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A B S T R A C T

One of the most valuable and promising applications for Unmanned aerial vehicles (UAVs) is in natural disaster
management, where these aircraft can operate autonomously without any need for human intervention during
their flights.

In this paper, we foster the interface of Operational Research with computer science in general and sensor
networking in particular by focusing on managing a post-disaster emergency scenario where the use of a fleet
of UAVs helps rescue teams identify people needing help inside an affected area. We model this situation as an
original graph theoretical problem called Multi-Depot Multi-Trip Vehicle Routing Problem with Total Completion
Time minimization (MDMT-VRP-TCT). The main novelty of the MDMT-VRP-TCT is the combination of the
following three features: multi-depot, multi-trip, and completion time minimization.

We propose a mixed-integer linear programming (MILP) formulation, develop a matheuristic framework to
address large instances, and present an extended set of experiments to test the performance of the proposed
matheuristic: first, we compare the matheuristic with the MILP formulation on a set of small instances (up to
30 nodes); then, we compare our matheuristic with two heuristics from networking literature, showing that it
outperforms the existing algorithms.
1. Introduction

Unmanned aerial vehicles (UAVs) are aircraft that can fly fully
autonomously without any human intervention. Initially developed
for military purposes, due to advancements in control technologies
and decreased costs, UAVs are now being used in a wide range of
civilian and commercial sectors, such as forest fire detection (Sharifi
et al., 2014), plant disease detection (Gennaro et al., 2016), cargo
transport (Thiels et al., 2015), patrolling (Liang et al., 2019), and
emergency search and rescue (Calamoneri et al., 2022; Valavanis &
Vachtsevanos, 2014). One of the most promising uses of UAVs is in
natural disaster management. Numerous papers have been published
on this topic recently, e.g., Calamoneri et al. (2022), Cannioto et al.
(2017), Erdelj and Natalizio (2016), Erdelj et al. (2017), Estrada and
Ndoma (2019), Luo et al. (2019) and Zhan et al. (2018).
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This paper focuses on an emergency scenario due to natural dis-
asters such earthquakes, volcanic eruptions, or tsunamis. We propose
using a fleet of UAVs to aid rescue teams in identifying people need-
ing help in affected areas. As an example, in Italy, where there are
relatively few cities and many small towns and villages, right after
an earthquake, typically diverse civil defense rescue teams rush from
nearby zones to set up bases around the affected area, each on the road
leading to it. For over a decade, civil defense has been able to quickly
establish a private broadband emergency wireless network to compen-
sate for the likely disruption of public communication networks. In this
way, their bases, scattered around the affected area, can communicate.
We can hence assume that the UAVs initially take off from several bases
(multi-depot), where they return to substitute their batteries and leave
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for a new tour until all affected sites in the disaster area have been
flown over. In this context, it is essential to make the most of all the
available UAVs, that can opportunely direct rescue teams to possible
survivors’ locations much faster and more effectively than traditional
methods used by civil protection. In particular, UAVs can survey with
ease inaccessible sites. Furthermore, they do not require people to
control the UAVs (necessary in both the current truck- and drone-
based searches typically used by the civil defense), allowing rescue
workers to execute other tasks. To ensure that every possible survivor
is located, each UAV must travel possibly many times, returning to
depots to replace their batteries and continue their search (multi-trip)
so that the whole area is overflown in the shortest possible time. The
ultimate objective is to complete the job in the shortest possible time
(min Total Completion time, which means the longest completion time
among all the UAVs). Hence, we study here the Multi-Depot Multi-
Trip Vehicle Routing Problem with Total Completion Time minimization
(MDMT-VRP-TCT).

The rest of this paper is organized as follows: after reviewing
literature in Section 2, in Section 3 we model MDMT-VRP-TCT as a
MILP. Section 4 proposes a matheuristic framework to face reasonably
large instances. In Section 5, we experimentally compare its perfor-
mance first with respect to the exact model (on small instances - up
to 30 nodes) and then with respect to two heuristics present in the
literature, opportunely modified as the problems they address are not
exactly the same (in fact, are special cases of ours, i.e. without battery
constraints and with a single depot, respectively). Finally, we perform
further analyses of the matheuristic. In Section 6, we discuss possible
modifications to the problem definition and their consequent impact on
the solution; Section 7 concludes the paper by describing some future
perspectives.

2. Literature review

Our optimization problem MDMT-VRP-TCT is novel, as its three
characteristics can be found in the literature separately but never
combined all together. In the following, we survey some problems that
have similarities with ours and highlight the essential differences.

2.1. Multi-trip VRP

The multi-trip Vehicle Routing Problem (see e.g. the survey paper
by Cattaruzza et al. (2016)) has been exploited to model specific
logistics problems (when electric vehicles or small-sized vans are used
— (Kucukoglu et al., 2021) or in the Container Drayage Problem —
(Bruglieri et al., 2021), just to cite two applications). The constraints
are similar to the ones imposed by the battery endurance of UAVs
but beyond the similarities of constraints, the objective function to be
minimized is the total cost instead of the completion time.

Regarding the exact approaches, both branch-and-cut (Karaoğlan,
2015) and branch-and-price (Mingozzi et al., 2013) algorithms have
been proposed. For what concerns the heuristics, two-stage algorithms
(Petch & Salhi, 2003; Taillard et al., 1996) and meta-heuristics, e.g.,
tabu search (Brandao & Mercer, 1998) and population-based algo-
rithms (Cattaruzza et al., 2014) have been also proposed.

It is worth noting that the battery endurance impose a limitation
on the trip length, in Container Drayage, the limitation is directly
imposed in the number of nodes per trip. However, in both applications
the number of feasible trips is somehow limited, and therefore, the
problems can be treated by a trip-based formulation.

With respect to the above mentioned literature, in our paper we
minimize the total completion time, while in MTVRP the goal is to mini-
mize the total traveled distance. This makes our problem more complex
to address, since while in MTVRP the trips-to-vehicles assignment only
2

influence feasibility, in our case it also impacts the objective function.
2.2. Multi-depot VRP

A problem closely related to MTVRP is the multi-period VRP. While
in the former one, the decision maker implicitly decides which cus-
tomers to serve first, setting the order in which trips assigned to the
same vehicle are executed, in the latter, the time horizon is split into
several disjointed periods. The decision maker assigns each customer to
a period and, based on those assignments, provides a routing plan for
each period. A survey paper by Braekers et al. (2016) shows an increas-
ing interest of the researchers especially since 2009 — e.g., (Groër et al.,
2009): both exact approaches, e.g., (Dayarian et al., 2015) and meta-
heuristics, like Variable Neighborhood Search (Hemmelmayr et al.,
2009), and Adaptive Large Neighborhood Search (Mancini, 2016), have
been proposed.

The multi-depot VRP has been broadly addressed in the literature
related to logistics problems in the last three decades. The basic version
introduced by Renaud et al. (1996), assigning each vehicle to a depot,
has been extended by introducing several additional features, among
those: the possibility for vehicles to end a route in a different depot
with respect to the one from which it started (Mancini, 2016), the
collaboration among different companies, each one owning a subset
of the depots (Zhang et al., 2022), the possibility of replenishment at
depots during the route (Crevier et al., 2007; Tarantilis et al., 2008).
An extended review of multi-depot VRP variants and methods used to
address them has been written by Vidal et al. (2011).

Literature on multi-depot multi-trip VRP is scarce. The first pa-
per that simultaneously addresses these two features is by Masmoudi
et al. (2016) and studies an application in the dial-a-ride context.
Most recently, Zhen et al. (2020) introduce an extension with release
dates and time windows, while Sahin and Yaman (2022) consider a
heterogeneous fleet of vehicles. All these papers minimize the total
traveled distance.

The contribution of this paper to the Multi-depot VRP field is to
exploit a completion time minimization objective function, instead of
the classical traveled distance minimization.

2.3. Completion time minimization

Almost all works on VRP in the literature consider the minimiza-
tion of total traveled times or distances, while the minimization of
completion time (also referred as makespan) has been considered only
in relatively few papers. Namely, Archetti et al. (2015) investigate
completion time minimization in parcel delivery with release dates,
while Poikonen et al. (2017) deal with UAV utilization for last-mile
delivery. Talarico et al. (2015) study an application concerning ambu-
lance routing in disaster response. An application in rescue operations
is addressed by Calamoneri et al. (2022), who characterize nodes
by different levels of priority and aim at minimizing the weighted
completion time. The completion time of the longest route is some-
times called makespan in the literature. Bakach et al. (2021) study
the makespan minimization for the vehicle routing with stochastic
travel times, whereas Nadi and Edrisi (2017) provide an application of
makespan minimization in relief assessment and emergency response.

In humanitarian applications such as ours, the goal is to reach
all the target points as soon as possible, no matter if this goal is
reached with a highly unbalanced workload among vehicles. However,
in other applications involving human drivers, such as freight delivery,
balancing drivers’ workload becomes an important issue that cannot be
neglected (Mancini et al., 2021).

We are the first to consider the completion time minimization in
a multi-depot multi-trip, trip length constrained VRP with a heteroge-

neous fleet.
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2.4. Battery constrained tours

Our problem can be naturally solved in two steps, i.e., first find-
ng tours whose union covers the set of target nodes and secondly
etermining an opportune scheduling assigning each cycle to a UAV.
f we focus on the main subproblem of finding a number of battery
onstrained tours whose union covers the set of target nodes, we find
any well-known graph problems in the literature. Namely, RMCCP

Minimum Rooted Cycle Cover Problem) requires finding a bounded
ooted cycle cover in which all tours pass through a single depot and
ave a bounded weight, but it aims at minimizing the number of
ycles. Instead, in RMMCCP (Rooted Min–Max Cycle Cover Problem),
he optimization function is the completion time, but the maximum
umber of cycles is bounded by a parameter given in input. These
wo problems have been proved to be approximable by Frederickson
t al. (1976), Friggstad and Swamy (2014), Nagarajan and Ravi (2012)
nd Yu and Liu (2016). Calamoneri and Tavernelli (2022) establish a
onnection between the approximability of a problem arising from a
AV application simpler than ours and these two problems.

Our problem strongly differs from both the problems: our goal is
o minimize the total completion time, with a limited set of vehicles,
hile the goal in RMCPP is to cover all the nodes with the minimum
umber of vehicles possible. Instead, in RMMCCP it is necessary to
et the maximum number of cycles, and it is not clear how, if not
ssigning each vehicle a single trip. Moreover, we allow multiple depots
nd exploit a heterogeneous fleet, in which different vehicles may have
ifferent tour length limitations.

.5. Applications for UAVs

We observe that the employment of UAVs has grown exponentially
n the last few years. There is a diverse set of applications for UAVs,
hich ranges from civilian (such as logistics, surveillance, and photog-

aphy) to military use (bomb dropping, war zone medical supply, and
nemy spying). The reader is referred to Shakhatreh et al. (2019) for a
omplete review on UAVs applications. From the extensive literature
n this topic in the networking area, we only point out two papers
hat we will exploit in our experiments: the first one is widely used in
he networking area as a benchmark paper, while the objectives of the
ther one are the most similar to ours. Namely, Kim et al. (2014, 2017)
elve into a problem closely aligned with ours. The authors extend the
ulti-traveling salesperson problem to the domain of multi-UAV path
lanning in reconnaissance and surveillance scenarios, with a focus on
inimizing the longest flight time of the UAVs. They design different

ariants of the Traveling Salesman Problem with Neighborhood (TSPN)
nd introduce approximation algorithms to address them. Nevertheless,
hese works overlook a crucial aspect of real-world applicability, as
hey fail to account for the limited energy resources inherent to battery-
owered vehicles. Calamoneri et al. (2022) introduce the Cover by
ultitrips with Priorities problem, introducing a priority value for each

ite for efficient post-earthquake rescue missions. The authors propose
greedy algorithm that selects cycles by prioritizing sites based on

he ratio of priority of the site to distance, ensuring that high-priority
ocations are inspected promptly while minimizing the overall number
f required cycles.

Finally, from a more methodological point of view, algorithms
xploiting the combination of trips (or paths) generation procedures
nd selection/combination mechanism, have been used in different
ontexts, such as container drayage problems (Bruglieri et al., 2021),
ast mile distribution in humanitarian relief (Bulcik et al., 2008) and
ollution routing (Kramer et al., 2015).

. Problem definition and mathematical formulation

In this section, we formally describe our application scenario and
3

ropose a model in terms of a graph problem.
.1. Application description

Assume to have an area of interest (i.e., the one affected by a natural
isaster) with a set 𝐼 of 𝑛 target nodes to monitor (i.e., all the damaged

buildings). Around this area, there is a set 𝐷 of depots from which a set
𝑈 of vehicles start and end (i.e., the places where different rescue teams
settle down their bases, each with a sub-fleet of UAVs). In general,
each vehicle 𝑢 is equipped with a battery corresponding to 𝑏𝑢 units of
ime (battery endurance); when it runs down, it is necessary to replace
t with a charged one and, for operational reasons, this can only be
one in the depot where every UAV is uniquely associated with 𝑜𝑢. Note
hat we do not consider the time required for battery recharging and
wapping. Indeed, the first task can be performed while the UAVs are
n flight while replacing discharged batteries can be done within a few
econds without causing any delays in the takeoff for the next flight.
or instance, in Liu et al. (2017, 2018), the authors present a low-cost
ystem that completes the battery swapping process in just 10 s, from
anding to takeoff.

.2. Mathematical formulation

We define a complete edge- and node-weighted graph defined on
he node set 𝑁 = 𝐼 ∪𝐷. Assuming to have the map of the affected area,
he traveling time between each pair of nodes 𝑖, 𝑗 ∈ 𝑁 is known, it is
ssigned to oriented edge (𝑖, 𝑗) as its weight, and is referred to as 𝑡𝑖𝑗 ,
xpressed in terms of flying time units (assuming, for simplicity, that
ll UAVs have the same flying speed). Note that the value of 𝑡𝑖𝑗 could
ake into account also some variable phenomena, such as the wind; for
his reason, in general, we have that 𝑡𝑖𝑗 ≠ 𝑡𝑗𝑖. A known service time 𝑠𝑖 is
ssociated as a weight to each node 𝑖 ∈ 𝐼 , and represents the needed

time to overfly it.
We call sequence any ordered set 𝑘 of target nodes. The duration 𝑑𝑘

of sequence 𝑘 is computed as the sum of all traveling times between
consecutive target nodes in 𝑘 plus the service times of all the target
odes in 𝑘. In a sequence 𝑘, we denote as 𝑓𝑘 and 𝑙𝑘 the first and the

last target nodes, respectively.
The purpose of our problem is to assign to each vehicle 𝑢 ∈ 𝑈 an

ordered set of sequences such that 𝑢 can reach the first target of any
of the sequences assigned to it from its depot 𝑜𝑢, serve all its target
nodes, come back to 𝑜𝑢, and start again. A sequence 𝑘 assigned to 𝑢

ith the addition of the depot 𝑜𝑢 is called a trip and its duration, 𝑑𝑘𝑢
is given by the traveling distance between 𝑜𝑢 and 𝑓𝑘, plus the duration
of 𝑘, plus the traveling distance between 𝑙𝑘 and 𝑜𝑢. A sequence 𝑘 is
compatible with a vehicle 𝑢 if its duration of the associated trip, 𝑑𝑘𝑢, is
upper bounded by 𝑏𝑢.

A compatibility index, 𝛷𝑘𝑢, is set to 1 if sequence 𝑘 is compatible
with vehicle 𝑢 and to 0 otherwise. Of course, 𝑘 can be assigned to 𝑢 only
if it is compatible with it (i.e., if 𝛷𝑘𝑢 = 1). A sequence 𝑘 is considered
feasible if compatible with at least one vehicle. Only feasible sequences
are considered. Note that this implies imposing the battery constraint.
For each sequence 𝑘, we denote by 𝛷𝑘 the set of all vehicles compatible
with 𝑘. For each target node 𝑖 ∈ 𝐼 , we denote by 𝐾̃𝑖 the set of all feasible
sequences containing 𝑖. We assume that 𝐾̃𝑖 is not empty for all target
nodes, i.e., there is at least one feasible sequence that covers 𝑖. If this is
not the case, the node is too far to be covered; hence, from now on, we
implicitly assume that the depots are located so that the vehicles can
reach all target nodes.

A solution for our problem consists of selecting a set of sequences
𝐾 whose union covers 𝐼 and assigning them to compatible vehicles.
The cumulative working time of a vehicle 𝑢 is defined as the sum of the
durations of the trips assigned to 𝑢. We define the total completion time
of a solution as the maximum among all the cumulative working times

of the vehicles. The goal of our problem is to determine a solution that



Expert Systems With Applications 251 (2024) 123766T. Calamoneri et al.

𝑘

s

t

𝑌

𝑇

𝜏

r
c
a
i
v
t
v

t
2

g
v
p
m
m

t
d
f
t
o
c

4

a
t
l
f
o
t
l

o
f
s
T
o

4

w
m

a
s

minimizes the total completion time. Then, we introduce the following
decision variables:

- 𝑋𝑘 ∈ {0, 1}, 𝑘 ∈ 𝐾: binary variable assuming value 1 if sequence
is selected and 0 otherwise;

- 𝑌𝑘𝑢 ∈ {0, 1}, 𝑘 ∈ 𝐾, 𝑢 ∈ 𝑈 : binary variable assuming value 1 if
equence 𝑘 is executed by vehicle 𝑢;

- 𝑇𝑢: completion time of vehicle 𝑢;
- 𝜏: non-negative variable representing the total completion time.
The mixed integer programming formulation for MDMT-VRP-TCT is

he following:

min 𝜏 (of)
∑

𝑘∈𝐾̃𝑖

𝑋𝑘 = 1 ∀𝑖 ∈ 𝐼 (C1)

∑

𝑢∈𝑈
𝑌𝑘𝑢 = 𝑋𝑘 ∀𝑘 ∈ 𝐾 (C2)

𝑘𝑢 ≤ 𝛷𝑘𝑢 ∀𝑘 ∈ 𝐾 ∀𝑢 ∈ 𝑈 (C3)

𝑢 =
∑

𝑘∈𝐾
𝑑𝑘𝑢𝑌𝑘𝑢 ∀𝑢 ∈ 𝑈 (C4)

≥ 𝑇𝑢 ∀𝑢 ∈ 𝑈 (C5)

The objective function minimizes the total completion time, as
eported in (of). Constraints (C1) ensure that each target node is
overed by precisely one sequence. If a sequence is selected, it must be
ssigned to exactly one vehicle, chosen among those compatible with
t (constraints (C2) and (C3)). The cumulative working time for each
ehicle is computed by means of constraints (C4). The total completion
ime must be not smaller than the cumulative working time of each
ehicle, as stated in constraints (C5).

The model involves |𝐾|+ |𝐾||𝑈 | binary variables and |𝑈 |+1 con-
inuous variables. The number of constraints is |𝐼| + |𝐾| + |𝐾||𝑈 | +
|𝑈 |.

The novelty of the approach used in this formulation consists of
enerating (open) sequences of nodes that can be assigned to different
ehicles at different costs instead of generating trips (that is, sequences
lus the depot). It follows that the problem can be modeled as a
ultiple-choice knapsack, with knapsack-dependent items weight and
aximum knapsack occupancy minimization.

It is worth noting that such an approach is not only valid for
his specific problem but can be used for a broad class of multi-
epot multi-trip problems, including those having different objective
unctions, such as the classical total traveling distance minimization,
he minimization of the number of vehicles used, or the minimization
f the total cost given by vehicles purchasing costs plus travel costs, as
ommonly in use in logistics applications.

. A model-based matheuristic framework

The main idea under the mathematical model consists of generating
ll possible feasible sequences, and associating them with the set of
heir compatible UAVs. When the number of feasible sequences is too
arge to be handled, the mathematical model becomes intractable. If,
or instance, target nodes are so close to each other that a huge number
f feasible sequences are produced, or batteries are so large that several
arget nodes can be visited in a single sequence, even on instances with
ess than 10 nodes.

To overcome this issue and address larger instances, we derive from
ur model a heuristic approach, in which we generate only a subset of
easible sequences 𝐾̃ to be passed to the model. Clearly, the choice of
equences can dramatically change the performance of the heuristic.
herefore, the problem of determining which sequences to generate is
4

f crucial importance.
.1. Generation of promising sequences

In the following, after giving operative definitions, we describe how
e generate promising sequences to be passed to the mathematical
odel.

Given a sequence, we call its extremes the first and the last node in
ny order. For example, sequence {1,2,3,4,5} has the same extremes as
equence {5,3,4,2,1}. A sequence 𝑘 is dominated by another 𝑘′ if they

have the same extremes and contain precisely the same target nodes
(possibly in a different order), but 𝑘′ has a lower or equal duration than
𝑘. A sequence 𝑘 is strictly dominated by another 𝑘′ if 𝑘 is dominated by
𝑘′ and they do not have the same duration.

The heuristic, whose pseudo-code is detailed in Algorithm 1, incre-
mentally constructs longer and longer sequences, starting from shorter
ones. To do this, it receives in input two parameters 𝑁𝑐 and 𝐾𝑚𝑎𝑥; 𝑁𝑐
represents the number of sequences generated starting from a shorter
and already generated one, while 𝐾𝑚𝑎𝑥 is the maximum allowed num-
ber of sequences. It initially generates all the sequences that contain
only one target node (Line 5) and inserts them directly into the set 𝐾̃
of sequences to be passed to the model (Line 6). It also inserts them
in a temporary queue 𝐾 𝑡𝑚𝑝, containing sequences to be expanded (Line
2). Namely, every sequence 𝑘 included in 𝐾 𝑡𝑚𝑝 is processed as follows:

• a sequence 𝑘 is dequeued from 𝐾 𝑡𝑚𝑝 (Line 10) and 𝑁𝑐 child
sequences are generated each one by extending sequence 𝑘 with
an additional target node. These 𝑁𝑐 nodes are selected from the
nearest nodes to the last target node of sequence 𝑘, among those
that have not yet been included in 𝑘 (Lines 12–13).

• For each child sequence 𝑘𝑐 , two feasibility checks are applied: if
𝑘𝑐 is compatible with at least one vehicle, and if the sequence
neither is strictly dominated by nor strictly dominates another
sequence already belonging to 𝐾̃ (Line 14). Observe that each
new child sequence can dominate at most one of the solutions
in 𝐾̃. (In fact, if two solutions exist, 𝑘′ and 𝑘′′, sharing the same
target nodes and extremes with 𝑘 and, without loss of generality,
𝑑𝑘′ ≤ 𝑑𝑘′′ , 𝑘′ would be strictly dominated by 𝑘′′ and therefore it
could not belong to 𝐾̃.)

• If a feasibility check fails, the sequence is discarded, otherwise it
is added to 𝐾̃ and enqueued to 𝐾 𝑡𝑚𝑝 (Lines 15–16).

The procedure terminates either when 𝐾 𝑡𝑚𝑝 is empty or when a number
𝐾𝑚𝑎𝑥 of sequences have been added to 𝐾̃ (Line 9). After the sequence
generation process is finished, the set of sequences 𝐾̃ is given in input to
the mathematical model (Eq. (of)–(C5)) to find the best solution obtain-
able with the subset of trips provided (Line 24). It is worth noting that
each target node, also the most isolated one, appears in some sequences
of 𝐾̃ (at least it is in as a sequence constituted by a single target node,
and it appears in all the sequences generated starting from it).

We note that the parameter 𝐾𝑚𝑎𝑥 plays a crucial role in the al-
gorithm performance: lower values will give worse solutions while
higher values will yield a better global solution but increase the com-
putational time required by the heuristic. This parameter must be
properly tuned to achieve the right balance between solution quality
and computational time. In Section 5 we deeply discuss the tuning of
𝐾𝑚𝑎𝑥.

The maximum number of children generated by each sequence, 𝑁𝑐 ,
also plays an important role. The higher the value of 𝑁𝑐 , the higher
the number of sequences containing a specific number of target nodes.
Note that by fixing the value of 𝐾𝑚𝑎𝑥, lower values of 𝑁𝑐 allow us
to generate sequences containing more target nodes, which could be
promising; on the other hand, in those sequences, nodes that are closely
located to each other would tend to be visited more frequently, while
isolated targets would appear in only few sequences. Instead, with
large values of 𝑁𝑐 , even targets that are more widely separated can be
visited. Still, the maximum allowed number of sequences 𝐾𝑚𝑎𝑥 would
be reached even only with sequences that contain a small number of

targets. Longer sequences would not be generated, with a negative
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effect on the solution quality. For example, with 𝑁𝑐 = 10, we would
have 10 trips containing only one target. Each of these trips generates
10 trips with 2 targets, and so on. Hence, the number of generated trips
with low cardinality (low number of targets visited) is high, and as a
consequence, the maximum threshold 𝐾𝑚𝑎𝑥 is already reached before
starting to generate high cardinality trips. On the contrary, when 𝑁𝑐
is small e.g., when 𝑁𝑐 ≤ 3, the number of trips generated by each trip
does not grows up fast, and therefore, we can generate longer sequences
before reaching 𝐾𝑚𝑎𝑥. In conclusion, it is essential to carefully tune
he values of parameters 𝐾𝑚𝑎𝑥 and 𝑁𝑐 together to achieve a balance

between diversity among sequences and sequence length.

Algorithm 1 A model-based matheuristic
Input: 𝐼,𝑁𝑐 , 𝐾𝑚𝑎𝑥
utput: A feasible solution, i.e., a set of trips overall covering all target
odes, each assigned to a vehicle
1: set of sequences 𝐾̃ = ∅
2: queue 𝐾 𝑡𝑚𝑝 = ∅
3: for all 𝑖 ∈ 𝐼 do
4: Restricted Candidate List of 𝑖 (𝑅𝐶𝐿𝑖) := list of 𝑁𝑐 closest nodes

to 𝑖
5: 𝑘𝑖 := sequence constituted by sole node 𝑖
6: 𝐾̃ = 𝐾̃ ∪ {𝑘𝑖}
7: enqueue(𝐾 𝑡𝑚𝑝, 𝑘𝑖)
8: end for
9: while 𝐾 𝑡𝑚𝑝 ≠ ∅ AND |𝐾̃| < 𝐾𝑚𝑎𝑥 do
0: sequence 𝑘 = dequeue(𝐾 𝑡𝑚𝑝)
1: 𝑙𝑘 ∶= last node in sequence 𝑘
2: for all 𝑐 ∈ 𝑅𝐶𝐿𝑙𝑘 do
3: 𝑘𝑐 := 𝑘 ∪ 𝑐
4: if 𝑘𝑐 is feasible and not dominated by any sequence in 𝐾̃
then

5: 𝐾̃ = 𝐾̃ ∪ {𝑘𝑐}
6: 𝐾 𝑡𝑚𝑝 = enqueue(𝐾 𝑡𝑚𝑝, 𝑘𝑐 )
7: remove from 𝐾̃ all the sequences strictly dominated by

𝑘𝑐

8: for all 𝑖 ∈ 𝑘𝑐 do
9: update 𝑅𝐶𝐿𝑖
0: end for
1: end if
2: end for
3: end while
4: feed the mathematical model defined by equations (C1)-(C5) and

(of) with all the paths in 𝐾̃ and solve it.

It is worth noting that sequences of different sizes are particularly
uitable for multi-trip problems when dealing with completion time
inimization, because having items of heterogeneous size helps to

qualize the jobs of the vehicles. Indeed, while in a classical multi-trip
roblem, the trips-to-vehicles assignment phase only impacts feasibil-
ty, when we aim to minimize total completion time, it also influences
he objective function. For this reason, in our case, it is essential to have
rips of different sizes to better balance the global workload.

If we compare the trip generation procedure used by the Greedy
andomized adaptive search (GRASP), (Resende & Ribeiro, 2010), with
urs, we realize that the first one tends to generate trips almost of
he same length, aiming to fully utilize the vehicle capacity, while the
econd produces trips of different lengths, from very short to very long.
f the approach exploited by GRASP is certainly profitable when the
oal is to minimize the total travel distance/time (Layeb et al., 2013),
urs offers more combination options when performing the assignment
o vehicles with the objective of minimizing completion time.

Moreover, our method is more suitable even for problems with a
eterogeneous fleet because short trips can be exploited for vehicles
5

ith more limited endurance, while the GRASP generation approach
better works with a homogeneous fleet (Layeb et al., 2013), as tends to
generate sequences that exploit the whole endurance/autonomy of the
vehicle.

5. Computational results

In this section, we study the performance of our matheuristic.
Namely, first, we compare the matheuristic with the exact model on
a set of small instances (up to 30 nodes) to test the behavior of our
optimization approaches.

In particular, the metaheuristic finds results up to 4% better than
the MILP — that needs to be interrupted to guarantee a reasonable
running time and hence is not able to provide an optimum solution;
on top of that, it improves in computational efficiency by three orders
of magnitude.

Secondly, we compare our matheuristic with two state-of-the-art
heuristics from networking literature. Also, in this case, we show
that it outperforms the existing algorithms, paying a bit in terms of
computational time that is kept at absolutely reasonable levels.

All our experiments have been performed on a computer equipped
with an Intel(R) Core(TM) i5-1135G7 CPU (8 cores clocked at 2.4 GHz)
and 16 GB RAM; our programs have been implemented in C++ (g++
compiler v9.4.0 with optimization level O3).

The area of interest is set as a square with a side length equal to
15 km×15 km, and the depots are positioned on a subset of its 4 vertices.
The target nodes are randomly positioned inside it, and their number
𝑛 moves from 𝑛 = 10 to 𝑛 = 200.

While considering different values for the number of vehicles, target
odes, and depots, we run our experiments on combinations of the
ollowing values: 𝑈 = 2, 9, 12, 15, 20 and 𝐷 = 2, 3, 4. In the following

subsections, we show the results for each setting.
The 𝐾𝑚𝑎𝑥 value is set to 50000 in all the experiments, allowing the

metaheuristic to solve the instances in efficient computational times.

5.1. Comparison with the model

Here, we compare our matheuristic with the exact model when
there are two depots and one vehicle per depot, with 30 and 50 min of
battery endurance, respectively. We perform two sets of experiments,
one with service times of the target nodes randomly chosen in the
interval (5, 8] (Fig. 1) and another one with service times randomly
chosen in the interval (0, 3] (Fig. 2); the reason is that – as we have
already pointed out in Section 4 discussing the tuning of 𝐾𝑚𝑎𝑥 and
𝑁𝑐 – when the service times are long, each trip contains fewer target
nodes than when the service times are short, so obtaining different
performance for our matheuristic as 𝑛 grows up.

In all charts, on the 𝑥 axis, 3, 4, 5, and 6 represent the used values of
𝑁𝑐 . The 𝑦 coordinates of the dots correspond to an average computed
on 20 random instances on the same number of nodes: every column
of charts corresponds to a different value of 𝑛 (increasing going from
left to right). The red lines represent the benchmark values achieved by
the model. It is worth noting that when 𝑛 is small (𝑛 ≤ 30 in Fig. 1 and
𝑛 ≤ 10 in Fig. 2), the model can produce exact results; when 𝑛 is larger,
the model terminates only in a few cases (probably when the instances
are particularly easy to solve, e.g., if they have no clustered target
nodes). Note that when service times are longer (Fig. 1), the model
can handle instances with higher values of 𝑛 because the produced
sequences contain fewer nodes than in the case with shorter service
times, and therefore their number is more tractable.

The experiments perfectly confirm the expectations. Indeed:

First row. The first three charts of Fig. 1 and the first one in Fig. 2 show
the percentage gap between the heuristically computed completion
time and the optimum value, which is the primary objective function of
our problem; it is clear that the percentage gap decreases as 𝑁𝑐 grows
up and, when 𝑁 = 6, it gets close to 0, indicating the effectiveness of
𝑐
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Fig. 1. Experimental results with service times randomly chosen in the interval (5, 8]. On the 𝑥 axis, 3,4,5,6 represent the used values of 𝑁𝑐 ; 𝐾𝑚𝑎𝑥 is set to 50000; the red lines
represent the benchmark values achieved by the model.
our matheuristic. Since there is no benchmark given by the exact model
when 𝑛 ≥ 40 in Fig. 1 and when 𝑛 ≥ 20 in Fig. 2, the rightmost charts
of the first row (in blue) show the percentage gaps with respect to the
case 𝑁𝑐 = 3; these gaps are negative since clearly large values of 𝑁𝑐
lead to better solutions. This is not always true in Fig. 2; the reason is
that every trip includes many target nodes, therefore a large number
of feasible sequences are generated, and the value of 𝐾𝑚𝑎𝑥 is reached,
and the quality of the solution degrades as 𝑁𝑐 increases.

Second row. Here, we depict the number of trips generated to identify
the solution. As expected, the matheuristic generates a limited number
6

of trips, making the approach viable even for large instances. Note
that the number of trips is higher in Fig. 2 than in Fig. 1 because
shorter service times imply trips with a larger number of nodes, and
consequently overall fewer trips. In Fig. 2, it is evident when the value
of 𝐾𝑚𝑎𝑥 is reached, as the plot of the function becomes horizontal.

Third row. The running times are reported here. Clearly, the com-
putational time of the model is much higher and, for what concerns
the matheuristic, it grows up as the value of 𝑁𝑐 increases in Fig. 1.
However, it remains at least one order of magnitude smaller than the

time necessary for the model. Also, the computational time is much
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Fig. 2. Experimental results with service times randomly chosen in the interval (0, 3]. On the 𝑥 axis, 3,4,5,6 represent the used values of 𝑁𝑐 ; 𝐾𝑚𝑎𝑥 is set to 50000; the red lines
represent the benchmark values achieved by the model.
higher in Fig. 2 than in Fig. 1. Still, it does not continue to grow with 𝑁𝑐
because again when 𝐾𝑚𝑎𝑥 is reached, the computational time remains
about constant.

We chose the value of 𝑁𝑐 based on the following observation. The
first line of Fig. 2 shows that, when 𝑛 > 10, the best results are obtained
for 𝑁𝑐 = 4, i.e., the gap percentage is minimum, but are not so far from
the case 𝑁𝑐 = 3 (while 𝑁𝑐 = 5 and 𝑁𝑐 = 6 are clearly outperformed).
On the contrary, increasing the size of the instance, the gap between
𝑁𝑐 = 3 and 𝑁𝑐 = 4 becomes smaller and smaller. The high gap shown
between the two cases 𝑁 = 3 and 𝑁 = 4 on small instances is because,
7

𝑐 𝑐
when the number of nodes in the network is small (𝑛 = 10), the number
of trips generated with 𝑁𝑐 = 3 is too small (a few hundred); however,
in such instances, the exact model works in a short computational time,
hence the usage of heuristics is not needed in these cases.

On the other hand, if we look at the third row (computational
times), the case 𝑁𝑐 = 3 is about one order of magnitude faster than
𝑁𝑐 = 4, and therefore it is preferable. This suggests that, in real-size
instances, the case 𝑁𝑐 = 3 represents the best compromise between
heuristic performance and computational times. Hence, it is our choice
for further comparison with other heuristics.
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Fig. 3. (a) completion times; (b) running times; (c) percentage improvement with respect to 𝑁𝑐 = 3. In these experiments, |𝐷| = 2, |𝑈 | = 2 and service times are randomly chosen
in the interval (5, 8].
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.2. Comparison with other heuristics

We now compare the performance of our matheuristic with two
enchmark state-of-the-art heuristics known in the literature in the
etworking field. They do not solve specifically our problem, which is
ew, but consider a setting that is sufficiently close to ours to allow us
o fairly modify them to let them work in our scenario.

More in detail, on the one hand, we consider one of the most widely
sed algorithms in the networking area designed in Kim et al. (2014,
017) (called from now on 𝑇𝑆𝑃 ), solving a problem similar to ours
xcept that there are no battery constraints. On the other hand, we
xploit one of the heuristics from Calamoneri et al. (2022) (called from
ow on 𝐺𝑟𝑒𝑒𝑑𝑦) facing a scenario that is very similar to ours, except
hat a single-depot model is followed and priorities are introduced.

The original 𝑇𝑆𝑃 algorithm gives as part of the input the vehicles,
ach one positioned on its own depot, and uses them as children of the
oot of a minimum spanning tree rooted at a dummy node 𝑣0; the sub-

trees rooted at the vehicles are then transformed into trips covering all
target nodes and intersecting only in the root using the Christofides’s
approximation algorithm for TSP (Christofides, 1976); finally, some
operations are executed to equalize the weight of the different trips.
We modify this algorithm by imposing that the duration of each cycle
is kept upper bounded by the battery endurance of the UAV to which
it is assigned. Then, all the served target nodes are removed from the
graph, and the algorithm is iteratively re-run on the remaining graph
until it is empty.

Heuristic 𝐺𝑟𝑒𝑒𝑑𝑦 exploits a greedy approach to compute in par-
allel as many cycles as the number of vehicles. The problem solved
by 𝐺𝑟𝑒𝑒𝑑𝑦 considers priorities assigned to the target nodes, and the
heuristic considers them when making the greedy choice. Here, we do
not have any priority and simplify the computation: for each UAV 𝑢,
at each step, the current partial trip associated with it is considered
and, starting from the target node selected last (at the beginning, the
depot), the next target is chosen as the closest one if it still guarantees
that the whole trip with the addition of this last target node can be
flown over by UAV 𝑢 within the battery endurance 𝑏𝑢. The fact that
the original addressed problem had a single depot does not change the
heuristic. We highlight that our modifications to the original algorithms
do not compromise their performance in any aspect but are only meant
to extend their applicability to our scenario.

In all following charts, 𝑥 coordinates represent increasing values of
𝑛, from 10 to 200; moreover, we label lines with ‘TSP’ and ‘Greedy’
to mean that they are referred to 𝑇𝑆𝑃 and 𝐺𝑟𝑒𝑒𝑑𝑦, respectively.
Regarding our matheuristic, we label the lines with ‘𝑁𝑐 = 𝑖’, where
𝑖 = 3, 4, 5, 6 to distinguish the value used for this parameter.

Fig. 3(a) shows the completion times computed on 20 instances
8

on the same number of nodes obtained with 𝑇𝑆𝑃 , 𝐺𝑟𝑒𝑒𝑑𝑦 and our
matheuristic when 𝑁𝑐 = 3, 4, 5, 6 in the special case in which there are
two depots, each one with one vehicle. The matheuristic achieves the
best results. Fig. 3(b) shows the average running times (microseconds),
and in this case, the two benchmark heuristics are faster. It is worth
noting that the function corresponding to the execution time of our
matheuristic when 𝑁𝑐 = 6 is not increasing; this can be explained
because, for sufficiently large values of 𝑛, the threshold 𝐾𝑚𝑎𝑥 bounding
the maximum number of trips has been reached. Hence, the compu-
tational times do not grow up anymore. Moreover, of course, for our
matheuristic, higher running times correspond to larger values of 𝑁𝑐
ut, in Fig. 3(a) the completion times appear to be similar; hence, in
ig. 3(c), we depict the percentage of improvement of the completion
ime when passing from 𝑁𝑐 = 3 to the larger values of 𝑁𝑐 . The
mprovement in the quality of the solution, when 𝑁𝑐 is larger than 3,

of at most 2.7% confirms what we observed at the end of Section 5.1,
justifying that, in the following charts, we compare the benchmark
heuristics 𝑇𝑆𝑃 and 𝐺𝑟𝑒𝑒𝑑𝑦 with our matheuristic only with 𝑁𝑐 = 3.

For the following experiments, we assume that the sub-fleet based at
each depot is homogeneous, although the whole fleet is non-homogeneo
in agreement with the inspiring application, where each depot is
supervised by one rescue team, that we suppose to own a fleet of
identical UAVs. The battery endurance is set to 50, 30, 40, and 20 min
for all the vehicles based at the first, second, third, and fourth depots,
respectively (whenever present), to guarantee that there are always
vehicles whose endurance allows them to reach any target in the area
of interest.

In Fig. 4 we compare the benchmark heuristics with our matheuris-
tic with 𝑁𝑐 = 3 varying in different ways the values of |𝐷| and of |𝑈 |

with service times randomly chosen in (5, 8]; we choose not to consider
when the service times are in (0, 3] because, as already observed, the
number of generated trips soon reaches the value of 𝐾𝑚𝑎𝑥.

More in detail:

• in Fig. 4(a), two depots positioned onto two adjacent vertices of
the area of interest, base of 6 and 3 vehicles, respectively;

• in Fig. 4(b), two depots positioned onto two opposite vertices of
the area of interest, both base of 10 vehicles;

• in Fig. 4(c), three depots, each base of 3 vehicles;
• in Fig. 4(d), three depots, base of 6, 4, and 2 vehicles, respec-

tively;
• in Fig. 4(e), four depots, each base of 3 vehicles;
• in Fig. 4(f), four depots, base of 8, 4, 2, and 1 vehicle, respec-

tively.

Therefore, results show that our heuristic outperforms the bench-
marks for the studied set of instances.
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Fig. 4. Completion times when service times are randomly chosen in the interval (5, 8]. The number of depots and of UAVs is different in each chart: (see details in the text).
6. Discussions on the definition of the problem

In this section, we discuss possible modifications to the problem
definition and their consequent impact on the solution.

6.1. Completion time vs. travel distance minimization

While in logistics the most relevant aspect is cost minimization,
in the humanitarian context, completion time plays a crucial role. As
already pointed out, the problem studied in this paper can be defined as
a multi-trip multi-depot VRP with total completion time minimization
(i.e., the minimization of the completion time of the UAV which finishes
its tasks last). It differs from classical multi-trip multi-depot problems,
where the total travel distance (or time) is minimized. By minimizing
the traveling distance, one expects to minimize the completion time as
well. This is in general not true. As an example, consider the instance
depicted in Fig. 5, where the area of interest is a square with a unit
side and the budgets of the two vehicles are assumed to be enough
to traverse 2 distance units each; the best solution for optimizing the
completion time is shown in Fig. 5(a), while the best solution for
optimizing the total traveling distance is different and is shown in
Fig. 5(b).

Although this is an artificial example, it hides a more general
behavior. Indeed, in the following we experimentally compare the
results output by the exact model in the two cases in which the objec-
tive function is the completion time (Eq. (of)) and the total traveling
distance. We run our model on 20 random instances with 20 target
nodes whose service times are between 5 and 8 min, 2 depots, and
a single vehicle per depot, one with a battery endurance of 30 min
and the other UAV with a battery endurance of 50 min; when the
objective is minimizing the completion time, we get an average value
of 211.46 with an average number of trips equal to 12.15, while the
9

traveling distance computed a posteriori is 397.40; vice-versa, when we
aim at minimizing the traveling distance we get an average value of
333.70 with an average number of trips of 8.25, while the completion
time computed as a consequence is 283.40. We deduce that, although
the two parameters are clearly not uncorrelated, there is neither a
clear dependence. More specifically, minimizing the completion time,
the traveling distance is slightly higher than its optimum value (about
19%), but when we minimize the traveling distance, the completion
time grows up much more (about 34%).

Note that the minimization of the completion time is associated with
a more significant number of trips, while minimizing the total distance
requires to have fewer trips in the solution. The reason is that when the
completion time is minimized, it is better to equalize the flying time of
each vehicle, even at the cost of producing a larger number of trips.
Vice-versa, if the traversed distance is minimized, the best choice is
to produce few and maximally full trips, even at the cost of making a
vehicle work much more (this is more evident when, as in this case,
the battery endurance of the UAVs are rather different).

6.2. Multi-depot vs. single-depot

The definition of our problem as a multi-depot one comes from the
real-life problem we started from; indeed, several rescue teams may
arrive from different directions and fix their bases in different locations.
Nevertheless, it is interesting to analyze the benefit achievable by
exploiting multiple depots with respect to a single depot. We compare
a solution when a single depot is located in the bottom-left corner of a
squared area, with a solution of the same instance when 4 depots are
located in each corner. We perform three analyses:

(1) target points are uniformly distributed across the whole area;

(2) target points are uniformly distributed in the up-right quadrant (i.e.,
far from the single depot);

(3) target points are uniformly distributed in the bottom left quadrant
(i.e., near the single depot).
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Fig. 5. (a) a solution minimizing the completion time; (b) a solution minimizing the traveling distance. Black dots represent the depots while white dots represent targets.
Fig. 6. (a) An optimal solution on a sample instance (Completion Time: 41.28); (b) a solution where a different quadrant is exclusively assigned to each UAV. (Completion Time:
65.41).
As expected, the single-depot approach performs better than the
multi-depot one, when target points are concentrated near it (case 3).
However, the gain is quite limited (13%). Instead, the gains achieved
with a multi-depot approach in cases 2 and 1 are around 53% and 39%,
respectively, making this approach globally preferable.

6.3. Considering the area as a whole vs. as partitioned among depots

Finally, we could think that our problem would be easier if we
partition the area of interest into as many portions as the number
of depots so that the target nodes falling in a certain portion are
automatically assigned to the closest depot. We perform experiments
where we consider a symmetric situation for what concerns depots and
vehicles (i.e., 4 depots, one vehicle per depot, all with the same battery
endurance) in order to partition the squared area of interest into 4
equal sub-squares. In agreement with the intuition, the computational
time is shorter (0.1 secs versus 1 s) but the difference between those
computational times is not practically relevant. On the other hand, the
completion time is much worse (on average of about 45%); this can
be explained because an optimal solution could require that a vehicle
enters the sub-square assigned to a different depot in order to drain its
battery. Moreover, since the goal of the problem is to minimize the
total completion time, it is advantageous to distribute the workload
to the different UAVs almost homogeneously. Permitting vehicles to
serve nodes located outside their own area allows them to balance the
workload better and reduce completion time.

Fig. 6 shows the behavior of a sample instance: in Fig. 6(a) (where
all UAVs can fly over every target) the trips are assigned in a balanced
10
fashion; on the contrary, in Fig. 6(b) (where a subarea is exclusively
assigned to each vehicle), the UAV with the base at the lower-left vertex
is scarcely used (only one trip is assigned to it); vice-versa, 4 trips are
assigned to the UAV with the base at the upper-left vertex, lengthening
the completion time; note that the UAV with base on the lower-right
vertex overflies precisely the same target nodes in both the scenarios,
as they are sufficiently close to it and are anyway the best choice.

7. Conclusions and future perspectives

In this paper, we considered a real-life situation modeled as a multi-
depot multi-trip routing problem where we aimed at minimizing the
total completion time.

We have pointed out that the problem we introduce has similarities
to other problems in the literature but essentially stands out for each
of them, giving rise to a new mathematical formulation.

We proposed for our problem a formulation as a MILP, designed a
matheuristic framework to solve large instances quickly and presented
an extended experimental campaign that shows the potential of the
proposed matheuristic. First, we compared the MILP formulation with
the metaheuristic on a set of small instances (up to 30 nodes) to test
the optimization approaches performance.

Then, we compared our matheuristic with two heuristic approaches
derived from state-of-the-art methods for similar existing problems
from networking literature and checked that the matheurstic we pro-
posed outperforms both of them. From these experiments, we deduced
the best values of the two input parameters, 𝐾𝑚𝑎𝑥 and 𝑁𝑐 , to be set to
50000 and 3, respectively.
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Beyond the proposed application, our solution approach, based on
sequences that become trips only when they are assigned to vehicles,
can be extended to any case in which a multi-depot multi-trip vehicle
routing problem must be solved.

From the discussions on the problem definition, we derive the
following managerial insights. Namely, when the set of target nodes
is randomly distributed across an area, it is more profitable to exploit
multiple depots, instead of one, from which to launch UAVs. Moreover,
it is better that all vehicles cooperate to overfly all target nodes, instead
of partitioning the area among the depots.

Concerning future work, many interesting generalizations can be
introduced to make our model more flexible for practice. Namely,
first, we handled the multi-depot model, assigning each UAV once and
for all to a depot. This matches our real-life application because it is
reasonable that every rescue team brings its own fleet of UAVs to the
site it chooses as its depot and is the most suitable to manage it. We
could relax this condition so that, looking at the ordered sequences
assigned to each UAV, we only require that a sequence’s starting
depot coincides with the previous sequence’s arrival depot. This would
introduce more flexibility, but as UAVs recharge/change their batteries
at the depot, it would be required to ensure that there is either a free
recharge station or a charged battery available in the chosen depot
before landing. Secondly, we could make the model more general,
adding further variables that would make the model closer to the real-
life application. Namely, as already proposed by Calamoneri et al.
(2022), we could introduce uncertain service times and priorities on
the target nodes. The first one is useful when, thanks to a computing
phase on board, a UAV realizes that there are possible survivors to save
in correspondence with a certain target node and decides to spend more
time flying over the target. The second one makes sense if we want to
fly over certain buildings (e.g., schools and hospitals) before others.
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