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Abstract—The growing interest in electrical machines equipped
with multiphase configurations has directed the research to the
conception of new design methods and optimization strategies to
maximize the performance and the efficiency of the machine
for its specific application. In this context, a noticeable gap
persists in the comprehensive generalized theory of multiphase
systems applied to electrical machines. Therefore, this article aims
to propose a new possible classification of multiphase systems
based on the electrical symmetries between the corresponding
star of slots phasors, starting from the general law related to the
spatial distribution of the air-gap magnetic flux density field. This
theory extends beyond symmetrical configurations, encompassing
both reduced and normal systems, which can be derived from
redundant multiphase configurations. Furthermore, the proposed
generalization applies to all possible m-phase configurations,
including the structures with slight asymmetries or unbalances.
The article provides illustrative examples to reinforce these
theoretical concepts to establish a systematic and unified theory
and classification that can be adopted for any possible topology
of a multiphase system.

Index Terms—Electrical machines, multiphase systems, multi-
phase winding, winding design.

NOMENCLATURE

Symbol Quantity

m number of phases
l number of layers
p number of pole pairs
δ air-gap width
τ pole pitch
θ generic angle with respect to vertical axis
N number of slots
q number of slots per pole per phase
k phase section
ν harmonic order
µ0 permeability of the vacuum
s number of non-parallel conductors per slot
kwν winding factor of ν-th harmonic
x0 generic reference angle
x0k phase-shift between the magnetic axes
Bxk maximum first harmonic magnetic flux den-

sity
Ixk amplitude of the kth phase current
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ϕk phase-shift
b+k progressive wave
b−k regressive wave
Ων speed of b for each harmonic
ω electric pulsation
G set of integer even numbers
U set of integer odd numbers
γ general symmetrical component
λ order of the phasor within each symmetrical

component
α = ej(2/3)π rotating operator

I. INTRODUCTION

ELECTRICAL machines equipped with multiphase con-
figuration have recently gained significant relevance as an

interesting alternative to their traditional three-phase counter-
parts, especially in several applications that demand enhanced
overall system reliability and reduced power consumption.
This heightened interest can be attributed to their inherent
fault-tolerant capabilities, which offer clear advantages in nu-
merous safety-critical working environments such as aerospace
and automotive [1], [2]. In addition, multiphase machines
deliver increased efficiency and flexibility with lower torque
ripple compared to machines designed with conventional
three-phase windings. For instance, Cao et al suggest that
multiphase machines could become a preferred choice for
various aerospace applications [3], whereas Jung et al propose
a nine-phase permanent magnet motor for ultrahigh-speed
elevators [4], highlighting the advantages of the adoption of
multiphase systems.

In recent years, several typologies of multiphase electrical
machines have been proposed, from radial to axial-flux struc-
tures, from conventional to innovative geometries to provide
improved reliability and lower weight, offering high-quality
MMF (Magneto Motive Force) with a reduced number of slots
per pole per phase [5], [6], [7]. In this area, it can be stated
that the design of stator windings significantly influences their
overall performance: recent studies have, indeed, introduced
innovative strategies for optimizing winding design, encom-
passing multilayer configurations [8], [9], [10], or developing
methodologies devoted to the performance enhancement of
these machines,from generalized techniques to suppress spe-
cific sets of MMF harmonics [11], [12], to control procedures
for independently control multiple air-gap magnetic fields
[13]. Undoubted advantages are provided by these techniques,
allowing torque density improvement, and decreasing, in the
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meantime, torque ripple, vibrations, acoustic noise, saturation,
overall winding losses and harmonic distortion of the back-
electromotive force. Therefore, these innovative approaches
aim to generate novel and flexible winding designs with the
potential to enhance machine efficiency and reduce the amount
of copper in stator windings towards a comprehensive solution
to the winding design optimization problem, generalizing these
approaches to multiphase systems.

Moreover, it can be generally stated that some of the
main parameters that characterize the design of an multiphase
winding are m, q, and l [14], [15]. Concerning the first
parameter, the major trend of the ongoing research has been
directed towards the design of multiple three-phase machines,
such as the dual three-phase winding configuration [16],
[17], [18], consisting of two groups of three-phase windings
spatially shifted by 30° between each other. The multi-three-
phase configuration has been extensively analyzed in the
recent literature, due to the important features brought by this
structure, such as enhanced winding factor, lower eddy losses,
torque and MMF harmonics [19], [20], [21], [22]. Regarding q,
an important recent trend consists of the design of fractional-
slot concentrated windings (FSCW), due to their easier and
simpler fabrication if compared with distributed layouts [23],
[24], [25], [9]; in addition, the shorter end-connections provide
lower copper volume, leading to lower weight, higher slot
filling factor and, of course, lower copper losses and overall
costs and reduced end-winding leakage inductance (though
increasing differential leakage inductances) [26]. The high slot
fill factor and simplicity of both design and fabrication offered
by FSCW topologies make them well-suited for automatic
manufacturing in specific industry and automotive applications
[27], [28]. However, the MMF harmonic content in FSCW is
considerably high due to relevant sub-harmonics, leading to
higher torque ripple and rotor losses and consequently reduc-
ing the performance of the machine. Thus, many research units
have theoretically and experimentally developed generalized
algorithms that cover the area of electric machines design with
more than three phases that optimize this specific winding
configurations [10], [29], [30], [31]. In addition, in certain
pole-slots combinations, the harmonic leakage inductance can
be considerably higher than the magnetizing inductance, re-
sulting in a lower power factor; to avoid this critical aspect,
the harmonic leakage coefficient can be reduced by adequately
acting on the winding layers and the phase belt [32].

Finally, regarding the winding design in terms of the number
of layers l, many researchers state that winding layouts with
l = 1 are commonly employed in m-phase machines with
prime number of phases (i.e., five-phase, seven-phase and so
on), offering high slot filling factor and reduced requirements
in terms of insulation [5]. On the other hand, the previously
mentioned multiple three-phase machines are often equipped
with l = 2 layers winding configurations offering higher
overall performance [33], whereas windings with l > 2 require
an accurate selection of the proper slot/pole combination [25].

Despite the undoubted advantages provided by the adoption
of multiphase machines, it appears evident that employing a
greater number of phases introduces higher complexity during
the machine design phase and necessitates more intricate con-

trol methods for the associated electric drive, power converters
and their control [34], [35]. Therefore, several challenges lie
ahead, including adapting three-phase control structures to
multiphase systems and developing accurate fault detection
algorithms [36], [37].

Even though the theory regarding three-phase winding con-
figurations in electrical machines has been widely covered
in many textbooks and research papers, there is a lack, at
present day and from the Author’s knowledge, in terms of
theory generalized to multiphase machines, leading to some
confusion and incompleteness in recent literature. In this con-
text, due to this ever-increasing interest in electrical machines
equipped with m-phase systems, this article aims to provide a
generalized theory and classification of multiphase redundant,
reduced and normal winding configurations, which, at present
days, has not been completely reported in detail.

In particular, by taking into account the general law related
to the spatial distribution of the magnetic flux density field,
this theory covers the description of non-redundant systems,
derived from systems in which pairs of phase MMF are placed
on the same magnetic axes [38], [39]. These configurations
are simplified by deleting the MMF phasors from π to 2π
so that the redundancy can be avoided (the contribution in
terms of rotating magnetic field would be the same). In the
reduced configurations, by shifting a specific group of phasors,
the neural point can be unloaded, avoiding the need of the
related conductor. Therefore, as explained in detail in the next
sections, every reduced system can be always obtained from
a redundant configuration with a doubled number of phases.
Some examples are also provided to classify this theory.
Moreover, the proposed generalization is also applicable to
m−phase windings with slight asymmetries or unbalances,
intended as the ratio between the reverse and direct sequences
of the winding factor corresponding to that specific winding
configuration [40]. These topologies of winding configurations
with slight asymmetries can be a valuable option for the
electrical machine design since the performance in terms of
torque ripple, Maxwell stress tensor, generated torque and cur-
rent space harmonics are comparable with electrical machines
equipped with perfectly symmetrical topologies [26], [41].

Therefore, the main purpose of this work is to provide a
systematic and unified theory and classification of electric
machines equipped with general multiphase windings, intro-
ducing a new possible classification of multiphase systems.
More in detail, the paper is structured as follows: Section 2
presents the theory related to the generation of a magnetic field
by an m−phase winding; Section 3 reports the classification
of multiphase systems based on their features in terms of mag-
netic redundancy and number of phases; Section 4 describes
the theory related to the generation of a magnetic field from
unbalanced systems with a particular focus on the point of
view of symmetrical components.

II. MAGNETIC FIELD PRODUCED BY AN M-PHASE WINDING

Without affecting the generality of the proposed theory,
let’s consider a multiphase single-layer (two zones) winding
with m phases and, for simplicity, with p = 1 pole pair,
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Fig. 1. Two-zones multiphase winding schemes with p = 1: (a) single-phase, (b) two-phase, (c) three-phase, (d) four-phase, (e) five-phase.

as shown in Fig. 1. As a further hypothesis, the magnetic
axes of the m phases are spatially shifted by a distance τ/m,
covering a mechanical angle equal to π/pm [rad]. The spatial
configurations from single-phase to five-phase distribution are
all reported in Fig. 1 (a-e) [39].

By considering an electrical machine with N slots and
q slots per pole and per phase (e.g. N/2m coils for each
phase section), neglecting the iron magnetic voltage drops,
the general formula of the spatial distribution of the magnetic
flux density field generated by the kth phase section at the
working harmonic ν = 1 is given by:

b1k (x, t) =

=
µ0wkw1

πpδ
cos

[π
τ
(x− x0 − x0k)

]
· Ixk cos [ωt− ϕk] =

= B1xk cos
[π
τ

(
x− x0 − (k − 1)

τ

m

)]
· cos [ωt− ϕk] ,

(1)

where w = pqs, Ixk is the amplitude of the current flowing
through the kth phase with proper phase-shift ϕk, which is
supposed to follow the sinusoidal law variability:

ik(t) = Ixk · cos[ωt− ϕk]. (2)

As graphically shown in Fig. 2, it is well known that a
pulsating wave can be represented by the composition of two
waves, namely v+1 and v−1 , with equal amplitude (half of the
amplitude of the initial wave), propagating in opposite direc-
tions. This decomposition can also be analytically discussed
by expressing (1) as the sum of two spatial cosine waves:

b1k(x, t) = b+1k(x, t) + b−1k(x, t), (3)

in which the terms b+1k(x, t) and b−1k(x, t) are equal to:

b+1k(x, t) =
B1xk

2
cos

[π
τ

(
x− x0 − (k − 1)

τ

m

)
− ωt+ ϕk

]
,

b−1k(x, t) =
B1xk

2
cos

[π
τ

(
x− x0 − (k − 1)

τ

m

)
+ ωt− ϕk

]
.

(4)

The first one, b+1k rotates clockwise and is known as a
progressive wave, whereas the second one, b−1k rotates coun-
terclockwise and is defined as a regressive wave.

By considering (4), the overall effect, due to each of the
m phases of the corresponding winding, can be evaluated
by summing the contribution of each phase pulsating field.
Moreover, by imposing equal peak values of all the m−phase
currents, which implies that flux densities B1x1 = B1x2 =

... = B1xm = Bx, the distribution of the air-gap flux density
field is given by (5).

b(x, t) =
Bx

2

m∑
k=1

cos
[π
τ

(
x− x0 − (k − 1)

τ

m

)
− ωt+ ϕk

]
+

+
Bx

2

m∑
k=1

cos
[π
τ

(
x− x0 − (k − 1)

τ

m

)
+ ωt− ϕk

]
.

(5)

In order to cancel the contribution of the regressive wave
(i.e.

∑m
k=1 b

−
k = 0), the phases of the cosine in the second

term of the sum in (5) must be uniformly distributed over 2π.
This implies that the phase angle of each k-th current must be
equal to:

ϕk = (k − 1)
π

m
. (6)

Therefore, b (x, t) can be expressed as:

b (x, t) =

m∑
k=1

[
b+k (x, t) + b−k (x, t)

]
=

=
Bx

2

m∑
k=1

cos
[π
τ
(x− x0)− ωt

]
+

+
Bx

2

m∑
k=1

cos

[
π

τ
(x− x0) + ωt− (k − 1)

2π

m

]
.

(7)

By substituting (6) in (5), the first terms of (7) is sum of m
cosine waves all having the same phase, whereas the second
term is a sum of m cosine functions with mutual phase-shifts
equal to 2π/m, which is, thus, null. Therefore, the air-gap
magnetic flux density field is equal to:

b (x, t) =
mBx

2
cos

[π
τ
(x− x0)− ωt

]
. (8)

The speed of b(x, t), for each νth harmonic, is given by:

Ων =
ω

νp
. (9)

In conclusion, in order to obtain an air-gap rotating magnetic
field, the currents supplying the m−phase winding must be
temporally shifted by mutual angles of ϕ = π/m, so that
the phase of the general k−current can satisfy (6). Moreover,
as highlighted in the hypothesis, the magnetic axes of the
phases must have a mutual spatial displacement of τ/m,
corresponding to an angle of π/pm.
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Fig. 2. Representation of the composition of a pulsating wave during different
time instants.

III. CLASSIFICATION OF MULTIPHASE SYSTEMS

The theory here presented is valid for any possible m-phase
configuration; the authors report here a possible classification
of multiphase systems, from single-phase (m = 1) to twelve-
phase (m = 12) configuration, shown in Table I. The systems
with a higher number of phases can be treated with the same
logic hereinafter reported. In particular, the second column of
Table I defines the so-called reduced systems [38], which are
characterized by an uniform electrical angular distribution of
the m phases in the range 0 ≤ θ < π (the corresponding
magnetic axes of the m phases are spatially shifted by an
angle equal to π/pm [rad]). However, such systems present
a non-zero homopolar component (the sum of the m phasors
is always not zero), which implies the adoption of a neutral
conductor (in the case of currents). The third column of Table
I reports the normal systems, which are characterized by an
odd number of phases with an electrical angular distribution
in the range 0 ≤ θ < 2π. Finally, in the last column, the
redundant systems are shown. They are characterized also by
phasors that are phase-shifted by an angle equal to:

ϕ′
k = (k − 1)

2π

m
, (10)

but, with m ∈ G.
As it can be noted from Table I, reduced systems with a

number of phases equal to m can always be derived from
an equivalent redundant system with m′ = 2m phases by
simply canceling the magnetically redundant phases in the
range π ≤ θ < 2π acting in the same magnetic axes of phases
located in the 0 ≤ θ < π angular region. It can be stated

that both reduced and normal systems can be obtained from
redundant configurations, which intrinsically have an even
number of phases. It is evident that the same magnetic field
produced by a redundant m′−phase system can be produced
by an m′/2-phase system because in redundant systems,
phasors are displaced two by two in opposite direction, along
the same magnetic axis. Redundant systems are here reported
as a basic configuration from which it is possible to derive both
normal and reduced system. In both normal and redundant
systems, the connection of the phases can be realized in either
star or polygonal configurations, without any constraint.

The following subsections describe in more detailed some
properties of the previously reported systems, in which two
main cases can be identified: even and odd number of phases.
In particular, the authors show that system with an odd number
of phases can be treated in the same way of the most common
three-phase systems, whereas systems with an even number
of phases have a more complex classification since they can
be divided in two main categories: m power of two and m
containing an odd prime factor. The latter can be led back to
groups of odd-phase systems, while the ones with m power
of two have not practical use because they cannot yield pure
current systems, as will be shown in the next subsections.

A. Multiphase systems with even number of phases

In the case of an even number of phases (m ∈ G), two
possibilities can be distinguished:

1) m is a power of two.
In such a case, the system cannot be arranged into a
pure configuration and, therefore, the neutral conductor
is always needed, leading to the necessity of m + 1
conductors. Typically, the neutral conductor is loaded
more than the phases, even if the homopolar component
hn can be reduced by changing the polarities of the even
numbered phases of the multiphase system. Further-
more, these configurations can always be converted to
m/2 groups of two-phase systems. Indeed, by referring
to the configuration with the changed polarities (even
numbered phases), to reduce the homopolar current, the
system can be arranged into m/2 groups of two-phase
systems with a phase-shift equal to:

m+ 1

m
π, (11)

as shown in Table II. In particular, the phasors whose
polarity has been changed (even numbered phases) are
represented in red color. In the case of m = 4 (second
column), the two groups are represented by phasors 1-3
and 2-4, phase-shifted by an angle equal to 225◦. In the
case of m = 8, the four groups are represented by the
couples 1-5, 2-6, 3-7. 4-8, whose mutual phase-shift is
equal to 202.5◦. Besides, in this particular configuration,
the polygonal connection cannot be provided.

2) m contains an odd prime factor mu .
In the case of m containing an odd prime factor (e.g.,
systems with m = 6 = 2 · 3 cointain mu = 3,
whereas for m = 10 the odd factor is mu = 5),
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TABLE I
CLASSIFICATION OF MULTIPHASE SYSTEMS.

m Reduced
system Normal system Redundant system

(m′ = 2m)

1

1 1

1

2

2

1

2

- - - -

1

2

3

4

3

1

2

3

1

23

1

2

3

4

5

6

4

1

2

3

4

- - - -

1

2

3

4

5

6

7

8

5

1
2

3

4

5

1

2

34

5

1
2

3

4

5
6

7

8

9

10

6

1
2

3

4

5

6

- - - -

1
2

3

4

5

6
7

8

9

10

11

12

the system can be arranged into mg = m/mu groups
of subsystems with mu phases, in which the mutual
phase-shift is equal to π/m. For instance, a six-phase
configuration contains mg = 2 groups of mu = 3 phases
with a mutual phase-shift of π/6, as shown in the first
column of Table III, which summarize the examples
of these systems. It can be noted that for m = 10,
mg = 2 groups of mu = 5 phase systems (phase-shift
equal to 18◦) are identified, whereas the twelve-phase
system arranged a mg = 4 groups of mu = 3 phase
systems phase-shifted by an angle equal to 15◦. It has

m Reduced
system Normal system Reduntant system

(m′ = 2m)

7

1
2

3

4

5

6

7

1

2

3

45

6

7

1
2

3

4

5

6

7
8

9

10

11

12

13

14

8

1 2
3

4

5

6

7
8

- - - -

1 2
3

4

5

6

7
8910

11

12

13

14

15
16

9

1 2
3

4

5

6

7

8
9

1

2

3

4

56

7

8

9

1 2
3

4

5

6

7

8
91011

12

13

14

15

16

17
18

10

1 2
3

4

5

6

7

8
9

10

- - - -

1 2
3

4

5

6

7

8
9

101112
13

14

15

16

17

18
19

20

11

1 2
3

4

5

6

7

8

9
10

11

1
2

3

4

5

67

8

9

10

11
1 2

3
4

5

6

7

8

9
10

111213
14

15

16

17

18

19

20
21

22

12

1 2
3

4
5

6

7

8

9
10

11
12

- - - -

1 2
3

4
5

6

7

8

9
10

11
121314

15
16

17

18

19

20

21
22

23
24

to be noted that this kind of systems can be arranged
with other possible configurations with respect to the
one just presented, but they would be inconvenient,
as asymmetrical distributions could occur (i.e., m/2
groups of two-phase systems, with the derived phase-
shift between the groups, leading to the need a further
neutral conductor). Thus, as a systematic rule, such a
system can always be decomposed in mg groups of
normal systems, which are well-known, simple and easy
to implement both in design of electrical machines and
control of electrical drives.
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TABLE II
MULTIPHASE SYSTEMS WHERE m IS A POWER OF TWO.

m = 2 m = 4 m = 8

1

2

1

3

2

4

1

3

5

7
2

4

6

8

TABLE III
MULTIPHASE SYSTEMS WHERE m IS AN EVEN NUMBER CONTAINING AN ODD PRIME FACTOR.

m = 6 m = 10 m = 12

1

23

4

5

6

1

2

34

5

6

7

8

9

10

1

23

4

5

6

7

8

9

10

11

12

TABLE IV
MULTIPHASE SYSTEMS WHERE m IS AN ODD NUMBER.

m = 1 m = 3 m = 5

1

1

32

1

3

52

4

m = 7 m = 9 m = 11

1

3

5

72

4

6

1
3

5

7

92

4

6

8
1

3

5

7

9

112

4

6

8

10

B. Multiphase systems with odd number of phases

Dealing with an odd number of phases (m ∈ U), the reduced
system can be always converted to a pure system by changing
the polarities of the even numbered phases (e.g. inverting the
currents circulating in the even numbered phases), as shown in
Table IV (red phasors). In this case, the system can be defined
as ”pure-reduced”, which, by renumbering the phase sequence,
defines normal systems, as previously shown in third column
of Table I. In any case, for the obtainment of the rotating
magnetic field, it is needed that the change of the polarity
must be realized also in the corresponding phase section, so
that the direction of the produced field is not changed.

IV. AIR-GAP MAGNETIC FIELD PRODUCED BY
UNBALANCED SYSTEMS OF M-PHASE CURRENTS

This Section analyses the generation of an air-gap magnetic
field in case an unbalanced system of currents supplies an
m-phases winding. It is, therefore, needed to examine the
decomposition of an unbalanced multiphase system into sym-
metrical components. The theory hereinafter reported allows
to trace back all the possible multiphase systems as affordable
configurations. Indeed, independently from the number of
phases (even or odd), every system can be treated by applying
the generalized Fortescue’s theorem. From the classification
reported in Section III, the outcomes and advantages of their
decomposition in symmetrical components, as well as the
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properties of the magnetic field generated by symmetrical
components, are distinguished below. Three cases can be
identified: redundant systems, normal systems and reduced
systems. In particular, it is needed, for the last category, to
highlight the differences between even and odd number of
phases.

A. Symmetrical Components

From Fortescue’s theorem [15], the symmetrical com-
ponents of a multiphase system composed of n phasors
I1, I2, · · · , In with both random amplitude and angles can
be computed as follows:

I
(γ)
λ =

αγ(ν−1)

m

m∑
n=1

αγ(n−1)In, (12)

where γ = 0, 1, · · · ,m−1 is the general symmetrical com-
ponent at the sequence 0, 1, · · · ,m − 2 and λ = 1, 2, · · · ,m
is the order of the phasor within each symmetrical component
and α is given by:

α = ej
2π
m . (13)

From (12), it is evident that in m−phase systems, the
sequence γ = 0 is always a zero sequence. With reference
to the classification proposed in this work, three cases can
be considered. In particular, redundant systems (case 1),
even though can be treated with the theory of symmetrical
components, are not practically used due to their redundancies
between phase sections acting along the same magnetic axes.
On the contrary, normal systems (case 2) and reduced systems
with an odd number of phases (case 3.a) or even number of
phases containing an odd prime factor (case 3.b) can be traced
back to the generalized theorem, simplifying their treatment
with respect to the theory exposed in [14]. Finally, reduced
systems with m power of two (case 3.c) are not practically
used, due to the need of a neutral conductor.

1) Redundant systems.
In this case, the sequence of order m/2 presents m/2
pair of phasors in phase opposition between each other.
The sequence γ = m/2 (equal to 3 in the case of
a six-phase system, see Fig. 3), is defined as pseudo-
zero sequence (Fig. 3 (d)) due to the similar features
with sequence zero (Fig. 3 (a)). Moreover, the sequences
with order 1 ≤ γ < m

2 are defined as direct, whereas
sequences with order m

2 > γ ≤ m − 1 are defined as
inverse. For instance, the direct and inverse sequences
for a redundant six-phase system are represented in Figs.
3 (b-c) and 3 (e-f), respectively.

2) Normal systems.
In such a case (see Fig. 4), the system can always be
decomposed in a zero sequence, m−1

2 direct sequences,
m−1
2 inverse sequences. For instance, a five-phase con-

figuration will be composed of one zero-sequence, two
direct sequences (1 and 2) and two inverse sequences (3
and 4), as depicted in Fig. 4 (a-e). The simple case of a
three-phase system is composed of one zero sequence,
one direct sequence and one inverse sequence.

3) Reduced systems.

a) m ∈ U.
Reduced systems with an odd number of phases
can be included in case no.2 (normal systems),
since they can be always converted to a pure
system by changing the polarities of the even num-
bered phases and renumbering the phase sequence,
as fully described in Section III.

b) m ∈ G containing an odd prime factor.
Reduced systems with an even number of phases,
with m containing an mu prime factor (i.e. m =
6, 10, 12, ...), can be arranged into mg groups of
mu-phase systems. It means that the system can be
decomposed in mg zero sequences, mg(

mu−1
2 ) di-

rect sequences and mg(
mu−1

2 ) inverse sequences.
Fig. 5 shows the decomposition of a six-phase
reduced system. In particular, Fig. 5(a) is referred
to the mg = 2 zero sequences (γ = 0, 3), whereas
Fig. 5(b) and (c) report the mg(

mu−1
2 ) = 2

direct sequences (γ = 1, 4) and inverse sequences
(γ = 2, 5), respectively.

c) m ∈ G | m = 2n.
In this case, according to (12) it has to be noted that
zero and pseudo-zero sequences will not appear
since this type of systems can always be decom-
posed into m/2 two-phase systems (each of one
has not zero sequence). When considering these
systems, only direct and inverse sequences can be
detected. Fig. 6 shows, as an example, the direct
and inverse sequence of the reduced four-phase
system. In particular, 6 (a) is representative of the
m/2 = 2 direct sequences, whereas 6 (b) plots the
m/2 = 2 inverse sequences.

B. Rotating magnetic fields generated by symmetrical compo-
nents

This Section analyses the contribution of each symmetrical
component to the generation of a rotating magnetic field. For
this purpose, by considering an m−phase redundant, normal or
reduced system with m ∈ U (with changed polarities of the
even numbered phases) with magnetic axes spatially shifted
by an angle equal to 2π/m, the pulsating flux density field
generated by the symmetrical component at the γth sequence
that supplies the kth phase is given by:

b
(γ)
1k (x, t) = B

(γ)
1xkcos

[
π

τ

(
x− x0 − (k − 1)

2τ

m

)]
cos(ωt− ϕkγ) =

=
B

(γ)
1xk

2
cos

[
π

τ
(x− x0)− (k − 1)

2π

m
− ωt+ ϕk

]
+

+
B

(γ)
1xk

2
cos

[
π

τ
(x− x0)− (k − 1)

2π

m
+ ωt− ϕk

]
.

(14)

where

B
(γ)
xk =

µ0wkw1

πpδ
I
(γ)
xk =

√
2
µ0wkw1

πpδ
I
(γ)
k (15)
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Fig. 3. Symmetrical components of a six-phase redundant (non-reduced) system: (a) homopolar, (b-c) direct, (d) pseudo-homopolar, (e-f) inverse.
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Fig. 4. Symmetrical components of a five-phase normal system: (a) homopolar, (b-c) direct, (d-e) inverse.
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Fig. 5. Symmetrical components of a six-phase reduced system: (a) homopolar, (b) direct, (c) inverse.
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Fig. 6. Symmetrical components of a four-phase reduced system: (a) direct, (b) inverse.

and

i
(γ)
k (t) = I

(γ)
xk cos

[
ωt− γ(k − 1)

2π

m
− ϕ

]
=

=
√
2I

(γ)
k cos

[
ωt− γ(k − 1)

2π

m
− ϕ

]
.

(16)

Bxk is the maximum value of the flux density field and
i
(γ)
k (t) is the γth component of the kth current with phase-

shift equal to ϕkγ which is given by:

ϕkγ = γ(k − 1)
2π

m
− ϕ (17)

in which ϕ is the generic phase angle of the current.
By setting x0 = 0 for simplicity and by considering the

contribution of all m phases, for both normal and reduced
systems, formula (18) can be obtained.

b(γ)(x, t) =

m∑
k=1

[
b
(γ)+
k (x, t) + b

(γ)−
k (x, t)

]
=

=
B

(γ)
x

2

m∑
k=1

cos

[
π

τ
x− (1− γ)(k − 1)

2π

m
− ωt+ ϕ

]
+

+
B

(γ)
x

2

m∑
k=1

cos

[
π

τ
x− (1 + γ)(k − 1)

2π

m
+ ωt− ϕ

]
.

(18)
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b(γ)(x, t) =

2∑
i=1

m/4∑
k=1

2∑
l=1

[
b
(γ)+
k (x, t) + b

(γ)−
k (x, t)

]
=

=
B

(γ)
x

2

2∑
i=1

m/4∑
k=1

2∑
l=1

{
cos

[π
τ
x− (i− γ)(l − 1)

π

2
− ωt+ ϕ

]
+ cos

[
π

τ
x− (i− 1)

m− 1

m
2π − (k − 1)

4π

m
− (1 + γ)(l − 1)

π

2
+ ωt− ϕ

]} (26)

From this equation, it appears clear that the sum is not null
only for γ = 1 and γ = m− 1, for which b(γ)(x, t) is equal,
respectively to:

b(1)(x, t) =
mB

(1)
x

2
cos

(π
τ
x− ωt+ ϕ

)
b(m−1)(x, t) =

mB
(m−1)
x

2
cos

(π
τ
x+ ωt− ϕ

) (19)

while it is equal to 0 for γ = 0 and 1 ≤ γ ≤ m− 1.
In the case of reduced systems with m ̸= 2n, the expression

of the current on the r-th phase, at the γ-th sequence of the
i-th group, is given by:

i(γi)
r (t) = I(γi)

xr cos

[
ωt− (i− 1)

π

m
− γi(k − 1)

2π

mu
− ϕ

]
=

=
√
2I(γi)

r cos

[
ωt− (i− 1)

π

m
− γi(k − 1)

2π

mu
− ϕ

]
,

(20)

with 
r = mu(i− 1) + k;

k = 1, · · · ,mu;

i = 1, · · · ,mg.

(21)

In order to simplify the discussion, it is assumed that all
mg groups are supplied by the same symmetrical component
(i.e., γ1 = γ2 = ... = γmg

= γ).
For this case, the expression of the flux density field at the

γ-th sequence is given by (22).

b(γ)(x, t) =

mg∑
i=1

mu∑
k=1

[
b
(γ)+
k (x, t) + b

(γ)−
k (x, t)

]
=

=
B

(γ)
x

2

mg∑
i=1

mu∑
k=1

cos

[
π

τ
x− (1− γ)(k − 1)

2π

mu
− ωt+ ϕ

]
+

+
B

(γ)
x

2

mg∑
i=1

mu∑
k=1

cos

[
π

τ
x− (1 + γ)(k − 1)

2π

mu
− (i− 1)

2π

m
+ ωt− ϕ

]
.

(22)

The latest equation is not null only for γ = 1 and γ = mu−1,
b(γ)(x, t) it is equal, respectively to:

b(1)(x, t) =
mB

(1)
x

2
cos

(π
τ
x− ωt+ ϕ

)
b(mu−1)(x, t) =

muB
(mu−1)
x

2

sin
(

π
mu

)
sin

(
π
m

) cos
(π
τ
x+ ωt− ϕ

) (23)

while it is equal to 0 for γ = 0 and 1 ≤ γ ≤ mu − 1.
Finally, for completeness, in the case of reduced systems

with m power of two (m = 2n), although not particularly
used in practical applications, the equation is reformulated as:

i(γ)r (t) = I(γ)xr cos

[
ωt− (i− 1)

m+ 1

m
π − (k − 1)

2π

m
− γ(l − 1)

π

2
− ϕ

]
=

=
√
2I(γ)r cos

[
ωt− (i− 1)

m+ 1

m
π − (k − 1)

2π

m
− γ(l − 1)

π

2
− ϕ

]
.

(24)

with 
r =

m

4
(i− 1) + 2(k − 1) + l;

i = 1, 2;

k = 1, · · · , m
4
.

(25)

It has to be noted that in the latest case, for each two-phase
group, only the direct and inverse sequences are involved,
assuming the values equal to γ = 1 and γ = mu − 1
respectively. In this case of study, the flux density field at
the γth sequence is expressed as in (26).

In general, for reduced systems and depending on the values
of γ, b(γ)(x, t) is equal to:

b(γ)(x, t) =


m

2
B

(γ)
x cos

(π
τ
x− ωt+ ϕ

)
mu

2

sin
(

π
mu

)
sin

(
π
m

) B
(γ)
x cos

(π
τ
x− ωt− ϕ

)
(27)

for γ = 1 and γ = mu − 1, respectively.
In conclusion, the reverse field at the sequence γ = mu−1

produces an air-gap magnetic field that propagates in the
reverse direction, and presents a reduced amplitude in com-
parison to the direct-sequence field equal to:

kinv =
mu · sin

(
π
mu

)
2 · sin

(
π
m

) ≤ m

2
. (28)

By analyzing (23) and (27), it appears clear that it is not
suitable to reverse the driving sequence for reversing the
direction of rotation of the magnetic field, since the obtained
rotating field would be, indeed, decreased in magnitude. As
an example, for m = 6, in the case of two direct symmetrical
components, the amplitude of the rotating flux density field is
6 times the value of the flux density produced by each phase;
otherwise, in the case of two inverse symmetrical components,
the resultant field will rotate in the opposite direction, but with
an amplitude equal to:

3 · sin
(
π
3

)
sin

(
π
6

) = 3
√
3, (29)

which means 86.6% of the maximum amplitude.
From the physical point of view, this result derives from the

fact that, in the case of two inverse sequences, represented by
phasors 1-3-2 and 4-6-5 shown in Fig. 5(c), the field produced
by the second three-phase group (phasors 4-6-5) is lagging
in space by 60◦ with respect to the magnetic axis of phase
1, taken as reference. This overall shift is due to the 30◦

spatial lag of its magnetic axis with respect to the reference
and the 30◦ time lag of the second three-phase current group
with respect to magnetic axis of phase 4. Fig. 7(a) shows the
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Fig. 7. Spacial disposition of a six-phase winding fed by (a) two inverse sequences, (b) two direct sequences: field produced by the phasors groups and
resulting air-gap field.

(a) (b)

(c) (d)
Fig. 8. Magnetic field produced by a six-phase reduced winding fed by (a) two direct sequences, (c) two inverse sequences; six-phase current systems: (b)
direct sequences, (d) inverse sequences.

winding spacial disposition and the field generated by the two
phasor groups at the time instant in which current in phase
1 has its maximum amplitude. In particular, the red phasor
is representative of the field produced by the group 1-3-2,
whereas the blue one represents the field generated by the
group 4-6-5. In the same subfigure, the resulting air-gap field,
with amplitude equal to kinv·Bx and rotating counterclockwise
(CCW), is represented in green. It can be noted that the result-
ing field is equal to the vectorial sum of the fields produced
by the two three-phase groups. On the contrary, by feeding the
system with two direct sequences, represented by phasors 1-2-
3 and 4-5-6 shown in Fig. 5(b), the magnetic field produced by
the second three-phase group (phasors 4-5-6) leads by 30◦ with
respect to the magnetic axis of phase 4, so that the resultant
field will be aligned with the magnetic axis of phase 1 and the
two fields can be added algebraically, as depicted in 7(b). The
field generated by the groups 1-2-3 and 4-5-6 are represented
in red and blue, respectively. The resulting field, with an

amplitude equal to
m

2
· Bx and rotating clockwise (CW), is

represented in green. A proper solution for the obtainment of
the maximum flux density field amplitude, if the system is
supplied by inverse sequences, consists of changing the sign
of the supply frequency, which can be easily obtained through
the adoption of a power converter. The same phenomenon
can be discussed from another perspective: indeed, Figs. 8 (a)
and (c) show the magnetic field produced by a six-phase, one
pole pair and single-layer reduced winding fed by two direct
sequences and two inverse sequences, respectively. It can be
noted again that the amplitude of the field derived from the two
inverse sequences is lower than the one produced by the two
direct sequences, according to (28). The arrows represent the
traveling direction of the waves in the two considered cases.
Figs. 8 (b) and (d) show the six-phase current system feeding
the machine in both cases of two direct sequences and two
inverse sequences.
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V. CONCLUSIONS

The increasing interest in multiphase winding configurations
for electrical machines has spurred the development of new
design methods and optimization strategies aimed at maxi-
mizing performance for specific applications. Notwithstanding
the undeniable advantages offered by multiphase machines,
the number of possible configurations introduces a significant
degree of complexity, particularly for the design phase, leading
to the need of defining a theory that generalizes properly
the features of multiphase systems. Therefore, this article has
presented a comprehensive classification of multiphase sys-
tems, including reduced and normal systems derived from the
redundant configurations. Different multiphase configurations
offer distinct advantages: the proposed classification allows to
schematize and simplify the treatment of complex systems,
providing a unique methodology for the study of multiphase
systems based on their intrinsic properties. This aspect can
help to identify easily which configuration is best suited for
a specific application. Indeed, through the proposed method-
ology, each configuration, independently from the number of
phases, can be treated and traced back to affordable, well-
known systems, easy to study, design and implement. Further-
more, the proposed classification has been integrated with the
analysis of the symmetrical components, providing, in general,
a deeper understanding of multiphase systems. In particular,
in this work, the outcomes and advantages of integrating the
proposed classification with the theory of symmetrical compo-
nents are described, further discussing how each system can
be treated by applying the generalized Fortescue theorem and
specifying the peculiarities of each configuration, simplifying
the treatment of multiphase unbalanced systems.

Key findings of the article are the contribution of a com-
prehensive framework for understanding and classifying multi-
phase systems in electrical machines, offering valuable insights
for researchers, engineers, and designers. The proposed theory
and classification pave the way for further advancements in
multiphase electrical machines, addressing both theoretical
gaps and practical challenges.
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