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Abstract

In this paper we provide a representation of a certain class of C*-valued positive
sesquilinear and linear maps on non-unital quasi *-algebras, thus extending the results
from Bellomonte (GNS-construction for positive C*—valued sesquilinear maps on a
quasi *—algebra, Mediterr. J. Math., 21 166 (22 pp) (2024)) to the case of non-unital
quasi *-algebras. Also, we illustrate our results on the concrete examples of non-unital
Banach quasi *-algebras, such as the standard Hilbert module over a commutative C*-
algebra, Schatten p-ideals and noncommutative L>-spaces induced by a semifinite,
nonfinite trace. As a consequence of our results, we obtain a representation of all
bounded positive linear C*-valued maps on non-unital C*-algebras. We also deduce
some norm inequalities for these maps. Finally, we consider a noncommutative L2-
space equipped with the topology generated by a positive sesquilinear form and we
construct a topologically transitive operator on this space.

Keywords *-representations - Positive C*-valued maps - Non-unital quasi
*-algebras - Noncommutative L?-spaces - Topologically transitive operators
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1 Introduction

Positive maps on operator algebras play an important role in various areas of mathe-
matics and physics. Many deep mathematical results have been obtained in this topic,
see for example [6] and [15]. These maps turn out to be a powerful tool for character-
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izing entanglement in quantum information theory (for more details and the literature,
see [6]). Moreover, as observed in the introduction of [15], another area where pos-
itive maps appear is the one of operator spaces. Although, in that context, the maps
are usually completely positive, there is a close connection with positive maps on
C*-algebras. These facts provide a motivation for obtaining representations (thus in
a certain sense an explicit description) of such maps. The classical result in repre-
sentation theory of positive maps is the famous Stinespring theorem which gives a
representation of completely positive maps on unital C*-algebras and, quite recently,
in [3, Corollary 3.10], arepresentation of general positive C*-valued maps on arbitrary
unital *-algebras has also appeared.

In this paper (in Corollary 3.3) we obtain a representation of general bounded,
positive linear C*- valued maps on non-unital C*-algebras. As a consequence, in
Corollary 3.4 we deduce also certain norm inequalities for these maps. Moreover,
in Corollary 3.7 we provide representations of positive C*-valued maps on general
non-unital normed *-algebras with a right approximate identity.

It is now long time that the C*-algebraic approach to quantum theories has been
considered as a too rigid framework where casting all objects of physical interest.
Therefore, several possible generalizations have been proposed: quasi *-algebras, par-
tial *-algebras and so on. They reveal in fact to be more suited to cover situations where
unbounded operator algebras are involved. Further, quasi *-algebras are also interest-
ing from the mathematical point of view because several beautiful and important
mathematical structures (such as commutative and noncommutative L? spaces) are
examples of quasi *-algebras. For all these reasons, it might be also relevant to study
positive C*-valued maps on quasi *-algebras. In [3, Corollary 3.13], a representation
of a special class of bounded positive linear C*-valued maps on unital normed quasi
*-algebras has been provided. This class of positive maps turns out to be a proper
generalization of the class of bounded positive linear C*-valued maps on C*-algebras,
as we argue in Remark 3.6 below.

However, there are many important examples of non-unital normed quasi *-
algebras, such as the standard Hilbert module over a commutative C*-algebra, the
Schatten p-ideals, and noncommutative L?-space induced by a semifinite non-finite
trace. These examples have motivated us to extend the theory from [3] to the case
of non-unital normed quasi *-algebras. In Corollary 3.5 we provide an extension of
[3, Corollary 3.13] to the the case of non-unital normed quasi *-algebras with a right
approximate identity. To sum up, the main purpose and aim of Sect. 3 is to provide rep-
resentations of bounded positive C*-valued maps both on non-unital operator algebras
and on non-unital Banach quasi *-algebras. The main difference compared to the uni-
tal case is the lack of the existence of the cyclic vector. Therefore, the representations
of positive C*-valued maps on unital (quasi) *-algebras obtained in [3] are no longer
valid in the non-unital case because those representations are expressed in terms of
the cyclic vector (see [3, Corollary 3.10] and [3, Corollary 3.13]) and cyclic vector is
induced by the unit in the respective (quasi) *-algebra. For this reason, the non-unital
case requires a to a certain extent different approach. Although we do apply the gen-
eral GNS-construction from [3], some additional algebraic work and modifications
are needed in the construction of *-representations for positive C*-valued maps on
non-unital (quasi) *-algebras and this is exactly what the proofs in Sect. 3 provide. In
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Sect.4 we give examples of positive C*-valued maps on concrete non-unital normed
quasi *-algebras.

Every positive linear map on a *-algebra %7 induces in a natural way the corre-
sponding positive sesquilinear map on 27 x 7. On quasi *-algebras, because of the
lack of an everywhere defined multiplication, in representation theory it is sometimes
more convenient to study positive sesquilinear maps instead of positive linear maps,
as observed e.g. in [9].

In this paper, we provide first representations of bounded positive sesquilinear
C*-valued maps on non-unital normed quasi *-algebras and then, in various corol-
laries, we obtain the above-mentioned representations of bounded positive linear
C*-valued maps. Now, in addition for being a convenient tool in representation the-
ory, bounded positive sesquilinear maps generate also several topologies on normed
quasi *-algebras, as observed in [9, Remark 3.1.32]. On the other hand, the topological
dynamics of linear operators is in general an active research field in mathematics, see
[1, 4, 5], and topological transitivity is one of the main concepts in this theory. The
topological transitivity of cosine operator functions acting on a solid Banach function
space (thus in particular on commutative L>-spaces) has been studied for instance in
[16], whereas the topological dynamics of multipliers on Schatten p-ideals has been
studied in [11], [17] and [18]. Motivated by these facts, in Sect.5 we consider a non-
commutative L?-space equipped with a topology generated by a bounded positive
sesquilinear form and we construct a topologically transitive right multiplier opera-
tor on this space. Also, we prove that the cosine operator function generated by this
operator is topologically transitive as well.

The paper is organized as follows. In Sect. 2, we recall some notions, concepts and
results mainly from [3] and [9] that are needed for the rest of the paper. In Sect. 3, we
provide (general) representations of a certain class of bounded positive sesquilinear
or linear C*-valued maps on non-unital normed quasi *-algebras possessing a certain
right approximate identity (see Definition 2.11). In Sect.4 we illustrate our results by
concrete examples. For this purpose, in Example 4.10 we construct positive linear map
from a non-unital noncommutative L>-space into the space of continuous functions
on a closed interval, and it turns out that this operator can be considered as a (proper)
generalization of an integral operator on a commutative L>?-space, as we argue in
Remark 4.11. In fact, most of our examples in Sect. 4 are devoted to the study of integral
operators and their generalizations in the context of various normed non-unital quasi *-
algebras. In Sect. 5, we consider topologically transitive operators on non commutative
L?-spaces equipped with a topology generated by a positive sesquilinear form.

2 Basic definitions and results

A quasi *-algebra (<7, o)) is a pair consisting of a vector space </ and a *-algebra
<y contained in .o as a subspace and such that

e o/ carries an involution a + a* extending the involution of .<7%);
e ¢/ is abimodule over . and the module multiplications extend the multiplication

of 7. In particular, the following associative laws hold:
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(xa)y = x(ay); a(xy) =(ax)y, Yaed, x,y € ;

e (ax)* = x*a*, forevery a € & and x € 4.

We will always suppose that

ax=0,VxefH=>a=0
ax =0, Vae &/ = x=0.

Clearly, both these conditions are automatically satisfied if (o7, %)) has an identity e.
Definition 2.1 A quasi *-algebra (<7, <) is said to be locally convex if <7 is a locally

convex vector space, with a topology t enjoying the following properties

(Ic1) ¢ — ¢*, ¢ € o, is continuous;
(Ic2) for every a € <%, the maps ¢ — ac and ¢ — ca, from & into <7, ¢ € <7, are

ﬂnrtinuous;
(Ic3) @ = .o;ie., o is densein & [7].

The involution of .« extends by continuity to .«7. Moreover, if T is a norm topology,
with norm || - ||, and

(bg®) lla*|| = llall, Va € o/

then, (&7, o) is called a normed quasi *-algebra and a Banach quasi *-algebra if the
normed vector space .</[|| - ||] is complete.

Let € be a C*—algebra with norm || - |l and positive cone €.
Let <7 be a complex vector space and . a positive sesquilinear %’-valued map on
o x o

S (a,b) e F x o — S(a,b) €C;

i.e., a map with the properties

i) S(a,a) e €,
ii) (aa+ Bb,yc) =y[aSL(a,c)+ BL (b, )],
witha,b,c € &/ and o, B,y € C.
By property i) it follows that
iii) L (b,a) = S(a,b)* foralla,b e <.

Lemma 2.2 [3, Lemma 2.3] Let . be a positive sesquilinear € -valued map . on
o x . Then,

2 2
17 @ bl <217 @ a1 B DI, Vabe .
If € is commutative, then . satisfies the Cauchy-Schwarz inequality:

1@ D)lle < 1@ o)L 1.7B.b)IL . Va.be .
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A positive sesquilinear €’-valued map . is called faithful if
FL(a,a) =0 = a=0.

Definition 2.3 Let <7 be a complex vector space. A faithful positive sesquilinear ¢-
valued map .’ on &7 x & is said to be a C*-valued quasi inner product and we often
will write (a|b) » := .%(a,b),a,b € <.

A C*-valued quasi inner product . : &/ x &/ — % induces a quasi norm || - || &
on </:

lall.y :=I{ala)#lle = V1.7 (@ a)llg, aec .
This means that

lalls» >0, Vae o and |lally =04 a =0,
leally = lallally, VaeC,ae,

la+blly < V2(lalls +Ibl»),  Va,be . ey

The inequality (1) is due to Lemma 2.2 (for details see [3]).
The space o7 is then a quasi normed space w.r.to the quasi norm || - || ».

Definition 2.4 ([3]) If the vector space ./ is complete w.r.to the quasi norm || - || &, it
will be called a quasi Banach space with € -valued quasi inner product or for short a
quasi By-space.

Remark 2.5 1f . satisfies the Cauchy-Schwarz inequality (e.g. if either € is commu-
tative or both <7 is a bimodule over % and . is € -linear), then we get a normed space
and not just a quasi normed space, see also [3].

Let 2" be a quasi By-space and D (X) a dense subspace of 2". A linear map
X : D(X) » Z is S-adjointable if there exists a linear map X* defined on a
subspace ©(X™*) C £ such that

S (Xa,b) = S(a, X*b), Va e D(X),be DX

and X* is said the .%-adjoint of X.
Let ® be a dense subspace of 2~ and let us consider the following families of linear
operators acting on ® [3]:

LD, ) = {X S-adjointable, D(X) = D; D(X*) D D}
LT ={Xe L@, 2): XD CD; X*DCD)
LT®), ={Y € ZT(D); Y is bounded on D}.

The involution in .Z7(®, 2") is defined by X = x* [ ®, the restriction of the

<-adjoint X* to ©.
The sets .Z7(2) and £ T(D),, are *-algebras.
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Remark 2.6 If X € Z7(D, Z°) then X is closable (see [3, Remark 2.8]).

Remark2.7 (D, Z°) is also a partial *-algebra [2] with respect to the following
operations: the usual sum X + X, the scalar multiplication A X, the involution X >
X' := X*[D and the (weak) partial multiplication defined whenever there exists
Y € Z7(®, 2) such that

S (Xaa, X1b) =.Ya,b), Va,be®.

The element Y, if it exists, is unique and ¥ = X O X».

If .7 is not faithful, we can consider the set
Ny =laed: S(a,a) =0} )

The following two lemmas are proved in [3].
Lemma 2.8 Ay is a subspace of <.

We define a positive sesquilinear %’-valued map on .o/ / N X @/ | N as follows:

(g d| Ny x A | Ny —C

(a+ Nglb+ Ny) o =S (a,b). 3)

The associated quasi norm is:

la + Ally = VIS @ a)lg, acd. “)

It is easy to check that
Lemma 2.9 of /N[N ] is a quasi normed space.

Definition 2.10 Let (<7, %)) be a quasi *-algebra. We denote by ,@;‘50 (/) the set of all
positive sesquilinear ¢’-valued maps on .2/ x .of that satisfy a property of invariance:

() L(ax,y) =L (x,a*y), Vaed, x,y € o
and call ¥ € QZ) (&7) an invariant positive sesquilinear ¢’-valued map on o/ x o7.

Definition 2.11 Let (<7, %)) be a non-unital quasi *-algebraand .% : & x &/ — €
be a positive sesquilinear ¢ -valued map on (<7, ). A net {ey}oe C 9 is called a
right approximate identity for a (<7, 2%) w.r. to .7 if

lim.¥(a — aey,a —aey) =0, Vae .
o

Further, if (<7[]| - ||], @) is a normed quasi *-algebra, a right approximate identity
{lea}a C @ for (o, o) w.r.tothe norm || -|| is called strongly idempotentif eqeg = eq
whenever o < 8.
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Definition 2.12 Let (<7, .2%)) be a non-unital quasi *-algebra. Let ©, be a dense sub-
space of a certain quasi Bg-space 2~ with %’-valued quasi inner product (-|-) 2-. A
linear map  from <7 into ZT(®,, Z°) is called a *—representation of (o, <), if
the following properties are fulfilled:

Q) 7@ =n@) =n@)* | Dy, Vae;
(ii) fora € &« and x € &), w(a) O (x) is well-defined and 7 (a) Ox (x) = 7 (ax).

The *-representation 7 is said to be

e closable if there exists 7 closure of 7 defined as 7 (a) = n(a) | 5], where
®, is the completion under the graph topology f, defined by the seminorms
E €D — |l + Ima)éllg,a € o, where || - || 9 is the norm induced by
the €’-valued inner product of 2";

e closed if ®,[t;] is complete.

Definition 2.13 Let {7,}, be a sequence of linear operators on a topological vector
space (X, ) equipped with a topology t. We say that {7}, },, is topologically transitive
on (X, 7) if, for every two non-empty open subsets &1, 0> of X, there exists some
N € N such that Ty (0) N Oy # @.

A linear operator T is said to be topologically transitive if the sequence {T"}, is
topologically transitive.

3 Construction of *-representations for positive ©’-valued maps on
non-unital quasi *-algebras

In this section we obtain representations for positive sesquilinear and linear ¢’-valued
maps on normed non-unital quasi *-algebras with a right approximate identity. How-
ever, before focusing on the special case of normed non-unital quasi *-algebras, we
introduce first the following theorem regarding representation of positive sesquilin-
ear C*-valued maps on more general (i.e. not necessarily normed) non-unital quasi
*-algebras.

Theorem 3.1 Let (<7, <) be a non-unital quasi *-algebra and ./ € 32;;/; (o). Sup-
pose there exists a net {eq}q C 9 such that eqeg = eq whenever o < B. Then the
following statements are equivalent.

(i) The net {eq}y is an approximate identity for (of , <) w.r. to .. Moreover, for
any fixed ey, for every a € o there exists a sequence {a,}, C <% such that
lim . ((a — ay)eq, (a — ay)ey) = 0.
n—od

(ii) There exist a quasi By -space 2. with ¢ —valued quasi inner product (-, -) 9, ,
a dense subspace 9 C X, anet {eq}qy C P and a closed x—representation
noin LDy, Xs) such that for all a, b € <,

Sa,b) = lién<ny(a)8a, T (b)ew) a2, -
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Moreover, w o (eq)eg = €4 Whenever a < B and, for all a € </ and every o, we
have that

li/gnwy(a)(S,s —&a), Tz (@)(eg — €a)) 2,
exists and
limlim (.- (@) (e — £a). 7.7 @)(ep — €a) 77, = 0.

Finally, given g4, for each a € < there exists a sequence {a}, C < such that
To(an)eq — To(a)ey in Xy, asn— oo.
Proof (i) = (ii): Note that <7/ is dense in </ / V. Indeed, given a € <7 and

8 > 0, by assumption (i) we can find some ¢,, some sequence {a,} C < and a
N e N such that for every n > N we have

|.-%(@a — aey,a — aea)||(lg/2 <§8/4 and ||.L(aey — apey, aey — aneo,)”(lg/2 < §/4.
Hence,

la —aneq + </VS””V < (lla —aey + JVS’”S/’ + llaeq — aneq + JVV”S”) <34.

Therefore, . satisfies (i) in [3, Theorem 3.2], hence we can proceed as in [3, Theorem
3.2] and construct the designed closed x—representation w o». For given «, set g4 :=
ey + N . Then

To(eq)ep =eqep + Ny =eq + Ny =¢eq, Yo < B. 5)
Next, since (-, ). is jointly continuous, for every a, b € &/ we have

S(a,b) =(a+ Ny, b+ Ny)y =limlaey + Ny, bey + Ng) 7

= lim{r.y(@)eq, m5 (D)ea) 27, -
Now, for each o we have

S (a —aeq,a — aey) = lién(ny(a —aey)eg, my(a —aey)eg) g,
= lién<(77y(a) —ny(a)Ony(eq)) ep, (Ty(a) —Ty(a) Ony(eq)) Ep) 2,

= lién<7f§”(a)8ﬂ —ny(a)e, Ty(a)ep — T (A)ew) 2,
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where we have used that 7 o (ey)eg = &4 Whenever a < . It follows that

lim lién(ﬂy(a)(Sﬁ —&g), Ty (a)(ep — €a)) 2, =1im.S(a —aey,a —aey) =0.
o - o

Finally, given ¢ € & and some ey, we choose a sequence {a,}, € < such that

lim, o0 S ((a — ay)eq, (a — ay)ey) = 0. Since o (eq)ep = &4, for a < B, we get

nlglgo((ﬁy(a) —w(an))éq, (T (a) — ”y(an))8a>5fy
= lim_ lién((n'y(a) — g (an) Oy (ea)ep,
(o (a) —mwy(an)) Oy (ea)ep) 2,

= lim Y(aey — aney, aey — apey) =0,
n—0oo

which shows that 7w o (%)) €, is dense in 7w & (7 )e,, for any «.

(ii) = (i) : Since m & is a x—representation, by hypotheses it is clear that
S(a,a) € €T and S(ax,y) = F(x,a*y) foralla € o, x,y € . Next, by
the previous calculations, we have

lim.%(a — aey, a — aey) = lim lién(ny(a)(s,g —&q), T(a)(ep —€a)) 2, =0,
o o h

where 7. (eq)eg = £ Whenever « < B. Finally, for a € &7, since m o (o)ey is
dense in 7 o (& )eqy, choose a sequence {a,} C % such that

mo(an)eq — Ty(a)eq, n — 00.
Then, by the previous calculations we get

linéo S ((a —ay)eq, (a —ay)eq)

= lim ((7s5(a) — ny(an))ea, (s(a) — w7 (an))ea) 2, = 0.

If .7 satisfies Theorem 3.1, then it will be called *-representable.
From now on in this section, we shall consider normed non-unital quasi *-algebras
with a right approximate identity.

Remark 3.2 Let (<[] - ||], %) be a normed quasi *-algebra, and let {ey}, be a right
approximate identity for (<, @%).1fa € </ and {a,} C < is such thata —a,, — 0 as
n — 00, then for each fixed e, we have that also (a — a,)eq — 0 asn — oo because
the right multiplication by e, is continuous. Therefore, every bounded . € Q;’éo (o)
satisfies (i) in Theorem 3.1 and hence is *-representable. In fact, in this case, it is
no longer required that the approximate identity is strongly idempotent. Indeed, by
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the construction of the x—representation from [3], combined with the fact that ¢, =
eq + N, for all «, it follows that

S (aeq — aep, aeq — aeg) = (w.y(a)(ea — &p), T (a)(ex — €p)) 2, »

for all @ € <7, and all indices «, 8. Hence, if . is bounded, we deduce that, for all
and all a € &7, we have

liﬁr}nﬂ(aea —aeg,aeq —aeg) = .S (aeq —a, aey, — a)

and

lim liénf(aea —aeg,aeq —aeg) = 0.
o

Moreover, . (2/))e, is dense in 7 (o )e, for every «. Indeed, let {a,}, C
be such that @, — a in &7, then for every « it is lim(a — a,)e, = 0 and by the
o

boundedness of .¥” and the density of 2% in &7 we get
7 ((a — ap)ew, (a — ap)ex) g = |(rv(a) — .o (an)) sotHZQ”y — 0, asn— oo.

Corollary 3.3 Let <7 be a non-unital C*—algebra and w be a bounded linear positive
map from o into another C*—algebra €. Then there exist a quasi By-space Z, a
net {eq}o in Z and a bounded *—representation w in B(Z") such that

w(a) = liorln(n(a)aa, ea) o, Ya e . (6)

Moreover, for all a € < and every a the limit limg (77 (a)(eg — €4), €8 — €a) 2 €Xists
and we have

ligl(lién(n(a)(eﬁ —&q), 88 —€a)2) = 0. (7

Proof Define ./ : o/ x &/ — € by .“(a,b) = w(b*a). Then . is a bounded
invariant bounded positive sesquilinear ¢’ —valued map on o/ x o7. Let {eq}4 be a
right approximate identity for <7. Since 7 is a C*—algebra, take <% := <, hence by
Remark 3.2 we deduce that

w(@a) = S (a,a) = lim(ry (@)ea, 7.7 (@)a) 77,

for all a € &7, where g, := e, + .+ as before. Hence, w is determined on the cone
of positive elements in 7. In particular, if a € &/ *. then a = a'/2a'/2, so we obtain

w(a) = lim(mg (@' Peq, my@"Mes) v, =lim{my(a)eq, ea) 2, ,
o - o -
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because 7 & is a x—representation. Furthermore, every element of .« can be written
as a linear combination of four positive elements in .27, hence we deduce that w(a) =
limy (7. (a)éq, €q) 27, forall a € o7. Moreover, since by Remark 3.2 for all a € .o/
and every « the limit limg (7 o (a)(eg — €a), T (a)(eg — €a)) 27, €Xists and

lim lién<775ﬂ(a)(8ﬁ —&q), T(a)(ep —€u)) 2, =0,

by the same arguments as above we get (7).

Finally, we have that 7w »(a) is a bounded linear operator for all a € <7. To see this,
first notice that for all @, b € 7 we have b*a*ab < |a||*b*b. Since w is positive we
get that w (b*a*ab) < ||la||?w(b*b), which yields the boundedness of 7 & (a) for every
ae:

|7 @+ Ay, =7 @b, ab)lg
= llw®*a*ab)lly < llal*|b + A5]%. Vb € o.

]

Corollary 3.4 Let <7 be a non-unital C*—algebra and w be a bounded linear positive
map from <f into another C*—algebra €. Then,

4ol o@*a)ly = lo@lly = llo@d)ly lo@lg, Vae .
If € is commutative, then
loll lo@*a)lly = lo@lly = llo@)lly lo@ly. VYae .
Proof By Corollary 3.3, forall a € <7,
lo@ @)l = Ilim(t @ea, T @ea) 27, g =lim |77 @eall’,
since 7 is a x-representation and the norm is continuous, where &, := ey + A, for
all o, {ey }¢ is an approximate identity for «# and . (a, b) = w(b*a), foralla, b € & .

Similarly we have, for all a € <7,

lo@lly = 1im(zy (@eq, ) 27, I = 1lim(eq, 77 (@ )ea) 2, o

= I1lim (7. (@")ea. £a) 27, g = llo (@)l
By Lemma 2.2, we get
dleal>m s @eal’y = ms(@ealea) 2, 1, Ve

Moreover, by the construction in the proof of Corollary 3.3, we obtain ||8a||?y =
lw(efeq) . We may let {eq}y be the canonical approximate identity for .7, i.e.
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eq = e} and |ley|| < 1 and get ||ea||; < ||| for all «. Therefore we have:

4ol Iry@eal’y = lrs@edlea) 2, 17, Ve ®)

By taking the limits on both sides of (8), we obtain the desired inequality.
If € is commutative, then we get a better estimate of ||w(a) ||(2§:

loll lo@*a)le = lo@]y = lo@)ly lo@le, Vae .
O

Corollary 3.5 Let (<[] - ||], @) be a normed quasi x—algebra with a strongly idem-
potent right approximate identity {ey}y C < and let w be a bounded positive linear
% -valued map on (o, ). If there exists M > 0 such that

lo@*c)lle < Mld|llcll, Ve,d € , )
then there exist a quasi By-space 2, with € —valued quasi inner product (-, -) 7.,
a dense subspace 9, C Zu, a net {e4}q C P, and a closed *- representation 1,
in LD, X,) such that for all a € </ and every « the limit limg (74, (a)eq, €8) 2,

exists and

w(a) = limli}gn(rra,(a)ea, eg)a,, Yaed.
o

Moreover,
w(c*a) = lim(7,(a)eq, To(C)ea) 2, Ya € A, c € .
o
In addition, 7, (eq)ep = &4 whenever o < B and, forall a € o/ and every « the limit

li/gn(ﬂw(a)(é?ﬁ — &), Tw(a)(ep — €a)) 2,

exists and we have limy limg (1, (a)(eg — €q), Tw(a)(eg — €4)) 2, = 0.
Finally, given g4, for each a € < there exists a sequence {a,}, C < such that

Tp(an)eq —> Tp(a)eqy in Xy, n— 0.

Proof Similarly to the proof of [3, Corollary 3.13], we consider the bounded invariant
positive sesquilinear %-valued map

oo : (c,d) € oy x Hy — ¢o(c,d) = w(d*c) e €

which extends, by continuity, to a bounded invariant positive sesquilinear % -valued
map ¢ on &/ x /. For each ey and a € <, if {c,}, C @ is such that ¢, — a as
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n — oo, thenc,e, — ae, because the right multiplication operator R, is continuous
since (&7, %)) is a normed quasi *-algebra. Hence

w(aey) = lim o(cue) = lim goea. ;) = ¢ (€a, a*)

due to the fact that also ¢ — a* as n — oo. By Remark 3.2 applied to ¢, we have
that

w(a) = limw(aey) = lim¢(ey, a*) = lim lién(an)(ea)eﬂ|n¢,(a*)8/3)g;¢
o o o

= ligln lién(ealnd,(a*)eﬁ)%% = ligtn ligl(ﬂ¢(a)80|8}3)gg¢,

once &, = ey + A for all & and being 74 (eq)ep = €q, for all & < B. Moreover, for
alla € & and ¢ € <), we obtain that

w(c*a) = lim w(c*cy) = lim ¢o(cn, €) = ¢(a, ¢) = lim(my(a)eq|my(€)ex) 2;-

The rest of the thesis is granted by Remark 3.2. O

Remark 3.6 The class of positive maps w on a normed quasi *-algebra (<7[|| - ||], %)
which satisfy the assumptions of Corollary 3.5 is a proper generalization of the class
of bounded positive linear ¢-valued maps on C*-algebras. Indeed, if o/ = o is
a C*-algebra and w is a bounded positive linear map w : &/ — ¥, then, for all
¢,d € &/ = o/ we have that

lo@*)lle < llwllid*cll < llellicllidll.

Further, observe that by the triangle inequality applied to the norm || - ||¢, it follows
that if w; and w» satisfy the assumptions of Corollary 3.5, then w; + w; also satisfies
the assumption of Corollary 3.5 and, if w; — w» is positive, then w — w» satisfies the
assumption of Corollary 3.5 as well.

Let R, denote the right multiplier by a € .

Corollary 3.7 Let o/ be a normed *-algebra and let @ be a bounded positive linear
@ -valued map on <f . Then the following statements hold.

(1) there exist a quasi By -space Z,, whose quasi norm is induced by a € -valued quasi
inner product (-|-) -, a dense subspace 9, < 2 and a closed *~representation m,,
of & with domain 9, such that

w(b*ac) = (my(@)(c + No))b + No) 2, Va,b,ce o
where N, = {a € | w(a*a) = 0}.
(2) If o7 possesses a right approximate identity {ey}y, there exists a net {e4}y C Ly

such that for all a € </ and every o the limit limg(rn,(a)eq, £g) 7, exists and we
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have

w(a) = lim lifr}n(nw(a)ea, £B) 2,
o

(3) If, in addition, there exists M > 0 such that ||R., || < M for all «, then for all «
anda,b € &

w(b*a) = lim(n,(a)eq, Tow(b)ea) 2, -

Proof (1) The proof is the same of [3, Corollary 3.10] that, in fact, does not require
the existence of the unit in .7

(2) Observe that, since .7 is a normed *-algebra, for any fixed & and a € &7, we have
that

laey — egaea” = |laeqy — (aea)*eﬂ”, VB.
Hence, limg |laeq — e}'}aea || = 0, thus by the boundedness of @ we get

li;;n a)(e}’}aea) = w(aey).

Set e = eq + A& for each o, where . : o&f x &/ — € is the sesquilinear map
defined by . (a, b) = w(b*a) for all a, b € o/ and ¥ is the space defined as
in (2). Then by (1), we have

liéna)(ejgaea) = lién(nw(a)ea, eg)a, = w(aey).

Therefore,

w(a) =limw(aey) = lim 1i/§n(nw(a)£a, ep) 2, -
o o

(3) If |R,, || < M for all «, given a, b € </ we have
o g
|b*a — ejb*aey|l < |b*a — b*aey|l + ||b*aeq — eb aey|l < |b*a — b*aey||
+ 1b%a — egb*all|| R, |l
< ||b*a — b*aey|| + M||a*b — a*bey|, Va

since ||a*b — a*bey|| = ||b*a — elb*a| because o7 is a normed *-algebra. It
follows that

liglezb*aea =b*a, Va,bec .
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Since w is bounded, we deduce that

w(b*a) =limw(e;b*aey) = lim(n,(a)(eqx + No)lbeq + No) 2,
o o

= lim(7,,(a)sq |0 (b)ey) 2, Va,b e .
o

4 Applications and examples

The aim of this section is to illustrate that examples of non-unital normed quasi *-
algebras with strongly idempotent right approximate identity and non-trivial positive
linear C*-valued maps satisfying the assumption of Corollary 3.5 do exist. Here we
will consider for instance noncommutative generalizations of integral operators.

Let C(€2) be the C*-algebra of all continuous functions on a compact Hausdorff
space 2 equipped with the sup norm.

Corollary 4.1 Let o/ = (>(C()). Then < is a normed non-unital x—algebra,
equipped with the component-wise involution and multiplication. Moreover, it has
a strongly idempotent right approximate identity.

Proof The fact that (<7, %)) is a normed x— algebra follows directly. Foreachm € N,
denote by

m—times

We have that ¢,,¢,, = &, whenever m < n. Further, for all f € «/, we have || f —
femlla = 0asm — oo. O

In particular, statement (3) in Corollary 3.7 applies to the case of 2(C(Q)), since it
is a normed *-algebra whose right approximate identity {€,,},, is such that || Rz, || < 1
for all m.

Example 4.2 Let {w,}, € C(£2) be a uniformly bounded sequence of positive func-
tions i.e. |lw, (x)| < M Vx € Q,Vn € N forsome M > O and . : 02(Q) x 12(Q) —>
C(2) be given by

1, fr0), (81,82, -0) = Y WafuZus  (fi, f2, ), (81, 82, ) € £2(R),

n=1
It is straightforward to check that . is a bounded invariant positive sesquilinear
C(2)-valued map on 02(Q) x £2(). Then it is *-representable.

Now, let {w,} € €,(C()) with w,, > 0 for every n € N. Since w; < (}_,2, w%)f,
itis wjlleo < l[{wn}nll2, for all j € N. Define

w: € (C(R) - C(Q)
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by
o(fi, f1r ) = Wafur Y(fi, fr,.) € L2(C(RQ)).
n=1

Then, since |Y 52 wafu| o, < I{walnll2 [{fa}nll2. @ is a bounded positive linear
C(€2)-valued map. Moreover, for every { f,,}n, {gn}n € €2(C(£2)), we have that

lo (g1 f1, 822, - Iloo < Hwnlnllz {fulnll2 I{gn}nll2,
hence w satisfies the assumptions of the Corollary 3.5.

Remark 4.3 Consider the normed non-unital quasi x—algebra (L*(R), L2°(R)), with
L2°(R) the x—algebra of all bounded measurable functions in R with compact support.
Itis not hard to see that, if e, = x|—p 5], foreachn € N, i.e. the characteristic function
of the interval [—n, n], then e,,e,, = e, whenever m < n. Further, the sequence {e, },
is a strongly idempotent approximate identity for (L>(R), L*(R)).

4.1 Integral operators

In order to build our way up to the abstract setting, we start this subsection with the
following elementary example.

Example 4.4 Let L°(R) be as before and consider the quasi x—algebra (LX(R), L2°(R)).
Foralln € N, set e, := x{—n.n) and .7 : L>(R) x L?>(R) — C, defined as

S(f,8) = /R fgMv(r)de,

where v is some bounded non-negative measurable function on R. It is not hard to see
that . satisfies (i) in Theorem 3.1, hence it is *-representable.

More generally, let Cp(2) be the space of bounded continuous functions on €2,
k € Cp(R?) and let .% : L2(R) x L2(R) — Cp(R), be given by

Fi(fg)x) = fR k(e 1) £ (gD,

forx e R,and f, g € L2(R). Then .7} satisfies (i) of Theorem 3.1. Indeed, it is not
hard to check by some calculations that the image of .#% is in fact a subset of Cp(R).
Moreover, if w € LZ(R) N L>®(R) and w > 0, then the map 6 : L>(R) — C,(R)
defined by

0(f)x) = / k(x, yw(@) f()dt, f e L*(R), x € R,
R
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is a well-defined, bounded positive linear map on L?(R) satisfying the conditions of
Corollary 3.5.

This can be even more generalized, as we will see in what follows. Before intro-
ducing the result, we have to establish the notation. Denote by L?(R; %) the Banach
space of square integrable ¥’ —valued functions, where the integral is regarded as the
Bochner integral with respect to the Lebesgue measure p on R:

feL’R.%) /R If % du(r) < oo,

where we equate the functions which are equal ©—almost everywhere; see [7], [8], or
[14] for details on Bochner integrals. Denote by (%) the unital Banach algebra of
bounded linear operators over ¢, and by Cp,(R?; Z(%)) and Cj,(R?; €) the spaces of
the uniformly bounded mappings respectively from R? to %(%) and from R? to .

Corollary4.5 Let K € Cyp(R?; B(€)) and define the sesquilinear form Sk
L (R; %) x L*(R; €) — Cp(R; €) by
Sk (f.9)x) = fRK(x,f)f(t)g*(t)dM(t), f.g € L*(R; ). (10)

Then the following statements hold.

(1) For every K € Cp(R*; B(€)) and for every f,g € L*(R;€), the mapping
Sk (f,8) : R — € is bounded and continuous. Moreover, if K is differen-
tiable in the first coordinate, with the bounded and continuous partial derivative
3, K (x,1) € Cp(R%; B(€)), then the function x — Sk (f, g)(x) is differentiable
in x, and

(Zk(f,8) () =fR3xK(x,t)f(t)g*(t)d/vL(t)- (11

(2) IfK € Cp(R?; B(€)) is such that K (x, t) ff* € €1, forall x,t € R, whenever
f is a fixed element in L>(R; €), then, .Yk is *- representable.

Proof (1) Since K € Cj,(R?; Z(%)) is uniformly bounded and f, g € L*(R; €), we

have, for every x € R

I (f, &) (D)llg < /R 1K G, O ILf 08" Dllg dpnlt) < sup K, Ol -l fgll < oo,
te

so the function x — Yk (f, g)(x) is uniformly bounded, for every choice of K, f, g.
To prove its continuity, it suffices to observe that for any x, y € R we have:

17k (f, &) (x) — Lk (f, 9)Wllg = /R IK (e, t) = Ky, DILf " Ol du(t)

=sup|[K(x,1) = K(y, D)l I fgllh = 0, as |x —y| — 0.
teR
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Furthermore, let f, g € Lz(R; %) be fixed. Then, by the Radon-Nykodim Theorem
for the Bochner integral, there exists a unique finite % —valued measure, v(f, g),
defined as

v(f, g)(E) = /E FOg* Odu),

for every Borel subset E of R. Therefore, for any given K € Cp (R?%; B(€)), the
mapping

x> Sx(fL9)(x) = /R K(x. 0dv(f. §)(0)

is continuous. If, in addition, the mapping K is differentiable in its first argument, with
continuous bounded partial derivative, then

1
lim — (S (f, 8)(x + Ax) — Tk (f, &) (x))

Ax—0 Ax
= lim —(/ K(x—i—Ax,t)dv(f,g)(t)—/ K(x,t)dv(f,g)(t))
Ax—0 Ax \Jr R
= lim L/(I(()C—I—Ax,t)—K(x,t))dv(f,g)(t):/ 0K (x,t)dv(f, g)().
Ax—0 Ax R R

(2) By assuming that K (x, 1) ff* € €%, for every f € L*(R; %) which is definite
n—almost everywhere, we prove that the sesquilinear form .k is positive. Then,

similarly to Example 4.4, by taking {e,}, with e, := X[—n ] @S an approximate
identity with respect to .k, it is possible to show that .”k satisfies (i) in Theorem
3.1, hence it is *-representable. O

Keeping the notation and the assumptions from the previous corollary, consider the
functional

wg (cd)(x) = / K(x, t)c(t)d(t)dt
R

for every ¢, d € Ly(R; %). Specially, if K (x, t) is a positive operator in AB(%), we
have

ok (ff(x) =/RK(x,t)f(t)f*(t)dt,

thus wg is a positive map with values in Cp(R; %¥). Indeed, the boundedness follows
from

lox (Ff5] < sup IK G, Ol - I1FF* I = sup IK G, ) - 1113
te te

@ Springer



On representations and topological aspects of positive... Page 190f29 66

Consequently, the mapping wg is a positive bounded map with values in the unital
algebra Cp(R; %).

Denote by C(R; #(%)) the space of continuous (%) —valued functions with real
arguments. Recall that the algebra C(R; (%)), equipped with the pointwise multi-
plication and involution, is a unital *-algebra. However, the algebra of % (%) —valued
functions which vanish at infinity, denoted as Co(R; Z(%)), equipped with the oper-
ations and topology inherited from C(R; (%)), is an example of a non-unital
x—algebra.

In that sense, assume that sup,.g || K (-, t)|| belongs to Co(R; Z(%)), i.e.

lim sup ||K (x, 1)[| = Oc®r; 2%))-

[x[—00 ter

Then, due to

|k (££5] < sup KGO - 11£113,
teR

the mapping wk has its range contained in the non-unital algebra Co(R; A(%)).
Embed the image of wg into Co(R; (%)) via the inclusion operator 1 in the way
that

12 H(wk) = Co(R; B(€)), 1(u) =u € Co(R; B(E)),
and denote the composition wg o1 as wg again:
wk (cd) € Co(R; B(¥)), ¢, d € L*(R; ).

This way, the mapping wg is subject to the Corollary 3.5.

4.2 Noncommutative LP-spaces and generalized integral operators

The previous section gives a general idea on how to approach the integral operators in
the noncommutative non-unital setting. In what follows we further explore this class
of operators.

Let 77 be a separable Hilbert space with an orthonormal basis {e;} ;, and let B, (J¢)
be the Schatten p—ideal with the p—norm [10]. Then, B, (%) is a Banach space. For
each m € N, let P, denote the orthogonal projection onto the span of {ej, ..., en}.
Then, P, is a finite rank operator for every m. Notice that banally it is P, P, = Py
for every m < n. In a similar way as in [11, Remark 2.9] one can prove the following
lemma.

Lemma 4.6 The normed non-unital x—algebra B,(¢) has a strongly idempotent
right approximate identity { Py, },, consisting of orthogonal projections.

In particular, the statement (3) in Corollary 3.7 applies to the case of (B, (J2), ||| »),
since it is a normed *-algebra whose right approximate identity {P,,},, is such that
IRp, || <1 forall m.
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Example 4.7 Let p > 2. Choose some {A;}; € £ » N{_p withij > Oforall j € N
p—

_P_
and such that A; > A; fori < j. Let {gn}, be a uniformly bounded sequence of
positive continuous functions on [0, 1] such that g; () > g;(¢) for i < j and for all
t € [0, 1]. Define

oo
W= 2jgi)(lej)ej, t€[0,1]
j=l1
where {e;}; denotes an orthonormal basis of a separable Hilbert space .77°. Let
w(A)(t) =tr(AW,), YA e B,(0), t €[0,1].

By some calculations it is not hard to check that w is a bounded positive linear map
from B, (2¢) into C ([0, 1]) that satisfies the assumptions of the Corollary 3.5.

Let now 971 be a von Neumann algebra and p a normal semifinite faithful trace

on M. Denote by L?(p) the Banach space consisting of operators affiliated with 9t
which is the completion of the *-ideal

Jp = (X e M: p(X|7) < oo},

with respect to the norm || X ||, := p(IXIHYP X e 9 (see [9, Example 3.1.7] and
references therein).

Lemma 4.8 Let 9 be a von Neumann algebra which is a factor of type I or I, and p

be a semifinite trace on M. Let W € M such that W > 0. Then there exists a sequence
{ Py }n of finite projections in 9N such that

lim [[W(I — P)ll, =0.
n— 00

Proof Suppose that 91 is a factor of type I or I, and that p is a semifinite trace on 9.
It is known that p is unique up to a scalar multiplication. Moreover, for each positive
T € 9 it follows that

o(T) = /O Ad(D o E7),

where E7 is the spectral measure corresponding to 7 and D is the dimension function,
which is also unique up to a scalar multiplication. Given p € N, definea : R - R
by a(t) = tP. If W € 9 is such that W > 0, then it is Ey» = Ew o a~ !, and for
every Borel subset B C R,

EwEyqo,1/n))? (B) = Ew (06—1(3) n[o, 1/n]) , nelN
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Consequently,

p(WF) = /oof\pd(DoEW)
0

and

1/n
p (WEw([0, 1/n])") =/0 APd(D o Ew).
If p(WP) < oo then by the Monotone Convergence Theorem
o) o0
/ Ad(D o Ew) = lim / APd(D o Evy).
0 n=00 J1/y
Furthermore, we have that

1 1 8]
— P (Ew(1/n,00)) = — (D o Ew ((1/n.00))) s/ APd(D o Ey) < oo,
n n

1/n

so Ew ((1/n, 00)) is finite. By letting P, = Ew (1/n, 0co) for eachn € N, we deduce
the thesis. O

Now we will consider the applications to L?(p). First recall that, if T € L?(p) N
L>®(p)and B € L*®(p),then T B, BT € L*(p),and | T Bl|2, | BT |2 < | Blloo-IT|l2.

We obtain the following corollary:

Corollary 4.9 Let 9t be a von Neumann algebra and p a semifinite (non finite) trace on
9. The normed non-unital quasi x—algebra (L*(p), L*(p) N L°®(p)) has a strongly
idempotent right approximate identity { Py}y consisting of finite projections in .

Proof Let F € L%(p) N L*®(p). By Lemma 4.8 for every € > 0 there exists a finite
projection P. such that |||F|(I — Pc)||> < €. Itis also

IFU = P)ll2 = UIFI(I = PO)ll2 = [Ulloolll FI(I = Pe)ll2 < €,

where U is the partial isometry from the polar decomposition of F. Now, if Q is any
finite projection with P. < Q, then, since F(I — Q)F* < F(I — P,)F*, we get

IFUI =Dl =T = QF* 2 < I = P)F 2 = |F(I = Po)l2 <e.

Let { P} denote the net of finite projections in L*(p), then P, Pg = P, for every
o < B.Itis

lim |[F(I — Py)la =0, VF e L*(p)NL>(p).
o

@ Springer



66  Page 22 of 29 G. Bellomonte et al.

GivenT € L?(p) and e > 0, there existsa F € L*(p)NL>(p) suchthat [|T — F ||, <
%. Moreover, by the previous arguments, there exists a finite projection P, such that
| F(I = Q)2 < § forevery finite projection Q with P < Q. Hence we deduce that

ITU = D2 = IT = Fla+ [1FU = Q)ll2 + [(F = T)Qll2
SIT =Fla+ 1FU = Q2 + T = Fli2ll Qlloo < €.

for every finite projection Q with P. < Q, hence in particular
im |7(1 = Po)ll2 = 0.

O

Example 4.10 Consider the (L2(p), L>®(p) N L?(p)), where p is semi-finite trace.
Let W € L®(p) N L2(,0) such that W > 0. By Lemma 4.8, there exists a finite
projection P such that PW = W P.Then, WP = PW P > 0. Let k be a nonnegative
continuous function on [0, |W P||] x [0, | W P]|]. For each x € [0, |W P]], let f; €
C([O, ||WP||]) be given by f, () = k(x,t) and W, := f (W P). Define  on L2(p)
by

w(A)(x) = p(A(I — P)W + Wy)), Vx € [0, [WP[], A € L*(p).
By some calculations, it is not hard to check that w is a bounded, positive linear
map from L?(p) into C([0, |W P]|]) that satisfies the assumption in Corollary 3.5.
Observe that w induces also a bounded positive sesquilinear C ([0, |W P||])-valued
map on L%(p) x L?(p) given by
(X, Y)(x) =p(X((I - P)W+ W)Y*), xel0,|WP]],

forall X,Y € L%(p).

Now, let L>([0, |W P||], 2(s¢)) with respect to the Gel’ fand-Pettis integral (see [12])
and choose A; € L2([0, |W P||1, (S¢)) such that A, > 0 for a.e. t € [0, ||WP]].

Similarly as earlier, we can construct a bounded positive linear map 6 : L?(p) —
PB() with

Iwej
0(X) = / p(X((I = PYW + W)A,dt, X € L(p).
0

Finally, put ¢ (£,(C([0, ||W P||]))) the C*-algebra of all adjointable bounded oper-
ators on £>(C ([0, | W P||])) which are linear w.r. to C ([0, ||W P||]) and define

6: L*(p) — B (L2(C ([0, |WPI1)))
by

0(X)(f1, fr, ) = (@(X) f1, o(X) fa, ...),
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forevery X € L2(p), (f1, f,...) € £2(C([0, |W P||1)). Then both 6 andgsatisfy the
assumptions of Corollary 3.5. Notice that in a similar way as for w, the maps 6 and
6 induce bounded invariant positive sesquilinear maps on Lz(,o) X Lz(,o) that take
values in Z() and B (£, (C([0, || W P|[]))), respectively.

Remark4.11 If T : LZ(R) — C([0, 1]) is an integral operator given by
T(fHx)= / k(x, ) f(tdt, Vx €[0,1], f € L*(R)
R

where k(x, -) € L?(R) forall x € [0, 1], then k induces a mapping n : [0, 1] — L2%(R)
given by

nx) =kx,-), Vxel0,1].

Moreover,
T(f)x)= /Rn(x)(t)f(t)dt, Vx € [0, 11, f € L*(R).

Hence, if 7 is a mapping from [0, 1] into L?(p) and T is an operator on L>(p) given
by

T(Y)x) =p (Yi(x), Vxel0,1], Y € L%(p),

then, if T(Y)(-) belongs to C ([0, 1]) for every Y € L%(p), T can be considered as a
generalized integral operator on L?(p). Thus, the map e in Example 4.10 can be in this
way interpreted as a generalized integral operator on L?(p). A similar consideration
applies to the positive map constructed in Example 4.7.

5 Topologically transitive operators on noncommutative L?-spaces

Let 9t be a properly infinite von Neumann algebra over a separable Hilbert space
€. Then, ¢ can be written as /% = @z}, where for each j the orthogonal
projection onto .}, denoted as P;, belongs to 9, and P; ~ Pj,, forall ji, j» € Z.
Let {W;} ez be a uniformly bounded sequence in )1, and set

W= 2jPjW;P;, (12)
JEZ

where A; > O forall j,and lim A; = 0. We have the following

ljl=00

Lemma 5.1 The above defined operator W is a well-defined bounded linear operator
which belongs to .
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Proof Since {W;};cz is uniformly bounded, there exists some M > 0 such that

[W;|| < M forall j € Z.If x € 5, then ||x||*> = Y || Pjx||>. Hence, given ¢ > 0,
JEZ
there exists some N € N such that

o o
w12 & 2 &
2P < gy 2 1Pt < gy

where R = supjez{kj}. Thus, for every n, m € N such that m > n > N, we obtain

2

m m
Z)\.ijWijx ZZA?”PJ'W]'P]'XHZ

j=n j=n

m m
< R CIPWIPIPx > < MPR? Y || Pix|* < &/2.

j=n j=n
Similarly, we get

2

m
D AP WoPjx| <e/2.

j=n

o0

Hence, the sums ) A;P;W;Pjx,and ) A_;P_;W_;P_;x are convergent in JZ.
j=1 j=1

Since x € s was chosen arbitrarily, we deduce that

o0

n n
s—ngrgoi;xjpjwjpj e M, s—nlggozx_jp_,-w_jp_,- e M,
J= J=

so W belongs to 9t as well. O

If W; > 0 for every j € Z and the assumptions of Lemma 5.1 hold, then W is a

bounded positive linear operator. Moreover, since lim A; = 0, we get
ljl—00

n
Tim | W (T~ Z Pl =o.
j=—n
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Indeed, for each x € .7 and every n € N, we have

n 2 o0 o
W= Ppx| = Y MIPWPxIP+ Y AZ P WP x|
j=—n j=n+1 j=n+1

< sup A3 M? Z | Px]|? +sup)\ M? Z I P_ x|

j>n

Jj=n+1 j=n+1
< sup SMZ | DY NIPx|P | = sup A5M3 x|
ljl>n jez ljl>n

Next, since P; ~ Pjy; for all j € Z, there exists for each j a partial isometry
U; € 9, that maps ¢ isometrically onto ¢ 1. Given x € S and ¢ > 0, choose
again some N > 0 such that Z _y 1P} x||> < e/2 and Z] N ||P_jx||2 < ¢/2. For
eachm > n > N, we have that

2

m oo
D PiUiPix| <) IIPx|* < /2,

j=n j=n
and, similarly,

2

m
ZP—j-HU—jP—jx < /2.
j=n

For an argument similar to the one above, we deduce that
n n
S—nE)IIC}OZPJ'+1Uij€m, S—nlglgozp_j_,_ll]_jp_jém.
j=0 j=1
Set
n 1 n
V=2 S—nILH;OZP_j+1U_jP_j +§ S—nliH;OZPj+1Uij
j=1 j=0
It is straightforward to check that V is invertible and
1 n n
vfl:5 s— lim Y P UL Py | +2 s — lim Y PjUS P
Jj=1 j=0
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For each j € N, and all n > j, one can check that
VP =2 (U jypet - U—j U_j P_j),
while for all n € N, we have that
VP =2""(Ujsn-r ... - Ujn1U;P)).

The latter also holds when j = 0. Hence we get

k k
viL YT P = Y0 Vel < 223
j=— j=—k
whenever n > k and k € N, so
n
lim |V ZP H_o Vk € N.

Jj=—k

By similar calculations, one can check that

1 —n . —
lim |V Zk P ||l=0, YkeN.
=

Let Ry« : L*(p) — L%(p) be given by Ry«(A) := AV*, forall A € L*(p).
Since [AV*|l < [[All2llV*|leo for all A € L%(p), it follows that Ry« is a well-
defined bounded linear operator on L?(p). Consider the positive sesquilinear form
S L*(p) x L*(p) — €, given by

Fw(X,Y) = p(XWY®), X,Y e L),

where W is the positive linear operator in 9, introduced in (12). Since . is pos-
itive and sesquilinear, it induces a semi-norm || - ||y on Lz(p), given by | X||w =
(Fw (X, X)Y2 forall X € L%(p). Let (L%(p), Tw) be the locally convex topological
vector space, equipped with the topology 7y generated by the seminorm || - [|w.

We are ready to present the main result of this section. Recall the definition of
topologically transitive operator, see Definition 2.13.

Proposition 5.2 The operator Ry~ is topologically transitive on (L*(p), tw).
Proof As observed earlier, we have that
n
Tim W [7— 3 P =0.

j=—n 00
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Hence, for each X € L%(p) we get

2
n n n
x|1-Y P =p|x|1=-> P )wl1-> pP]x*
j=—n W j=—n j=—n
n n
<Ixi3ll1- PilwlI- Z P
j==n j==n o0
n
<IXBB|wir-> pPi|| =0 n- oo
j=—n 00

Thus, given two non-empty Ty —open subsets ¢ and @ of L?(p), there exist

k
some F| € 0}, and F, € 0y, and k € N, such that Fj | > Pj> = Fy, and
j=—k

k
23 ( > Pj> = F,. Hence, we obtain that
j=—k

IRV (FDIy = p(F1(V"Y*WV"FF) < [IV'F[5 | Wloo

. 2
v X P Fr| Wl
j=7k 2
. 2
2
v D2 Pl IF 3 IWlee = 0. n— oo
j=—k -
Similarly, since
. 2
1 —-n . —
nll>n<;o v Z PJ =0,
j== 0
we get
. - 2 . 2
nlgléo IRV (F2)lly = nli)ﬂgo [ R(y—ny«(F2) Iy = 0.
For eachn € N, set X, := F| + R,J (F>). Then,
X0 — Fillw = [Ry¥ (F2)llw — 0, n — oo,
and
IRY+(Xn) — Fallw = Ry« (FDllw — 0, n — oo.
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It follows that we can find some n¢ € N such that X,,, € 1 and R’(,U*(Xno) € 0. O

For each n € N, we will now consider the cosine operator function generated by
Ry+, that is for every n € N, we put cm = % ( "'/* + R;f). The main idea for the
proof of the next proposition is inspired by the proof of [13, Theorem 5].

Proposition 5.3 The sequence {C"™},, is topologically transitive on (L*(p), Tw).

Proof Let ¢; and & be non-empty open subsets of (L%(p), Tw). As in the proof of
Proposition 5.2, choose F| € ¢ and F, € 0 such that

k k
F Z Pil=F and F Z Pj | =F,, forsomek e N.
j=—k j=—k

By the same arguments as the ones in the proof of Proposition 5.2, we obtain that

lim Ry (F)llw = lim RV (FD)llw = lim R (F2)llw
n—o0 n—oo n— o0

0.

= lim [|RY(F)lw
n—o0

Foreachn € N, put X, := F| +RY},.(F2)+ R¥ (F2). Since || - || w is a seminorm, then
it satisfies the triangle inequality, hence it follows that X,, — Fj and C (X, —» F>.
W ™w

Thus, there exists a N € N such that CV)(0) N 0, # 0. O
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