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Abstract

In this paper we propose a dynamical approach based on the Gorini-Kossakowski-

Sudarshan-Lindblad equation for a problem of decision making. More specifically,

we consider what was recently called a quantum parliament, asked to approve or not

a certain law, and we propose a model of the connections between the various mem-

bers of the parliament, proposing in particular some special form of the interactions

giving rise to a collaborative or non collaborative behaviour.
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I Introduction

As it is well established since many centuries, the role of mathematics is relevant not only

in pure, but also in applied sciences. Classical mechanics is a prototypical example of this

claim: we know very well that mathematics, and mathematical modelling in particular, is

essential if we want to describe the motion of macroscopic systems, like pendulums, bullets,

spinning tops and so on. And mathematics is essential also in quantum mechanics, which

is all based on some basic facts in functional analysis, Hilbert spaces, and operator theory.

Quantum mechanics is usually associated to the microscopic world, like atoms and

molecules, for instance. However, it is now well diffused the feeling that quantum tools,

and quantum ideas, can be relevant also for describing some macroscopic systems. Nowa-

days there are hundreds of papers which explore these connections, and several mono-

graphs: We only cite the latter here, where several other references can also be found:

[1]-[6].

In relation with our paper, quantum techniques have been applied to political systems

with different problems in mind: for instance, in [7, 8] the problem of alliances was consid-

ered, whilst in [9] competition and cooperation were analyzed in a ”coalition” equilibrium

model. In other papers, [10]-[14], the role of quantum protocols in a voting process has

been discussed, while in [15, 16] the attitude of people elected in one party to move to a

different one has been analyzed.

Recently, [17], the interest was more focused on the behaviour of two or three groups of

legislators, members of what the authors have nicely called a quantum parliament. They

need to vote for a given law, which should be accepted or refused, and, while taking their

decision, they follow their leader’s suggestions. But not completely. In other words, they

have a sort of free will, which each legislator experience while producing its own decision.

In this paper we consider the same problem as in [17], but we adopt a different, dynam-

ical, strategy based on the use of the Lindblad operators. We suppose that each legislator

Lj, j = 1, 2, . . . , N , where N is the total number of the members of the parliament π, is

described by a quantum state, and we give a time dependence to the state by means of

a master equation simulating the interaction of Lj with the other members of π, using

both a suitable Hamiltonian and a Lindblad operator to model the possible influences of

a leader’s party and other effects. The result of these interactions is reflected in the time
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evolution of the state, and consequently in the final decision of Lj. As in [17], we consider

in our treatment a sort of free will in π. This introduces some alea in the final decision of

each Lj, which, for this reason, is not obvious a priori, so that the acceptance of the law

is not granted. Our interest is mainly in the derivation of the outcome of the vote, using

a minimal set of working assumptions.

The paper is organized as follows: in Section II we introduce the problem and discuss

some of the essential aspects of the framework used all along the paper. In Section III

we discuss the dynamics of our quantum parliament, considering different simplifying

situations, from a single party with its leader, to the case of three parties with different

peculiarities. The case of more leaders of the same party is also considered. Section IV

contains our conclusions and some plans for the future.

II Stating the problem

Let π be the whole parliament. Following [17] we consider three groups of legislators

(or agents) in π, PA, PB and PM. These are Alice’s party, made of nA agents, Bob’s

party, made of nB legislators, and the mixed group, consisting in nM legislators. We have

nA+nB+nM = N , the total number of the members of π. We call pC(j) the j-th member

of the group C, where C = A,B,M and j = 1, 2, . . . , nC. The difference between the

parties is as follows: suppose π have to decide whether to accept or refuse a law, Λ. Alice

wants Λ to be accepted: she says yes to Λ. On the other side Bob, and its group PB can

in principle vote ”yes” or ”no” depending on the interaction with PA. However, we will

assume later that Bob is against Λ. The case with no interaction is almost trivial, since

in this case PB is essentially a copy of PA, and we could simply double the analysis given

in Section III.1 below where the influence of the leader, Alice or whoever, on its party has

been analyzed in detail. More interesting is the case in which PA and PB interact. And

even more interesting is the introduction of a third party, PM, which we suppose to have

no leader and no a priori position to follow.

Since the only possible choices for Λ are ”yes” and ”no”, it is natural to imagine that

each pC(j) is described by a linear combination of two orthogonal vectors, one representing

the choice ”yes”, the vector eC0(j), and the vector eC1(j), corresponding to the choice ”no”.
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These two vectors form an orthonormal (o.n.) basis in the Hilbert space HC
j = C2,

endowed with its standard scalar product ⟨., .⟩j. The general vector of pC(j) can be

written as

ψC
j = αC

j e
C
0(j) + βC

j e
C
1(j), (2.1)

with |αC
j |2 + |βC

j |2 = 1. Here, as before, j = 1, 2, . . . , nC and C = A,B,M. |αC
j |2 and

|βC
j |2 can be seen respectively as the probability of pC(j) to vote ”yes” or ”no”. We can

naturally associate a composite Hilbert space to each of the parties in π, made of copies

of C2. In particular we put

HA = ⊗nA
j=1HA

j , HB = ⊗nB
j=1HB

j , HM = ⊗nM
j=1HM

j ,

and

H = HA ⊗HB ⊗HM. (2.2)

An o.n. basis of H is clearly consisting of tensor products of states eC0(j), and e
C
1(j) for

various j and different C, that is of the vectors of the set

E = {eA0 (1), eA1 (1), . . . , eA0 (nA), e
A
1 (nA), e

B
0 (j), e

B
1 (1), . . . , e

M
0 (nM), eM1 (nM)}. (2.3)

For instance, a vector describing a situation in which all the legislators of PA and PM

vote ”yes”, while all those of PB vote ”no” is

(eA0 (1)⊗ · · · ⊗ eA0 (nA))⊗ (eB1 (1)⊗ · · · ⊗ eB1 (nB))⊗ (eM0 (1)⊗ · · · ⊗ eM0 (nM)).

Of course the dimensionality of H increases with N . In fact we have dim(H) = 2N . An

operatorX acting on, say, HA
1 , is identified with the tensor productX⊗I2⊗· · · I2, i.e. the

tensor product of X with N − 1 copies of the identity operator I2, acting on all the other

Hilbert spaces. However, see Sections II and III, in our applications we shall consider

some simplifications that reduce significantly the dimensionality of the Hilbert space. In

particular, we will suppose that all the members of a specific party are indistinguishable,

i.e., they all feel the same interactions and are described by the same parameters, with

the same values, so that it is reasonable to restrict to nA = nB = nM = 1, and the

various HA,HB,HM have dimension 2, while H has dimension 8. This is why, in the rest

of the paper, we will often focus on a single legislator of π, L, or, at most, on a single

representative member for each party.
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We consider now the vector

ψ = α e0 + β e1, (2.4)

with |α|2 + |β|2 = 1. This ψ is, of course, analogous to the one in (2.1) adopting a

simplifying notation which is sufficient now since we are only focusing on L. We should

also mention that, in the following, sometimes we will use |ej⟩ rather than simply ej,

j = 0, 1. This is useful when, see for instance ρψ below, rather than to the vectors,

we deal with density matrices. A possible parametrization of the vector ψ, adopted in

particular in [17], is the following: α = cos(θ/2) and β = sin(θ/2) eiφ, with θ ∈ [0, π], and

φ ∈ [0, 2π[.

We can now define a density matrix ρψ as an operator acting on H = C2 as follows:

ρψf = ⟨ψ, f⟩ψ, ∀f ∈ H. In the bra-ket language, ρψ is often written as ρψ = |ψ⟩⟨ψ|.
More explicitly, ρψ is the two-by-two matrix

ρψ =

(
|α|2 αβ

αβ |β|2

)
, (2.5)

which is manifestly self-adjoint and with unit trace. In particular, if L is in a ”yes” or in

a ”no” mood, e0 or e1, the related density matrices are

ρ0 =

(
1 0

0 0

)
, ρ1 =

(
0 0

0 1

)
, (2.6)

with obvious notation. In [17] the main idea was to measure the distance of the density

matrix of the various legislators with those corresponding to Alice (ρ0) and Bob (ρ1).

This is a way to check which the final decision of each legislator is. Moreover, as already

observed, a free will parameter was introduced in [17] for PA and PB. For instance, let rA

be this parameter for PA. Then, it is not required that ρψ = ρ0 to conclude that L is going

to vote ”yes”. It is sufficient that the difference between ρψ and ρ0 is less than rA or, more

explicitly, that d(ρψ, ρ0) ≤ rA. Here d(., .) is a distance between density matrices. Like any

distance, d(., .) must satisfy some constraints: it must be symmetric, d(ρψ, ρφ) = d(ρφ, ρψ),

non negative, d(ρψ, ρφ) ≥ 0, with in particular d(ρψ, ρφ) = 0 if and only if ρψ = ρφ, and

it must satisfy the triangular inequality: d(ρψ, ρφ) ≤ d(ρψ, ρη) + d(ρη, ρφ), for all density

matrices ρψ, ρη and ρφ. In [17] the explicit expression for the distance was the following:

d(ρψ, ρφ) =
1

2
Tr|ρψ − ρφ|,
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where Tr|A| is the trace and |A| =
√
A†A, A ∈ M2, the set of all two-by-two matrices.

Here we just want to briefly comment that, in our opinion, this choice of distance does

not always perform well, at least if we still want to give a full meaning to the previ-

ous parametric representation for α and β. In fact, using this parametrization, we get

d(ρψ, ρ0) = sin(θ/2) and d(ρψ, ρ1) = cos(θ/2), which are both independent of φ. This is

reasonable when we use density matrices, but not so much when we adopt vectors, which

is also a natural choice, used several times in the literature in similar situations. In this

latter case, the distance dn(ψ, ϕ) = ∥ψ − ϕ∥, ∀ψ, ϕ ∈ H, could be a good alternative,

having no drawback of the kind shown for d(., .).

Our approach is based on the derivation of suitable mean values of some observables

describing the final decision of the legislator L. In particular, using the density matrices

defined in (2.6), their mean values are obtained through

⟨ρ0⟩ψ = Tr [ρψρ0] , ⟨ρ1⟩ψ = Tr [ρψρ1] . (2.7)

As we shall see, the above expressions can be straightforwardly extended to take into

account the presence of multiple members belonging to different parties (see for instances

(3.18) below). The meaning of (2.7) is quite evident: ⟨ρ0⟩ψ is the mean value of the

operator |e0⟩⟨e0| which represent the pure state corresponding to ”L votes yes”, whereas

⟨ρ1⟩ψ is the mean value of |e1⟩⟨e1|, the pure state representing, this time, ”L votes no”.

Both these mean values are computed on the density matrix ρψ describing L. Using the

properties Tr[ρψ] = 1 and ρ0+ρ1 = 11, one can easily obtain ⟨ρ0⟩ψ = 1−⟨ρ1⟩ψ. Hence, the
time evolution of ⟨ρ0⟩ψ and ⟨ρ1⟩ψ can be phenomenologically interpreted as a measure of

the legislator’s decision to vote ”yes” or ”no”.

III The dynamics of the system

Our main effort consists in proposing a plausible dynamics for the generic member of the

group C. This means that we are supposing that the member’s decision can change in

time due, for instance, to the parties’ influence or to the presence of one or more leaders,

not necessarily belonging to different parties. The original vector (2.4) ψ becomes now

time-dependent, ψ(t), and this new vector still belongs to the same Hilbert space H in
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(2.2): again we omit the label of the party since the mechanisms we shall describe are

essentially the same for each legislator, and we are focusing on just one of them, L.
It is well known that the dynamics of the wave function of a closed quantum system

is governed by the Schrödinger equation:

i
d

dt
ψ(t) = Hψ(t), (3.1)

where H = H† is the self-adjoint Hamiltonian operator containing all mechanisms acting

in the closed system. Given the initial condition ψ(0) the evolution ψ(t) is completely

determined. Formally we have ψ(t) = e−iHtψ(0).

However our system can be seen as open, where the small closed subsystem is made

by the various members of the parties, while their reservoirs are nothing but the parties

themselves. This is because the parties can influence the single legislator, while the

opposite is quite less plausible. Stated differently, Alice (resp. Bob) influences what each

single pA(j) (resp. pB(j)) decides, but pA(j)’s (resp. pB(j)’s) opinion is not relevant for

Alice (resp. Bob). This kind of one-directional flow of influence suggests that the dynamics

in (3.1) is not the most appropriate, then. The reason is twofold: first of all, self-adjointess

ofH does not allow, by itself, to avoid identical strength of interactions between, say, Alice

and pA(j): if H = H†, then if Alice communicates with pA(j) with a given strength, then

pA(j) communicates back with Alice with the same strength. Secondly, it has been proved

in recent years, see [6] for instance, that H = H† is only compatible, if dim(H) < ∞, as

in our case, with periodic or quasi-periodic dynamics. But such an oscillating dynamics,

of course, is not really what one expects in a decision-making process, where one imagines

to find some limiting value, corresponding to the final decision. Hence, we need to include

some non-Hermitian effect, that we mimic here trough the Gorini-Kossakowski-Sudarshan-

Lindblad (GKSL) equation, see for instance [18, 19] for open quantum systems, and

[20, 21, 22] for applications outside the quantum realm.

Remark:– The GKSL equation below is not the only possibility to analyse the time

evolution of a given open quantum system. Other possibilities are also well known, as a

purely Hamiltonian approach in which the Hamiltonian includes also terms of the reser-

voir, [5, 6, 19], or using the so-called (H, ρ)-induced dynamics, [23].

In particular, considering the density operator ρ(t) = |ψ(t)⟩⟨ψ(t)| whose matrix repre-
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sentation is (2.5), but with time dependent parameters, the resulting differential equation

for the evolution of ρ is the well known GKSL equation:

d

dt
ρ(t) = −i[H, ρ(t)] +

N∑
j=1

(
Ljρ(t)L

†
j −

1

2

{
L†
jLj, ρ(t)

})
, (3.2)

where the various Lj are the Lindblad operators, generally taken traceless and connected

to the influence of the larger system (the parties) on the small system (the various members

of π), and where {X, Y } = XY + Y X is the anti-commutator between two generic

operators X and Y . In writing this equation we have assumed that the dynamics of

the system is Markovian, and the Lindblad operators (which describe the way the Leader

influences the various members of his party) are independent of the current state of the

system. This can be simply understood under the assumption that the leader is not

influenced in any way by the reaction of the members. This requirement is a natural

way of interpreting an environment which is negligibly perturbed by a small system. Of

course this is a strong hypothesis that however is plausible in a dynamics ruled by some

leadership. We notice that when the interaction with the larger system is not included,

we recover the Von Neumann equation:

d

dt
ρ(t) = −i[H, ρ(t)],

which could be easily deduced from (3.1), since ρ(t) = |ψ(t)⟩⟨ψ(t)|.
For the interpretation of our model it is useful to remind that the interaction between

the small system with the environment produces a mixture of states from a generic pure

state, [24]. In fact, adopting a standard perturbative approach for small times and ne-

glecting for a moment the action of the Hamiltonian1 H in (3.2), the evolved density

operator of a pure state ρ = |ψ⟩⟨ψ| = ρ(0) in a small time step dt can be rewritten, to

the leading order in dt, as

ρ(dt) ≈ ρ− 1

2
dt

N∑
j=1

(
L†
jLjρ+ ρL†

jLj

)
+ dt

N∑
j=1

LjρL
†
j ≈ A ρA† +

N∑
j=1

Bj ρB†
j , (3.3)

1We are assuming that its effect is negligible with respect to the Lindbladian part, so that the Marko-

vian process is highlighted.
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where

A = 11− dt

2

N∑
j=1

L†
jLj, Bj =

√
dt Lj, j = 1, . . . , N. (3.4)

In other words, the evolved state is a mixture of the pure states defined by A|ψ⟩ and by

the various Bj|ψ⟩. In particular we have

A ρA† = A |ψ⟩⟨ψ| A† = pAÃ |ψ⟩⟨ψ|Ã†,

with Ã = 1
∥A|ψ⟩∥A. Here pA = ∥A |ψ⟩∥2 ≃

(
1− dt

∑N
j=1 ∥Lj|ψ⟩∥2

)
can be seen as the

probability that the vector ψ evolves in Ã |ψ⟩. This vector for dt→ 0 tends to the initial

vector |ψ⟩, and follows the so called continuous drift-type evolution, [24].

With similar computations we have

Bj ρB†
j = Bj |ψ⟩⟨ψ| B†

j = pBj
B̃j |ψ⟩⟨ψ|B̃†

j , ∀j = 1, . . . , N, (3.5)

where B̃j = 1
∥Bj |ψ⟩∥Bj and pBj

= ∥Bj |ψ⟩∥2 = dt∥Lj|ψ⟩∥2 is the probability that the vector

ψ evolves in B̃j |ψ⟩2. The process of evolving in such a state is called evolutionary jumps

as for dt → 0 the vector B̃j |ψ⟩ does not tend to the original |ψ⟩. This is the key process

that produces mixed states as a consequence of the interaction of the system with the

large environment. As it is well known, this process can be detected by looking at the

so-called purity, P = Tr(ρ2), and at the Von Neumann entropy

S = −Tr(ρ log ρ), (3.6)

that for a mixed state satisfy the inequalities P < 1, S > 0, while P = 1 and S = 0 for

pure states.

III.1 A single party: the role of the leader

After this general introduction, we want to analyse next how the choice of a single agent

is influenced by its own party, and from its leader in particular. Assuming that all the

2Notice that due to (3.3), here we simply have B̃j = 1
∥Lj |ψ⟩∥Lj
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members of the party are indistinguishable, it is natural to focus on a single member, L,
so to that the dimension of the problem reduces, and the relevant Hilbert space is just

H = C2. The vector representing L’s choice is simply ψ = α|e0⟩ + β|e1⟩, as we already

discussed before. The only effects we consider here are the free will (or its uncertainty)

of L and the leader’s influence.

In this case, the Hamiltonian governing the various processes occurring for L is as-

sumed to be

H = Hf +Hv,

Hf = ωâ†â, Hv = λ(â† + â), (3.7)

where ω, λ are non negative parameters. Here we have introduced the (fermionic) ladder

operators â and â†. These operators are very well known and used originally in quantum

mechanics, see [25, 26] for instance, but then adopted also in other contexts, [5, 6]. For

our purposes, it is sufficient to say that these operators are defined on the o.n. basis

{e0, e1} of C2 as follows:

âe0 = 0, âe1 = e0, â†e0 = e1, â†e1 = 0.

They satisfy the canonical anti-commutation relations (CAR) {â, â†} = â â† + â† â = I2

and â2 = 0.

As widely discussed in the literature, see [5, 6] for an overview, the term Hf is re-

sponsible of an inertial mechanism which somehow forces L to maintain its initial choice,

whereas Hv works in the opposite way by inducing some change in L while forming its

final decision. This can be understood as follows: suppose that L is described, at t = 0,

by the vector ψ = ej. Then ψ is an eigenstate of Hf , so that ψ is not modified when

acting on it with Hf . On the other hand, suppose that ψ = e0. Then, using (3.7), we see

that Hvψ = λe1, while, if ψ = e1, we find that Hvψ = λe0: the action of Hv on ψ changes

drastically the state of the system. Notice that, so far, there is no reason for L to change

his status toward ”no” or ”yes”. In other words, there is no reason for L to move from

its original state ψ to a new state ψnew which is either e1 or e0 (or close to them). The

way this task can be achieved is by introducing in the model the two Lindblad operators

LA,1 = τ1â, LA,2 = τ2â
†, (3.8)
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which represent the action of L’s leader on L itself. In particular, under the action of

LA,1, L is influenced by its leader to vote ”yes”, since it is forced to the vector e0, whereas

LA,2 does the opposite forcing to the vote ”no”, i.e., to the vector e1: the real parameters

τ1 and τ2 fix the strengths of these actions, and having τ1 and τ2 both non zero can be

seen as the simultaneous presence of two different leaders of the same party proposing the

two opposite final choice ”yes” and ”no” respectively. Of course, the more influent is the

leader, the higher the value of its parameter τj. Looking at the action of the operators on

a pure state identified by |ψ⟩ = α|e0⟩ + β|e1⟩, for a small time dt, according to (3.3) the

pure state becomes the mixed state

ρ(dt) = pAÃ|ψ⟩⟨ψ|Ã† + pB1|e0⟩⟨e0|+ pB2|e1⟩⟨e1| (3.9)

with

Ã =
1

√
pA

(
11− dt

2

(
|ατ2|2|e0⟩⟨e0|+ |βτ1|2|e1⟩⟨e1|

))
and

pA = (1− pB1 − pB2), pB1 = dt|βτ1|2, pB2 = dt|ατ2|2.

Hence there is a chance that the state is evolved in |e0⟩ (vote ”yes”) with probability pB1 ,

in |e1⟩ (vote ”no”) with probability pB2 , otherwise it follows the continuous drift-type

evolution. It is expected that as time passes the mixture of the states becomes a relevant

phenomenon.

Some numerical simulations for different values of τ1 and τ2 are shown in Figures 1(a)-

(b) and 2(a)-(b), where the mean values ⟨ρ0⟩ψ, defined in (2.7), and the entropy S, defined

in (3.6), are shown. Considering the case τ1 ̸= 0, τ2 = 0, that represents the situation

where L is influenced by Alice to vote ”yes”, we reach an equilibrium that, depending

also on the balance with the other contribution in (3.2), tends faster to 1 as τ1 increases.

We see that the whole dynamics behaves as one would expect, given that the final choice

to vote ”yes” turns out to be highly probable3.

We notice that, for moderate low values of τ1, see the cases τ1 = 0.1 and τ1 = 0.5,

strong amplitude oscillations are visible in the early-mid phase and tend to be damped

3Even if the long time value of ⟨ρ0⟩ψ is not exactly one, it appears to be almost one. This is a sort of

uncertainty in our model, which replace the free will in [17].
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for later times. They are consequences of the member’s indecision mechanism due to the

Hamiltonian term Hv which, as observed in other contexts ([5, 6]), is the main responsible

of the oscillatory behaviour in the mean values of the density or number operators. We

should consider that, in a real situation, there could be also (few) members of PA reaching

a different final choice and therefore voting ”no”. Hence, from a pure quantum interpre-

tation, the final state is a mixture of states most of them representing the vote ”yes” and

few others the vote ”no”. The evolution of the entropy S can be seen in this sense as a

possible measure of this mixture. In Figures 1(b) we observe that S(t) is always strictly

positive, indicative of the presence of a mixture of states, and showing the presence of

a main peak in time followed by a rapid decreasing up to some equilibrium value. This

value is reached more rapidly for increasing values of τ1. We can justify this behaviour by

imagining that in a first phase the influence of L’s leader due to the Lindblad operator

LA,1 strongly modifies the member’s state of mind, also because of the presence of Hv.

However, the higher is the strength of LA,1, i.e. the value of τ1, the more rapidly this

condition moves toward an equilibrium. The fact that the final equilibrium value increases

for lower τ1 can be interpreted as the lower influence of L’s leader and hence to a richer

mixture of states related in principle to the presence of more members of the party voting

”no” (which, however, remain a minority with respect to those voting ”yes”)4.

Adding the Lindblad operator LA,2 creates a richer dynamics, as shown in Figures

2(a)-(b). The presence of two Lindblad operators, inducing opposite effects, can be seen

as a situation in which two different leaders of the same party influence the final choice of

L. As expected when τ1 > τ2 the final mean value ⟨ρ0⟩ψ is closer to 1 rather than to 0, and

it approaches 1 more and more as the difference τ1 − τ2 increases. A perfect equilibrium

is reached when τ1 = τ2, and in this case the final value of ⟨ρ0⟩ψ is equal to 0.5. Finally,

for τ2 > τ1, ⟨ρ0⟩ψ is closer to 0, regardless its initial value. The various mechanisms that

could lead to this dynamics can be straightforwardly deduced by the previous discussion

made on the case τ2 = 0. Concerning the time evolution of the entropy S we can observe

that the case τ1 = τ2 can be considered critical in the sense that the equilibrium value is

log(2) ≈ 0.693 which is the maximum admissible value for S (we recall that S is bounded

4This interpretation is based on the assumption that all the members of the various parties are

indistinguishable, so that each member of PA behaves as L.
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by the value log (d), being d the dimension of the Hilbert space in this case). This case

represents a situation of uncertainty in which no clear final choice is achieved, and the

state is a perfect mixture of ρ0 and ρ1. The other cases show also that adding a second

Lindblad operators induces a stronger mixture as compared to the case where τ2 = 0: two

competing leaders of a single party create more uncertainty!

(a) (b)

Figure 1: (a) The time evolution of the mean value ⟨ρ0⟩ψ(t) for different values of τ1

and with τ2 = 0. Other parameters: ω = 1, λ = 0.25. The initial condition is |ψ⟩ =√
0.7|e0⟩ +

√
0.3|e1⟩. In the small inset the time evolution for early times. (b) The time

evolution of the entropy S(t) for the same parameters and initial condition.

III.2 Two parties: the dynamics of alliance

In this section we want to model a situation in which the members of the first party

PA interact with the members of the second party PB, assuming however that only the

members of PA receive specific indications on the option they should vote (specifically the

option ”yes”). It is like if Bob’s influence on his own party is very low, if not completely

negligible: this is what is usually called lack of leadership. We will consider the case in

13



(a) (b)

Figure 2: (a) The time evolution of the mean value ⟨ρ0⟩ψ(t) for different values of τ2

and with τ1 = 0.5. Other parameters: ω = 1, λ = 0.25. The initial condition is |ψ⟩ =√
0.7|e0⟩+

√
0.3|e1⟩. (b) The time evolution of the entropy S(t) for the same parameters

and initial condition.

which Bob influences the various pB(j) later on. Our goal here is to derive the proper

model and operators to describe: i) a collaborative-like attitude of the parties, that is the

second members of PB are inclined to vote for the same option as the members of PA;

ii) a conflictual dynamics in which the two parties move in different directions (one votes

”yes” while the other votes ”no”).

More in details, we suppose here that only the Lindblad operator LA,1 in (3.8) acts

by forcing the members of PA to vote ”yes”, and that the behaviour of the members

of PB is only dictated by their own interactions with PA. It follows that the Lindblad

operator is simply LA,1 = τ1â1, whereas the Hamiltonian ruling the interactions between

the members can be assumed to be

H = Hf +Hv +Hc +Hnc,

where Hf , Hv here extend those given in the previous section, while Hc, Hnc are opera-

tors describing the new collaborative or conflictual (non collaborative) dynamics. To be

14



specific,

Hf = ω1â
†
1â1 + ω2â

†
2â2, (3.10)

Hv = λ1

(
â†1 + â1

)
+ λ2

(
â†2 + â2

)
, (3.11)

with ω1,2 ≥ 0, λ1,2 ≥ 0, while the new operators are

Hc = γc

(
â†1â2 + â†2â1

)
, Hnc = γnc

(
â†1â

†
2 + â2â1

)
. (3.12)

Here our interest is focused on just two legislators, L1 and L2, as representants of Alice’s

and Bob’s parties, assuming as in Section III.1 that all the members of a given party share

a similar attitude towards Λ. The operators âj and â
†
j obey the following two-dimensional

CAR:

{âj, â†k} = δj,kI4, {âj, âk} = 0, (3.13)

j, k = 1, 2. Here I4 is the identity operator on C4.

The motivation that leads to these terms in the Hamiltonian is based on the way in

which the Lindblad operator acts on the system. In fact, in view of what we have seen

before, LA,1 drives a generic vector |ψ̃⟩ =
∑

j,k=0,1 αj,k|ej,k⟩ into a new vector where the

components proportional to α1,0 and α1,1 tend to disappear5.

Given that, it is interesting to describe how, at least heuristically, the combined action

of H and LA,1 works on the members of PB supposing that the initial configuration is

represented by the pure state |ψ(0)⟩ (with its related density operator ρ = |ψ(0)⟩⟨ψ(0)|)
given by

|ψ(0)⟩ =
∑
j,k=0,1

αj,k|ej,k⟩, with
∑
j,k=0,1

|αj,k|2 = 1.

Since the behaviour of the members of PB is not directly modified by LA,1, and observing

that Hf , Hv are not responsible for the interaction, we start describing naively what

happens if we focus for small times on a branch which is firstly affected by the action of

Hc and then by LA,1. In particular, we have

Hc|ψ(0)⟩ = γc (α1,0|e0,1⟩+ α0,1|e1,0⟩) , (3.14)

5In fact, the action of LA,1 makes these terms in |ψ̃⟩ disappear. However, the simultaneous effect of

H, partly restores them.
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since all the other terms of |ψ(0)⟩ are annihilated by the action of Hc. Hence, after a

small time dt, we obtain the new vector (up to a suitable normalization)

|ψ(dt)⟩ ≈ |ψ(0)⟩ − idt γc (α1,0|e0,1⟩+ α0,1|e1,0⟩) . (3.15)

This vector is different from |ψ(0)⟩ if α1,0 or α0,1 are non zero. Then, following the same

ideas discussed in the previous sections, and considering the subsequent action of LA,1

only, the obtained state is induced to jump, with some non zero probability, to a state

expressed by the density operator

B̃1 |ψ(dt)⟩⟨ψ(dt)|B̃†
1,

where B̃1 =
1

∥â1|ψ⟩∥ â1 (see (3.5)). It is clear that, in view of (3.15), the state following this

jump can only be of the form

|ψjump⟩ =
∑
k=0,1

α̃1,k|e0,k⟩ − i dtγcα0,1|e0,0⟩, (3.16)

where α̃1,k = α1,k/||â1|ψ⟩|| and where as usual the proper normalization should be inserted.

It is now clear that the second populations can have an excitement of the 0 level due to the

appearance of the term −i dtγcα0,1|e0,0⟩: the two parties are driven to the same decision.

This perturbative analysis reflects our numerical results, as we will show next.

With similar computations, we can derive the approximated state obtained by the

action of Hnc first, and the jump induced by LA,1 after. In this case we get

|ψjump⟩ =
∑
k=0,1

α̃1,k|e0,k⟩ − i dtγncα0,0|e0,1⟩, (3.17)

which, when compared to (3.16), leads to an excitement of |e0,1⟩, that is the state repre-

senting the two opposite members’ decision.

Numerical results confirming this kind of behavior are shown in Figure 3 for the

cooperative attitude, and in Figure 4 for the non cooperative one. Figures contain the

time evolutions of the legislator’s intention to vote ”yes” for both parties, expressed by

the mean values

⟨ρ0⟩(1)ψ = Tr [ρψ(ρ0 ⊗ I2)] , ⟨ρ0⟩(2)ψ = Tr [ρψ(I2 ⊗ ρ0)] , (3.18)
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where ρ0 =

(
1 0

0 0

)
, I2 =

(
1 0

0 1

)
, and of the entropy S(t).

As we can see in Figures 3(a)-(b), for the cooperative case, increasing the value of γc

leads to a continuous growth of the asymptotic value of ⟨ρ0⟩(2)ψ (t), showing that the action

of Hc is responsible of the common attitude of the members of PA and PB. We also notice

that, again for increasing γc, also ⟨ρ0⟩(1)ψ (t) slightly increases its asymptotic value: we can

speculate on this effect by supposing that the members of PA reinforce their attitude in

voting yes when they interact and influence the members of PB in doing the same. This

is also supported by (3.16) according to which there is a jump proportional to γc toward

the state |e0,0⟩, that is all members vote ”yes”. Concerning the measure of the entropy

S(t), Figure 3(c), the initial phase (up to t ≈ 50) is characterized by an overall growth of

S(t), and then by a decreasing behaviour and convergence towards an asymptotic value

which in general decreases faster for increasing γc. The peaks in S(t) are higher for larger
values of γc. This could be interpreted by the fact that the cooperative dynamics induced

by Hc creates, together with the action of LA,1, a rapid mixture of states representing the

same final decision taken by the parties, and the rapid decay can be seen as an immediate

settlement to the asymptotic value.

The non-cooperative case is shown in Figures 4, where the various time evolutions are

shown by changing the key parameter γnc which tunes the strength of Hnc. As expected,

and predicted by our perturbative approach, increasing the effect of Hnc leads to two

opposite final choices taken by the members of PA and PB, even if the behaviour of these

latter is not as sharp as that of PA. It is interesting to note that also the entropy S(t)
attains its equilibrium to larger values than those obtained in the cooperative case; this

can be explained by the fact that the action of the Lindbladian operator LA,1 together

with the action of H, induces a strong mixture of states increased by the non collaborative

effect.

III.3 The effects of Bob and PM

We conclude the analysis of our quantum parliament π by briefly considering the inclusion

in our model of a third party PM that does not follow a leader’s influence, and the case

in which Bob has some (weak) influence on PB. We shall perform two different kind
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of experiments. In the first one, we suppose that only PA is influenced by its leader,

whereas the members of PB and PM are left to interact with the members of PA but they

both have no strong leader to follow. In the second experiment we suppose that PB has

a leader, Bob, weak compared to Alice. The presence of a third party in our model is

interesting because allows us to consider non-trivial cubic terms in the Hamiltonian of π,

see (3.22) below.

For the first experiment, we use the same hypothesis of the previous sections, assuming

that the only Lindblad operator is LA,1 = τ1â1. In this case, adding a third agent to our

system, the Hilbert space of the micro-system becomes H = C8, and the vector represent-

ing the member’s choice is given by |ψ⟩ =
∑

j,k,l=0,1 αj,k,l|ej,k,l⟩ with
∑

j,k,l=0,1 |αj,k,l|2 = 1.

Concerning the Hamiltonian ruling the behaviour of the three parties, it is natural to

consider the following one:

H = Hf +Hv +Hi, (3.19)

where, similarly to (3.10)-(3.11) we have

Hf =
∑

k=1,2,3

ωkâ
†
kâk, (3.20)

Hv =
∑

k=1,2,3

λk

(
â†k + âk

)
(3.21)

with ω1,2,3 ≥ 0, λ1,2,3 ≥ 0, and where the interaction term Hint is assumed to be

Hint = γ1 â
†
1â2â3 + γ2 â

†
1â

†
2â3 + γ3 â

†
1â2â

†
3 + γ4 â

†
1â

†
2â

†
3 + h.c. (3.22)

which contains all the possible cubic terms related to the ways the three parties could

mutually interact, and where γk ≥ 0, k = 1, 2, 3, 4. Here h.c. stands for hermitian

conjugate. This is needed if we require H = H†. The CAR for the operators involved

extend those in (3.13) to three dimensions. To clarify the effect of each term in Hint,

in our numerical simulations we always assume that only one of the parameters γk is

different from zero. Of course, one can easily relax this assumption to create more complex

dynamics considering various terms in Hint acting simultaneously.

18



Some numerical results for different cases of Hint are shown in Figures 5, where the 4

possible triple interactions are considered. Here we plot the functions
⟨ρ0⟩(1)ψ = Tr [ρψ(ρ0 ⊗ I2 ⊗ I2)] ,

⟨ρ0⟩(2)ψ = Tr [ρψ(I2 ⊗ ρ0 ⊗ I2)] ,

⟨ρ0⟩(3)ψ = Tr [ρψ(I2 ⊗ I2 ⊗ ρ0)] ,

(3.23)

which extend those in (3.18), and are a measure of the members’ will to vote ”yes”.

We notice that most of the results can be understood by following the same analysis,

based on the perturbative approach, proposed in the previous section for the single party

and the two-parties cases. Hence, for instance, the case Hint = γ1â
†
1â2â3+h.c corresponds

to a dynamics in which all the members of the parties tend to vote ”yes” (panel (a)),

whereas the caseHint = γ4â
†
1â

†
2â

†
3+h.c implies that the members of PA vote ”yes”, whereas

the others vote ”no” (panel (d)). They suggest a globally collaborative and a partly non

collaborative behaviour. Other cases in the other panels follow straightforwardly.

Remark:– It is worth observing that the perturbative approach considered before

for one or two parties, is much less clear in this case, with three different parties. The

presence of too many agents makes the global dynamics much more complicated, and the

perturbation expansion in, e.g., (3.9) is less explicative of the full dynamics, especially

when the strength of LA,1 is lower than that of H, that is τ1 is smaller as compared to

the other parameters of the model.

The second set of experiments is performed by adding a second Lindblad operator

that forces the members of PB to vote ”no”, opposite to the choice of PA. In particular

the Lindblad operator governing this mechanism is

LB,1 = κâ†2, (3.24)

with κ > 0. According to the analysis performed in the previous section, this term forces

the generic member of PB to jump in a state representing the vote ”no”. We also suppose

that the Hamiltonian is same defined in (3.19). Numerical results are shown in Figures 6,

for κ = 0.1, lower than τ1 = 0.5 which fixes the strength of LA,1, and the other parameters

are as in the previous experiments. The results are in agreement with what expected,
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and governed mainly by the interaction between the parties PA and PM. In all case the

members of PB are forced to vote ”no”, given that ⟨ρ0⟩(2)ψ reaches asymptotic values that

are always below 0.5, and most often even below 0.2. The case γ1 > 0 and γ2 > 0, panels

(a)-(b), depict a complete cooperation between the party PA and PM, in agreement with

the previous experiment. The non cooperative attitude for PA and PM is instead obtained

in the case γ3 > 0 and γ4 > 0, panels (c)-(d).

IV Conclusions

We have proposed a dynamical approach based on the GKLS equation for the analysis

of the time evolution of a quantum parliament, whose members are asked to approve

or not a certain law. In particular, we have analysed in some details those terms in the

model which produce a collaborative and a non collaborative behaviour, to discriminate

between the two. Our approach is deduced form the idea that a small-system is influenced

by the external environment, and each state of the system, representing the decision

of a generic member of a party, evolves with the aforementioned GKLS equation. In

particular, the various members (the small-system) can be influenced by some leaders’

influence (the environment), with the possibility that the members of different parties can

interact between them (in a collaborative/ non collaborative way). We have supposed that

the interactions between members are described by a Hermitian Hamiltonian, containing

reversible effects, whereas the influence of the leaders is a unidirectional effect described

by Lindblad operators. With this approach we avoid the use a non-Hermitian methods,

like in [27, 28] for different macrosystems, allowing for the standard assumptions to derive

the dynamics with operators in quantum mechanics. It is clear that the models proposed

here can be adapted to other systems, of the kind discussed in the past, and a comparison

between the efficiency of the various approaches is surely interesting and worth to be

carried out. These are part of our future plans.
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(a) (b)

(c)

Figure 3: (a) The time evolution of the mean value ⟨ρ0⟩(1)ψ (t) for different values of γc

(cooperative attitudes). Other parameters: ω1 = ω2 = 1, λ1 = λ2 = 0.25, γnc = 0, τ1 =

0.5. Initial state is such that ⟨ρ0⟩(1)ψ = 0.6, ⟨ρ0⟩(2)ψ = 0.4. (b) The time evolution of the

mean value ⟨ρ0⟩(2)ψ (t) for the same parameters and initial condition. (c) The time evolution

of the entropy S(t) for the same parameters and initial condition.
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(a) (b)

(c)

Figure 4: The time evolution of the expected value ⟨ρ0⟩(1)ψ (t) for different values of γnc (non

cooperative attitudes). Other parameters: ω1 = ω2 = 1, λ1 = λ2 = 0.25, γc = 0, τ1 = 0.5.

Initial state is such that ⟨ρ0⟩(1)ψ = 0.6, ⟨ρ0⟩(2)ψ = 0.4. (b) The time evolution of the expected

value ⟨ρ0⟩(2)ψ (t) for the same parameters and initial condition. (c) The time evolution of

the entropy S(t) for the same parameters and initial condition.
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(a) (b)

(c) (d)

Figure 5: (a) The time evolution of the expected value ⟨ρ0⟩(1,2,3)ψ (t) for the three parties

model. Non zero parameters are: ω1 = ω2 = ω3 = 0.1, λ1 = λ2 = λ3 = 0.025, γ1 = 1, τ1 =

0.5. Initial state is such that ⟨ρ0⟩(1)ψ (0) = 0.7, ⟨ρ0⟩(2)ψ (0) = 0.6, ⟨ρ0⟩(3)ψ (0) = 0.5. In the

inset the time evolution of the entropy S. (b) Same plots as in (a) with γ2 = 1, γ1 = 0,

and the same other parameters and initial conditions. (c) Same plots as in (a) with

γ3 = 1, γ1 = 0, and the same other parameters and initial conditions. (d) Same plots as

in (a) with γ4 = 1, γ1 = 0, and the same other parameters and initial conditions.
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(a) (b)

(c) (d)

Figure 6: (a) The time evolution of the expected value ⟨ρ0⟩(1,2,3)ψ (t) for the three parties

model with the add of a second Lindblad operator κâ†2. Non zero parameters are: κ = 0.1,

ω1 = ω2 = ω3 = 0.1, λ1 = λ2 = λ3 = 0.025, γ1 = 1, τ1 = 0.5. Initial state is such that

⟨ρ0⟩(1)ψ (0) = 0.7, ⟨ρ0⟩(2)ψ (0) = 0.6, ⟨ρ0⟩(3)ψ (0) = 0.5. In the inset the time evolution of the

entropy S. (b) Same plots as in (a) with γ2 = 1, γ1 = 0, and the same other parameters

and initial conditions. (c) Same plots as in (a) with γ3 = 1, γ1 = 0, and the same other

parameters and initial conditions. (d) Same plots as in (a) with γ4 = 1, γ1 = 0, and the

same other parameters and initial conditions.
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