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Received: 10 May 2024 / Accepted: 12 August 2024
© The Author(s) 2024

Abstract
In this paper we provide a representation of a certain class of C*-valued positive
sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results
from Bellomonte (GNS-construction for positive C∗−valued sesquilinear maps on a
quasi ∗−algebra, Mediterr. J. Math., 21 166 (22 pp) (2024)) to the case of non-unital
quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital
Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-
algebra, Schatten p-ideals and noncommutative L2-spaces induced by a semifinite,
nonfinite trace. As a consequence of our results, we obtain a representation of all
bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce
some norm inequalities for these maps. Finally, we consider a noncommutative L2-
space equipped with the topology generated by a positive sesquilinear form and we
construct a topologically transitive operator on this space.

Keywords *-representations · Positive C*-valued maps · Non-unital quasi
*-algebras · Noncommutative L2-spaces · Topologically transitive operators

Mathematics Subject Classification 46K10 · 47A07 · 16D10 · 37Bxx · 47G10

1 Introduction

Positive maps on operator algebras play an important role in various areas of mathe-
matics and physics. Many deep mathematical results have been obtained in this topic,
see for example [6] and [15]. These maps turn out to be a powerful tool for character-
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izing entanglement in quantum information theory (for more details and the literature,
see [6]). Moreover, as observed in the introduction of [15], another area where pos-
itive maps appear is the one of operator spaces. Although, in that context, the maps
are usually completely positive, there is a close connection with positive maps on
C*-algebras. These facts provide a motivation for obtaining representations (thus in
a certain sense an explicit description) of such maps. The classical result in repre-
sentation theory of positive maps is the famous Stinespring theorem which gives a
representation of completely positive maps on unital C*-algebras and, quite recently,
in [3, Corollary 3.10], a representation of general positive C*-valuedmaps on arbitrary
unital *-algebras has also appeared.

In this paper (in Corollary 3.3) we obtain a representation of general bounded,
positive linear C*- valued maps on non-unital C*-algebras. As a consequence, in
Corollary 3.4 we deduce also certain norm inequalities for these maps. Moreover,
in Corollary 3.7 we provide representations of positive C*-valued maps on general
non-unital normed *-algebras with a right approximate identity.

It is now long time that the C*-algebraic approach to quantum theories has been
considered as a too rigid framework where casting all objects of physical interest.
Therefore, several possible generalizations have been proposed: quasi *-algebras, par-
tial *-algebras and so on. They reveal in fact to bemore suited to cover situationswhere
unbounded operator algebras are involved. Further, quasi *-algebras are also interest-
ing from the mathematical point of view because several beautiful and important
mathematical structures (such as commutative and noncommutative L p spaces) are
examples of quasi *-algebras. For all these reasons, it might be also relevant to study
positive C*-valued maps on quasi *-algebras. In [3, Corollary 3.13], a representation
of a special class of bounded positive linear C*-valued maps on unital normed quasi
*-algebras has been provided. This class of positive maps turns out to be a proper
generalization of the class of bounded positive linear C*-valued maps on C*-algebras,
as we argue in Remark 3.6 below.

However, there are many important examples of non-unital normed quasi *-
algebras, such as the standard Hilbert module over a commutative C*-algebra, the
Schatten p-ideals, and noncommutative L2-space induced by a semifinite non-finite
trace. These examples have motivated us to extend the theory from [3] to the case
of non-unital normed quasi *-algebras. In Corollary 3.5 we provide an extension of
[3, Corollary 3.13] to the the case of non-unital normed quasi *-algebras with a right
approximate identity. To sum up, the main purpose and aim of Sect. 3 is to provide rep-
resentations of bounded positive C*-valued maps both on non-unital operator algebras
and on non-unital Banach quasi *-algebras. The main difference compared to the uni-
tal case is the lack of the existence of the cyclic vector. Therefore, the representations
of positive C*-valued maps on unital (quasi) *-algebras obtained in [3] are no longer
valid in the non-unital case because those representations are expressed in terms of
the cyclic vector (see [3, Corollary 3.10] and [3, Corollary 3.13]) and cyclic vector is
induced by the unit in the respective (quasi) *-algebra. For this reason, the non-unital
case requires a to a certain extent different approach. Although we do apply the gen-
eral GNS-construction from [3], some additional algebraic work and modifications
are needed in the construction of *-representations for positive C*-valued maps on
non-unital (quasi) *-algebras and this is exactly what the proofs in Sect. 3 provide. In
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Sect. 4 we give examples of positive C*-valued maps on concrete non-unital normed
quasi *-algebras.

Every positive linear map on a *-algebra A induces in a natural way the corre-
sponding positive sesquilinear map on A × A . On quasi *-algebras, because of the
lack of an everywhere defined multiplication, in representation theory it is sometimes
more convenient to study positive sesquilinear maps instead of positive linear maps,
as observed e.g. in [9].

In this paper, we provide first representations of bounded positive sesquilinear
C*-valued maps on non-unital normed quasi *-algebras and then, in various corol-
laries, we obtain the above-mentioned representations of bounded positive linear
C*-valued maps. Now, in addition for being a convenient tool in representation the-
ory, bounded positive sesquilinear maps generate also several topologies on normed
quasi *-algebras, as observed in [9, Remark 3.1.32]. On the other hand, the topological
dynamics of linear operators is in general an active research field in mathematics, see
[1, 4, 5], and topological transitivity is one of the main concepts in this theory. The
topological transitivity of cosine operator functions acting on a solid Banach function
space (thus in particular on commutative L2-spaces) has been studied for instance in
[16], whereas the topological dynamics of multipliers on Schatten p-ideals has been
studied in [11], [17] and [18]. Motivated by these facts, in Sect. 5 we consider a non-
commutative L2-space equipped with a topology generated by a bounded positive
sesquilinear form and we construct a topologically transitive right multiplier opera-
tor on this space. Also, we prove that the cosine operator function generated by this
operator is topologically transitive as well.

The paper is organized as follows. In Sect. 2, we recall some notions, concepts and
results mainly from [3] and [9] that are needed for the rest of the paper. In Sect. 3, we
provide (general) representations of a certain class of bounded positive sesquilinear
or linear C*-valued maps on non-unital normed quasi *-algebras possessing a certain
right approximate identity (see Definition 2.11). In Sect. 4 we illustrate our results by
concrete examples. For this purpose, in Example 4.10 we construct positive linear map
from a non-unital noncommutative L2-space into the space of continuous functions
on a closed interval, and it turns out that this operator can be considered as a (proper)
generalization of an integral operator on a commutative L2-space, as we argue in
Remark 4.11. In fact,most of our examples in Sect. 4 are devoted to the study of integral
operators and their generalizations in the context of various normed non-unital quasi *-
algebras. In Sect. 5, we consider topologically transitive operators on non commutative
L2-spaces equipped with a topology generated by a positive sesquilinear form.

2 Basic definitions and results

A quasi *-algebra (A ,A0) is a pair consisting of a vector space A and a *-algebra
A0 contained in A as a subspace and such that

• A carries an involution a �→ a∗ extending the involution of A0;
• A is a bimodule overA0 and the module multiplications extend the multiplication
of A0. In particular, the following associative laws hold:
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(xa)y = x(ay); a(xy) = (ax)y, ∀ a ∈ A , x, y ∈ A0;

• (ax)∗ = x∗a∗, for every a ∈ A and x ∈ A0.

We will always suppose that

ax = 0, ∀x ∈ A0 ⇒ a = 0

ax = 0, ∀a ∈ A ⇒ x = 0.

Clearly, both these conditions are automatically satisfied if (A ,A0) has an identity e.

Definition 2.1 A quasi *-algebra (A ,A0) is said to be locally convex ifA is a locally
convex vector space, with a topology τ enjoying the following properties

(lc1) c �→ c∗, c ∈ A0, is continuous;
(lc2) for every a ∈ A0, the maps c �→ ac and c �→ ca, from A into A , c ∈ A , are

continuous;
(lc3) A0

τ = A ; i.e., A0 is dense in A [τ ].
The involution ofA0 extends by continuity toA . Moreover, if τ is a norm topology,

with norm ‖ · ‖, and
(bq*) ‖a∗‖ = ‖a‖, ∀a ∈ A

then, (A ,A0) is called a normed quasi *-algebra and a Banach quasi *-algebra if the
normed vector space A [‖ · ‖] is complete.

Let C be a C∗−algebra with norm ‖ · ‖C and positive cone C+.
Let A be a complex vector space andS a positive sesquilinear C -valued map on

A × A

S : (a, b) ∈ A × A → S (a, b) ∈ C ;

i.e., a map with the properties

i) S (a, a) ∈ C+,
i i) S (αa + βb, γ c) = γ [αS (a, c) + βS (b, c)],

with a, b, c ∈ A and α, β, γ ∈ C.
By property i) it follows that

i i i) S (b, a) = S (a, b)∗, for all a, b ∈ A .

Lemma 2.2 [3, Lemma 2.3] Let S be a positive sesquilinear C -valued map S on
A × A . Then,

‖S (a, b)‖C ≤ 2‖S (a, a)‖1/2C ‖S (b, b)‖1/2C , ∀a, b ∈ A .

If C is commutative, then S satisfies the Cauchy-Schwarz inequality:

‖S (a, b)‖C ≤ ‖S (a, a)‖1/2C ‖S (b, b)‖1/2C , ∀a, b ∈ A .
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A positive sesquilinear C -valued map S is called faithful if

S (a, a) = 0 ⇒ a = 0.

Definition 2.3 Let A be a complex vector space. A faithful positive sesquilinear C -
valued mapS onA ×A is said to be a C*-valued quasi inner product and we often
will write 〈a|b〉S := S (a, b), a, b ∈ A .

A C*-valued quasi inner product S : A × A → C induces a quasi norm ‖ · ‖S
on A :

‖a‖S := √‖〈a|a〉S ‖C = √‖S (a, a)‖C , a ∈ A .

This means that

‖a‖S ≥ 0, ∀a ∈ A and ‖a‖S = 0 ⇔ a = 0,

‖αa‖S = |α|‖a‖S , ∀α ∈ C, a ∈ A ,

‖a + b‖S ≤ √
2(‖a‖S + ‖b‖S ), ∀a, b ∈ A . (1)

The inequality (1) is due to Lemma 2.2 (for details see [3]).
The space A is then a quasi normed space w.r.to the quasi norm ‖ · ‖S .

Definition 2.4 ([3]) If the vector spaceA is complete w.r.to the quasi norm ‖ · ‖S , it
will be called a quasi Banach space with C -valued quasi inner product or for short a
quasi BC -space.

Remark 2.5 IfS satisfies the Cauchy-Schwarz inequality (e.g. if either C is commu-
tative or bothA is a bimodule overC andS isC -linear), then we get a normed space
and not just a quasi normed space, see also [3].

Let X be a quasi BC -space and D(X) a dense subspace of X . A linear map
X : D(X) → X is S -adjointable if there exists a linear map X∗ defined on a
subspace D(X∗) ⊂ X such that

S (Xa, b) = S (a, X∗b), ∀a ∈ D(X), b ∈ D(X∗)

and X∗ is said theS -adjoint of X .
LetD be a dense subspace ofX and let us consider the following families of linear

operators acting on D [3]:

L †(D,X ) = {X S -adjointable,D(X) = D; D(X∗) ⊃ D}
L †(D) = {X ∈ L †(D,X ) : XD ⊂ D; X∗D ⊂ D}
L †(D)b = {Y ∈ L †(D); Y is bounded on D}.

The involution in L †(D,X ) is defined by X† := X∗ � D, the restriction of the
S -adjoint X∗ to D.

The setsL †(D) and L †(D)b are *-algebras.
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Remark 2.6 If X ∈ L †(D,X ) then X is closable (see [3, Remark 2.8]).

Remark 2.7 L †(D,X ) is also a partial *-algebra [2] with respect to the following
operations: the usual sum X1 + X2, the scalar multiplication λX , the involution X �→
X† := X∗�D and the (weak) partial multiplication defined whenever there exists
Y ∈ L †(D,X ) such that

S (X2a, X1b) = S (Ya, b), ∀a, b ∈ D.

The element Y , if it exists, is unique and Y = X1 � X2.

IfS is not faithful, we can consider the set

NS = {a ∈ A : S (a, a) = 0}. (2)

The following two lemmas are proved in [3].

Lemma 2.8 NS is a subspace of A .

We define a positive sesquilinear C -valued map onA /NS ×A /NS as follows:

〈·|·〉S : A /NS × A /NS → C

〈a + NS |b + NS 〉S := S (a, b). (3)

The associated quasi norm is:

‖a + NS ‖S := √‖S (a, a)‖C , a ∈ A . (4)

It is easy to check that

Lemma 2.9 A /NS [NS ] is a quasi normed space.

Definition 2.10 Let (A ,A0) be a quasi *-algebra.We denote byQC
A0

(A ) the set of all
positive sesquilinear C -valued maps onA ×A that satisfy a property of invariance:

(I ) S (ax, y) = S (x, a∗y), ∀ a ∈ A , x, y ∈ A0

and callS ∈ QC
A0

(A ) an invariant positive sesquilinear C -valued map on A × A .

Definition 2.11 Let (A ,A0) be a non-unital quasi *-algebra and S : A × A → C
be a positive sesquilinear C -valued map on (A ,A0). A net {eα}α ⊂ A0 is called a
right approximate identity for a (A ,A0) w.r. toS if

lim
α

S (a − aeα, a − aeα) = 0, ∀a ∈ A .

Further, if (A [‖ · ‖],A0) is a normed quasi *-algebra, a right approximate identity
{eα}α ⊂ A0 for (A ,A0)w.r. to the norm ‖·‖ is called strongly idempotent if eαeβ = eα

whenever α ≤ β.
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Definition 2.12 Let (A ,A0) be a non-unital quasi *-algebra. LetDπ be a dense sub-
space of a certain quasi BC -space X with C -valued quasi inner product 〈·|·〉X . A
linear map π from A into L †(Dπ ,X ) is called a *–representation of (A ,A0), if
the following properties are fulfilled:

(i) π(a∗) = π(a)† := π(a)∗ � Dπ , ∀ a ∈ A ;
(ii) for a ∈ A and x ∈ A0, π(a) � π(x) is well–defined and π(a) � π(x) = π(ax).

The *-representation π is said to be

• closable if there exists π̃ closure of π defined as π̃(a) = π(a) � D̃π where
D̃π is the completion under the graph topology tπ defined by the seminorms
ξ ∈ Dπ → ‖ξ‖X + ‖π(a)ξ‖X , a ∈ A , where ‖ · ‖X is the norm induced by
the C -valued inner product ofX ;

• closed if Dπ [tπ ] is complete.

Definition 2.13 Let {Tn}n be a sequence of linear operators on a topological vector
space (X , τ ) equipped with a topology τ . We say that {Tn}n is topologically transitive
on (X , τ ) if, for every two non-empty open subsets O1,O2 of X , there exists some
N ∈ N such that TN (O1) ∩ O2 �= ∅.

A linear operator T is said to be topologically transitive if the sequence {T n}n is
topologically transitive.

3 Construction of *-representations for positive C -valuedmaps on
non-unital quasi *-algebras

In this section we obtain representations for positive sesquilinear and linear C -valued
maps on normed non-unital quasi *-algebras with a right approximate identity. How-
ever, before focusing on the special case of normed non-unital quasi *-algebras, we
introduce first the following theorem regarding representation of positive sesquilin-
ear C*-valued maps on more general (i.e. not necessarily normed) non-unital quasi
*-algebras.

Theorem 3.1 Let (A ,A0) be a non-unital quasi *-algebra and S ∈ QC
A0

(A ). Sup-
pose there exists a net {eα}α ⊂ A0 such that eαeβ = eα whenever α ≤ β. Then the
following statements are equivalent.

(i) The net {eα}α is an approximate identity for (A ,A0) w.r. to S . Moreover, for
any fixed eα , for every a ∈ A there exists a sequence {an}n ⊂ A0 such that
lim
n→∞S ((a − an)eα, (a − an)eα) = 0.

(ii) There exist a quasi BC -spaceXS with C−valued quasi inner product 〈·, ·〉XS
,

a dense subspaceDS ⊂ XS , a net {εα}α ⊂ DS and a closed ∗−representation
πS inL †(DS ,XS ) such that for all a, b ∈ A ,

S (a, b) = lim
α

〈πS (a)εα, πS (b)εα〉XS
.
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Moreover, πS (eα)εβ = εα whenever α ≤ β and, for all a ∈ A and every α, we
have that

lim
β

〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS

exists and

lim
α

lim
β

〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS
= 0.

Finally, given εα , for each a ∈ A there exists a sequence {an}n ⊂ A0 such that

πS (an)εα → πS (a)εα inXS , as n → ∞.

Proof (i) ⇒ (i i): Note that A0/NS is dense in A /NS . Indeed, given a ∈ A and
δ > 0, by assumption (i) we can find some eα , some sequence {an} ⊂ A0 and a
N ∈ N such that for every n > N we have

‖S (a − aeα, a − aeα)‖1/2C < δ/4 and ‖S (aeα − aneα, aeα − aneα)‖1/2C < δ/4.

Hence,

‖a − aneα + NS ‖S ≤ (‖a − aeα + NS ‖S + ‖aeα − aneα + NS ‖S ) < δ.

Therefore,S satisfies (i) in [3, Theorem 3.2], hence we can proceed as in [3, Theorem
3.2] and construct the designed closed ∗−representation πS . For given α, set εα :=
eα + NS . Then

πS (eα)εβ = eαeβ + NS = eα + NS = εα, ∀α ≤ β. (5)

Next, since 〈·, ·〉S is jointly continuous, for every a, b ∈ A we have

S (a, b) = 〈a + NS , b + NS 〉S = lim
α

〈aeα + NS , beα + NS 〉S
= lim

α
〈πS (a)εα, πS (b)εα〉XS

.

Now, for each α we have

S (a − aeα, a − aeα) = lim
β

〈πS (a − aeα)εβ, πS (a − aeα)εβ〉XS

= lim
β

〈(πS (a) − πS (a) � πS (eα)) εβ, (πS (a) − πS (a) � πS (eα)) εβ〉XS

= lim
β

〈πS (a)εβ − πS (a)εα, πS (a)εβ − πS (a)εα〉XS
,
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where we have used that πS (eα)εβ = εα whenever α ≤ β. It follows that

lim
α

lim
β

〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS
= lim

α
S (a − aeα, a − aeα) = 0.

Finally, given a ∈ A and some eα , we choose a sequence {an}n ⊆ A0 such that
limn→∞ S ((a − an)eα, (a − an)eα) = 0. Since πS (eα)εβ = εα , for α ≤ β, we get

lim
n→∞〈(πS (a) − πS (an))εα, (πS (a) − πS (an))εα〉XS

= lim
n→∞ lim

β
〈(πS (a) − πS (an)) � πS (eα)εβ,

(πS (a) − πS (an)) � πS (eα)εβ〉XS

= lim
n→∞S (aeα − aneα, aeα − aneα) = 0,

which shows that πS (A0)εα is dense in πS (A )εα , for any α.

(i i) ⇒ (i) : Since πS is a ∗−representation, by hypotheses it is clear that
S (a, a) ∈ C+ and S (ax, y) = S (x, a∗y) for all a ∈ A , x, y ∈ A0. Next, by
the previous calculations, we have

lim
α

S (a − aeα, a − aeα) = lim
α

lim
β

〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS
= 0,

where πS (eα)εβ = εα whenever α ≤ β. Finally, for a ∈ A , since πS (A0)εα is
dense in πS (A )εα , choose a sequence {an} ⊂ A0 such that

πS (an)εα → πS (a)εα, n → ∞.

Then, by the previous calculations we get

lim
n→∞S ((a − an)eα, (a − an)eα)

= lim
n→∞〈(πS(a) − πS (an))εα, (πS(a) − πS (an))εα〉XS

= 0.

��
IfS satisfies Theorem 3.1, then it will be called *-representable.
From now on in this section, we shall consider normed non-unital quasi *-algebras

with a right approximate identity.

Remark 3.2 Let (A [‖ · ‖],A0) be a normed quasi *-algebra, and let {eα}α be a right
approximate identity for (A ,A0). If a ∈ A and {an} ⊂ A0 is such that a−an → 0 as
n → ∞, then for each fixed eα we have that also (a − an)eα → 0 as n → ∞ because
the right multiplication by eα is continuous. Therefore, every boundedS ∈ QC

A0
(A )

satisfies (i) in Theorem 3.1 and hence is *-representable. In fact, in this case, it is
no longer required that the approximate identity is strongly idempotent. Indeed, by
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the construction of the ∗−representation from [3], combined with the fact that εα =
eα + NS , for all α, it follows that

S (aeα − aeβ, aeα − aeβ) = 〈πS (a)(εα − εβ), πS (a)(εα − εβ)〉XS
,

for all a ∈ A , and all indices α, β. Hence, ifS is bounded, we deduce that, for all α
and all a ∈ A , we have

lim
β

S (aeα − aeβ, aeα − aeβ) = S (aeα − a, aeα − a)

and

lim
α

lim
β

S (aeα − aeβ, aeα − aeβ) = 0.

Moreover, πS (A0)εα is dense in πS (A )εα for every α. Indeed, let {an}n ⊂ A0
be such that an → a in A , then for every α it is lim

α
(a − an)eα = 0 and by the

boundedness of S and the density of A0 in A we get

‖S ((a − an)eα, (a − an)eα)‖C = ‖(πS (a) − πS (an)) εα‖2XS
→ 0, as n → ∞.

Corollary 3.3 LetA be a non-unital C∗−algebra and ω be a bounded linear positive
map from A into another C∗−algebra C . Then there exist a quasi BC -space X , a
net {εα}α inX and a bounded ∗−representation π inB(X ) such that

ω(a) = lim
α

〈π(a)εα, εα〉X , ∀a ∈ A . (6)

Moreover, for all a ∈ A and every α the limit limβ〈π(a)(εβ − εα), εβ − εα〉X exists
and we have

lim
α

(lim
β

〈π(a)(εβ − εα), εβ − εα〉X ) = 0. (7)

Proof Define S : A × A → C by S (a, b) = ω(b∗a). Then S is a bounded
invariant bounded positive sesquilinear C−valued map on A × A . Let {eα}α be a
right approximate identity forA . SinceA is a C∗−algebra, takeA0 := A , hence by
Remark 3.2 we deduce that

ω(a∗a) = S (a, a) = lim
α

〈πS (a)εα, πS (a)εα〉XS

for all a ∈ A , where εα := eα + NS as before. Hence, ω is determined on the cone
of positive elements inA . In particular, if a ∈ A +, then a = a1/2a1/2, so we obtain

ω(a) = lim
α

〈πS (a1/2)εα, πS (a1/2)εα〉XS
= lim

α
〈πS (a)εα, εα〉XS

,
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because πS is a ∗−representation. Furthermore, every element of A can be written
as a linear combination of four positive elements inA , hence we deduce that ω(a) =
limα〈πS (a)εα, εα〉XS

for all a ∈ A . Moreover, since by Remark 3.2 for all a ∈ A
and every α the limit limβ〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS

exists and

lim
α

lim
β

〈πS (a)(εβ − εα), πS (a)(εβ − εα)〉XS
= 0,

by the same arguments as above we get (7).
Finally, we have that πS (a) is a bounded linear operator for all a ∈ A . To see this,
first notice that for all a, b ∈ A we have b∗a∗ab ≤ ‖a‖2b∗b. Since ω is positive we
get thatω(b∗a∗ab) ≤ ‖a‖2ω(b∗b), which yields the boundedness of πS (a) for every
a ∈ A :

‖πS (a)(b + NS )‖2XS
= ‖S (ab, ab)‖C
= ‖ω(b∗a∗ab)‖C ≤ ‖a‖2‖b + NS‖2S , ∀b ∈ A .

��
Corollary 3.4 LetA be a non-unital C∗−algebra and ω be a bounded linear positive
map from A into another C∗−algebra C . Then,

4‖ω‖ ‖ω(a∗a)‖C ≥ ‖ω(a)‖2C = ‖ω(a∗)‖C ‖ω(a)‖C , ∀a ∈ A .

If C is commutative, then

‖ω‖ ‖ω(a∗a)‖C ≥ ‖ω(a)‖2C = ‖ω(a∗)‖C ‖ω(a)‖C , ∀a ∈ A .

Proof By Corollary 3.3, for all a ∈ A ,

‖ω(a∗a)‖C = ‖ lim
α

〈πS (a)εα, πS (a)εα〉XS
‖C = lim

α
‖πS (a)εα‖2S

since πS is a ∗-representation and the norm is continuous, where εα := eα +NS , for
all α, {eα}α is an approximate identity forA andS (a, b) = ω(b∗a), for all a, b ∈ A .
Similarly we have, for all a ∈ A ,

‖ω(a)‖C = ‖ lim
α

〈πS (a)εα, εα〉XS
‖C = ‖ lim

α
〈εα, πS (a∗)εα〉XS

‖C
= ‖ lim

α
〈πS (a∗)εα, εα〉XS

‖C = ‖ω(a∗)‖C .

By Lemma 2.2, we get

4‖εα‖2S ‖πS (a)εα‖2S ≥ ‖〈πS (a)εα|εα〉XS
‖2C , ∀α.

Moreover, by the construction in the proof of Corollary 3.3, we obtain ‖εα‖2S =
‖ω(e∗

αeα)‖C . We may let {eα}α be the canonical approximate identity for A , i.e.

123



   66 Page 12 of 29 G. Bellomonte et al.

eα = e∗
α and ‖eα‖ ≤ 1 and get ‖εα‖2S ≤ ‖ω‖ for all α. Therefore we have:

4‖ω‖ ‖πS (a)εα‖2S ≥ ‖〈πS (a)εα|εα〉XS
‖2C , ∀α. (8)

By taking the limits on both sides of (8), we obtain the desired inequality.
If C is commutative, then we get a better estimate of ‖ω(a)‖2C :

‖ω‖ ‖ω(a∗a)‖C ≥ ‖ω(a)‖2C = ‖ω(a∗)‖C ‖ω(a)‖C , ∀a ∈ A .

��
Corollary 3.5 Let (A [‖ · ‖],A0) be a normed quasi ∗−algebra with a strongly idem-
potent right approximate identity {eα}α ⊂ A0 and let ω be a bounded positive linear
C -valued map on (A ,A0). If there exists M > 0 such that

‖ω(d∗c)‖C ≤ M‖d‖‖c‖, ∀c, d ∈ A0, (9)

then there exist a quasi BC -space Xω with C−valued quasi inner product 〈·, ·〉Xω
,

a dense subspace Dω ⊂ Xω, a net {εα}α ⊂ Dω and a closed ∗- representation πω

in L †(Dω,Xω) such that for all a ∈ A and every α the limit limβ〈πω(a)εα, εβ〉Xω

exists and

ω(a) = lim
α

lim
β

〈πω(a)εα, εβ〉Xω
, ∀a ∈ A .

Moreover,

ω(c∗a) = lim
α

〈πω(a)εα, πω(c)εα〉Xω
, ∀a ∈ A , c ∈ A0.

In addition, πω(eα)εβ = εα whenever α ≤ β and, for all a ∈ A and every α the limit

lim
β

〈πω(a)(εβ − εα), πω(a)(εβ − εα)〉Xω

exists and we have limα limβ〈πω(a)(εβ − εα), πω(a)(εβ − εα)〉Xω
= 0.

Finally, given εα , for each a ∈ A there exists a sequence {an}n ⊂ A0 such that

πω(an)εα → πω(a)εα inXω, n → ∞.

Proof Similarly to the proof of [3, Corollary 3.13], we consider the bounded invariant
positive sesquilinear C -valued map

φ0 : (c, d) ∈ A0 × A0 → φ0(c, d) = ω(d∗c) ∈ C

which extends, by continuity, to a bounded invariant positive sesquilinear C -valued
map φ on A × A . For each eα and a ∈ A , if {cn}n ⊂ A0 is such that cn → a as
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n → ∞, then cneα → aeα because the right multiplication operator Reα is continuous
since (A ,A0) is a normed quasi *-algebra. Hence

ω(aeα) = lim
n→∞ ω(cneα) = lim

n→∞ φ0(eα, c∗
n) = φ(eα, a∗)

due to the fact that also c∗
n → a∗ as n → ∞. By Remark 3.2 applied to φ, we have

that

ω(a) = lim
α

ω(aeα) = lim
α

φ(eα, a∗) = lim
α

lim
β

〈πφ(eα)εβ |πφ(a∗)εβ〉Xφ

= lim
α

lim
β

〈εα|πφ(a∗)εβ〉Xφ
= lim

α
lim
β

〈πφ(a)εα|εβ〉Xφ
,

once εα = eα + Nφ for all α and being πφ(eα)εβ = εα , for all α ≤ β. Moreover, for
all a ∈ A and c ∈ A0, we obtain that

ω(c∗a) = lim
n→∞ ω(c∗cn) = lim

n→∞ φ0(cn, c) = φ(a, c) = lim
α

〈πφ(a)εα|πφ(c)εα〉Xφ
.

The rest of the thesis is granted by Remark 3.2. ��
Remark 3.6 The class of positive maps ω on a normed quasi *-algebra (A [‖ · ‖],A0)

which satisfy the assumptions of Corollary 3.5 is a proper generalization of the class
of bounded positive linear C -valued maps on C*-algebras. Indeed, if A = A0 is
a C*-algebra and ω is a bounded positive linear map ω : A → C , then, for all
c, d ∈ A = A0 we have that

‖ω(d∗c)‖C ≤ ‖ω‖‖d∗c‖ ≤ ‖ω‖‖c‖‖d‖.

Further, observe that by the triangle inequality applied to the norm ‖ · ‖C , it follows
that if ω1 and ω2 satisfy the assumptions of Corollary 3.5, then ω1 + ω2 also satisfies
the assumption of Corollary 3.5 and, if ω1 − ω2 is positive, then ω1 − ω2 satisfies the
assumption of Corollary 3.5 as well.

Let Ra denote the right multiplier by a ∈ A .

Corollary 3.7 Let A be a normed *–algebra and let ω be a bounded positive linear
C -valued map on A . Then the following statements hold.
(1) there exist a quasi BC -spaceXω whose quasi norm is induced by aC -valued quasi
inner product 〈·|·〉X , a dense subspace Dω ⊆ X and a closed *–representation πω

of A with domain Dω, such that

ω(b∗ac) = 〈πω(a)(c + Nω))|b + Nω〉Xω
, ∀a, b, c ∈ A

where Nω = {a ∈ A0| ω(a∗a) = 0}.
(2) If A possesses a right approximate identity {eα}α , there exists a net {εα}α ⊂ Xω

such that for all a ∈ A and every α the limit limβ〈πω(a)εα, εβ〉Xω
exists and we
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have

ω(a) = lim
α

lim
β

〈πω(a)εα, εβ〉Xω
.

(3) If, in addition, there exists M > 0 such that ‖Reα‖ ≤ M for all α, then for all α

and a, b ∈ A

ω(b∗a) = lim
α

〈πω(a)εα, πω(b)εα〉Xω
.

Proof (1) The proof is the same of [3, Corollary 3.10] that, in fact, does not require
the existence of the unit in A .

(2) Observe that, sinceA is a normed *-algebra, for any fixed α and a ∈ A , we have
that

‖aeα − e∗
βaeα‖ = ‖aeα − (aeα)∗eβ‖, ∀β.

Hence, limβ ‖aeα − e∗
βaeα‖ = 0, thus by the boundedness of ω we get

lim
β

ω(e∗
βaeα) = ω(aeα).

Set εα = eα + NS for each α, whereS : A × A → C is the sesquilinear map
defined by S (a, b) = ω(b∗a) for all a, b ∈ A and NS is the space defined as
in (2). Then by (1), we have

lim
β

ω(e∗
βaeα) = lim

β
〈πω(a)εα, εβ〉Xω

= ω(aeα).

Therefore,

ω(a) = lim
α

ω(aeα) = lim
α

lim
β

〈πω(a)εα, εβ〉Xω
.

(3) If ‖Reα‖ ≤ M for all α, given a, b ∈ A we have

‖b∗a − e∗
αb

∗aeα‖ ≤ ‖b∗a − b∗aeα‖ + ‖b∗aeα − e∗
αb

∗aeα‖ ≤ ‖b∗a − b∗aeα‖
+ ‖b∗a − e∗

αb
∗a‖‖Reα‖

≤ ‖b∗a − b∗aeα‖ + M‖a∗b − a∗beα‖, ∀α

since ‖a∗b − a∗beα‖ = ‖b∗a − e∗
αb

∗a‖ because A is a normed *-algebra. It
follows that

lim
β

e∗
αb

∗aeα = b∗a, ∀a, b ∈ A .
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Since ω is bounded, we deduce that

ω(b∗a) = lim
α

ω(e∗
αb

∗aeα) = lim
α

〈πω(a)(eα + Nω)|beα + Nω〉Xω

= lim
α

〈πω(a)εα|πω(b)εα〉Xω
, ∀a, b ∈ A .

��

4 Applications and examples

The aim of this section is to illustrate that examples of non-unital normed quasi *-
algebras with strongly idempotent right approximate identity and non-trivial positive
linear C*-valued maps satisfying the assumption of Corollary 3.5 do exist. Here we
will consider for instance noncommutative generalizations of integral operators.

Let C(
) be the C*-algebra of all continuous functions on a compact Hausdorff
space 
 equipped with the sup norm.

Corollary 4.1 Let A = �2(C(
)). Then A is a normed non-unital ∗−algebra,
equipped with the component-wise involution and multiplication. Moreover, it has
a strongly idempotent right approximate identity.

Proof The fact that (A ,A0) is a normed ∗− algebra follows directly. For eachm ∈ N,
denote by

ẽm := {1, . . . , 1︸ ︷︷ ︸
m−times

, 0, 0, . . .}.

We have that ẽm ẽn = ẽm whenever m ≤ n. Further, for all f ∈ A , we have ‖ f −
f ẽm‖2 → 0 as m → ∞. ��
In particular, statement (3) in Corollary 3.7 applies to the case of �2(C(
)), since it

is a normed *-algebra whose right approximate identity {̃em}m is such that ‖Rẽm‖ ≤ 1
for all m.

Example 4.2 Let {wn}n ⊆ C(
) be a uniformly bounded sequence of positive func-
tions i.e. |wn(x)| ≤ M ∀x ∈ 
, ∀n ∈ N for some M > 0 andS : �2(
) × �2(
) →
C(
) be given by

S (( f1, f2, ...), (g1, g2, ...)) =
∞∑

n=1

wn fngn, ( f1, f2, ...), (g1, g2, ...) ∈ �2(
).

It is straightforward to check that S is a bounded invariant positive sesquilinear
C(
)-valued map on �2(
) × �2(
). Then it is *-representable.

Now, let {wn} ∈ �2(C(
)) with wn ≥ 0 for every n ∈ N. Since w j ≤ (∑∞
n=1 w2

n

) 1
2 ,

it is ‖w j‖∞ ≤ ‖{wn}n‖2, for all j ∈ N. Define

ω : �2(C(
)) → C(
)
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by

ω( f1, f2, ...) =
∞∑

n=1

wn fn, ∀( f1, f2, ...) ∈ �2(C(
)).

Then, since
∥∥∑∞

n=1 wn fn
∥∥∞ ≤ ‖{wn}n‖2 ‖{ fn}n‖2, ω is a bounded positive linear

C(
)-valued map. Moreover, for every { fn}n, {gn}n ∈ �2(C(
)), we have that

‖ω(g1 f1, g2 f2, ...)‖∞ ≤ ‖{wn}n‖2 ‖{ fn}n‖2 ‖{gn}n‖2,

hence ω satisfies the assumptions of the Corollary 3.5.

Remark 4.3 Consider the normed non-unital quasi ∗−algebra (L2(R), L∞
c (R)), with

L∞
c (R) the ∗−algebra of all boundedmeasurable functions inRwith compact support.

It is not hard to see that, if en = χ[−n,n], for each n ∈ N, i.e. the characteristic function
of the interval [−n, n], then emen = em whenever m ≤ n. Further, the sequence {en}n
is a strongly idempotent approximate identity for (L2(R), L∞

c (R)).

4.1 Integral operators

In order to build our way up to the abstract setting, we start this subsection with the
following elementary example.

Example 4.4 Let L∞
c (R)be as before and consider the quasi∗−algebra (L2(R), L∞

c (R)).
For all n ∈ N, set en := χ[−n,n] and S : L2(R) × L2(R) → C, defined as

S ( f , g) :=
∫

R

f (t)g(t)v(t)dt,

where v is some bounded non-negative measurable function on R. It is not hard to see
that S satisfies (i) in Theorem 3.1, hence it is *-representable.

More generally, let Cb(
) be the space of bounded continuous functions on 
,
k ∈ Cb(R

2) and let Sk : L2(R) × L2(R) → Cb(R), be given by

Sk( f , g)(x) :=
∫

R

k(x, t) f (t)g(t)dt,

for x ∈ R, and f , g ∈ L2(R). Then Sk satisfies (i) of Theorem 3.1. Indeed, it is not
hard to check by some calculations that the image of Sk is in fact a subset of Cb(R).
Moreover, if w ∈ L2(R) ∩ L∞(R) and w ≥ 0, then the map θ : L2(R) → Cb(R)

defined by

θ( f )(x) =
∫

R

k(x, t)w(t) f (t)dt, f ∈ L2(R), x ∈ R,
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is a well-defined, bounded positive linear map on L2(R) satisfying the conditions of
Corollary 3.5.

This can be even more generalized, as we will see in what follows. Before intro-
ducing the result, we have to establish the notation. Denote by L2(R;C ) the Banach
space of square integrable C−valued functions, where the integral is regarded as the
Bochner integral with respect to the Lebesgue measure μ on R:

f ∈ L2(R,C ) ⇔
∫

R

‖ f (t)‖2C dμ(t) < ∞,

where we equate the functions which are equal μ−almost everywhere; see [7], [8], or
[14] for details on Bochner integrals. Denote by B(C ) the unital Banach algebra of
bounded linear operators over C , and by Cb(R

2;B(C )) and Cb(R
2;C ) the spaces of

the uniformly bounded mappings respectively from R
2 toB(C ) and from R

2 to C .

Corollary 4.5 Let K ∈ Cb(R
2;B(C )) and define the sesquilinear form SK :

L2(R;C ) × L2(R;C ) → Cb(R;C ) by

SK ( f , g)(x) :=
∫

R

K (x, t) f (t)g∗(t)dμ(t), f , g ∈ L2(R;C ). (10)

Then the following statements hold.

(1) For every K ∈ Cb(R
2;B(C )) and for every f , g ∈ L2(R;C ), the mapping

SK ( f , g) : R → C is bounded and continuous. Moreover, if K is differen-
tiable in the first coordinate, with the bounded and continuous partial derivative
∂x K (x, t) ∈ Cb(R

2;B(C )), then the function x �→ SK ( f , g)(x) is differentiable
in x, and

(SK ( f , g))′ (x) =
∫

R

∂x K (x, t) f (t)g∗(t)dμ(t). (11)

(2) If K ∈ Cb(R
2;B(C )) is such that K (x, t) f f ∗ ∈ C+, for all x, t ∈ R, whenever

f is a fixed element in L2(R;C ), then, SK is *- representable.

Proof (1) Since K ∈ Cb(R
2;B(C )) is uniformly bounded and f , g ∈ L2(R;C ), we

have, for every x ∈ R

‖SK ( f , g)(x)‖C ≤
∫

R

‖K (x, t)‖ ‖ f (t)g∗(t)‖C dμ(t) ≤ sup
t∈R

‖K (x, t)‖ · ‖ f g‖1 < ∞,

so the function x �→ SK ( f , g)(x) is uniformly bounded, for every choice of K , f , g.
To prove its continuity, it suffices to observe that for any x, y ∈ R we have:

‖SK ( f , g)(x) − SK ( f , g)(y)‖C ≤
∫

R

‖K (x, t) − K (y, t)‖ ‖ f (t)g∗(t)‖C dμ(t)

≤ sup
t∈R

‖K (x, t) − K (y, t)‖ ‖ f g‖1 → 0, as |x − y| → 0.
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Furthermore, let f , g ∈ L2(R;C ) be fixed. Then, by the Radon-NykodimTheorem
for the Bochner integral, there exists a unique finite C−valued measure, ν( f , g),
defined as

ν( f , g)(E) :=
∫

E
f (t)g∗(t)dμ(t),

for every Borel subset E of R. Therefore, for any given K ∈ Cb(R
2;B(C )), the

mapping

x �→ SK ( f , g)(x) =
∫

R

K (x, t)dν( f , g)(t)

is continuous. If, in addition, the mapping K is differentiable in its first argument, with
continuous bounded partial derivative, then

lim
�x→0

1

�x
(SK ( f , g)(x + �x) − SK ( f , g)(x))

= lim
�x→0

1

�x

(∫

R

K (x + �x, t)dν( f , g)(t) −
∫

R

K (x, t)dν( f , g)(t)

)

= lim
�x→0

1

�x

∫

R

(K (x + �x, t) − K (x, t))dν( f , g)(t) =
∫

R

∂x K (x, t)dν( f , g)(t).

(2) By assuming that K (x, t) f f ∗ ∈ C+, for every f ∈ L2(R;C ) which is definite
μ−almost everywhere, we prove that the sesquilinear form SK is positive. Then,
similarly to Example 4.4, by taking {en}n with en := χ[−n,n] as an approximate
identity with respect to SK , it is possible to show that SK satisfies (i) in Theorem
3.1, hence it is *-representable. ��

Keeping the notation and the assumptions from the previous corollary, consider the
functional

ωK (cd)(x) =
∫

R

K (x, t)c(t)d(t)dt

for every c, d ∈ L2(R;C ). Specially, if K (x, t) is a positive operator in B(C ), we
have

ωK ( f f ∗)(x) =
∫

R

K (x, t) f (t) f ∗(t)dt,

thus ωK is a positive map with values in Cb(R;C ). Indeed, the boundedness follows
from

∥∥ωK ( f f ∗)
∥∥ ≤ sup

t∈R
‖K (x, t)‖ · ‖ f f ∗‖1 = sup

t∈R
‖K (x, t)‖ · ‖ f ‖22.
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Consequently, the mapping ωK is a positive bounded map with values in the unital
algebra Cb(R;C ).

Denote byC(R;B(C )) the space of continuousB(C )−valued functions with real
arguments. Recall that the algebra C(R;B(C )), equipped with the pointwise multi-
plication and involution, is a unital *-algebra. However, the algebra ofB(C )−valued
functions which vanish at infinity, denoted as C0(R;B(C )), equipped with the oper-
ations and topology inherited from C(R;B(C )), is an example of a non-unital
∗−algebra.

In that sense, assume that supt∈R ‖K (·, t)‖ belongs to C0(R;B(C )), i.e.

lim|x |→∞ sup
t∈R

‖K (x, t)‖ = 0C(R;B(C )).

Then, due to

∥∥ωK ( f f ∗)
∥∥ ≤ sup

t∈R
‖K (x, t)‖ · ‖ f ‖22,

the mapping ωK has its range contained in the non-unital algebra C0(R;B(C )).
Embed the image of ωK into C0(R;B(C )) via the inclusion operator ı in the way
that

ı : R(ωK ) ↪→ C0(R;B(C )), ı(u) = u ∈ C0(R;B(C )),

and denote the composition ωK ◦ ı as ωK again:

ωK (cd) ∈ C0(R;B(C )), c, d ∈ L2(R;C ).

This way, the mapping ωK is subject to the Corollary 3.5.

4.2 Noncommutative Lp-spaces and generalized integral operators

The previous section gives a general idea on how to approach the integral operators in
the noncommutative non-unital setting. In what follows we further explore this class
of operators.

LetH be a separableHilbert spacewith an orthonormal basis {e j } j , and let Bp(H )

be the Schatten p−ideal with the p−norm [10]. Then, Bp(H ) is a Banach space. For
each m ∈ N, let Pm denote the orthogonal projection onto the span of {e1, . . . , em}.
Then, Pm is a finite rank operator for every m. Notice that banally it is Pm Pn = Pm
for every m ≤ n. In a similar way as in [11, Remark 2.9] one can prove the following
lemma.

Lemma 4.6 The normed non-unital ∗−algebra Bp(H ) has a strongly idempotent
right approximate identity {Pm}m consisting of orthogonal projections.

In particular, the statement (3) inCorollary 3.7 applies to the case of (Bp(H ), ‖·‖p),
since it is a normed *-algebra whose right approximate identity {Pm}m is such that
‖RPm‖ ≤ 1 for all m.
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Example 4.7 Let p > 2. Choose some {λ j } j ∈ � p
p−1

∩ � p
p−2

with λ j ≥ 0 for all j ∈ N

and such that λi > λ j for i < j . Let {gn}n be a uniformly bounded sequence of
positive continuous functions on [0, 1] such that gi (t) ≥ g j (t) for i ≤ j and for all
t ∈ [0, 1]. Define

Wt =
∞∑

j=1

λ j g j (t)〈·|e j 〉e j , t ∈ [0, 1]

where {e j } j denotes an orthonormal basis of a separable Hilbert space H . Let

ω(A)(t) = tr(AWt ), ∀A ∈ Bp(H ), t ∈ [0, 1].

By some calculations it is not hard to check that ω is a bounded positive linear map
from Bp(H ) into C([0, 1]) that satisfies the assumptions of the Corollary 3.5.

Let now M be a von Neumann algebra and ρ a normal semifinite faithful trace
on M. Denote by L p(ρ) the Banach space consisting of operators affiliated with M
which is the completion of the *-ideal

Jp := {X ∈ M : ρ(|X |p) < ∞},

with respect to the norm ‖X‖p := ρ(|X |p)1/p, X ∈ M (see [9, Example 3.1.7] and
references therein).

Lemma 4.8 LetM be a von Neumann algebra which is a factor of type I or II, and ρ

be a semifinite trace onM. Let W ∈ M such that W ≥ 0. Then there exists a sequence
{Pn}n of finite projections in M such that

lim
n→∞ ‖W (I − Pn)‖p = 0.

Proof Suppose thatM is a factor of type I or II, and that ρ is a semifinite trace onM+.
It is known that ρ is unique up to a scalar multiplication. Moreover, for each positive
T ∈ M it follows that

ρ(T ) =
∫ ∞

0
λd(D ◦ ET ),

where ET is the spectral measure corresponding to T and D is the dimension function,
which is also unique up to a scalar multiplication. Given p ∈ N, define α : R → R

by α(t) = t p. If W ∈ M is such that W ≥ 0, then it is EW p = EW ◦ α−1, and for
every Borel subset B ⊂ R,

E(WEW ([0,1/n]))p (B) = EW

(
α−1(B) ∩ [0, 1/n]

)
, n ∈ N.
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Consequently,

ρ(W p) =
∫ ∞

0
λpd(D ◦ EW )

and

ρ
(
(WEW ([0, 1/n]))p) =

∫ 1/n

0
λpd(D ◦ EW ).

If ρ(W p) < ∞ then by the Monotone Convergence Theorem

∫ ∞

0
λpd(D ◦ EW ) = lim

n→∞

∫ ∞

1/n
λpd(D ◦ EW ).

Furthermore, we have that

1

n p
ρ (EW (1/n,∞)) = 1

n p (D ◦ EW ((1/n,∞))) ≤
∫ ∞

1/n
λpd(D ◦ EW ) < ∞,

so EW ((1/n,∞)) is finite. By letting Pn = EW (1/n,∞) for each n ∈ N, we deduce
the thesis. ��

Now we will consider the applications to L2(ρ). First recall that, if T ∈ L2(ρ) ∩
L∞(ρ) and B ∈ L∞(ρ), then T B, BT ∈ L2(ρ), and ‖T B‖2, ‖BT ‖2 ≤ ‖B‖∞·‖T ‖2.
We obtain the following corollary:

Corollary 4.9 LetM be a von Neumann algebra and ρ a semifinite (non finite) trace on
M. The normed non-unital quasi ∗−algebra (L2(ρ), L2(ρ) ∩ L∞(ρ)) has a strongly
idempotent right approximate identity {Pα}α consisting of finite projections inM.

Proof Let F ∈ L2(ρ) ∩ L∞(ρ). By Lemma 4.8 for every ε > 0 there exists a finite
projection Pε such that ‖|F |(I − Pε)‖2 < ε. It is also

‖F(I − Pε)‖2 = ‖U |F |(I − Pε)‖2 ≤ ‖U‖∞‖|F |(I − Pε)‖2 < ε,

where U is the partial isometry from the polar decomposition of F . Now, if Q is any
finite projection with Pε ≤ Q, then, since F(I − Q)F∗ ≤ F(I − Pε)F∗, we get

‖F(I − Q)‖2 = ‖(I − Q)F∗‖2 ≤ ‖(I − Pε)F
∗‖2 = ‖F(I − Pε)‖2 < ε.

Let {Pα}α denote the net of finite projections in L∞(ρ), then PαPβ = Pα for every
α ≤ β. It is

lim
α

‖F(I − Pα)‖2 = 0, ∀F ∈ L2(ρ) ∩ L∞(ρ).

123



   66 Page 22 of 29 G. Bellomonte et al.

Given T ∈ L2(ρ) and ε > 0, there exists a F ∈ L2(ρ)∩L∞(ρ) such that ‖T −F‖2 <
ε
3 . Moreover, by the previous arguments, there exists a finite projection Pε , such that
‖F(I − Q)‖2 < ε

3 for every finite projection Q with Pε ≤ Q. Hence we deduce that

‖T (I − Q)‖2 ≤ ‖T − F‖2 + ‖F(I − Q)‖2 + ‖(F − T )Q‖2
≤ ‖T − F‖2 + ‖F(I − Q)‖2 + ‖T − F‖2‖Q‖∞ < ε.

for every finite projection Q with Pε ≤ Q, hence in particular

lim
α

‖T (I − Pα)‖2 = 0.

��
Example 4.10 Consider the (L2(ρ), L∞(ρ) ∩ L2(ρ)), where ρ is semi-finite trace.
Let W ∈ L∞(ρ) ∩ L2(ρ) such that W ≥ 0. By Lemma 4.8, there exists a finite
projection P such that PW = WP . Then, WP = PW P ≥ 0. Let k be a nonnegative
continuous function on [0, ‖WP‖] × [0, ‖WP‖]. For each x ∈ [0, ‖WP‖], let fx ∈
C([0, ‖WP‖]) be given by fx (t) = k(x, t) and Wx := fx (WP). Define ω on L2(ρ)

by

ω(A)(x) = ρ(A((I − P)W + Wx )), ∀x ∈ [0, ‖WP‖], A ∈ L2(ρ).

By some calculations, it is not hard to check that ω is a bounded, positive linear
map from L2(ρ) into C([0, ‖WP‖]) that satisfies the assumption in Corollary 3.5.
Observe that ω induces also a bounded positive sesquilinear C([0, ‖WP‖])-valued
map on L2(ρ) × L2(ρ) given by

φ(X ,Y )(x) = ρ(X((I − P)W + Wx )Y
∗), x ∈ [0, ‖WP‖],

for all X ,Y ∈ L2(ρ).
Now, let L2([0, ‖WP‖],B(H ))with respect to theGel’fand-Pettis integral (see [12])
and choose At ∈ L2([0, ‖WP‖],B(H )) such that At ≥ 0 for a.e. t ∈ [0, ‖WP‖].
Similarly as earlier, we can construct a bounded positive linear map θ : L2(ρ) →
B(H ) with

θ(X) =
∫ ‖WP‖

0
ρ(X((I − P)W + Wt ))At dt, X ∈ L2(ρ).

Finally, put Ba(�2(C([0, ‖WP‖]))) the C*-algebra of all adjointable bounded oper-
ators on �2(C([0, ‖WP‖])) which are linear w.r. to C([0, ‖WP‖]) and define

θ̃ : L2(ρ) → Ba(�2(C([0, ‖WP‖])))

by

θ̃ (X)( f1, f2, ...) = (ω(X) f1, ω(X) f2, ...),
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for every X ∈ L2(ρ), ( f1, f2, ...) ∈ �2(C([0, ‖WP‖])). Then both θ and θ̃ satisfy the
assumptions of Corollary 3.5. Notice that in a similar way as for ω, the maps θ and
θ̃ induce bounded invariant positive sesquilinear maps on L2(ρ) × L2(ρ) that take
values inB(H ) and Ba(�2(C([0, ‖WP‖]))), respectively.
Remark 4.11 If T : L2(R) → C([0, 1]) is an integral operator given by

T ( f )(x) =
∫

R

k(x, t) f (t)dt, ∀x ∈ [0, 1], f ∈ L2(R)

where k(x, ·) ∈ L2(R) for all x ∈ [0, 1], then k induces amapping η : [0, 1] → L2(R)

given by

η(x) = k(x, ·), ∀x ∈ [0, 1].

Moreover,

T ( f )(x) =
∫

R

η(x)(t) f (t)dt, ∀x ∈ [0, 1], f ∈ L2(R).

Hence, if η̃ is a mapping from [0, 1] into L2(ρ) and T̃ is an operator on L2(ρ) given
by

T̃ (Y )(x) = ρ (Y η̃(x)) , ∀x ∈ [0, 1], Y ∈ L2(ρ),

then, if T̃ (Y )(·) belongs to C([0, 1]) for every Y ∈ L2(ρ), T̃ can be considered as a
generalized integral operator on L2(ρ). Thus, themapω in Example 4.10 can be in this
way interpreted as a generalized integral operator on L2(ρ). A similar consideration
applies to the positive map constructed in Example 4.7.

5 Topologically transitive operators on noncommutative L2-spaces

Let M be a properly infinite von Neumann algebra over a separable Hilbert space
H . Then, H can be written as H = ⊕ j∈ZH j , where for each j the orthogonal
projection onto H j , denoted as Pj , belongs to M, and Pj1 ∼ Pj2 , for all j1, j2 ∈ Z.
Let {Wj } j∈Z be a uniformly bounded sequence inM, and set

W :=
∑

j∈Z
λ j PjW j Pj , (12)

where λ j ≥ 0 for all j , and lim| j |→∞ λ j = 0. We have the following

Lemma 5.1 The above defined operator W is a well-defined bounded linear operator
which belongs toM.
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Proof Since {Wj } j∈Z is uniformly bounded, there exists some M > 0 such that
‖Wj‖ ≤ M for all j ∈ Z. If x ∈ H , then ‖x‖2 = ∑

j∈Z
‖Pj x‖2. Hence, given ε > 0,

there exists some N ∈ N such that

∞∑

j=N

‖Pj x‖2 <
ε

2M2R2 , and
∞∑

j=N

‖P− j x‖2 <
ε

2M2R2 ,

where R = sup j∈Z{λ j }. Thus, for every n,m ∈ N such that m > n ≥ N , we obtain

∥∥∥∥∥∥

m∑

j=n

λ j PjW j Pj x

∥∥∥∥∥∥

2

=
m∑

j=n

λ2j‖PjW j Pj x‖2

≤ R2
m∑

j=n

‖PjW j‖2‖Pj x‖2 ≤ M2R2
m∑

j=n

‖Pj x‖2 < ε/2.

Similarly, we get

∥∥∥∥∥∥

m∑

j=n

λ− j P− jW− j P− j x

∥∥∥∥∥∥

2

< ε/2.

Hence, the sums
∞∑
j=1

λ j PjW j Pj x , and
∞∑
j=1

λ− j P− jW− j P− j x are convergent in H .

Since x ∈ H was chosen arbitrarily, we deduce that

s − lim
n→∞

n∑

j=1

λ j PjW j Pj ∈ M, s − lim
n→∞

n∑

j=1

λ− j P− jW− j P− j ∈ M,

so W belongs toM as well. ��

If Wj ≥ 0 for every j ∈ Z and the assumptions of Lemma 5.1 hold, then W is a
bounded positive linear operator. Moreover, since lim| j |→∞ λ j = 0, we get

lim
n→∞

∥∥∥∥∥∥
W (I −

n∑

j=−n

Pj )

∥∥∥∥∥∥
= 0.
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Indeed, for each x ∈ H and every n ∈ N, we have

∥∥∥∥∥∥
W (I −

n∑

j=−n

Pj )x

∥∥∥∥∥∥

2

=
∞∑

j=n+1

λ2j‖PjW j Pj x‖2 +
∞∑

j=n+1

λ2− j‖P− jW− j P− j x‖2

≤ sup
j>n

λ2j M
2

∞∑

j=n+1

‖Pj x‖2 + sup
j>n

λ2− j M
2

∞∑

j=n+1

‖P− j x‖2

≤ sup
| j |>n

λ2j M
2

⎛

⎝
∑

j∈Z
‖Pj x‖2

⎞

⎠ = sup
| j |>n

λ2j M
2‖x‖2.

Next, since Pj ∼ Pj+1 for all j ∈ Z, there exists for each j a partial isometry
Uj ∈ M, that maps H j isometrically onto H j+1. Given x ∈ H and ε > 0, choose
again some N > 0 such that

∑∞
j=N ‖Pj x‖2 < ε/2 and

∑∞
j=N ‖P− j x‖2 < ε/2. For

each m > n > N , we have that

∥∥∥∥∥∥

m∑

j=n

Pj+1Uj Pj x

∥∥∥∥∥∥

2

≤
∞∑

j=n

‖Pj x‖2 < ε/2,

and, similarly,

∥∥∥∥∥∥

m∑

j=n

P− j+1U− j P− j x

∥∥∥∥∥∥

2

< ε/2.

For an argument similar to the one above, we deduce that

s − lim
n→∞

n∑

j=0

Pj+1Uj Pj ∈ M, s − lim
n→∞

n∑

j=1

P− j+1U− j P− j ∈ M.

Set

V = 2

⎛

⎝s − lim
n→∞

n∑

j=1

P− j+1U− j P− j

⎞

⎠ + 1

2

⎛

⎝s − lim
n→∞

n∑

j=0

Pj+1Uj Pj

⎞

⎠ .

It is straightforward to check that V is invertible and

V−1 = 1

2

⎛

⎝s − lim
n→∞

n∑

j=1

P− jU
∗− j P− j+1

⎞

⎠ + 2

⎛

⎝s − lim
n→∞

n∑

j=0

PjU
∗
j Pj+1

⎞

⎠ .
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For each j ∈ N, and all n > j , one can check that

V n P− j = 22 j−n (
U− j+n−1 · . . . ·U− j+1U− j P− j

)
,

while for all n ∈ N, we have that

V n Pj = 2−n (
Uj+n−1 · . . . ·Uj+1Uj Pj

)
.

The latter also holds when j = 0. Hence we get

∥∥∥∥∥∥
V n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠

∥∥∥∥∥∥
≤

k∑

j=−k

‖V n Pj‖ ≤ 2k22k−n,

whenever n > k and k ∈ N, so

lim
n→∞

∥∥∥∥∥∥
V n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠

∥∥∥∥∥∥
= 0, ∀k ∈ N.

By similar calculations, one can check that

lim
n→∞

∥∥∥∥∥∥
V−n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠

∥∥∥∥∥∥
= 0, ∀k ∈ N.

Let RV ∗ : L2(ρ) → L2(ρ) be given by RV ∗(A) := AV ∗, for all A ∈ L2(ρ).
Since ‖AV ∗‖2 ≤ ‖A‖2‖V ∗‖∞ for all A ∈ L2(ρ), it follows that RV ∗ is a well-
defined bounded linear operator on L2(ρ). Consider the positive sesquilinear form
S : L2(ρ) × L2(ρ) → C , given by

SW (X ,Y ) := ρ(XWY ∗), X ,Y ∈ L2(ρ),

where W is the positive linear operator in M, introduced in (12). Since SW is pos-
itive and sesquilinear, it induces a semi-norm ‖ · ‖W on L2(ρ), given by ‖X‖W :=
(SW (X , X))1/2 for all X ∈ L2(ρ). Let (L2(ρ), τW ) be the locally convex topological
vector space, equipped with the topology τW generated by the seminorm ‖ · ‖W .

We are ready to present the main result of this section. Recall the definition of
topologically transitive operator, see Definition 2.13.

Proposition 5.2 The operator RV ∗ is topologically transitive on (L2(ρ), τW ).

Proof As observed earlier, we have that

lim
n→∞

∥∥∥∥∥∥
W

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠

∥∥∥∥∥∥∞
= 0.
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Hence, for each X ∈ L2(ρ) we get

∥∥∥∥∥∥
X

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠

∥∥∥∥∥∥

2

W

= ρ

⎛

⎝X

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠W

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠ X∗
⎞

⎠

≤ ‖X‖22

∥∥∥∥∥∥

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠W

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠

∥∥∥∥∥∥∞

≤ ‖X‖22

∥∥∥∥∥∥
W

⎛

⎝I −
n∑

j=−n

Pj

⎞

⎠

∥∥∥∥∥∥∞
→ 0, n → ∞.

Thus, given two non-empty τW−open subsets O1 and O2 of L2(ρ), there exist

some F1 ∈ O1, and F2 ∈ O2, and k ∈ N, such that F1

(
k∑

j=−k
Pj

)

= F1, and

F2

(
k∑

j=−k
Pj

)

= F2. Hence, we obtain that

‖Rn
V ∗(F1)‖2W = ρ(F1(V

n)∗WVnF∗
1 ) ≤ ‖V nF∗

1 ‖22 ‖W‖∞

≤
∥∥∥∥∥∥
V n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠ F∗
1

∥∥∥∥∥∥

2

2

‖W‖∞

≤
∥∥∥∥∥∥
V n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠

∥∥∥∥∥∥

2

∞

∥∥F∗
1

∥∥2
2 ‖W‖∞ → 0, n → ∞.

Similarly, since

lim
n→∞

∥∥∥∥∥∥
V−n

⎛

⎝
k∑

j=−k

Pj

⎞

⎠

∥∥∥∥∥∥

2

∞
= 0,

we get

lim
n→∞ ‖R−n

V ∗ (F2)‖2W = lim
n→∞ ‖R(V−n)∗(F2)‖2W = 0.

For each n ∈ N, set Xn := F1 + R−n
V ∗ (F2). Then,

‖Xn − F1‖W = ‖R−n
V ∗ (F2)‖W → 0, n → ∞,

and

‖Rn
V ∗(Xn) − F2‖W = ‖Rn

V ∗(F1)‖W → 0, n → ∞.
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It follows that we can find some n0 ∈ N such that Xn0 ∈ O1 and Rn0
V ∗(Xn0) ∈ O2. ��

For each n ∈ N, we will now consider the cosine operator function generated by
RV ∗ , that is for every n ∈ N, we put C (n) = 1

2

(
Rn
V ∗ + R−n

V ∗
)
. The main idea for the

proof of the next proposition is inspired by the proof of [13, Theorem 5].

Proposition 5.3 The sequence {C (n)}n is topologically transitive on (L2(ρ), τW ).

Proof Let O1 and O2 be non-empty open subsets of (L2(ρ), τW ). As in the proof of
Proposition 5.2, choose F1 ∈ O1 and F2 ∈ O2 such that

F1

⎛

⎝
k∑

j=−k

Pj

⎞

⎠ = F1 and F2

⎛

⎝
k∑

j=−k

Pj

⎞

⎠ = F2, for some k ∈ N.

By the same arguments as the ones in the proof of Proposition 5.2, we obtain that

lim
n→∞ ‖Rn

V ∗(F1)‖W = lim
n→∞ ‖R−n

V ∗ (F1)‖W = lim
n→∞ ‖Rn

V ∗(F2)‖W
= lim

n→∞ ‖R−n
V ∗ (F2)‖W = 0.

For each n ∈ N, put Xn := F1+Rn
V ∗(F2)+R−n

V ∗ (F2). Since ‖·‖W is a seminorm, then
it satisfies the triangle inequality, hence it follows that Xn →

τW
F1 andC (n)(Xn) →

τW
F2.

Thus, there exists a N ∈ N such that C (N )(O1) ∩ O2 �= ∅. ��
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