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ABSTRACT

Context. A possible key element for large-scale energy release in the solar corona is a magnetohydrodynamic (MHD) kink instability
in a single twisted magnetic flux tube. An initial helical current sheet progressively fragments in a turbulent way into smaller-scale
sheets. Dissipation of these sheets is similar to a nanoflare storm. Since the loop expands in the radial direction during the relaxation
process, an unstable loop can disrupt nearby stable loops and trigger an MHD avalanche.
Aims. Exploratory investigations have been conducted in previous works with relatively simplified loop configurations. In this work,
we address a more realistic environment that comprehensively accounts for most of the physical effects involved in a stratified at-
mosphere typical of an active region. The questions we investigate are whether the avalanche process will be triggered, with what
timescales, and how will it develop as compared with the original, simpler approach.
Methods. We used three-dimensional MHD simulations to describe the interaction of magnetic flux tubes, which have a stratified
atmosphere with chromospheric layers, a thin transition region to the corona, and a related transition from high-β to dlow-β regions.
The model also includes the effects of thermal conduction and of optically thin radiation.
Results. Our simulations address the case where one flux tube amongst a few is twisted at the footpoints faster than its neighbours.
We show that this flux tube becomes kink unstable first in conditions in agreement with those predicted by analytical models. It then
rapidly affects nearby stable tubes, instigating significant magnetic reconnection and dissipation of energy as heat. In turn, the heating
brings about chromospheric evaporation as the temperature rises up to about 107 K, close to microflare observations.
Conclusions. This work confirms, in more realistic conditions, that avalanches are a viable mechanism for the storing and release of
magnetic energy in plasma confined in closed coronal loops as a result of photospheric motions.
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1. Introduction

The magnetic activity in the solar corona consists of a wide
range of events, reflecting the dynamic nature of the environ-
ment. The role of the magnetic field as the dominant reservoir
of energy that may heat the corona to millions of kelvin is
now widely accepted. Moreover, it is now clear that the ‘coro-
nal heating problem’ must address the whole solar atmosphere
as a highly coupled system (Parnell & De Moortel 2012); that
is, the solar corona must not be treated as an isolated envi-
ronment, but as an energetically open system with continuous
interactions with the underlying layers (i.e. the chromosphere
and photosphere). However, the nature of the mechanisms that
might lead the magnetic field to supply energy to the corona
is still highly debated. Although several processes have been
proposed in recent decades, it is still unclear how they inter-
act to produce the complex behaviour of the solar atmosphere.
For instance, photospheric observations show a very clumpy
magnetic field organized into clusters of elemental flux tubes
(Gomez et al. 1993). Above that, the bright corona consists of
arch-like magnetic structures called coronal loops that connect
regions with different polarity (Vaiana et al. 1973; Reale 2014).
The loops are, in turn, structured into thinner magnetic strands
that reflect the underlying granular pattern. Tangling and twist-

ing of the coronal magnetic strands cannot be avoided, according
to photospheric observations. The field must therefore reconnect
in order to prevent an infinite build-up of stress. This inevitably
produces plasma heating (Parker 1972; Klimchuk 2015). Inves-
tigating coronal loops is of fundamental importance to under-
standing the key physical aspects of several heating mechanisms
based on magnetic stress.

Coronal loops are generally organized into clusters of thin,
twisted threads (also called ‘strands’) that follow the same
behaviour. Nevertheless, as coronal loops commonly exhibit
strong magnetic fields of the order of 10 G or more (Yang et al.
2020; Long et al. 2017; Brooks et al. 2021), and the coronal
plasma is nearly ideal, transport of matter across the field is
strongly inhibited. In other words, the magnetic field confines the
plasma within the flux tubes. Moreover, since magnetic forces
are much stronger than gravity in the corona, the latter will
effectively act only along the field lines. Tenuous plasma is
strongly funnelled along the field lines and also thermally iso-
lated from the surroundings (Rosner et al. 1978; Vesecky et al.
1979). Coronal loops are anchored to the underlying chromo-
sphere and, a little further down, to the photospheric layer, where
the plasma β parameter exceeds unity by a few orders of mag-
nitude. There, the so-called footpoints of the loop are dragged
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by photospheric plasma motion, which, in turn, might be highly
irregular and turbulent. The typical strength of the magnetic field
in the photosphere has been found to be hundreds of Gauss in
active regions and sunspots (Ishikawa et al. 2021). Higher in the
corona, the plasma pressure decreases, the flux tube progres-
sively expands, and the magnetic field strength decreases while
the magnetic flux is conserved. The greatest expansion rate is
expected across the thin transition region separating the chromo-
sphere from the overlying corona (Gabriel 1976). There, the tem-
perature rapidly increases from thousands to millions of kelvin
and, consequently, the pressure scale-height increases by several
orders of magnitude.

The solar corona may be heated both by dissipation of stored
magnetic stresses (DC heating) and by the damping of waves
(AC heating; Parnell & De Moortel 2012; Zirker 1993). In par-
ticular, DC heating must involve both storage and impulsive
release of magnetic energy. In solar active regions, the energy
is presumably stored over timescales longer than an Alfvén
time. A reasonable general assumption is that the magnetic field
evolves quasi-statically through a sequence of equilibria, slowly
changing because the coronal footpoints are rigidly line-tied to
the low-beta photospheric plasma. As the coronal field moves
through these equilibria, energy is injected by the motions and
is then stored. Observations and numerical experiments provide
evidence that the evolution of coronal loops is strongly influ-
enced by photospheric motions (Chen et al. 2021). The coronal
magnetic field must be driven towards a stressed state, which will
be a non-potential configuration. For instance, footpoint rota-
tion may lead the magnetic structure to twist and gain mag-
netic energy. While magnetic energy is stored, the flux tube
could potentially be subject to strong stresses that may eventu-
ally trigger fast magnetohydrodynamic instabilities, such as the
kink instability (Hood et al. 2009) or the tearing mode instabil-
ity (Del Zanna et al. 2016), or lead to long-lasting Ohmic heat-
ing (Klimchuk 2006). The details of this conversion, for instance
whether it is continuous or by sequences of pulses (nanoflares),
are still under investigation. Another outstanding issue is the spa-
tial distribution of the heating, which may reveal a filamentary
structure on coronal loops.

Heating and brightening of coronal loops may occur as a
‘storm’ of impulsive events (Klimchuk 2009; Viall & Klimchuk
2011). Such heat pulses may be driven by multiple local-
ized instances of the magnetic field relaxing. The irregular
photospheric motion, as well as a large range of magnetohy-
drodynamic instabilities, may lead the magnetic structure to
develop fast reconnection and to produce heat. A very com-
pelling body of evidence now supports magnetic reconnec-
tion as the key element to start the process of the large-scale
release of energy, which might dissipate into background heating
(Hood et al. 2009). Apart from individual reconnection events
in localized current sheets and neutral points, many sites of
reconnection might develop in the complex and dynamic coro-
nal magnetic field. Energy released by several localized recon-
nection events can be predicted by Taylor’s dissipation theory
(Taylor 1974), which was first applied to reversed-field pinch
devices in plasma laboratories (Taylor 1986) and then extended
to the coronal environment (Browning & Priest 1986). Accord-
ing to Taylor’s theory, a turbulent, resistive plasma can rapidly
reach a minimum-energy state. During the process, the topol-
ogy of the magnetic field changes via reconnection, but magnetic
helicity is conserved.

In the corona, the magnetic field might become unstable
under resistive modes as it is slowly forced by photospheric
motions to explore a series of non-linear force-free states. In
conditions of high magnetic stress, the field must reconnect

and relax towards a linear force-free state, ∇ × B = αB, with
uniform α (Woltjer 1958; Heyvaerts & Priest 1983). In partic-
ular, magnetic energy is found to be released in the corona
throughout a widespread range of events that occur from large
(flares, <1025 J) down to medium (microflares, <1022 J) scales
(e.g. shown by Priest 2014). It has been suggested that the same
mechanism, operating on even smaller scales, could be respon-
sible for maintaining the one-million kelvin diffuse corona,
through so-called ‘nanoflare’ activity (Parker 1988).

Undetectable when first proposed (Parker 1988;
Antolin et al. 2021), observational evidence of such small
events, including nanoflares, has been growing (Mondal
2021; Vadawale et al. 2021). Solar Orbiter’s combination of
(Müller et al. 2020) high-resolution measurements of the photo-
spheric magnetic field with the Polarimetric and Helioseismic
Imager (PHI; Solanki et al. 2020) and ultraviolet and extreme
ultraviolet images from the Extreme Ultraviolet Imager (EUI;
Rochus et al. 2020) and spectra from the Spectral Imaging of
the Coronal Environment (SPICE; SPICE Consortium 2020),
are able to capture localized reconnection events down to
even smaller scales, the ‘campfires’ (Berghmans et al. 2021;
Zhukov et al. 2021). These are small and localized brightenings
in a quiet Sun region with length-scales between 400 km and
4000 km and durations between 10 s and 200 s. These coronal
events are rooted in the magnetic flux concentrations of the
chromospheric network.

A possible trigger mechanism for large-scale energy release
(such as solar flares) is the magnetohydrodynamic (MHD)
kink instability in a single twisted magnetic flux strand
(Hood & Priest 1979b; Hood et al. 2009). It typically arises
in narrow, strongly twisted magnetic tubes and results in the
cross-section of the plasma column moving transversely away
from its centre of mass, determining an irreversible imbalance
between the outward-directed force from magnetic pressure and
the inward force of magnetic tension (Priest 2014). During the
twisting, a helical current sheet forms that can eventually trig-
ger reconnection along the tube. The condition for the insta-
bility to occur can be expressed in terms of a critical amount
of twist Φcrit.. Different studies have predicted the critical twist
in different configurations: Φcrit. = 3.3 π for a uniform twist-
ing (Hood & Priest 1979a); Φcrit. = 4.8 π for a localized twist-
ing profile (Mikić et al. 1990); and Φcrit. = 5.15 π for a local-
ized, variable twisting profile (Baty & Heyvaerts 1996). Energy
is released after the magnetic field becomes unstable to ideal
MHD modes. At the beginning, a helical kink develops and
grows according to the linear theory of instability. Afterwards,
the initial helical current sheet progressively fragments, in a tur-
bulent manner, into smaller-scale sheets. During the onset of
instability, the kinetic energy rapidly increases, and throughout
the non-linear phase of the instability, magnetic energy dissi-
pates. In particular, reconnection events arise in fine-scale struc-
tures like current sheets. Dissipation of these sheets is similar to
a nanoflare storm. As time progresses, the magnetic field reaches
an energy minimum constrained by the conservation of magnetic
helicity, as expected in highly conducting plasmas (Browning
2003; Browning et al. 2008), but also subject to other topologi-
cal constraints (e.g. Yeates et al. 2010).

Since the loop expands in the radial direction, during the
relaxation process, an unstable loop can disrupt nearby sta-
ble loops (Tam et al. 2015) and trigger an MHD avalanche
(Hood et al. 2016). For instance, Hood et al. (2016) demon-
strates that an MHD avalanche can occur in a non-potential
multi-threaded coronal loop. They showe that a single unstable
thread can trigger the decay of the entire structure. In particular,
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each flux tube coalesces with the neighbouring ones and releases
discrete heating bursts. In general, the energy stored by photo-
spheric motions can be released via viscous and Ohmic dissipa-
tion during a dynamic relaxation process (Reid et al. 2018) and
thereafter through a sequence of impulsive, localized, and aperi-
odic heating events under the action of continuous photospheric
driving (Reid et al. 2020).

The earlier works we cited conducted exploratory investiga-
tions with relatively simplified loop configurations, with no grav-
itational stratification and consequently no variation of β with
height while also neglecting thermal conduction and optically
thin radiation. Separately, others have considered the effect of
thermal conduction, but in a purely coronal loop (Botha et al.
2011), and again without stratification in density. In this work,
we consider a more realistic scenario of flux tubes interact-
ing within a stratified atmosphere that includes chromospheric
layers, and the thin transition region to the corona, the asso-
ciated transition from high-β to low-β regions, as well as
including thermal conduction and optically thin radiation (as in
Reale et al. 2016). The questions that we investigate are whether
the avalanche process will be triggered, with what timescales,
and how it will develop in comparison with the evolution in the
original, simplified approach.

In Sect. 2, we present the equations used in our model and
the details for the set-up used in the numerical model. Section 3
treats the theoretical models deployed to corroborate the numer-
ical outcomes and to provide a physical interpretation to the
results. Section 4 discusses the results achieved concerning the
initial quasi-static evolution of the coronal loops as they twist
under the influence of a slow photospheric motion and the further
dynamic relaxation via an MHD avalanche. Finally, in Sect. 5,
we provide a comprehensive interpretation of the results com-
pared with previous works.

2. The model

The numerical experiment is based on a solar atmosphere model
that consists of a chromospheric layer and a coronal environ-
ment crossed by multiple coronal loop strands. Each strand is
modelled as a straightened magnetic flux tube linked to two
chromospheric layers at opposite ends of a box (Fig. 1). The
length of each tube is much longer than its cross-sectional radius.
Though the loop-aligned gravity is that of a curved, untwisted
loop, we neglect other effects of the curvature. In our scenario,
the two (upper and lower) chromospheric layers are the two loop
footpoints and are so distant from each other that they can be
assumed independent regions.

The evolution of the plasma and magnetic field in the box
is described by solving the full, time-dependent MHD equa-
tions including gravity (for a curved loop), thermal conduction
(including the effects of heat flux saturation), radiative losses
from an optically thin plasma, and an anomalous magnetic diffu-
sivity. The equations are solved in Eulerian, conservative form:

∂ρ

∂t
+ ∇ · (ρ u) = 0, (1)

∂(ρ u)
∂t

+ ∇ · (ρ u u) = −∇ · (P I +
B2

8π
I −

B B
8 π

) (2)

+ ρg,

∂B
∂t
− ∇ × (u × B) = η∇2B, (3)

∂

∂t

(
B2

8π
+

1
2
ρv2 + ρε + ρgh

)

+ ∇ ·

[
c

4π
E × B +

1
2
ρv2u

+
γ

γ − 1
P u + Fc + ρgh u

]
= −Λ(T )nenH + H0, (4)

P = (γ − 1)ρε =
2kB

µmH
ρT, (5)

j =
c

4π
∇ × B, (6)

E = −
u

c
× B +

j
σ
, (7)

where t is the time; ρ is the mass density; u is the plasma velocity;
P is the thermal pressure; B is the magnetic field; E is the elec-
tric field; g is the gravity acceleration vector for a curved loop;
I is the identity tensor; ε is the internal energy; j is the induced
current density; η is the magnetic diffusivity; σ = c2

4πη is the
electrical conductivity; T is the temperature; Fc is the thermal
conductive flux; Λ(T ) is the optically thin radiative losses per
unit emission measure; nH and ne are the hydrogen and electron
number density, respectively; mH is the hydrogen mass density;
kB is the Boltzmann constant; µ = 1.265 is the mean ionic weight
(relative to a proton and assuming metal abundance of solar
values: X (H) ' 70.7%, Y (He) ' 27.4%, Z (Li − U) ' 1.9%;
Anders & Grevesse 1989); and H0 = 4.3 × 10−5 erg cm−3 s−1 is
a volumetric heating rate that balances the initial energy losses
and is used to keep the loop initially in thermal equilibrium. As
shown in Eq. (5), we used the ideal gas law as an equation of
state.

According to the induction equation (Eq. (3)), the magnetic
field solenoidal condition ∇ · B = 0 formally holds at any
time t, provided the initial conditions are well posed (and numer-
ical errors are not taken into account). Ampère’s law in a non-
relativistic regime (Eq. (6)) gives the current density in terms of
the curl of the magnetic field. In Eq. (6), the displacement cur-
rent can be neglected provided that the plasma velocity is not
relativistic (i.e. v � c). The electric field E is defined by Ohm’s
law in Eq. (7). From this, the Poynting flux can be decomposed
into three terms:

c
4π

E × B = −
1

4π
B(u · B) +

B2

4π
u +

η

c
j × B. (8)

The first term on the right-hand side (- 1
4πB(u · B)) is significant

for the driving, as it determines the energy injected in the domain
by the photospheric driver. The second term ( B2

4π u) represents the
flow of magnetic energy across the boundaries of the domain.
Finally, the third term ( ηc j × B) is related to Ohmic dissipation
and field line diffusion at the boundaries of the domain.

2.1. Thermal conduction, radiative losses, and heating

The thermal conductive flux is defined in the equations below.

Fc =
Fsat.

Fsat. + |Fclass.|
Fclass., (9)

Fclass. = −k‖ b̂(b̂ · ∇T ) − k⊥
[
∇T − b̂(b̂ · ∇T )

]
, (10)

Fsat. = 5φρc3
iso., (11)

where the subscripts ‖ and ⊥ denote the components parallel
and perpendicular to the magnetic field. The thermal conduc-
tion coefficients along and across the field are k‖ = K‖T

5
2 and
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Fig. 1. Initial conditions used in the numerical simulation. Upper-left panel: map of the angular velocity at the bottom of the box. The colour scale
emphasizes higher angular velocity. The uniform grid is marked. The two rotating regions have the same radius Rmax. The region on the left has a
higher angular velocity (vmax.,left = 1.1 × vmax.,right). Lower-left panel: map of average plasma β as a function of z at t = 0 s. The solid curve shows
the initial temperature along the z axis. Right panel: three-dimensional rendering of the initial magnetic field configuration in the box around the
two flux tubes. The green field lines are twisted more quickly than the purple ones.

k⊥ = K⊥ρ2/(B2T
1
2 ), where K‖ = 9.2×10−7 and K⊥ = 5.4×10−16

(cgs units); ciso. is the isothermal sound speed; φ = 0.9 is a
dimensionless free parameter; b̂ = B/B is a unit vector in the
direction of the magnetic field; and Fsat. is the maximum flux
magnitude in the direction of Fc.

The optically thin radiative losses per unit emission
measure were derived from the CHIANTI v. 7.0 database
(Landi & Reale 2013). We assumed coronal element abundances
(Widing & Feldman 1992).

Across the transition region, the number density and the
temperature change by three orders of magnitude in less than
100 km. Resolving such rapid variation and steep gradients
would ordinarily require an extremely high spatial resolution
and lead to unfeasible computational times (Bradshaw & Cargill
2013). The Linker–Lionello–Mikić method (Linker et al. 2001;
Lionello et al. 2009; Mikić et al. 2013) allowed us artificially to
broaden the transition region without significantly changing the
properties of the loop in the corona, obviating that challenge.
In particular, following the Linker-Lionello–Mikić approach,
we modified the temperature dependence of the parallel ther-
mal conductivity and radiative emissivity below a temperature
threshold Tc = 2.5 × 105 K:

k̃‖(T ) =

{
k‖(T ) , T > Tc ,

k‖(Tc) , T < Tc ,
(12)

Λ̃‖(T < Tc) =

Λ‖(T ) , T > Tc ,

Λ‖(T )
(

T
Tc

)5/2
, T < Tc .

(13)

According to Rosner-Tucker-Vaiana (RTV) scaling laws
(Rosner et al. 1978), the volumetric heating rate H0 is sufficient
to keep the corona static with an apex temperature of about
8 × 105 K and a half-length of L = 2.5 × 109 cm. This provided

a background atmosphere that was adopted as the initial con-
dition, according to the hydrostatic loop model by Serio et al.
(1981) and Guarrasi et al. (2014). This heating rate was not sim-
ilarly scaled for temperatures below the cut-off temperature (cf.
Johnston et al. 2020).

2.2. Gravity in a curved loop

We assumed that the flux tube is circularly curved only in the
corona and that it is straight in the chromosphere. Thus, we con-
sidered the gravity of a curved loop in the corona:

g(z) ẑ = g� sin
(
π

z
L

)
ẑ, (14)

where g� =
GM�

R2
�

is constant; G is the gravitational constant;
M� is the solar mass; and R� is the solar radius. We note that
gravitational acceleration decreases and becomes zero at the loop
apex (z = 0) to account for the loop curvature. Below the corona,
gravity is uniform and vertical.

2.3. The loop setup

The 3D computational domain of our reference simulation con-
tains two flux tubes, each with a length of 5 × 109 cm and an
initial temperature of approximately 106 K (see lower-left panel
of Fig. 1). Their footpoints are anchored to two thick, isother-
mal chromospheric layers at the top and bottom of the box. As
the plasma β decreases farther from the boundaries, the magnetic
field expands (see Fig. 1). The initial atmosphere is the result of
a preliminary simulation in which we let a domain with a vertical
magnetic field relax to an equilibrium condition until the maxi-
mum velocity reached a value below 10 km s−1, as described in
Guarrasi et al. (2014).
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The computational box is a 3D Cartesian grid, −xM < x <
xM , −yM < y < yM , and −zM < z < zM , where xM =
2yM = 8 × 108 cm, yM = 4 × 108 cm, and zM = 3.1 × 109 cm,
with a staggered grid. We adopted the piecewise uniform and
stretched grid sketched in Fig. 1. In particular, in the corona,
we considered a non-uniform grid whose resolution degrades
with height. To describe the transition region at sufficiently high
resolution, the cell size there (|z| ≈ 2.4 × 109 cm) decreases to
∆r ∼ ∆z ∼ 3 × 106 cm and remains constant across the chro-
mosphere. The boundary conditions are periodic at x = ±xM
and y = ±yM . Reflecting boundary conditions were set at
z = ±zM . There, the magnetic field has equatorial-symmetric
boundary conditions (i.e., symmetric for the normal compo-
nent of the magnetic field and anti-symmetric for the tangential
components).

We also performed a second numerical experiment, extend-
ing the domain in the x-direction (xM = 1.5×109 cm) and includ-
ing a third flux tube. The results of this simulation are discussed
in Sect. 5.

2.4. The plasma resistivity

We considered an anomalous plasma resistivity that is switched
on only in the corona and transition region (i.e. above Tcr. =
104 K) where the magnitude of the current density exceeds a crit-
ical value, as in the following equation (e.g. Hood et al. 2009):

η =

{
η0 |J| ≥ Jcr. and T ≥ Tcr.

0 |J| < Jcr. or T < Tcr.
, (15)

where we assumed η0 = 1014 cm−2 s−1 and Jcr. = 250 Frcm−3 s−1.
The current threshold was chosen so as to avoid Ohmic heat-
ing before the onset of the avalanche process and to permit the
ideal build-up to the instability. With this assumption, the min-
imum heating rate above the threshold is H = η0(4π|Jcr.|/c)2 ≈

0.3 erg cm−3 s−1. Below the critical current, a minimum numeri-
cal resistivity is inevitably present, but it does not contribute any
heating during the simulation.

2.5. Loop twisting

We tested the evolution of a coronal loop under the effects of
a footpoint rotation. In particular, both strands were driven by
coherent photospheric rotations that switch signs from one foot-
point to the other. Rotation at the threads’ footpoints induces
a twisting of the magnetic field lines. As flux tube torsion
increases, the current density is amplified. Once the conditions
for kink instability are reached, a strong current sheet forms and
the critical current is exceeded, triggering magnetic diffusion and
heating via Ohmic dissipation. The angular velocity ω(r) is that
of a rigid body around the central axis; that is, the angular speed
is constant in an inner circle and then decreases linearly in an
outer annulus (Reale et al. 2016):

ω = ω0 ×


1 r < rmax.

(2rmax. − r)/rmax. rmax. < r < 2rmax.

0 r > 2rmax.

, (16)

where ω0 = vmax./rmax., vmax. is the maximum tangential velocity
(vφ = ωr), and rmax. is the characteristic radius of the rotation.
In this specific case, the central loop is driven at a speed that
is 10% higher than the lateral ones and is equal to 1.1 km s−1.
The maximum velocity achieved by twisting is always smaller
than the minimum Alfvén velocity vA = B/

√
4πρ in the domain.

Moreover, the characteristic velocity (ω0 rmax.) is high enough to
avoid field line slippage at the photospheric boundaries caused
by numerical diffusion. The choice of a mirror-symmetric pho-
tospheric driver does not cause the further system evolution to
lack generality: as the relatively high Alfvén velocities lead coro-
nal loops to maintain a very high degree of symmetry, even
when they are subjected to asymmetric photospheric motions
for a long time (Cozzo et al. 2023). The rmax. parameter was
set to 1200 km for both loops (see top-left panel of Fig. 1).
For many recent simulations of coronal loops subject to pho-
tospheric driving, a significant challenge has been in attain-
ing realistic driving speeds, given that there is a need to drive
quickly enough to prevent slippage of field lines, which requires
modelling velocities that are much faster than those observed.
However, with velocities of the order of 1 km s−1, we approach
typical photospheric velocity patterns (Gizon & Birch 2005;
Rieutord & Rincon 2010) and benefited from growing compu-
tational resources.

2.6. Numerical computation

The calculations were performed using the PLUTO code
(Mignone et al. 2007, 2012), a modular Godunov-type code for
astrophysical plasmas. The code provides an algorithmic, mod-
ular multi-physics environment particularly oriented towards
the treatment of astrophysical flows in the presence of dis-
continuities, as in the case treated here. Numerical integra-
tion of the conservation laws (Eqs. (1)–(4)) was achieved
through high-resolution shock-capturing (HRSC) schemes using
the finite-volume formalism where volume averages evolve in
time (Mignone et al. 2007). The code is designed to make effi-
cient use of massive parallel computers using the message pass-
ing interface library for interprocessor communications. The
MHD equations were solved using the MHD module avail-
able in PLUTO, configured to compute intercell fluxes with
the Harten–Lax–Van Leer approximate Riemann solver (Roe
1986), while second-order accuracy in time was achieved using
a Runge-Kutta scheme. A Van Leer limiter (Sweby 1984) for
the primitive variables was used. The evolution of the mag-
netic field was carried out adopting the constrained transport
approach (Balsara & Spicer 1999) that maintains the solenoidal
condition (∇ · B = 0) at machine accuracy. The PLUTO code
includes optically thin radiative losses in a fractional step for-
malism, which preserves the second-order time accuracy, since
the advection and source steps are at least second-order accu-
rate. The radiative loss, Λ, values were taken from a look-up
table. Thermal conduction was treated separately from advec-
tion terms through operator splitting. In particular, we adopted
the super-time-stepping technique (Alexiades et al. 1996), which
has proved to be very effective at speeding up explicit time-
stepping schemes for parabolic problems. This approach is cru-
cial when high values of plasma temperature are reached (e.g.
during flares) since explicit schemes are subject to a rather
restrictive stability condition (namely, ∆t ≤ (∆x)2/(2α), where
α is the maximum diffusion coefficient). This means the thermal
conduction timescale, τcond., is shorter than the dynamical one,
τdyn. (Orlando et al. 2005, 2008).

3. Basic theory

3.1. Twisting with expanding magnetic tube

Simple analytical models can predict the initial, steady-state evo-
lution of a system provided that certain assumptions be satisfied
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(Hood & Priest 1979a; Browning & Hood 1989). Each loop is
modelled as a cylindrically symmetric magnetic structure not
interacting with the neighbouring ones. The initial magnetic
field is not uniform: magnetic field lines expand from the pho-
tospheric boundaries (where B ≈ 300 G) to the upper corona
(where B ≈ 10 G). As the field lines expand, the magnetic field
decreases by an order of magnitude because of conservation of
magnetic flux. The expansion of the field corresponds to a height
that is roughly equal to the distance between the chromospheric
sources, so it involves a small fraction of a coronal loop length,
and thus the loop is of mostly uniform width in the corona. Field
line tapering is strong in the chromosphere, where changes in
the plasma beta are steeper, but weaker in the corona. In typi-
cal coronal conditions, such as high (T ≈ 1 MK) and uniform
temperature, the pressure scale height is large compared with
the loop length. Therefore, density and pressure can be assumed
to be uniform and constant in the corona. Averaged values can
be constrained from the RTV scaling laws (Rosner et al. 1978)
once the total length of the loop 2L and the uniform heating rate
H0 are given. At the boundaries, the photospheric driver twists
the magnetic field, causing the azimuthal component to increase.
Perfect line-tying to the photospheric boundaries is assumed and
no field line slippage is taken into account. The driver is much
slower than the Alfvén velocity so that the magnetic torsion can
be assumed to be instantaneously transmitted along the whole
tube.

Under these assumptions, it is possible to express the mag-
netic field of a single thread in cylindrical coordinates in terms
of the flux function ψ as a generalized parameter:

B =
1
R

(
−
∂ψ

∂z
,G(ψ),

∂ψ

∂R

)
, (17)

where ψ(R, z) =
∫ R

0 Bz(r′, z)r′ dr′. In Eq. (17), the azimuthal
magnetic field component is given by a function, G, of the flux
function, ψ. The function G is related to the radial profile of the
twisting velocity. In the following, R denotes the radius in the
corona, and r is the radius in the photosphere. Under typical
coronal conditions (i.e. low plasma beta), the force-free condi-
tion,

(∇ × B) × B = 0, (18)

holds. Using Eq. (17), the force-free equation is satisfied by
the Grad-Shafranov equation (Grad & Rubin 1958; Shafranov
1958):

∂2ψ

∂R2 −
1
R
∂ψ

∂R
+
∂2ψ

∂z2 + F(ψ) = 0, (19)

where F = G dG
dψ is a function of ψ. The third term on the left-

hand side can be neglected in the corona, under the assumption
of negligible field line curvature, ∂ψ

∂z ≈ 0 (Browning & Hood
1989; Lothian & Hood 1989). As a first assumption, we consid-
ered the azimuthal velocity to be linear in z, since the twisting is
equal in magnitude and opposite in direction at the two ends:

vφ = ω(r)r
z
l
, (20)

where l is a length scale that can be assumed to be equal to L, the
half-length of the loop, in order that this equation matches the
angular speed imposed on the boundaries. From the lineariza-
tion of the ideal induction equation (Eq. (3)), with η = 0, the

azimuthal component of the magnetic field in the photosphere
is easily linked to the given twisting angular velocity ω(r) (see
Eq. (16)):

∂Bφ,phs

∂t
=
∂
(
Bz(r)vφ

)
∂z

=
Bz(r)ω(r)r

l
t = rG. (21)

The vertical component at the photosphere, Bz,phs(r), is given
by the superposition of a background magnetic field Bbk and a
Gaussian function with amplitude B0 and a characteristic width
ς, that is:

Bz,phs(r) = Bbk + B0e−
r2

ς2 (22)

so that:

ψ(r,±L) =
1
2

Bbkr2 −
B0σ

2

2

(
e−r2/ς2

− 1
)
. (23)

The magnetostatic equilibrium of a coronal loop in response
to slow twisting of the photospheric footpoints can be investi-
gated in the corona by solving the Grad–Shafranov equation:

Bφ,coro.(R) =
G
R

(24)

Bz,coro.(R) =
1
R
∂ψ

∂R
. (25)

In this way, we accounted for the flux tube expansion across
the chromosphere just by assuming magnetic flux conserva-
tion throughout the loop volume and force-free condition in the
corona. In particular, the volume-integrated magnetic energy of
a single thread in the corona is given by:

Emag. = 2π · 2L ·
∫ yM

0
r

B2
zcoro. + B2

φ,coro.

8π
dr. (26)

The volume-integrated kinetic energy can be roughly assessed
by assuming the coronal loop to reach a steady state where the
plasma is moved only by the magnetic field torsion:

Ekin. = 2π
∫ −L

L
dz ·

∫ yM

0
r

1
2
〈ρ〉Ω(r)2

( z
L

)2
r2 dr, (27)

where Ω(r) is the angular velocity of the loop in the corona (the
relation Ω(ψ) = ω(ψ) holds) and 〈ρ〉 is the averaged coronal
density.

In a cylindrically symmetric flux tube, the angular velocity
produces the axial current density and the azimuthal magnetic
field (see Eq. (16)):

Jz =
1
r
∂

∂r

(
rBφ(r)

)
=

c
4π

2ω0Bzt
L
×


1 r < rmax.
4rmax.−3r

2rmax.
rmax. < r < 2rmax.

0 r > 2rmax.

,

(28)

according to Eqs. (6), (16), (20), and (21). A rough but effec-
tive estimate of the maximum current density over the time is
retrieved by evaluating the current density at the loop axis:

Jmax. = Jz(r = 0, t) =
c

4π
2Bz(0)ω(0)

L
× t. (29)

As soon as the azimuthal component of the magnetic field
increases linearly with time, magnetic energy should grow
quadratically and the current density should grow linearly.

A40, page 6 of 14



Cozzo, G., et al.: A&A 678, A40 (2023)

3.2. Energy equations

The temporal evolution of the four energy terms (i.e. mag-
netic, kinetic, internal, and gravitational energy) is driven by
the energy sources and sinks (background heating and radia-
tive losses, respectively) and several energy fluxes at the bound-
aries of the domain (such as thermal conduction, Poynting flux,
enthalpy flux, and kinetic and gravitational energy fluxes). In
addition, energy transfer terms may link two different forms
of energy. This is the case for Ohmic heating, which converts
magnetic energy into heat, and work done per unit time by the
Lorentz force, the pressure gradient, and gravity, which respec-
tively convert kinetic energy into magnetic, thermal, and gravita-
tional energy. The respective equations governing the evolution
of magnetic, kinetic, internal, and gravitational energy are as fol-
lows:

∂

∂t
B2

8π
+ ∇ ·

[
−

1
4π

B (u · B) (30)

+
B2

4π
u +

η

c
j × B

]
= −

j2

σ
−
u

c
· ( j × B) ,

∂

∂t

(
1
2
ρv2

)
+ ∇ ·

(
1
2
ρv2 u

)
= −u · ∇P +

u

c
( j × B) (31)

+ ρ u · g,

∂(ρε)
∂t

+ ∇ ·

[
γ

γ − 1
P u + ∇ · Fc

]
= u · ∇P − Λ(T )nenH (32)

+
j2

σ
+ H0,

∂(ρgh)
∂t

+ ∇ · (ρgh u) = −ρ u · g. (33)

The sum of the four equations gives the energy equation
(Eq. (4)) discussed in Sect. 2. Terms on the left-hand sides
include rates of change in energy (the derivatives with respect
to time) and energy fluxes (i.e. surface terms, which appear here
as divergences). Energy transfer terms, sources, and sinks are on
the right-hand sides.

4. Results

4.1. Continued driving: Evolution before the instability

The box size is 6.2 Mm in the z direction. The chromosphere
extends for 0.7 Mm on both sides, and the corona (including
the transition region) is in the middle 2L = 5 × 109 cm (see
Sect. 2.1). In the following, we cautiously restricted our analysis
to the inner domain between z = ±2 × 109 cm in order to avoid
any possible undesired contributions from expected changes in
transition region height. Since boundary conditions are periodic
at the side boundaries of the box, fluxes were only evaluated
at the upper and lower boundaries of the sub-domain (i.e. at
z = ±2 × 109 cm).

Initially, the two flux tubes were slowly twisted at a speed
much slower than the Alfvén speed. As a consequence, the
initial evolution of the magnetic structure is through quasi-
steady states. In particular, an azimuthal magnetic field com-
ponent grows almost linearly with time. The magnetic torsion
is transmitted to the coronal part of the magnetic tube (i.e. at
|z| < 2 × 109 cm) after two hundred seconds, in accordance with
the time estimated for a magnetic signal to cross the chromo-
spheric layer.

Fig. 2. Evolution of the rate of change of the total energy, incoming
fluxes, sources, and sinks for the reference simulation. The blue curve
indicates the change in total energy over time, given by the sum of inter-
nal, kinetic, magnetic, and gravitational energies of the system, plotted
as functions of time, before the onset of the instability. The red curve
represents the sum of the total fluxes, energy sources, and sinks as a
function of time before the onset of the instability. The closeness of the
blue and red curves demonstrates the approximate energy conservation
in the domain. The dashed black curve depicts the Poynting flux, which
is the dominant flux and adds to the magnetic energy.

Fig. 3. Fourier transform of pressure work, gravity work, and kinetic
energy rates. The blue curve indicates the Fourier transform of the work
done by pressure gradients per unit time, before the onset of the insta-
bility. The red curve represents the Fourier transform of the work done
by gravity force per unit time, before the onset of the instability. Both
curves show a peak around T ≈ 365 s (identified by eye). The green
curve depicts the Fourier transform of the kinetic energy before the
onset of the instability. It shows a peak around 180 s.

Figure 2 shows the rate of change of the total energy, which is
given as the sum of magnetic, kinetic, thermal, and gravitational
energy. The total energy is not constant inside the coronal vol-
ume as a result of incoming fluxes at the chromospheric bound-
aries of the domain (such as Poynting flux, kinetic energy flux,
enthalpy flux, gravitational energy flux, and thermal conduc-
tion), energy sources (background heating), and sinks (radiative
losses). The total energy in the system, accounting for incoming
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Fig. 4. Kinetic energy damping before the instability onset. In blue is
the total kinetic energy, plotted as a function of time, in the time leading
up to the instability. The last exponential rise shows the time at which
the first thread is disrupted. In dashed red is a theoretical estimation of
the steady state based on the model described in Eq. (27). As waves
are progressively damped, the total kinetic energy is expected to tend
towards this theoretical steady state prior to the instability.

Fig. 5. Evolution of the volume integrated magnetic energy prior to the
instability. In blue is the total magnetic energy before the onset of the
instability, plotted as a function of time. In dashed red is a theoretical
estimate based on the model described in Sect. 3, which grows through
the energy input by photospheric driving.

and outgoing fluxes (see Eq. (4)), is approximately conserved
throughout the numerical experiment. Amongst all the external
contributions, the Poynting flux is dominant during the build-up
of the twisting.

The initial evolution of the system might be seen as the
superposition of a long-lasting and steady tube twisting (where
magnetic energy and current density slowly grow as a conse-
quence of the field line torsion) and a wave-like response to
the induced dynamics (where oscillations of short characteris-
tic timescales are damped with time). In particular, long-period
oscillation (P ≈ 360 s) is clearly visible in Fig. 2 and in Fig. 3,
the latter of which shows the work done by the pressure gradient

Fig. 6. Evolution of the maximum current density. The solid, blue curve
represents the maximum current intensity, before the onset of the insta-
bility, as a function of time. In dashed red is the theoretical estimate
based on the model described in Sect. 3.

Fig. 7. Profiles of the apex current intensity along the x-axis (y = 0) at
different times.

and the work done by gravity as functions of time. Those fea-
tures might be associated with Brunt–Väisälä oscillations whose
characteristic frequency is

ω =

√
−
g

ρ

∂ρ(h)
∂h

, (34)

where h(z) = 2L
π

cos
(
πz
2L

)
gives the height in a semi-circular loop.

In particular, a frequency of 2.76 × 10−3 s−1 (corresponding to
a period of approximately 360 s) matches the theoretical value
at transition region heights, suggesting that the nature of this
oscillation might be associated with buoyancy movements in the
upper chormospheric layers. Alfvén waves appear in each thread
as azimuthal modes with a period of nearly 50 s.

In Fig. 4, the kinetic energy reaches a steady state value
around a time of 6000 s and remains there until about t =
11 000 s, when it exponentially increases as the first kink insta-
bility occurs. The theoretical limit, computed from Eq. (27) and
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Fig. 8. Onset and evolution of the MHD avalanche. First column: horizontal cut of the current density across the mid-plane at times (from the top)
t = 12 400 s (onset of first kink instability), t = 12 500 s, t = 12 550 s (second strand’s disruption), and t = 12 600 s. Second column: horizontal
cut of the velocity across the mid-plane at the same four times. The arrows show the orientation of the velocity field. The colour maps evaluate
the intensity of the vertical component of the velocity field. Third column: terminal locations (z = L) of the sample field lines at the same four
times. The red field lines (spots) depart from the z = −L footpoint on the left (red shaded region), and the blue field lines depart from the right
(blue shaded region). Initially, the red and blue field lines are randomly distributed inside the blue and red circles, respectively. Subsequent starting
locations at the lower boundary points were determined at later times by tracking their locations in response to the photospheric motions.

shown as a red dashed line, agrees with the actual volume-
averaged kinetic energy. The oscillations in kinetic energy have
a period of approximately t = 180 s (see Fig. 3) and are the
result of magnetosonic waves. Moreover, the growth of the
kinetic energy during the onset of the ideal kink instability is,
as expected, exponential with time. This is shown in the inter-
nal panel of Fig. 4. In particular, the slope of the exponential
increase matches with the theoretical value τ = 0.1 × 2L/vA,
where vA is the Alfvén velocity (Van der Linden & Hood 1999;
Hood et al. 2009).

Figure 5 shows that the magnetic energy determined from
the simulation is very close to the prediction of the theoretical
model presented in the previous section. The quadratic increase
of the magnetic energy is determined by the linear growth of the
azimuthal component of the magnetic field during the twisting.

The vertical component of the current density dominates
over the other ones. It also grows linearly in time as a conse-
quence of the magnetic tube twisting (see Fig. 6). As assumed
in Eq. (29), the maximum current intensity is along the axis of
each flux tube As shown in Fig. 7, the axial current remains pos-
itive around the centres of the strands. On the outer edge, there
is a neutralizing negative current, ensuring the net axial current
remains zero.

4.2. Onset of the instability

The first tube becomes unstable after around 12 400 s. We esti-
mated the amount of twist, defined as Φ = 2πN (with N the num-

ber of twists in the unstable strand), at the time of the kink insta-
bility. We considered both the maximum tangential photospheric
velocity vφ and an averaged value 〈v〉 =

∫ 2rmax.

0 vφrdr/
∫ 2rmax.

0 rdr.
In the first case, the Φ ≈ 10, while in the second one it is smaller
by a factor of two. In both cases, Φ is of the same order of mag-
nitude as previous results, such as the Kruskal-Shafranov condi-
tion (ΦKS = 3.3 π; Priest 2014).

The onset of the first kink instability and the subsequent
MHD cascade can be followed by inspecting the current density
and velocity evolution. For instance, Fig. 8 shows the current
density distribution (first column) and the velocity field (sec-
ond column) over the loop mid-plane at four different times.
In the first panel (t = 12 400 s), the onset of the first kink
instability is shown: the unstable flux tube begins to flex owing
to the growing magnetic pressure imbalance. Consequently, a
single current sheet forms at the edge of the loop, and the
velocity grows at its sides. Then, in the second panel (t =
12 500 s), the current sheet fragments in a turbulent way (see
the velocity map) into smaller current sheets, and the entire
structure expands to interact with the neighbouring loop. This
causes the second strand’s instability. The third (t = 12 550 s)
and fourth (t = 12 600 s) panels show the evolution of the
MHD cascade (i.e. second loop disruption) triggered by the first
kink instability. Throughout the process, zones of high plasma
velocity on the horizontal mid-plane spread over regions of
high current density. This is expected since plasma is mostly
accelerated by magnetic forces where magnetic field gradients
are higher.
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Fig. 9. Global evolution of the MHD avalanche. From top to bottom:
average normalized radiative losses, density and temperature in the
corona, maximum current density, maximum temperature, and maxi-
mum velocity against time. The red vertical lines mark the times of
large heating events.

The average temperature peaks 100 seconds after the onset
of the avalanche process, while the average density and radiative
losses reach the maximum value after a further period of 800 s
(see first panel of Fig. 9). The turbulent evolution of the system
is difficult to follow, but quantitative information on its dynam-
ics can be obtained from the maximum current, temperature, and
velocity evolution shown in Fig. 9. The three plots show the same
qualitative behaviour with some high peaks around t = 12 500 s;
that is, during large heating events corresponding to dissipation
of relatively large current sheets. In particular, the first group of
peaks occurs during the onset of the first kink instability. The
second and third groups correspond to the times when the sec-
ond loop is destabilized and when it is finally disrupted, respec-
tively. Another peak in the current intensity occurs at t = 13 000 s
and is followed by a moderate enhancement in the loop temper-
ature and velocity. It is produced by the formation and subse-
quent dissipation of a big current sheet induced by the continuous
driving at the boundaries.

The dissipation of the multi-threaded loop into smaller
current sheets can be traced by following the magnetic field lines
connectivity over time. The third column of Fig. 8 shows the end
points of some field lines on the upper boundary plane z = zmax..
Red dots correspond to field lines connected at the bottom to
the left footpoint (i.e. z = −zmax.). Conversely, blue dots refer
to field lines connected at the bottom to the footpoint on the
right. Field lines were traced from the bottom side of the box
and mapped into the upper one using a second-order Runge-
Kutta integration scheme. The location of the starting points at
z = −zmax. were updated according to the imposed rotation, while
the points at the opposite side were expected to change as the
field lines move or change by reconnection. It is easy to see that
the field line connectivity changes as soon as the MHD cascade
takes place and that magnetic reconnection has occurred in the
meantime. Indeed, during the avalanche process, field lines from
each strand become entangled and eventually cross the lateral
boundaries of the domain. The same thing is likewise evident in
Fig. 10, where field lines in the box are shown in full-3D render-
ing. The field lines were computed using a fourth order Runge-
Kutta scheme, and colour was attributed depending on where on
the photosphere the starting points were placed. As the twisting

triggers the kink instability, field lines reconnect with each other.
At the end of the process, some light blue and purple lines con-
nect different loop footpoints.

The energetics of the numerical experiment reflect the phys-
ical processes that drive the system dynamics. Figure 11 shows
the evolution of the four energy components (i.e. magnetic,
kinetic, thermal, and gravitational energy). The magnetic energy
dominates over the other components during the initial, smooth
evolution of the system. As mentioned above, the main source
of energy derives from the Poynting flux (see Fig. 2). The net
effect of thermal conduction, radiative losses, and background
heating is negligible provided that the magnetic field changes
are slow compared with the radiative and conductive timescales.
In Fig. 12, the sum of the time-integrated thermal flux, radiative
losses, and uniform heating is practically zero, while the thermal
conduction dominates over the radiative losses, as expected in
typical coronal conditions.

After the onset of the MHD avalanche, the magnetic energy
rapidly drops. The kinetic energy increases exponentially but
remains at least one order of magnitude smaller than the mag-
netic energy. Most of the magnetic energy gained, through foot-
point driving, is converted into heat, and the steep rise in thermal
energy follows the plasma acceleration. Figure 13 shows how
the rate of change in magnetic energy matches the instantaneous
Ohmic heating and how it, in turn, influences the rate of change
in heating.

Several heat pulses released after the multiple magnetic recon-
nection events enhance the thermal conductive flux towards both
transition regions (see Fig. 12). The heat flow was then slowed
down in the chromosphere because conduction is less efficient
at cooler temperatures. As a consequence, an excess of pressure
accumulates in the transition region and the top of the chromo-
sphere. This creates the pressure gradient that causes the evapo-
rative upflow. The plasma expanding upwards, in turn, leads to
an increase in the coronal density inside the magnetic structure.
The sudden growth of the gravitational potential energy traces this
strong mass flow upwards, as shown in Fig. 14. After the begin-
ning of the MHD avalanche, the gravitational energy increases
as a consequence of the chromospheric plasma evaporation in the
coronal volume. It supplied gravitational energy flux at the bound-
aries while the remaining contribution to the potential energy is
given by the work done by the gravity force to distribute this
denser plasma over the entire loop length.

Figure 15 shows the average vertical thermal flux, radiative
losses, density, and temperature as a function of time and height.
The strongest thermal flux (first panel) developed at the times
when each loop is disrupted (i.e. when the temperature gradient
is greatest). The heat flux propagates towards the upper and lower
transition regions and was stronger in the corona. In contrast,
the radiative losses (second panel) were stronger at later times,
when the density (third panel) has increased by chromospheric
evaporation. The biggest contribution is localized in the transi-
tion region where the rates exceed the coronal radiative losses by
at least two orders of magnitude. As heating released during the
MHD avalanche rapidly spread (in few tens of seconds) along the
tube, temperature (fourth panel) rises uniformly. It then slowly
decreases from 10 MK to 1 MK on a timescale of 1000 s.

4.3. Three-stranded loop simulation

The propagation of the instability described so far is an avalanche
process that can extend to increasing numbers of nearby flux tubes
(Hood et al. 2016). To ensure this progression, we performed
a second numerical experiment with three interacting strands
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Fig. 10. Three-dimensional rendering of the magnetic field lines in the box around the two flux tubes at different times. Far left panel: field lines
at t = 12 400 s (onset of first kink instability). Middle left panel: field lines at t = 12 500 s. Middle right panel: field lines at t = 12 550 s (second
loop disruption). Far right panel: field lines at t = 12 600 s. The change in the field line connectivity during the evolution of the MHD cascade is
highlighted by the different colours.

within a coronal loop. The initial configuration of the magnetic
structure is shown in the left panel of Fig. 16. As in the previ-
ous case, this magnetic structure is embedded in a stratified atmo-
sphere with a cold (T ' 104 K) chromospheric layer and a hot and
tenuous corona (T ' 106 K and n ' 109 cm−3). Equations (1)–(7)
summarize the underlying physics driving the evolution of the
system, as discussed in Sect. 2. As in the first case, one of the
magnetic strands is twisted at its footpoint faster than the others
and becomes kink unstable. The right panel of Fig. 16 shows the
propagation of the instability from a central, faster tube to the two
adjacent tubes. As expected, the first unstable strand triggers the
global dissipation of the magnetic structure into smaller current
sheets. Heating by Ohmic dissipation is localized inside relatively
small regions where the current density is higher. These current
sheets develop and spread in a turbulent way throughout the entire
extension of the domain.

5. Discussion and conclusions

This work addresses the energy released impulsively in the
corona under strong magnetic stresses. In particular, we have
shown that MHD avalanches are efficient mechanisms for fast
release of magnetic energy in the solar corona progressively

stored by slow, uniform photospheric motions. We describe a
system consisting of two neighbouring twisted flux tubes. These
interacting flux tubes comprise a stratified atmosphere includ-
ing chromospheric layers, a thin transition region to the corona,
and an associated transition from high-β to low-β regions. Our
model includes the effects of thermal conduction and of opti-
cally thin radiation. Rotation of the plasma at the upper and
lower boundaries of our computational domain applies twisting
to the magnetic flux tubes. Since line-tying of the field lines
at the photospheric boundaries is expected to be maintained
over time by high plasma beta values and a sufficient spatial
resolution, each loop can develop high levels of twist, as the
azimuthal component of the magnetic field increases. Above a
certain stress threshold, the structure becomes kink-unstable and
suddenly relaxes to a new equilibrium configuration (Hood et al.
2009). In particular, since one strand is twisted faster than the
other, that strand will become unstable before the other and trig-
ger the avalanche process that will, in turn, spread as it affects the
neighbouring flux tube. Magnetic reconnection between unsta-
ble flux tubes causes bursty and diffuse energy release (similar
to a nanoflare storm) and changes the field connectivity. More-
over, through repeated reconnection events, the system relaxes
towards the minimum energy state. The system undergoes an
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Fig. 11. Magnetic (purple), internal (pink), kinetic (orange), and grav-
itational (yellow) energies as functions of time. The black is the total
energy given as the sum of the four energy terms. The onset of the
avalanche is marked with a vertical red dashed line.

Fig. 12. Time-integrated thermal flux (solid black), radiative losses
(dashed black), and background heating (dotted black) as functions of
time. The solid red curve is the sum of the three contributions. The onset
of the avalanche is marked with a vertical red dashed line.

initial dynamic phase where the plasma is rapidly accelerated.
The initial helical current sheet progressively fragments in a tur-
bulent way into smaller current sheets, which, in turn, dissipate
magnetic energy via Ohmic heating. As soon as the steep rise
in kinetic energy is damped in the corona, the released heating
rapidly increases the coronal temperatures and, consequently,
the pressure scale-height. As a consequence of that process, the
steep rise in temperature is followed by a progressive coronal
density enhancement due to chromospheric evaporation.

Results achieved in this paper agree with those found by
Hood et al. (2009, 2016), and Reid et al. (2018), but also go fur-
ther and extend them. In particular, we demonstrate that even
inside a stratified atmosphere, highly twisted loops with zero
net current undergo the non-linear phase of the kink instabil-
ity where reconnection in a single current sheet triggers the
fragmentation of the flux tubes at multiple reconnection sites.
In particular, once the first unstable strand is disrupted, it coa-
lesces with the neighbouring strands, inducing an MHD cas-

Fig. 13. Rates of change in magnetic (solid black) and internal (dashed
black) energies and Ohmic heating (red) as functions of time. The ver-
tical red solid lines highlight times of large heating events. The onset of
the avalanche is marked with a vertical red dashed line.

Fig. 14. Gravitational energy (red), time-integrated gravitational energy
flux (solid black), and work done by gravity (dashed black) as functions
of time. The onset of the avalanche is marked with a vertical red dashed
red line.

cade, as found in uniform coronal atmospheres (Tam et al. 2015;
Hood et al. 2016; Reid et al. 2018).

As shown in Fig. 13, magnetic energy is released in discrete
bursts as stable strands are disrupted and single current sheets
are dissipated. This bursty heating does not show evidence of
reaching a steady state.

Thermal conduction is very effective in spreading heating
along field lines, and this leads to the filamentary structuring
in loop temperature. Also, as shown in Fig. 9, because of ther-
mal conduction, the temperature grows to about 107 K, which is
much cooler than the temperatures of approximately 108 K found
in Hood et al. (2009). Peak temperatures of a few tens of millions
of kelvin as well as variations in magnetic and internal energy
of 1027 erg are found in our simulations. They agree with those
measured from microflare observations (Testa & Reale 2020).

Radiation also has an important effect on the temperature
distribution. Radiative losses are stronger across the transition
region, where the plasma density is higher. As the upper atmo-
sphere is heated, this layer acts as a thermostat for the corona
since it tends to restore the initial coronal temperature. Indeed,
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Fig. 15. Average vertical thermal flux, radiative losses, plasma density, and temperature against time (on the horizontal axis) and height (z; on the
vertical axis). The averaging is on the horizontal planes. The region of the domain where the temperature exceeds 104 K (i.e. transition region and
corona) is bounded (magenta lines).

Fig. 16. Three-threaded coronal loop simulation: initial condition and evolution of the MHD avalanche. Left panel: three-dimensional rendering
of the initial magnetic field configuration in the proximity of each coronal loop (for the second model, with three strands). The purple field lines
were subjected to a faster twisting driver than the green ones. Right panel: horizontal cut of the Ohmic heating per unit time and per unit volume at
the middle of the box at different times. From the top down, these times are: t = 11 200 s (onset of first kink instability), t = 11 400 s, t = 11 800 s
(disruption of the second and third strands), and t = 11 900 s. The green filaments indicate areas where the current density exceedes the threshold
value for dissipation.

it maintains the temperature gradient that allows heat to flow out
of the corona.

A deep chromospheric layer is important to guarantee line-
tying throughout the whole evolution of the coronal loop. With
this layer in place, photospheric motions can slowly twist the
magnetic flux tubes expanding across the chromospheric layer.
At the same time, the chromosphere acts as a reservoir of dense

plasma that can flow into the corona as a consequence of impul-
sive heating. Modelling the chromospheric evaporation and the
resulting increase of the loop emissivity is fundamental to cor-
roborate the results through comparison with EUV and X-ray
observations of dynamic coronal loops.

As shown in Sect. 4.3, the propagation of the instability is
an avalanche process that can extend to increasing numbers of
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nearby flux tubes (Hood et al. 2016). In conclusion, this work
confirms, and constrains the conditions for, the propagation of a
kink instability amongst a cluster of flux tubes, including a more
complete, stratified loop atmosphere, as well as important phys-
ical effects, in particular thermal conduction and optically thin
radiative losses. The avalanche can trigger the ignition and heat-
ing of a large-scale coronal loop with parameters not far from
those inferred from the observations.

The reconfiguration of the magnetic structure and the result-
ing plasma dynamics have been found to occur at timescales
on the order of 10 s and over spatial scales smaller than
one arcsecond. The detection of these small scales involved
in coronal heating release will be the target of high-resolution
spectroscopic observations of future missions, such as MUSE
(Cheung et al. 2022; De Pontieu et al. 2022) and SOLAR-
C/EUVST (Shimizu et al. 2020). Additionally, specific diagnos-
tics will be the subject of a forthcoming investigation.
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