξ|

p
p−1 dx dt =

(∫ ∞
0

aT (t) dt

)(∫
RN

V (x)
−1
p−1 bT (x)

−1
p−1 |∆bT (x)|

p
p−1 dx

)
.

Using (2.1), one obtains

(2.10)

∫ ∞
0

aT (t) dt =

∫ T

0
λ
( t
T

)k
dt = T

∫ 1

0
λ(s)k ds = CT.

On the other hand, an elementary calculation shows that

∆bT (x) = T−2ρµ
( |x|2
T 2ρ

)k−2
φ
( |x|2
T 2ρ

)
, x ∈ RN ,

where

φ
( |x|2
T 2ρ

)
= 2k

[
Nµ
( |x|2
T 2ρ

)
µ′
( |x|2
T 2ρ

)
+ 2(k − 1)|x|2T−2ρµ′

( |x|2
T 2ρ

)2
+ 2|x|2T−2ρµ

( |x|2
T 2ρ

)
µ′′
( |x|2
T 2ρ

)]
.

Notice that by (2.2), one has

φ
( |x|2
T 2ρ

)
= 0, 0 ≤ |x| < T ρ.

Now, the continuity of the function φ and (2.2) lead to∣∣∣∣φ( |x|2T 2ρ

)∣∣∣∣ ≤ C, x ∈ RN ,

for some C > 0, which yields

|∆bT (x)| ≤ CT−2ρµ
( |x|2
T 2ρ

)k−2
.
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Therefore, using (2.2), one obtains∫
RN

V (x)
−1
p−1 bT (x)

−1
p−1 |∆bT (x)|

p
p−1 dx

≤ CT
−2ρp
p−1

∫
T ρ<|x|<

√
2T ρ

V (x)
−1
p−1µ

( |x|2
T 2ρ

)k− 2p
p−1

dx

≤ CT
−2ρp
p−1

∫
T ρ<|x|<

√
2T ρ

V (x)
−1
p−1 dx.

Using the change of variable x = T ρy, it holds that

(2.11)

∫
RN

V (x)
−1
p−1 bT (x)

−1
p−1 |∆bT (x)|

p
p−1 dx ≤ CT

−2ρp
p−1

+Nρ
∫
1<|y|<

√
2
V (T ρy) dy.

Next, using (2.9), (2.10) and (2.11), the desired estimate follows. �

Lemma 2.4. Let k ≥ 2p
p−1 . There exists a constant C > 0 such that∫

Q
V (x)

−1
p−1 ξ

−1
p−1 |(∆ξ)t|

p
p−1 dx dt ≤ CTNρ−

2ρp+1
p−1

∫
1<|y|<

√
2
V (T ρy) dy.

Proof. By (2.3), one has∫
Q
V (x)

−1
p−1 ξ

−1
p−1 |(∆ξ)t|

p
p−1 dx dt

=

(∫ ∞
0

aT (t)
−1
p−1 |a′T (t)|

p
p−1 dt

)(∫
RN

V (x)
−1
p−1 bT (x)

−1
p−1 |∆bT (x)|

p
p−1 dx

)
.

Hence, by (2.8) and (2.11), the desired estimate follows. �

2.2. Proof of Theorem 1.1. Suppose that u ∈ Lploc(Q) is a global weak solution to
(1.1). Using (1.3), one obtains∫

Q
V (x)|u|pϕdxdt+

∫
Q
W (t, x)ϕdxdt

≤
∫
Q
|u||ϕtt|dxdt+

∫
Q
|u||∆ϕ|dxdt+

∫
Q
|u||ϕt|dxdt+

∫
Q
|u||(∆ϕ)t|dxdt,(2.12)

for all ϕ ∈ C2
c (Q), ϕ ≥ 0. Writing∫

Q
|u||ϕtt| dx dt =

∫
Q
V (x)

1
pϕ

1
p |u|V (x)

−1
p ϕ

−1
p |ϕtt| dx dt

and using ε- Young inequality with 0 < ε < 1
4 , one obtains

(2.13)

∫
Q
|u||ϕtt| dx dt ≤ ε

∫
Q
V (x)ϕ|u|p dx dt+ C

∫
Q
V (x)

−1
p−1ϕ

−1
p−1 |ϕtt|

p
p−1 dx dt

Similarly, one has

(2.14)

∫
Q
|u||∆ϕ| dx dt ≤ ε

∫
Q
V (x)ϕ|u|p dx dt+ C

∫
Q
V (x)

−1
p−1ϕ

−1
p−1 |∆ϕ|

p
p−1 dx dt,
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(2.15)

∫
Q
|u||ϕt| dx dt ≤ ε

∫
Q
V (x)ϕ|u|p dx dt+ C

∫
Q
V (x)

−1
p−1ϕ

−1
p−1 |ϕt|

p
p−1 dx dt

and
(2.16)∫

Q
|u||(∆ϕ)t| dx dt ≤ ε

∫
Q
V (x)ϕ|u|p dx dt+ C

∫
Q
V (x)

−1
p−1ϕ

−1
p−1 |(∆ϕ)t|

p
p−1 dx dt.

Hence, using (2.12), (2.13), (2.14), (2.15) and (2.16), one deduces that∫
Q
W (t, x)ϕdx dt

≤ C
∫
Q
V (x)

−1
p−1

(
ϕ
−1
p−1 |ϕtt|

p
p−1 + ϕ

−1
p−1 |∆ϕ|

p
p−1 + ϕ

−1
p−1 |ϕt|

p
p−1 + ϕ

−1
p−1 |(∆ϕ)t|

p
p−1

)
dx dt,

for all ϕ ∈ C2
c (Q), ϕ ≥ 0. On the other hand, one can check easily that ξ ∈ C2

c (Q) and

ξ ≥ 0, where ξ is the function defined by (2.3) for T > 0, k ≥ 2p
p−1 and 0 < c1 < c2 < 1.

Then, it holds that
(2.17)∫

Q
W (t, x)ξ dx dt

≤ C
∫
Q
V (x)

−1
p−1

(
ξ
−1
p−1 |ξtt|

p
p−1 + ϕ

−1
p−1 |∆ξ|

p
p−1 + ξ

−1
p−1 |ξt|

p
p−1 + ξ

−1
p−1 |(∆ξ)t|

p
p−1

)
dx dt.

On the other hand, by (2.1), (2.2) and (2.3), one has (since W ≥ 0)∫
Q
W (t, x)ξ dx dt =

∫ ∞
0

∫
RN

W (t, x)λ

(
t

T

)k
µ

(
|x|2

T 2ρ

)k
dx dt

≥
∫ c2T

c1T

∫
0<|y|<T ρ

W (t, y) dy dt.(2.18)

Therefore, using (2.17), (2.18), together with Lemmas 2.1, 2.2, 2.3 and 2.4, one deduces
that∫ c2T

c1T

∫
0<|y|<T ρ

W (t, y) dy dt

≤ C
(
T
Nρ− p+1

p−1 + T
Nρ− 1

p−1 + T
−2ρp
p−1

+Nρ+1
+ T

Nρ− 2ρp+1
p−1

)∫
0<|y|<

√
2
V (T ρy)

−1
p−1 dy.

Taking ρ = 1
2 in the above inequality, for T sufficiently large, it holds that∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt ≤ CT

N
2
− 1
p−1

∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

i.e.

T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1 ∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt ≤ C,

which contradicts (1.4). �
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3. Some special cases

In this section, we consider problem (1.1), where V and W are defined respectively
by (1.5) and (1.6). Namely, we prove Corollaries 1.1 and 1.2.

3.1. Proof of Corollary 1.1. By (1.5), one has

(3.1)

∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy =

∫
0<|y|<

√
2

(
1 + T |y|2

) −α
2(p−1) dy

=C

∫ √2
0

(1 + Tr2)
−α

2(p−1) rN−1 dr

=C

∫ √2
0

2r(1 + Tr2)
−α

2(p−1) rN−2 dr

≤CT−1
∫ √2
0

2Tr(1 + Tr2)
−α

2(p−1) dr.

We have three possible cases.
Case 1: α = 2(p− 1). In this case, one has∫ √2

0
2Tr(1 + Tr2)

−α
2(p−1) dr = ln(1 + 2T ).

Hence, using (3.1), for sufficiently large T , one obtains∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy ≤ CT−1 lnT,

which yields

(3.2) T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1
≥ CT

p
p−1
−N

2 (lnT )−1.

Case 2: α < 2(p− 1). In this case, one has∫ √2
0

2Tr(1 + Tr2)
−α

2(p−1) dr = C
[
(1 + 2T )

1− α
2(p−1) − 1

]
.

Hence, using (3.1), for sufficiently large T , one obtains∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy ≤ CT

−α
2(p−1) ,

which yields

(3.3) T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1
≥ CT

α+2
2(p−1)

−N
2 .

Case 3: α > 2(p− 1). In this case, one has∫ √2
0

2Tr(1 + Tr2)
−α

2(p−1) dr = C
[
1− (1 + 2T )

1− α
2(p−1)

]
.
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Hence, using (3.1), for sufficiently large T , one obtains∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy ≤ CT−1,

which yields

(3.4) T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1
≥ CT

p
p−1
−N

2 .

Hence, combining (3.2), (3.3) and (3.4), for sufficiently large T , it holds that

(3.5) T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1
≥ CT

α+2
2(p−1)

−N
2 (lnT )−1.

Moreover, for any 0 < c1 < c2 < 1, and sufficiently large T , one has

(3.6)

∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt =

(∫ c2T

c1T
tσ dt

)(∫
0<|y|<

√
T
W(y) dy

)

≥ CT σ+1

∫
0<|y|<1

W(y) dy

= CT σ+1.

Therefore, using (3.5) and (3.6), one deduces that for sufficiently large T ,

T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1 ∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt

≥ CT
α+2

2(p−1)
−N

2
+σ+1

(lnT )−1.

Next, using (1.7), the above estimate yields (1.4). Hence, by Theorem 1.1, one deduces
that (1.1) admits no global weak solution. �

3.2. Proof of Corollary 1.2. Using (3.5) and (3.6) with σ = 0, for sufficiently large
T , one obtains

T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1 dy

)−1 ∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt

≥ CT
α+2

2(p−1)
−N

2
+1

(lnT )−1.

Next, using (1.8), the above estimate yields (1.4). Hence, by Theorem 1.1, one deduces
that (1.1) admits no global weak solution. �

4. Second critical exponent

In this section, we prove Theorem 1.2 which provides the second critical exponent
for (1.1) in the sense of Lee and Ni [9].
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4.1. Proof of Theorem 1.2 (i). Let W ∈ I+a . Then, for 0 < c1 < c2 < 1 and
sufficiently large T , one has∫ c2T

c1T

∫
0<|y|<

√
T
W (t, y) dy dt ≥ CT

∫
√
T
2
<|y|<

√
T
W(y) dy

≥ CT
∫
√
T
2
<|y|<

√
T
|y|−a dy

= CT 1+N−a
2 .

Using (3.5) and the above estimate, one obtains
(4.1)

T
1
p−1
−N

2

(∫
0<|y|<

√
2
V (
√
Ty)

−1
p−1dy

)−1 ∫ c2T

c1T

∫
0<|x|<

√
T
W (x)dxdt ≥ CT

α+2
2(p−1)

+1−a
2 (lnT )−1.

Observe that a < a∗ is equivalent to

(4.2)
α+ 2

2(p− 1)
+ 1− a

2
> 0.

Hence, using (4.1) and (4.2), one obtains (1.4). Then, by Theorem 1.1, one deduces
that (1.1) admits no global weak solution. �

4.2. Proof of Theorem 1.2 (ii). For

(4.3) a− 2 ≤ δ < N − 2 and 0 < ε < [δ(N − δ − 2)]
1
p−1 ,

let

uδ,ε(x) = ε(1 + |x|2)−
δ
2 , x ∈ RN .

Using (4.3), one can check easily that

W(x) := −∆uδ,ε − V upδ,ε
= δε

[
N(1 + |x|2)−

δ
2
−1 − (δ + 2)|x|2(1 + |x|2)−

δ
2
−2
]
− εp(1 + |x|2)

α−δp
2

> δε(N − δ − 2)(1 + |x|2)−
δ
2
−1 − εp(1 + |x|2)

α−δp
2

> 0.

Moreover, for |x| sufficiently large, one has

W(x) ≤ δε
[
N(1 + |x|2)−

δ
2
−1 − (δ + 2)|x|2(1 + |x|2)−

δ
2
−2
]

= δε(1 + |x|2)−
δ
2
−2
[
(N − δ − 2)|x|2 +N

]
≤ δεN(1 + |x|2)−

δ
2
−1

≤ δεN(1 + |x|2)−
a
2

≤ C|x|−a.

Hence, for all δ and ε satisfying (4.3), the function uδ,ε is a stationary solution to (1.1)
with W ∈ I−a �
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