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Abstract 

In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, 
refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, 
therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a 
vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients’ risk-
stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall 
efficiency and accuracy of using these “big data” in both the diagnostic and theragnostic field: from technical aspects 
(such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, 
improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, 
and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI 
and radiomics applied to molecular imaging of prostate cancer.
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Key points

• Artificial intelligence (AI) and radiomic applied to 
nuclear medicine provide great help in prostate 
cancer.

• AI-based methods can improve the magnetic reso-
nance imaging-based attenuation correction.

• AI-based fully automatic tissue segmentation is 
reaching high accuracy for metastasis detection.

• Radiomic features have the potential to predict tumor 
aggressiveness better than standardized uptake value.

• Neural networks might even be used to simplify 
dosimetry for theragnostic applications.

Introduction
Prostate cancer
Prostate cancer (PCa) is a major health issue, with an 
estimated nearly 1.4 million new cases and 375,000 
deaths worldwide, with incidence rates ranging from 6.3 
to 83.4 per 100,000 men. PCa is the fifth leading cause of 
cancer death among men in 2020 [1, 2].
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Several parameters (i.e., androgen-receptor status, 
gene expression, growth patterns) are responsible for the 
heterogeneity of PCa and determine the choice between 
active surveillance for the more indolent disease, curative 
treatment (prostatectomy or radiotherapy) for localized 
disease, or systemic therapy for advanced cancer [1, 3].

Nuclear medicine techniques have gained significant 
relevance for the evaluation and management of PCa 
in the last 5 years, providing a total-body assessment of 
tumor burden, thereby discriminating patients with and 
without oligometastatic disease and patients with exten-
sive disease.

Recently, several nomograms, derived from the com-
bination of clinical and imaging biomarkers, have been 
developed for diagnostic, prognostic, predictive, or risk 
stratification purposes [4, 5]. However, their validation 
for clinical use requires the use of a considerable amount 
of data [1, 3]. Further opportunities are provided by radi-
omics and artificial intelligence (AI), potentially enabling 
clinicians to improve the overall efficiency and accu-
racy of using a vast amount of data, improving a deeper 
understanding of the molecular environment of PCa, 
refining personalized treatment strategies, and increasing 
the ability to predict the outcome.

This systematic review aims to describe the basic con-
cepts and the current literature on AI and radiomics 
applied to molecular imaging of PCa.

Nuclear medicine in prostate cancer
The most well-known radiopharmaceutical in oncol-
ogy, 2-deoxy-2-[18F]fluoro-D-glucose  ([18F]FDG), has 
only limited use for PCa, mainly in advanced disease 
(dedifferentiated, metastatic, castration-resistant PCa 
— mCRPC), especially for accurate systemic treat-
ment selection [6, 7]. Historically, the positron emission 
tomography (PET) radiotracer choline (labeled with  [18F] 
or  [11C]) played an important role in Pca, mainly for bio-
chemical recurrence (BCR) detection, partly replaced 
recently by other more specific radiotracers, which will 
be discussed below. The disease relapse detection rate of 
choline PET in the BCR setting depends on the PSA level, 
ranging from 36% for PSA < 1 ng/mL to 73% for PSA > 
3 ng/mL [8, 9]. Another interesting PCa radiotracer is 
 [18F]flurocyclobutane-1-carboxylic acid (FACBC), which 
improved the assessment of small lesions in the pelvis 
and prostatic bed compared to choline, owing to its gas-
trointestinal/hepatic elimination (absent/reduced urinary 
accumulation) [10]. Currently, the major players in PCa 
are  [68Ga] or  [18F] labeled radiotracers based on ligands 
to the prostate-specific membrane antigen (PSMA), 
which is highly expressed by prostate cancer cells. In a 
comparative study,  [68Ga]Ga-PSMA-11 showed better 
results than  [18F]choline in BCR, with a detection rate of 

50% versus 12% for PSA < 0.5 ng/mL and 69%–86% ver-
sus 31%–57% for higher PSA values, respectively [11]. 
Despite some differences [12], similar results were also 
demonstrated for  [18F]PSMA-1007 for restaging, with a 
pooled detection rate of 86% for PSA ≥ 0.5 ng/mL and 
49% for PSA < 0.5 ng/mL [13]. However, up to 10% of 
PCa lesions do not express PSMA [14] or have specific 
features that reduce their detectability by PSMA-based 
radiotracers [14]. Therefore, alternative radiotracers are 
under investigation, such as bombesin (BBN) analogs, 
that reached a detection rate of 71.8% in patients with 
conventional negative imaging [15]; androgen recep-
tor (AR) imaging with  [18F]FDHT, which might be use-
ful to assess the feasibility and efficacy of AR-directed 
pharmaceuticals [16]; and  [18F]NaF for the assessment 
of PCa bone metastases [17]. Finally, an intriguing 
molecular scenario is the theragnostic approach with 
radioligand therapy (RLT), mainly represented by  [177Lu]
PSMA. This approach showed a high response rate in 
advanced mCRPC in phase II and phase III trials, with 
an advantage in terms of bone pain control and overall 
survival (OS) [18, 19]. RLT may be combined with other 
oncologic therapies, and such combination therapy may 
emerge soon. Therefore, it will be important to assess the 
heterogeneity of PSMA expression within and among 
patients, to optimally select patients and identify poten-
tial mechanisms of tumor resistance [20].

Radiomics
Radiomics aims to extract a large number of quantita-
tive characteristics (features) from medical images using 
data-characterization algorithms and bioinformatics 
approaches. These features, namely radiomic features 
(RFs), have the potential to uncover disease characteristics 
that fail to be appreciated by the naked eye, leading to the 
possibility to quantify specific tumor attributes and phe-
notypes. RFs can be divided into morphological features, 
such as compactness and sphericity; first-order features, 
which describe the distribution of voxel intensities within 
the specified tumor volume; second-order static features 
or texture features, which can characterize the spatial 
interrelationships of intensity between tumor voxels; and 
higher-order statistical features [21, 22]. Distinctive RFs 
can help to better describe the biological behavior of the 
disease in different settings and, consequently, to develop 
more accurate decision support models by combining 
medical imaging data (noninvasive and whole-body bio-
markers) with other patient characteristics, such as molec-
ular and histopathological tumor characteristics [23].

Artificial intelligence
The development of algorithms capable of analyzing 
data and its properties, using dynamic statistical tools, 
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which tend to improve or “learn” as more data is intro-
duced, falls under the definition of machine learning 
(ML), which is a field of AI. Through the process of 
“training,” these algorithms improve in using and map-
ping the observed variables (“features” or “predictors”) 
to subdivide the data sample into sets of outcome vari-
ables (“labels” or “targets”). Based on “labels,” ML can 
be classified into three broad subsets: supervised, unsu-
pervised, and reinforcement learning [24, 25].

Supervised learning is based on explicit datasets that 
have been labeled by the operator; in this case, the algo-
rithms measure the difference between the predicted 
labels and the known labels (called “ground truth”). 
Linear and logistic regression, support vector machines 
(SVMs), random forests, and Naive Bayes classification 
belong to this group of ML techniques [24].

Principal component analysis, k-means cluster-
ing, and autoencoders instead belong to unsupervised 
learning. Here, the algorithm optimally separates sam-
ples into different classes based on characteristics of 
the training data alone, without the operator having 
first defined labels [26].

In reinforcement learning, a computer (“agent”) learns 
to perform a task through repeated trial-and-error interac-
tions with a dynamic environment, without being explicitly 
programmed and without human intervention [26].

Based on “features,” ML techniques can be divided into 
handcrafted (in which the features are explicitly extracted 
and selected by an operator) and non-handcrafted 
approaches, in which the process of feature extraction and 
selection is implicitly incorporated inside the ML algorithm. 
Among the non-handcrafted approaches, deep learning 
(DL) is the most widely used. DL can be used on both super-
vised and unsupervised learning methods. DL approaches 
are based on artificial neural networks [27], mainly con-
volutional neural networks (CNNs). Mainly, in the field of 
medical imaging, CNNs are composed of multiple layers 
and receive a raw image as initial input (dataset of interest). 
Then, each layer analyzes and processes the incoming data 
(input) from the previous layer, sending it to the next layer 
until an output is extracted from the last layer, which usually 
identifies a classification label or another evaluable property 
of the dataset [28]. A resume of the radiomics and AI work-
flow in PCa is summarized in Fig. 1.

Material and methods
We searched the PubMed, PMC, Scopus, Google Scholar, 
Embase, Web of Science, and Cochrane library databases 
(between January 2010 and November 2021), using the fol-
lowing, both as text and as MeSH terms: “prostate cancer,” 
“artificial intelligence,” “deep learning,” “machine learning,” 
“convolutional neural network,” “artificial neural network,” 

Fig. 1 The workflow includes the steps required in a radiomic and artificial intelligence analysis in prostate cancer patients. The first step involves 
collecting clinical data on patient characteristics, histopathological data on tumor characteristics, and imaging data, with the extraction of radiomic 
features (such as shape, intensity, and texture features). Radiomic modeling involves three major aspects: feature selection, modeling methodology, 
and validation. The number of radiomic features that can be extracted from images is virtually unlimited. Once extracted, radiomic features must 
be selected; redundant or non-robust features against sources of variability must be identified and eliminated through dimensionality reduction 
techniques, to avoid overfitting problems. The choice of modeling methodology and the identification of optimal machine learning methods for 
radiomic applications are a crucial step in obtaining robust and clinically relevant results. The choice of a modeling methodology (supervised or 
unsupervised machine learning method) depends on the setting of the data, the characteristics of the analyzed population, and the experience 
of the researchers. The model chosen affects prediction and performance in radiomics, and hence, implementations of multiple modeling 
methodologies are highly desirable. Finally, validation techniques are useful tools for assessing model performance. An externally validated model 
has more credibility than an internally validated model because data obtained by the first approach are more independent. Validation is essential to 
verify the repeatability and reproducibility of the model, demonstrating statistical consistency between the training and validation datasets
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“radiomic,” “segmentation,” “PET,” “PET/CT,” “PET/MR,” 
“prostate-specific membrane antigen,” “PSMA,” “[18F]
DCFPyL,” “[68Ga]Ga-PSMA-11,” “[18F]PSMA-1007,” “[18F]
flurocyclobutane-1-carboxylic acid,” “FACBC,” “choline,” “gas-
trin-releasing peptide receptors,” “bombesin,” “[18F]NaF,” “bone 
scintigraphy,” “[18F]fluorodeoxyglucose,” “FDG,” “[68Ga]RM2,” 
“177Lu,” “[177Lu]PSMA,” “theragnostic,” and “theranostic.”

No language restriction was applied to the search, but 
only articles in English were reviewed. The systematic lit-
erature search returned 398 articles. According to the 
Preferred Reporting Items for Systematic Review and 
Metanalysis (PRISMA) guidelines, after duplicate removal, 
37 articles have been considered, fully read, analyzed, and 
extensively described according to their title and abstract as 
previously described [29]. We also checked for further rele-
vant articles in the references of the articles included in the 
retrieved literature. Articles were then grouped into either 
technical or clinical applications. A graphical representa-
tion of the search and review strategy is presented in Fig. 2.

Technical applications
Several authors have recently attempted to imple-
ment PET reconstruction methods through the 
application of different AI approaches regarding 

reconstruction algorithms, attenuation correction (AC), 
and scatter correction but also to automate the segmen-
tation of reconstructed images, increasing their accuracy 
and standardization.

Reconstruction algorithm
The most used reconstruction algorithm in nuclear 
medicine is the ordered subset expectation maximi-
zation (OSEM) that consistently underestimates the 
standardized uptake value (SUV) [30]. New digital PET 
reconstruction algorithms, such as maximum likeli-
hood algorithms, better control the reconstruction qual-
ity, however at the expense of vendor-specific software 
requirements and computational power [31, 32]. Hence, 
there is a need for AI techniques in this field [33].

Among different applications, the implementation of 
AI algorithms in PET/magnetic resonance imaging (MRI) 
reconstruction seems particularly interesting in the 
development of hybrid imaging in PCa patients. AC in 
PET/MRI is more challenging than in PET/CT, as voxel 
intensity of MRI cannot reflect photon attenuation char-
acteristics directly; MRI-based AC (MRAC) methods 
mainly include segmentation-based methods (standard of 
care nowadays), atlas-based methods and template-based 

Fig. 2 Schematic representation of the performed literature search and the review strategy
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methods, which are easily affected by individual differ-
ences in anatomy, and emission and transmission-based 
methods, which are time-consuming. Researchers have 
developed several ML-based methods to improve the 
segmentation-based method of MRAC with AI, train-
ing mapping relationships to predict pseudo-CT (pCT) 
attenuation map from MRI data [34]. Different DL 
approaches have been developed to improve the MRAC 
segmentation-based method in the pelvic area through 
3D deep CNN techniques [35–37], ultra-short echo time 
(UTE [38]) or Dixon volumetric interpolated breath-hold 
examination (Dixon-VIBE [39]) MRI sequences, and gen-
erative adversarial networks (GANs [40, 41]), as summa-
rized in Table 1.

In single-photon emission tomography (SPECT)/CT 
image reconstruction, Ryden et al. [42] successfully eval-
uated a U-shaped convolutional deep neural network 
for the generation of synthetic intermediate projections 
(CUSIPs) to decrease the  [177Lu]SPECT acquisition time 
by reducing the number of projections and to circum-
vent image degradation. The ML-based method studied 
on 352 SPECTs for training, 37 for validation and 15 for 
testing, appears to significantly recover image quality and 
allows reduced SPECT acquisition time in clinical dosim-
etry protocols. These results are of particular interest in 
the RLT approach for PCa.

Segmentation process
Another promising use of ML is the automatic segmen-
tation of lesions through a fully automated definition of 
regions of interest (ROI), mainly with the use of fully con-
volutional network (FCN) algorithms, such as the U-Net. 
Automatic segmentation could overcome the major 
problem of interobserver and intra-observer variability 
of manual segmentation, which is also time-consuming. 
This might increase the homogeneity and reproducibility 
of data, also for radiomics assessment [43, 44].

In 2019, Zhao et  al. [45] developed a modified 2.5D 
U-Net architecture for the automatic segmentation of 
metastatic lesions in the pelvis extracted from  [68Ga]Ga-
PSMA-11 PET images of 71 patients. The preliminary test 
showed high accuracy in detecting bone lesions (recall = 
0.98, precision = 0.97, F1 score = 0.98) and pathologic 
lymph nodes (recall = 0.84, precision = 0.75, F1 score 
= 0.79) but lower accuracy in detecting intraprostatic 
lesions (recall = 0.63, precision = 0.88, F1 score = 0.73). 
This promising CNN requires future implementation and 
validation in total-body assessment.

In 2021, Kostyszyn et al. [46] conducted a study on pri-
mary tumor delineation, developing a CNN (3D U-Net) 
network for automatic segmentation of intraprostatic 
gross tumor volume (GTV) in  [68Ga]Ga-PSMA-11 PET. 

The network was trained on  [68Ga]Ga-PSMA-11 PET 
images of 152 patients (training labels were manually 
generated), finding good agreement between fully auto-
mated segmentation and manual expert contouring on an 
external validation cohort and obtaining a median Dice 
similarity coefficient (DSC) of 0.81.

An interesting initiative is the Research Consortium for 
Medical Image Analysis (RECOMIA), an online platform 
developed by a nonprofit organization to facilitate col-
laborations between medical researchers and AI [47]. The 
platform has already been successfully used for detection 
and segmentation of primary prostate cancer [48, 49], 
bone metastases [50, 51], and lymph node metastases 
[52].

Concerning the primary tumor, Mortensen et  al. [48] 
evaluated a CNN system in  [18F] choline PET scans of 
45 PCa patients before radical prostatectomy. Corre-
sponding measurements were performed and compared 
with the weighted surgically removed tissue specimens 
and manually derived data. Assuming that 1 g equals 1 
mL of tissue, the mean weight of the prostate specimens 
was 44 g, while CNN-estimated volume was 62 mL, with 
a mean difference of 13.5 g or mL (95% CI: 9.78–17.32). 
Moreover, automated CNN segmentation provided simi-
lar results to manually derived ones in terms of volume 
and conventional PET parameters. Polymeri et  al. [49] 
sought to validate a DL algorithm for automated PCa 
quantification on  [18F]choline PET images from 145 
PCa patients (100 for testing and 45 for validation) and 
subsequently explored the potential of PET/CT meas-
urements as prognostic biomarkers. The Sørensen-Dice 
index (SDI, a statistic index used to gauge the similarity 
of two samples) between automated and manual volume 
segmentations was 0.78 and 0.79, respectively. Moreo-
ver, automated PET/CT measurements were significantly 
correlated with overall survival (OS; p = 0.02), while age, 
prostate-specific antigen, and Gleason score were not.

Belal et al. [50] aimed to evaluate a 3D index for auto-
matic segmentation of bone metastases on  [18F]NaF 
PET/CT images and assessed its correlation with bone 
scan index (BSI) and OS in 48 PCa patients. Hotspots in 
PET images were selected either manually or automati-
cally (using an SUV threshold > 15, PET15 index). BSI, 
manual PET, and automated PET15 index were all signifi-
cantly correlated with OS, and concordance indices were 
0.68, 0.69, and 0.70, respectively. A second study from the 
same group [51] aimed to develop a DL-based method 
for bone segmentation in CT scans and test its accuracy 
compared with manual delineation to quantify skele-
tal tumor burden by testing it on 46 PCa patients, who 
underwent  [18F]choline and  [18F]NaF PET/CT within 
3 weeks. The network performance was compared with 
manual segmentations of five skeletal districts segmented 
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manually by an experienced physician; median SDIs were 
0.86 for Th7, 0.85 for L3, 0.88 for the sacrum, 0.84 for 7th 
rib, and 0.83 for the sternum. The intra-observer volume 
difference was smaller with the CNN-based approach 
than with the manual approach.

Borrelli et  al. [52] tested two CNN networks for the 
automatic segmentation of  [18F]choline PET/CT images 
in 399 PCa patients (319 for training and 80 for test-
ing); one neural network detected the target organs for 
prostate disease on CT images, while the other one used 
this result together with the PET image to automatically 
detect lymph node metastases. Results were compared 
with those of two independent expert readers; the AI-
based instrument detected more lymph node lesions than 
one reader (98 versus 87/117; p = 0.045) using the other 
reader as reference, while the AI performed similar to the 
other reader (90 versus 87/111; p = 0.63), using the first 
reader as reference. In addition, the number of automati-
cally detected lymph node metastases was significantly 
associated with PCa-specific survival (HR = 1.19, 95% CI 
1.05–1.33).

Clinical applications
Nuclear medicine plays a predominant role in the nonin-
vasive assessment of PCa in terms of staging, treatment 
response assessment, and RLT eligibility assessment, all 
of which can be improved by radiomics and AI.

Staging
Several authors have attempted to improve the accuracy 
of nuclear medicine examinations in the staging of PCa 
patients by applying radiomics, ML, and DL approaches.

In 2019, Zamboglou et  al. [53] extracted RFs from 
 [68Ga]Ga-PSMA-11 PET/CT of two cohorts of inter-
mediate/high-risk PCa patients, one prospective (20 
patients) and one retrospective (40 patients) cohort, who 
afterwards underwent radical prostatectomy and pelvic 
lymph node dissection. RFs extracted from the manual 
segmentations (GTV-Exp) showed strong correlations 
with RFs extracted from co-registered histopathological 
gross tumor volume (GTV-Histo = ground truth; 86% 
with p > 0.7), both discriminating significantly between 
PCa and non-PCa tissue. The texture feature QSZHGE 
discriminated between GS 7 and ≥ 8 for GTV-Exp (pro-
spective cohort AUC = 0.91, validation cohort AUC 
= 0.84) and also between nodal spread (pN1) and non-
nodal spread for GTV-Exp (prospective cohort AUC = 
0.87, validation cohort AUC = 0.85). In the multivariate 
analyses, QSZHGE was a significant predictor (p < 0.01) 
for PCa patients with GS ≥ 8 tumors and pN1 status.

In 2020, Cuzzocrea et  al. [54] performed a radiomics 
study using 42 high-risk PCa patients staged with  [18F]

choline PET to assess the relationship between texture 
analysis of prostatic  [18F]choline uptake and patient 
outcome. For each patient, they calculated the RFs, 
metabolic parameters of the prostate gland, and the risk 
assessment score (RAS, based on PSA levels, Gleason 
score, and T classification). Among 38 RFs, 19 were sta-
tistically different between patients with stable disease 
and patients with biochemical progression at follow-up 
(p < 0.03). GLCM contrast (Se = 77.8; Sp = 84.8; PPV 
= 58.3; NPV = 93.3; cutoff = 9.9) and GLZLM-HGZE 
(Se = 77.8; Sp = 87.9; PPV = 63.6; NPV = 93.5; cutoff 
= 151.4) showed the best performance for predicting 
patient outcome (median follow-up 19.8 months), with 
AUCs of 0.828 and 0.858 (both p < 0.001), respectively.

In 2021, Zamboglou et  al. [55] investigated two 
cohorts of primary PCa patients, a prospective training 
cohort (n = 20), and an external validation cohort (n = 
52). They aimed to find PSMA-PET-derived RFs able 
to detect intraprostatic lesions missed by visual  [68Ga]
Ga-PSMA-11 PET/CT assessment. Visual PSMA-PET 
image interpretation missed 134 PCa lesions (median of 
2 missed lesions per patient) with a median maximum 
diameter of 4 mm (range: 2–6). PCa was missed in 60% 
of patients in the training cohort (75% with clinically sig-
nificant PCa, ISUP > 1) and in 50% of patients in the vali-
dation cohort (77% with clinically significant PCa). Local 
binary pattern (LBP) normalized size-zone non-uniform-
ity and LBP small-area emphasis were the only two RFs 
capable of identifying occult PCa (p < 0.01), with an AUC 
≥ 0.93 in the training cohort and AUC ≥ 0.80 in the vali-
dation cohort.

In 2015, Gatidis et  al. [56] performed the first ML-
based radiomic study on 16 PCa patients who underwent 
staging  [18F]choline PET/MRI. A spatially constrained 
fuzzy c-means algorithm (sFCM) was applied to the 
single datasets, and the resulting labeled data were 
used for training a SVM classifier. Accuracy and false-
positive/negative rates of the proposed algorithm were 
determined in comparison with manual tumor deline-
ation or histopathology correlation in 5 of 16 patients. 
The combined sFCM/SVM algorithm revealed reliable 
classification results consistent with the histopatho-
logical reference standard and comparable to those of 
manual tumor delineation. Also, sFCM/SVM generally 
performed better than unsupervised sFCM alone.

In 2021, other authors evaluated the prognostic value 
of RFs extracted from nuclear medicine images through 
the help of ML-based techniques. Cysouw et al. [57] con-
ducted a radiomics study on a cohort of 76 intermediate/
high-risk PCa patients, who underwent  [18F]DCFPyL 
PET/CT before radical prostatectomy. They aimed to 
develop a diagnostic ML-based model for detecting the 
presence of metastases (pelvic lymph node or distant 
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metastases). RFs were chosen via three different fea-
ture selection methods: principal component analysis 
(PCA), recursive feature elimination with random forest, 
and univariate analysis of variance utilizing the fivefold 
cross-validation. The resulting random forest algorithm 
achieved a good discriminatory performance in the 
detection of lymph node or distant metastasis (both AUC 
= 0.86, p < 0.01), leading to a noninvasive determination 
of low-risk patients that could be spared from extended 
pelvic lymph node dissection.

Papp et  al. [58] aimed to investigate the diagnostic 
performance of dual-tracer  ([18F]choline and  [68Ga]Ga-
PSMA-11) PET/MRI in 52 PCa patients undergoing radi-
cal prostatectomy, to predict low-risk versus high-risk 
lesions (LH) as well as biochemical recurrence risk (BCR) 
and overall patient risk (OPR) with ML. RFs, extracted 
from both  [68Ga]Ga-PSMA-11 PET and MRI images, in 
combination with ensemble ML, were applied and com-
pared with conventional PET parameters. The AUC of 
the ML-based LH model was higher than the  SUVmax 
analysis (0.86 versus 0.80); the accuracies of the BCR 
model and OPR model were 89% (AUC = 0.90) and 91% 
(AUC = 0.94), respectively.

Erle et  al. [59] aimed to compare and validate super-
vised ML algorithms to classify pathological uptake in 
PCa patients based on  [68Ga]Ga-PSMA-11 PET/CT 
images. Authors evaluated 77 RFs from 2452 manu-
ally delineated hotspots (1,629 pathological versus 823 
physiological, as ground truth) for the training dataset 
(72 PCa patients) and 331 hotspots (pathological = 128, 
physiological = 203) for the validation dataset (15 PCa 
patients). Three ML classifiers were trained and ranked 
to assess classification performance. A high overall aver-
age performance (AUC = 0.98) was achieved, with higher 
sensitivity for the detection of pathological uptake (sensi-
tivity = 0.97) compared with physiological uptake (sensi-
tivity = 0.82).

The first DL-based study was conducted in 2020 by 
Hartenstein et  al. [60]; they assessed if CNNs can be 
trained to determine  [68Ga]Ga-PSMA-11 PET/CT lymph 
node status from CT images of 549 PCa patients, evalu-
ating 2,616 lymph nodes identified on PET. The CNN 
for the binary classification of lymph nodes achieved an 
accuracy of 89% (AUC = 0.95; Sens = 86%; Spec = 92%) 
in the training group but failed in the external validation. 
Hence, this approach is not generalizable, and its value 
remains unclear.

Moreover, Capobianco et  al. [61] developed a DL 
approach, investigating the use of training information 
from two radiotracers,  [68Ga]Ga-PSMA-11 and  [18F]
FDG. With limited PSMA-ligand data available, the idea 
was that the use of training examples from  [18F]FDG, a 
more widely used radiotracer in general oncology, should 

improve the performance of the DL approach for the 
assessment of  [68Ga]Ga-PSMA-11 images. The CNN net-
work was developed on a larger  [18F]FDG PET/CT image 
dataset (of lymphoma and lung cancer patients), also 
assessing transfer learning and the ability to encode tracer 
type. Then, the developed CNN method was trained on 
 [68Ga]Ga-PSMA-11 PET/CT of 173 patients, divided 
into development (121) and test (52) sets, to both classify 
sites of increased tracer uptake as non-suspicious/suspi-
cious for cancer and assign an anatomical location. The 
expert annotations for the N and M status, according to 
the PROMISE miTNM framework, were used as ground 
truth. The evaluated algorithm showed good agreement 
with expert assessment for the identification and ana-
tomical location classification of suspicious uptake in 
whole-body  [68Ga]Ga-PSMA-11 PET/CT.

Finally, Solari et al. [62] evaluated the performance of 
combined  [68Ga]Ga-PSMA-11 PET and mpMRI image 
biomarker standardization initiative (IBSI)-compliant 
RFs for the group-wise prediction of postsurgical GS 
(psGSs) in 101 primary PCa patients, divided into three 
categories (ISUP grades 1–3, ISUP grade 4, and ISUP 
grade 5). Nine SVM models were trained: four single-
modality radiomics models (PET, T1w, T2w, ADC), three 
PET+MRI double-modality models, and two baseline 
models for comparison. A sixfold-stratified cross-vali-
dation was performed, and all radiomic models outper-
formed the baseline models. The overall best-performing 
model combined PET+ADC radiomics (82%). It signifi-
cantly outperformed most of the others dual-modality 
models (PET + T1w: 74%, p = 0.026; PET + T2w: 71%, 
p = 0.003) and single-modality models, except the ADC-
only model (p = 0.138).

Restaging
In 2020, Kang et  al. [63] developed a computational 
methodology using Haralick texture analysis that can be 
used as an adjunct tool to improve and standardize the 
interpretation of FACBC PET/CT images to identify 
BCR, discerning necrotic tissue from radiation therapy 
and tumor tissue in 28 PCa patients. Four main RFs were 
chosen and combined with clinical information; the over-
fitting-corrected AUC and Brier scores of the proposed 
model were 0.94 (95% CI: 0.81, 1.00) and 0.12 (95% CI: 
0.03, 0.23), respectively.

Other authors evaluated different ML-based 
approaches with different aims. In 2020, Lee et  al. [64] 
examined with an ML-based approach the  [18F]fluciclo-
vine PET images of a cohort of 251 PCa patients with 
suspected BCR following definitive primary therapy, 
to automatically identify “normal” patients (no disease 
recurrence) and “abnormal” patients (locoregional or 
distant recurrence). CNN models were trained using 
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two different architectures, a 2D-CNN (ResNet-50), 
using single slices (slice-based approach), and the same 
2D-CNN with a 3D-CNN (ResNet-14), using a hundred 
slices per PET image (case-based approach). The best 
prediction results were achieved by the 2D slice-based 
CNN (AUC = 0.971, p < 0.001; Sens = 90.7%; Spec = 
95.1%). The underperformance of 3D-CNN compared to 
2D-CNN could derive from a larger number of learnable 
parameters in 3D-CNN and would therefore require a 
larger training dataset size to generate a sufficiently gen-
eralizable model.

Moazemi et al. [65] employed five different ML meth-
ods on RFs (40 from PET images and 40 from CT images) 
to classify 2419  [68Ga]Ga-PSMA-11 PET hotspots in 72 
patients (48/72 applied for training) as either benign or 
malignant. Interestingly, RFs assessed in native low-dose 
CT increased the accuracy significantly. The ML method 
achieved better accuracy (AUC = 0.98; Sens = 94%, Spec 
= 89%) than human readers.

Alongi et  al. [66, 67] evaluated the potential applica-
tion of RFs analysis using an ML-based radiomic algo-
rithm to select  [18F]choline PET/CT features to predict 
disease progression in high-risk BCR PCa patients. In 
their study [67], the authors analyzed 94 high-risk PCa 
patients who underwent  [18F]choline PET/CT restaging 
imaging to select features able to predict disease pro-
gression (median follow-up of 26 months). Discriminant 
analysis on the RFs extracted yielded an ML model capa-
ble of achieving moderate predictive power in the devel-
opment of nodal (AUC = 69.87, 95% CI 51.34–88.39) or 
distant metastases (AUC = 74.72, 95% CI 56.36–93.09). 
HISTO_entropy_log10 and HISTO_entropy_log2 were 
the two salient features chosen for the discrimination of 
distant metastases, while GLSZM_SZLGE and HISTO_
energy_uniformity were the chosen features to predict 
nodal metastases.

Bone metastasis
Bone scintigraphy is a reference standard examination to 
assess bone metastatic spread of PCa patients. In 2021, 
Cheng et al. [68] aimed to explore efficient ways to early 
diagnose bone metastasis using bone scintigraphy images 
through ML methods in two cohorts of 205 PCa patients 
and 371 breast cancer patients. Authors used bone scin-
tigraphy data from breast cancer patients to pre-train 
a YOLO v4 with a false-positive reduction strategy 
and then trained the approach on a dataset of 194 PCa 
patients under a tenfold cross-validation scheme, which 
yielded a lesion-level classification sensitivity of 0.72 and 
a precision of 0.9.

Trying a DL approach, Ntakolia et  al. [69] designed a 
DL method that overcomes the computational burden 

by using a CNN with a significantly lower number of 
floating-point operations (FLOPs) and free parameters 
comparing to other popular and well-known CNN archi-
tectures used for medical imaging, such as VGG16, 
ResNet50, GoogleNet, and MobileNet. The proposed 
lightweight look-behind fully CNN architecture was used 
to classify bone scintigraphy images of 778 metastatic 
PCa patients into three classes: no metastasis, degen-
erative (defined as the absence of metastasis but pres-
ence of degenerative lesions), and metastatic lesions. The 
final optimal CNN achieved a high accuracy of 91.6% 
(F1 score = 0.938). Furthermore, the best-performing 
CNN method was compared to the other abovemen-
tioned CNN architectures used for medical imaging, 
outperforming the others. These results were similar to 
previous results of the same group [70], using the same 
CNN architecture for bone scintigraphy images of 586 
metastatic PCa patients divided into only two classes (no 
metastasis and metastasis), resulting in a higher overall 
accuracy of 97.38% than the one in the previous study.

In this field, also  [18F]NaF PET/CT might be useful, 
having a higher accuracy than bone scan [17, 71]. In 2018, 
Perk et  al. [72] delineated the  [18F]NaF PET/CT images 
of 37 mCRPC patients by an automated algorithm that 
determines the lesion boundaries based on statistically 
optimized regional thresholding (SORT). A classifica-
tion labeled by an expert depending on the likelihood of 
malignancy (from 0 = background, 1 = definitely benign 
to 5 = definitely malignant) was applied to 123 bone 
lesions. Furthermore, the RFs extracted have been used 
in the ML analysis with nine separate learning meth-
ods, where the random forest model performed the best 
under tenfold cross-validation conditions at discriminat-
ing between the 0 + 1 versus 5 class labels (AUC = 0.95, 
95% CI 0.93–0.96).

Albeit with a non-bone-specific tracer, Acar et al. [73] 
using RFs aimed to distinguish lesions imaged via post-
treatment  [68Ga]Ga-PSMA-11 PET/CT as nonrespond-
ing and completely responding (sclerotic lesions) in 75 
PCa patients with known bone metastasis. Sclerotic 
lesions were categorized as complete responding or 
nonresponding if they showed  [68Ga]Ga-PSMA-11 PET 
uptake levels either below or above liver uptake, respec-
tively. Multiple ML models were developed, and the 
weighted K-nearest neighbor (KNN) achieved the best 
classification performance under tenfold cross-validation 
conditions with AUC = 0.76 (accuracy = 73.5%, sensitiv-
ity = 73.5%, specificity = 73.7%).

Finally, in 2021, Hinzpeter et  al. [74] investigated 
the potential application of RFs analysis using an ML-
based radiomics algorithm for detecting bone metasta-
ses not visible on low-dose CT, extracting from  [68Ga]
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Ga-PSMA-11 PET imaging of 67 patients with PCa as the 
reference standard (ground truth). The authors analyzed 
a total of 205 bone metastases with PSMA avidity, but 
not visible on low-dose CT. The dataset was divided into 
training, testing, and validation, which allowed the selec-
tion of 11 independent RFs. A gradient-boosted tree was 
trained on the 11 RFs to classify bones as normal or met-
astatic, using the training dataset. The model achieved a 
classification accuracy of 0.85 (95% confidence interval 
[CI]: 0.76–0.92, p < .001) with 78% sensitivity and 93% 
specificity.

Theragnostics
PSMA-RLT is an emerging treatment modality for 
advanced PCa [18]. However, almost 30% of patients do 
not respond to  [177Lu]PSMA RLT, which may be due 
to intralesional and inter-lesional variations of PSMA 
expression, potentially resulting in undertreatment and 
reduced RLT efficacy. The early identification of patients 
who might benefit from RLT can be supported by pre-
therapeutic biomarkers derived from radiomics and AI 
analysis.

In 2018, Khurshid et  al. [75] aimed to assess the pre-
dictive ability of tumor textural heterogeneity parameters 
in a total of 328 metastatic lesions from baseline  [68Ga]
Ga-PSMA-11 PET/CT of 70 mCRPC patients scheduled 
to undergo  [177Lu]PSMA therapy. NGLCM_Entropy 
showed a negative correlation (rs = -0.327, p = 0.006, 
AUC  = 0.695), and NGLCM_Homogeneity showed a 
positive correlation (rs = 0.315, p = 0.008, AUC  = 0.683) 
with pre- and post-therapy PSA levels, where a reduction 
in PSA classified patients as responders (42/70) and an 
increase in PSA as nonresponders (28/70).

More recently, Moazemi et al. [76] extracted RFs from 
2070 malignant hotspots from 83 advanced PCa patients 
delineated at pre-therapeutic  [68Ga]Ga-PSMA-11 PET/
CT scan to analyze the OS of patients treated with RLT. 
Following a LASSO regression feature selection process, 
the most relevant RFs (PET kurtosis and  SUVmin) signifi-
cantly correlated with OS (r = 0.2765, p = 0.0114).

In 2021, Roll et  al. [77] evaluated the predictive and 
prognostic value of RFs extracted from  [68Ga]Ga-
PSMA-11 PET/MRI in 21 mCRPC patients before 
RLT. The PET-positive tumor volume was defined and 
transferred to whole-body T2-weighted and contrast-
enhanced and non-enhanced T1-weighted MRI pulse 
sequences. Ten independent RFs differentiated well 
between responders (8/21) and nonresponders’ patients 
(13/21), and the logistic regression model, including the 
feature interquartile range fromT2-weighted images, 
revealed the highest accuracy (AUC = 0.83) for the pre-
diction of biochemical response after RLT. Within the 
final model, patients with a biochemical response (p = 

0.003) and higher T2 interquartile range values in pre-
therapeutic imaging (p = 0.038) survived significantly 
longer.

Finally, Götz et  al. [78] investigated how to introduce 
a dosimetry method where dose voxel kernels (DVK) are 
predicted by a neural network based on data acquired 
of the kidneys in 26 patients undergoing therapy with 
 [177Lu]PSMA or  [177Lu]DOTATOC, as target organs 
of the experimental dosimetric method. The method, 
implemented on SPECT/CT images, was found accu-
rate and competitive when compared to the standard, in 
which the activity distribution is convolved with a DVK 
based on a homogeneous soft-tissue kernel.

Discussion
This review highlights all possible uses of radiomics and 
AI in the clinical PCa scenario. The use of AI in PET/
MRI image reconstruction could overcome the problems 
related to MRAC methods currently in use in clinical 
practice, reducing errors related to individual differences 
in anatomy and reducing image reconstruction time.

Another extremely interesting application is the auto-
matic segmentation of the tumor, with very useful impli-
cations in clinical practice; an automatic segmentation 
of the primary lesion could implement fusion biopsy 
systems using simultaneously ultrasound, MRI, and PET 
data to identify more accurately the target site for biopsy, 
while an automatic segmentation of metastases, particu-
larly skeletal metastases, would allow accurate and repro-
ducible assessment of tumor burden and response to 
systemic treatment.

There are several possible clinical applications in 
PCa staging; radiomics and AI can help to discriminate 
healthy from pathological prostate tissue, to correlate 
prostate lesion with GS, ISUP grade, and N status, or to 
predict low-risk versus high-risk lesions, as well as bio-
chemical recurrence risk and overall patient risk. While 
in PCa restaging, radiomics and AI can improve the 
interpretation of PET/CT images to identify BCR by dis-
cerning post-radiotherapy necrotic tissue from tumor tis-
sue, to automatically recognize patients without disease 
recurrence from patients with locoregional-distant recur-
rence, to automatically classify bone lesions as degen-
erative or metastatic lesions, but also to predict disease 
progression in PCa patients at high BCR risk. Finally, 
radiomics and AI are also useful tools to better identify 
responder and non-responder patients in the therapeutic 
setting.

Despite this enormous potential of radiomic and 
AI in nuclear medicine PCa field, their application in 
clinical practice is still challenging and not yet feasible; 
myriad of factors can affect the resulting quantitative 
imaging biomarker measurement; imaging analysis 
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procedures such as tumor segmentation methods, 
gray-level intensity discretization, and image recon-
struction algorithm can affect robustness, repeat-
ability, and reproducibility of these variables and their 
results [22, 79–83].

Recently, several documents have been provided by the 
scientific community to increase the robustness of these 
tools, such as the radiomics quality score (RQS) [23], a 
point-based system that guides the researcher to use a 
rigorous methodological approach for performing radi-
omics, and the imaging biomarker standardization ini-
tiative (IBSI) [84] that aim to provide image biomarker 
nomenclature and definitions, benchmark data sets, and 
benchmark values to verify image processing and image 
biomarker calculations, as well as reporting guidelines, 
for high-throughput image analysis. Finally, in a recent 
interesting review, Zwanenburg [81] identified and 
described the main pitfalls of data analysis that affect the 
reproducibility and generalizability of radiomics studies, 
dividing them into macro-areas: patient selection (sam-
ple size, injected radiopharmaceutical activity, patient 
movement, etc.), image acquisition (characteristics of the 
tomograph and type of acquisition used), image recon-
struction (number of iterations, subsets, etc.), segmen-
tation, image processing, image biomarker computation, 
and modeling.

These instruments are increasing researchers’ under-
standing of the more technical aspects of radiomic and 
AI studies, leading to a gradual harmonization and stand-
ardization of these approaches and making the radiomic 
and AI possible future application in clinical settings 
more than just a hypothetical mirage.

Conclusion
Radiomics and AI approaches are receiving increasing 
attention from the scientific community due to several 
potential applications in PCa patients: from the techni-
cal aspects of image reconstruction and segmentation, 
which also allow optimization of workflow, to clinical 
aspects, such as lesion classification and image evalua-
tion in terms of predictiveness and prognosis. However, 
a considerable workload and several validation studies 
are still needed to introduce most of these methods in 
clinical practice. In fact, most of these approaches are 
currently limited by the need to collect a large number 
of data, which is in conflict with the growing concern 
about privacy. Nevertheless, for personalized medicine, 
AI applications will be essential to manage and inte-
grate the large amounts of quantitative data from medi-
cal images with clinical data. In this sense, the use of AI 
in state-of-the-art simultaneous PET/MRI is desirable, 
potentially enhancing molecular imaging applications in 
precision medicine.
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