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A B S T R A C T   

Community detection is still regarded as one of the most applicable approaches for discovering latent infor
mation in complex networks. To meet the needs of processing large networks in today’s world, it is important to 
propose fast methods that have low execution time and fast convergence speed, while maintaining algorithmic 
accuracy. To overcome these issues, a fast local multi-factor node scoring and label selection-based (LMFLS) 
method with low time complexity and fast convergence is proposed. Node scoring step incorporates diverse 
metrics to better assess impact of nodes from different aspects and obtain more meaningful order of nodes. In 
second step, to construct and stabilize initial structure of communities, an efficient label assignment technique 
based on the selection of the most similar neighbor is suggested. Moreover, two label selection strategies are 
proposed to significantly enhance the accuracy and improve convergence of the algorithm. During the label 
selection step, each node in graph tends to choose the most appropriate label based on a multi-criteria label 
influence from its surrounding nodes. Finally, by utilizing a novel merge method, small group of nodes are 
merged to form the final communities. Meanwhile, since drug repositioning is one of the popular research fields 
in therapeutics, to extend the application of the proposed algorithm in practical context, the LMFLS algorithm is 
applied on Drug-Drug network to find potential repositioning for drugs. Thorough experiments are conducted on 
both actual real-world networks and synthetic networks to assess the algorithm’s performance and accuracy. The 
findings demonstrate that the proposed method outperforms state-of-the-art algorithms in terms of both accuracy 
and execution time.   

1. Introduction 

Complex systems such as social networks [1], information systems 
[2], Protein-Protein interaction [3], drug-drug or disease-disease 
network [4], citation networks [5], recommender systems [6], and 
etc. in real-world have the potential to be modeled with graphs and 
complex networks, such that the nodes are adopted to show the elements 
and the relationships between them are demonstrated with links which 

can be weighted or unweighted. Modeling complex systems with graphs 
makes it possible to investigate the interactions between entities using 
existing tools such as community detection. The term community in a 
network consists of nodes that form a tightly connected group within a 
subgraph and sparsely connected with nodes of other communities. 
Community detection is regarded as an efficient tool for revealing latent 
information by grouping similar entities in the same communities [7]. 

Identifying hidden groups within networks is crucial for various 
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applications, including community structure analysis, detection of 
influential nodes, and network function exploration. For instance, social 
network analysis allows for the discovery of user communities, influ
ential users, and their relationships [8]. Similarly, Drug-Disease net
works can reveal potential drug repurposing candidates [9], protein- 
protein networks can elucidate protein functions [10], and recom
mender systems can leverage customer segmentation to suggest relevant 
products [6]. 

While community detection in social networks is a well-studied area 
with constant innovation, efficiently identifying communities in terms 
of accuracy, convergence speed, stability and robustness, execution 
time, and so forth in complex network, continues to be unresolved. 
Existing methods based on global metrics, though informative, become 
impractical in networks with massive number of nodes due to their 
demanding computational requirements (e.g., Newman et al.’s edge- 
betweenness with O(n3) time complexity [11]). In contrast, methods 
exists which utilize local information of nodes to measure the similarity 
and proximity between them [12] without regarding the total infor
mation of the graph. Primarily, local methods involve computing the 
local distance or identifying common neighbors between two adjacent 
nodes. Consequently, the time complexity of these methods for n nodes 
is proportional to O(nk2). This computational efficiency renders them 
well-suited for large-scale networks. 

The Label Propagation Algorithm (LPA) stands as a popular method 
for detecting communities within networks which relies on the propa
gation of labels among nodes [13]. While LPA has nearly linear time 
complexity, it exhibits low accuracy and instability in community 
detection due to weaknesses related to random node selection and label 
updating. Variants like NIBLPA [14], LPA-Intimacy [15], LPA-NI [16], 
CenLP [17], LINSIA [18], and etc. improve accuracy by considering one 
criterion for node importance and label influence. The findings indicate 
that accounting for node importance and label influence can enhance 
the accuracy of the algorithm. However, drawbacks remain, including 
instability and slow convergence for large networks. Also, adopting 
multiple steps for the tie break operation, will add extra complexity to 
the algorithm which impacts their running time. 

The reasons above prevent these kinds of methods to be executed on 
large networks. Another point that should be concerned is that adopting 
one criterion for assigning importance to nodes would not be adequate 
for efficiently evaluating them, since nodes, especially core nodes, have 
more different features that a good combination of them can better 
reflect their importance. If the importance of the nodes is effectively 
distinguished from one another, it will aid the algorithm in selecting the 
correct labels without requiring multiple tiebreak steps. As an instance, 
a node exhibiting a high degree, is not necessarily a core node. A node 
with high degree but low similarity with its neighbors, may probably 
have low K-shell score. In Fig. 1, node P, despite its relatively high de
gree, resides in shell 1 due to the absence of common neighbors. To 
address this limitation, considering the sum of common neighbors be
tween nodes, along with other factors, can enhance the accuracy of 
selecting important nodes—a primary objective of this research. 

Core expansion-based approaches aim to identify core nodes by 
considering their features and expanding initial communities from seed 
nodes outward [19,20]. However, accurately determining core nodes 
demands additional effort, including defining precise measures, select
ing an appropriate number of seed nodes, and establishing similarity and 
merging criteria for integrating nodes into the initial community which 
can be a challenging task. Also, various community detection methods, 
including Louvain [21], Leiden [22], and etc. have primarily focused on 
maximizing modularity gain within communities. However, it is essen
tial to recognize that community detection aims not only to optimize 
modularity but also to reveal the genuine structure of communities. The 
task involves more than simple network partitioning; it must consider 
the diverse roles of nodes [21]. Unfortunately, modularity-based ap
proaches suffer from significant limitations, such as disregarding topo
logical information, node similarity, trapping in local maxima, greedy 

nature, and varying node importance, leading to inaccurate results. 
Despite numerous improvements, the accuracy of these methods re
mains unchanged. For example, experiments cited in [22] demonstrate 
no significant difference in accuracy between the Leiden and Louvain 
algorithms. 

To improve the defects of the mentioned approaches above, label 
diffusion-based methods are suggested which can be considered as a 
new fast technique which diffuse label to a batch of nodes at a same time 
if they satisfy the desired conditions. These community detection 
methods mitigate the limitations associated with core node identifica
tion, initial label assignment, and certain issues encountered in label 
propagation approaches. Furthermore, it enhances the computational 
efficiency of the algorithm while preserving accuracy [23]. However, 
they require strict control conditions to prevent incorrect label diffusion, 
since a group of nodes are assigned with label at the same time and 
incorrect label assignment will result in distribution of the wrong label 
to other nodes around them. Handling large-scale networks with 
numerous nodes and achieving satisfactory community partitioning is 
challenging due to the network’s sheer size and time complexity con
straints. To address this, precise design of community detection algo
rithms is crucial. While the LPA and its improved versions offer a 
straightforward approach to community detection with linear time 
complexity, their performance can be hindered on large networks due to 
slow convergence. The iterative nature of the algorithms, which involves 
examining the labels of all neighboring nodes at each step, can lead to 
significant computational overhead, particularly when dealing with 
extensive datasets. This limitation can render LPA impractical for large- 
scale network analysis. Experiments in [23,24] prove this fact. While 
alternative methods like the Leiden [25] and Louvain [26] algorithms 
offer faster detection capabilities compared to LPA-based approaches, 
their accuracy often falls short. In many cases, these methods tend to 
underestimate the true number of communities present in the network. 
This issue is mostly seen in large networks [23]. Most of the methods 
mentioned above succeed when the network is sufficiently dense [27]. 

Finally, to exemplify how a community detection algorithm like 
LMFLS can be utilized in practical scenarios, a case study on drug 
repositioning will be conducted. There are also high similarities between 
the LMFLS community detection algorithm and the problem of drug 
repositioning based on Drug-Drug complex network. In this case the 
corresponding concepts are as follows: 

Fig. 1. A network with three shells.  
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Network representation: Drug repositioning involves constructing a 
network where drugs are regarded as nodes similar to LMFLS algorithm, 
and their interactions are modeled with edges and the similarity score 
between them is indicated with weights which are used by LMFLS al
gorithm to group drugs based on their similarities. The LMFLS com
munity detection algorithm can identify clusters of related drugs within 
this network by using the similarity between drugs and the weight of 
edges between them. 

Similarity-based approaches: Community detection algorithms often 
rely on similarity metrics. In drug repositioning, the Drug-Drug associ
ations are based on shared targets, biological pathways, chemical 
structure, and so forth. Similarity measures can help identify potential 
repurposing candidates. 

Finding hidden associations: The LMFLS community detection al
gorithm reveals hidden patterns within complex networks. The com
munity concept in the LMFLS method is regarded as a group of clustered 
drugs having similar efficacies. By identifying drug-drug communities, 
unexpected relationships between drugs may discover which is regarded 
as drug repositioning. For example, a drug used for one condition might 
be effective for a seemingly unrelated disease and can be grouped with 
other drugs. 

Multi-modal data integration: Drug repositioning combines diverse 
data sources. Community detection algorithms handle multi-modal 
networks effectively. They integrate information from different do
mains, aiding in repurposing predictions. 

Handling noisy data: Drug-Drug associations can be noisy due to 
incomplete evidence. Community detection algorithms are robust to 
noise and can extract meaningful structures. 

Scalability and efficiency: Large-scale Drug-Drug networks require 
efficient algorithms. Community detection methods, especially the 
LMFLS algorithm handles large graphs, making them suitable for drug 
repositioning. 

To solve the mentioned problems above, the primary contribution of 
this paper lies in introducing a fast local multi-factor node scoring and 
label selection-based algorithm, called LMFLS, with low time complexity 
and fast convergence which can be executed on weighted and un
weighted networks and is significantly capable of being executed on 
massive networks. In order to improve the procedure of assigning 
importance to nodes, several factors are combined to evaluate nodes 
from different aspects. An improved version of H-index is proposed and 
is combined with the improved version of K-shell decomposition and 
other factors to assess the dominance power of nodes. Inspired by the 
natural way communities form in the real world, at first step of the al
gorithm each node is grouped with its most important neighbor, which 
stabilizes the structure of communities for the next steps which enhances 
the speed of convergence and the accuracy rate of the method. An 
efficient method for label selection is proposed where each node selects 
the most appropriate label around it based on combination of metrics. 
Also, by excluding nodes with degree 1 and presenting a new idea for 
preventing some of the nodes from updating their label in each iteration, 
the performance of the algorithm is considerably improved. To avoid 
performing tie break operation and to decrease running time of the 
suggested method, an efficient approach is adopted to better distinguish 
the difference of label influence. In addition to label selection step, a 
novel and efficient approach is proposed to integrate small group of 
nodes with neighbor communities. Finally, as an application, the LMFLS 
algorithm is applied to Drug-Drug network to explore new and potential 
drug repositioning candidates. The primary contributions of this 
research work can be succinctly outlined as follows:  

• A comprehensive criterion which adopts multiple factors for 
assigning importance to nodes is proposed to evaluate nodes from 
diverse aspects to better distinguish and rank them.  

• A new method for label assignment based on the most similar 
neighbor is suggested to form initial communities and to consolidate 
the core structure of detected communities for subsequent steps.  

• An efficient label selection step with fast convergence and low 
computational cost is employed to select the most suitable label 
which avoids additional tie break operation.  

• A new and fast merge method is presented based on the concept of 
integration of dominions.  

• The LMFLS method is capable of being applied on weighted and 
unweighted networks. 

• A streamlined data structure is introduced to address memory chal
lenges when dealing with extensive networks. 

In the subsequent sections, we delve into the existing related studies 
(Section 2), provide a comprehensive exposition of our novel algorithm 
(Section 3), discuss the empirical evaluation of our approach using both 
real-world and synthetic datasets, including the Drug-Drug network for 
drug repositioning (Section 4), and finally, conclude by outlining po
tential future directions (Section 5). 

2. Related work 

Given the crucial role of community detection in uncovering hidden 
patterns and relationships within networks, this section delves into a 
comprehensive examination of various algorithms. Recently, re
searchers have directed their primary attention toward the development 
of local methods especially label propagation, label diffusion, and 
modularity-based methods. 

Modularity-based methods formulate the community detection 
problem as an optimization task, aiming to identify optimal partitions 
within a network by maximizing the density of connections within 
communities while minimizing the connections between them. Clauset 
et al. in [28] suggested CNM, a hierarchical method based on modularity 
by utilizing a max-heap structure to enhance the performance of pre
vious methods. Later, Blondel et al. proposed Louvain method, an 
improved and fast version of modularity-based methods [26]. This 
heuristic algorithm involves creating initial communities by merging 
nodes, with the objective of achieving greater modularity gain. Leiden 
[25], a method based on modularity metric, modifies the existing limi
tations in Louvain and improves the running time by suggesting local 
moving strategy. Approaches suggested in [12,29] share similarities and 
employ a two-stage process for community detection. At first, a simi
larity criterion is used to assign weights to edges. Next, the algorithm 
removes edges from graph which have a weight less than the defined 
threshold. The algorithm then iteratively merges these communities if 
doing so improves the overall modularity value. 

Raghavan et al. was the first one who suggested the Label Propaga
tion Algorithm (LPA) [13]. This approach employs a random node order 
and iteratively assigns labels to nodes based on the most frequent label 
within their neighborhood. K-shell decomposition, Bayesian network, 
and the notion of different influence of nodes on each other are instances 
which are suggested to address the shortcomings of the LPA by defining 
an order for selection of nodes based on their importance and adopting 
label influence concept to improve label assignment task [14–16]. Au
thors in [30] introduced a node importance-based variant of the label 
propagation algorithm. The Jaccard similarity metric along with signal 
propagation strategy is suggested to enhance the method of assigning 
importance to nodes. Authors introduced a novel community detection 
method that leverages boundary nodes and label propagation [31]. 
However, this approach faces challenges such as low accuracy, forma
tion of large communities, and slow convergence. Li et al. introduced 
DS-LPA, a robust community detection algorithm that combines Density 
Peak Clustering and Label Propagation [32]. By improving local density 
calculations and considering information transmission power, DS-LPA 
outperforms other algorithms in terms of both accuracy and efficiency, 
especially for large datasets. An efficient algorithm for large data sets, 
introduced by [33], constructs a weighted graph by combining node 
attributes and topological structure. Node centrality is determined using 
Laplacian centrality, and the process of selecting and updating nodes is 
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refined by incorporating their influence. 
To the best of our knowledge, label diffusion-based methods, due to 

their novel nature, have been less frequently presented by other re
searchers. Bouyer et al. introduced the LSMD algorithm, which identifies 
accurate communities without explicitly pinpointing core nodes [24]. 
LSMD starts from low-degree nodes, using a multi-step label diffusion 
strategy. Nodes are grouped by degree, and labels propagate through a 
multi-level diffusion process based on specific conditions. Roghani et al. 
introduced PLDLS, a Spark-based parallel community detection algo
rithm. It combines label diffusion with a novel label selection method, 
enhancing accuracy and scalability [34]. To enhance the accuracy and 
the strategy of label diffusion, an approach based on balanced diffusion 
of labels with fast running time was proposed in [22]. Obtaining rough 
cores of communities besides adopting balanced label diffusion strategy 
for constructing communities from central parts as well as border re
gions of communities, can result in obtaining more accurate 
communities. 

Core expansion-based approaches are another category of local 
methods which involves discovering a group of nodes as core or seed 
nodes, and then extending initial communities. RTLCD is suggested 
based on the idea of discovering central nodes of communities [19] and 
adopting local metrics to expand initial communities. Authors put for
ward CFCD algorithm [35] which involves discovering seed nodes and 
expanding initial group of nodes. The ECES algorithm, suggested by 
Berahmand et al. is a method based on expansion of communities by 
utilizing a membership index [36]. CDME is another approach for 
community detection based on expansion of core nodes which is inspired 
by Matthew effect [37]. Pares et al. suggested a community detection 
algorithm based on label propagation, called FluidC, which leverages 
the model of fluid dynamics to discover communities [38]. You et al. 
introduced a novel community discovery method that involves identi
fying kernel nodes, propagating labels, and merging discovered com
munities [39]. 

2.1. Drug repositioning 

Since in this paper heterogeneous biological network of drugs is 
adopted for modeling interaction between drugs, it is crucial to be 
familiar with databases as they are utilized to extract data and construct 
the interaction networks. Masoudi et al. conducted a comprehensive 
investigation of essential databases, along with their advantages and 
disadvantages, that are used to extract diverse information about drug 
repositioning [40]. Authors in [9] constructed a heterogeneous 
weighted drug-disease network by incorporating the relationship of 
Disease-Gene and Drug-Target. Groza et al. [41] created a drug–gene 
network using DrugBank and applied projection to generate a drug–drug 
similarity network. Then they applied modularity-based clustering to 
identify the potential candidate drugs for repurposing. A new method of 
analyzing the interaction of drugs based on the Drug-Drug network by 
utilizing community detection algorithm is proposed in [42]. The results 
of their study reveal functional drug categories and intricate relation
ships between them. Sia et al. [43] introduced an innovative community 
detection algorithm, founded on the removal of negatively curved edges, 
and tested this novel approach to analyze drug-drug networks generated 
from DrugBank. Koss et al. [44] used the patients’ perspectives reflected 
in social media, to construct a network of drugs and diseases and employ 
the Leiden algorithm for community detection to identify potential 
drugs for repositioning. 

3. The proposed method 

This section presents a detailed explanation of the proposed LMFLS 
method, outlining its various steps in subsequent subsections. To illus
trate the practical application of the algorithm, its steps are demon
strated through a case study using a real-world dataset. 

3.1. The proposed method 

The pseudo-code of Algorithm 1 outlines the core functionality of the 
LMFLS algorithm. In the Algorithm 1, ID of nodes is a numerical number 
such as 1, 2, 3, and etc. which indicates the name or the ID of a node in 
graph, is_dense_flag is used to show that if a node is located in a dense part 
or not. The total importance of node i is shown by TotalImportance(i). 
Label (i) and Label (i) ← j shows label of node i and the label assignment 
action, respectively. The most similar neighbor of node i is demonstrated 
by mostSimilarNeighbor (i). For a detailed understanding of the imple
mentation of the algorithm, the source code of the LMFLS algorithm is 
provided in Appendix A. 

After performing improved K-Shell decomposition step, nodes hav
ing a degree of 1 are disregarded and do not participate in any stage of 
the algorithm. It should be noted that the execution of the merge step is 
optional. According to the fact that in complex networks a significant 
proportion of nodes have a degree of 1, adopting this technique prevents 
the algorithm from wasting time on performing computations on nodes 
with degree 1 which do not have any impact on the procedure of the 
algorithm. By applying this technique and utilizing the is_dense_flag 
concept to exclude nodes situated in dense regions of the graph, the 
algorithm enhances its execution time, especially for large-scale graphs. 
Then ID of nodes is assigned as the initial label of nodes which indicates 
that each node belongs to a separate community at the beginning of the 
algorithm. 

Algorithm 1. LMFLS Algorithm. 

By adopting a meaningful combination of several concepts, an effi
cient algorithm is proposed which evaluates properties of nodes from a 
new point of view. In the context of designing an efficient algorithm, one 
should conceptualize a community detection as a composite system 
comprising distinct components. Each of these components performs its 
designated task, contributing to the overall efficiency of the system. 
Subsequent steps then utilize the outcomes from preceding steps, aiming 
to enhance the overall performance. This can be achieved through the 
development of efficient data structures, novel metrics for node 
importance, and a streamlined algorithm design. This study employs a 
neighbor list data structure to address the challenges associated with 
processing large-scale networks [84]. This approach facilitates rapid 
access to neighboring nodes, resulting in efficient processing times and 
optimized utilization of RAM resources. From a conceptual standpoint, 
the neighbor list structure is analogous to a dictionary in the Python 
programming language. In this structure, node serves as the key, and the 
associated value is a list containing all neighboring nodes. Besides this, 
since the proposed method is adaptable, capable of handling both 
weighted and unweighted network structures, the structure can main
tain the weight of edges between nodes. 
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Unlike other approaches, such as label propagation or modularity- 
based methods, which redundantly repeat the same actions multiple 
times without significantly enhancing the performance of the algorithm, 
this paper takes a different approach. Rather than persistently iterating 
identical steps, a set of distinct steps is employed, mostly each executed 
either once, or in some situations with a maximum of two repetitions. 
For example, one step is regarded as a structure stabilizer (node 
attraction step), the next step is based on label selection which is 
executed with maximum of 2 iterations (fast label selection step), then 
final label checking step is adopted to correct mistakes in label assign
ment (final label selection step) which is executed with maximum of 2 
iterations, a merge step is executed to integrate small communities to 
improve wrong partitioning of previous steps (fast merge step), and 
finally label assignment to degree 1 nodes is performed. It is postulated 
that by conducting community detection in a manner akin to how 
communities naturally emerge in the real world, communities that 
closely resemble those found in actual social structures will be formed. 
Inspired by this fact, by suggesting node attraction step, initial robust 
communities are emerged that gives stability and robustness to the al
gorithm which results in prevention of generating new communities by 
the algorithm and reducing variation of labels in further steps. It has also 
been considered how individuals in the real world select the most 
appropriate group for themselves, and the label selection step is 
designed. 

3.1.1. Node importance 
Node importance is a concept that quantifies the influence or sig

nificance of a node in a complex network. Nodes may have different 
impacts on the network such as forming central parts of the commu
nities, spreading information, controlling the flow, maintaining the 
connectivity, and so forth. According to the power-law [7], there are 
only a few nodes that have higher influence and there are a lot of nodes 
which are under the influence of the important nodes. These important 
nodes which are usually called core nodes, have more than one property 
that can be investigated to better distinguish them from other nodes. 
Nodes with high influence typically exhibit strong control over adjacent 
nodes (have higher influence on them), possess a large number of edges, 
high similarity sum, maintain extensive links with the second-degree 
neighbors, and are located in regions with high density. 

To accurately evaluate the significance of nodes within a graph, a 
multifaceted approach is employed, utilizing multiple metrics derived 
from distinct conceptual frameworks. Each metric is designed to attri
bute higher scores to nodes of greater importance, enabling their clas
sification as core nodes or peripheral nodes. Relying solely on a single 
metric may result in the assignment of identical scores to nodes with 
varying degrees of influence. For instance, nodes P and U in Fig. 1 
exhibit contrasting degrees but possess the same shell score when 
evaluated using a singular metric. This hinders algorithmic efficiency in 
label assignment. To address this limitation, we propose the combina
tion of multiple metrics to comprehensively assess node importance. By 
leveraging a diverse array of perspectives, this approach provides a more 
nuanced and accurate evaluation of node significance. In the proposed 
approach, an improved K-shell metric, an improved H-index, along with 
the degree of nodes, the number of common neighbors, the edge weight, 
and other factors are combined to develop a comprehensive metric 
capable of effectively evaluating the role of nodes within a network. 

K-shell decomposition methodology is employed to analyze struc
tural characteristics of a network. This analysis enables the identifica
tion of the most central nodes within a network based on their 
interconnectedness. The K-shell decomposition method assigns signifi
cance to nodes contingent upon their placement within the network 
hierarchy, which in turn reflects the depth of their integration. This 
metric provides a suitable foundation for initializing label allocation 
from central nodes toward peripheral nodes. Furthermore, augmenting 
this method with the degree centrality of nodes enhances the discrimi
natory capabilities of the analysis. Notwithstanding the significance of 

K-shell values in selecting suitable nodes for label assignment, certain 
nodes with elevated K-shell scores may still exhibit limited ability to 
effectively propagate labels. Additionally, situations may arise where 
nodes with dissimilar roles, influence, or importance within the network 
share the same improved K-shell score due to possessing identical degree 
and shell scores. However, nodes with equivalent degree or shell 
numbers do not inherently possess equal importance. To illustrate this 
concept, consider a scenario involving two nodes, A and C in Fig. 3, each 
with the same degree and situated within the same shell 3. According to 
Eq. (2) while their improved K-shell scores would be identical due to 
their shared degree, their actual roles and capabilities may differ. 

To effectively differentiate between such nodes, a supplementary 
node assessment layer is proposed that examines both the node’s degree 
and the degree distribution pattern of its neighboring nodes. This is 
accomplished through the improved H-index metric. The H-index serves 
as a complementary metric to improved K-shell. Within the context of 
networks, H-index gauges the degree of a node while simultaneously 
considering the quality of those connections. It encapsulates both the 
breadth (connection count) and depth (connection quality) of a node’s 
influence. It examines the pattern of neighbor degree distribution, 
assessing whether a node is surrounded by significant nodes with 
extensive connectivity to others. By combining these two metrics, we are 
able to capture the importance of nodes both in terms of their structural 
position (as determined by the K-shell) and degree of node and the 
model of degree distribution of the neighbors around a node (as 
measured by the H-index). 

K-shell is responsible for distinguishing core and peripheral nodes 
based on their location within the graph whereas H-index supplements 
K-shell by differentiating nodes with equivalent K-shell scores, adding 
an extra layer of node evaluation that considers the distribution and 
concentration of important nodes around a given node. A node with a 
high K-shell value indicates its presence in a densely connected region, 
while a high H-index signifies its adjacency to important nodes with 
extensive connections. This ensures effective label propagation due to 
the favorable degree distribution patterns of neighboring nodes. By 
combining improved K-shell and H-index, nodes with identical 
improved K-shell scores acquire distinct importance levels based on 

Fig. 3. A sample graph to show complementary role of H-index and K-shell 
methods. Nodes colored with green, yellow, and pink belong to shell 1, 2, and 3 
respectively. 
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their neighboring nodes and the neighbors’ degrees making them suit
able starting points for label assignment. In conjunction with the total 
edge weight and common neighbors shared between the target node and 
its neighbors, these metrics assess nodes from multiple perspectives.  

• Improved K-Shell Score: 

K-shell decomposition is a method used to assign importance to 
nodes based on the position of node within the network hierarchy. [45]. 
The denser the location of a node, the higher its shell score is. A K-shell 
within graph G is a maximal connected subgraph where every vertex has 
a degree of at least k. The K-shell value of a specific node i, denoted as (i), 
signifies that i belongs to a K-shell but not to any (k + 1)-shell. The K- 
shell decomposition method is commonly employed to discern core and 
periphery nodes. As discussed before, K-shell score is not able to fully 
distinguish the importance of nodes and can assign same score to nodes 
which in fact have different roles. Since degree centrality represents how 
well-connected a node is in the network, it would be an appropriate 
choice to combine degree centrality [46] with K-shell score, so that the 
drawback of the original K-shell can be improved. Degree centrality and 
improved K-shell score of a node is defined in Eq. (1) and Eq. (2), 
respectively. 

DC(i) =
degree(i)

n − 1
(1)  

Where DC(i) shows the degree centrality of node i, and degree(i) and n 
represent the degree of node i and the total number of nodes in the 
graph, respectively. 

Ksimproved(i) = Ks(i)+ (Ks(i)×DC(i) ) (2)  

Where Ks(i) shows K-shell score of node i, which is multiplied to degree 
centrality to give a more comprehensive evaluation of node and to 
improve its score proportional to the degree centrality of the node. The 
K-shell score of a node is an interesting measure that lies somewhere in 
between local and global methods. It is partially local because it con
siders the immediate neighborhood of a node, and it is global since the 
K-shell represents a subgraph of the entire network. Combining K-shell 
with degree centrality, benefits from both advantages of them. Ac

cording to Fig. 1, the score of nodes P and U based on their original K- 
shell score is equal to 1. By adopting Eq. (2), the final score of nodes P 
and U is equal to 1.28 and 1.04, respectively.  

• Improved H-index score: 

The H-index is an author-centric metric employed to evaluate both 
research output and citation influence [47]. It represents the maximum 
value of h such that an author has published at least h papers, each cited 
at least h times. Despite its widespread use, the H-index has limitations. 
For instance, consider Fig. 2 that two authors, A and B, with the same H- 
index of 3. However, Author A has written 7 articles, while Author B has 
only 3. To address this, an improved version of H-index is proposed that 
can be calculated via Eq. (3) which is able to better distinguish nodes 
according to the degree of neighbors. This equation is used to calculate 
the score of each cell to decide whether we should select the next index 
in the array or terminate the traversing of the array. 

CellScore(k) = [V k] +
(

[V k] ×
[
|V|
100

+DC(i)+
k
|V|

])

(3)  

Where CellScore(k) represents the score of the k-th index in the sorted 
vector V, [V k] shows the value of the k-th cell, |V| is the length of the 
vector, and k indicates the index of the cell in vector V. If the CellScore(k) of 
the cell is greater than the k, then the next cell is selected to be checked. 
Upon closer examination, the index numbers of primary cells in a vector 
start low. However, as the index increases, meeting the criteria becomes 
more challenging due to higher article citation requirements. To address 
this, k

|V| is added to assist with citation counts in long vectors. The 
improved H-index is calculated via Eq. (4). 

H − indeximproved(i) = k − 1 (4)  

Where, k is the index of cell that the condition is not satisfied.  

• Node Dominance: 

The concept of dominance power of a node i is defined as the in
fluence of that node on its direct and indirect neighbors, as well as the 
ability of a node to access the neighbors of its neighbors. This reflects 
that the dominant node has more common neighbors with its neighbors 
and is regarded as a popular and influential node which can better assign 
its label to the nodes around it. The dominance power of a node is 
defined as Eq. (5).  

Where Ni and Nj are the neighboring list of the nodes i and j, 
⃒
⃒CNi,j

⃒
⃒ and 

Weij demonstrate the common neighbors between nodes i and j, and the 
weight of the edge connecting these two nodes respectively, and they are 
added with 2, to participate the nodes i and j themselves when calcu
lating their common neighbors. The term 

( ⃒
⃒CNi,j

⃒
⃒+ Weij + 2

)
considers 

the information between nodes i and j such as their common neighbors 
and the strength of the link between two nodes. Furthermore, every time 
node i is compared with its neighbor, 

(
Ksimproved(i) + degree(i)

)
is 

considered to better distinguish the final score of nodes and to partici
pate in the influence of node i. 

To make it more understandable, consider the sample graph illus
trated in Fig. 3, comprising 18 nodes. Two specific nodes, designated as 
A and C, exhibit identical degree centrality values of 0.44 and an 
improved K-shell score of 4.32. To demonstrate the efficacy of the 
improved H-index in distinguishing between nodes with identical K- 
shell scores, only the H-index and K-shell components of Eq. (5) for 
nodes A and C are calculated. The sorted array of neighbor degrees for 

Fig. 2. An example of computing H-index for two authors. Author A, with H- 
index 3, has 7 published papers, and Author B, with H-index 3, has 3 pub
lished papers. 

Dominance(i) = H − indeximproved(i)+Ksimproved(i)+

⎡

⎢
⎢
⎢
⎣

∑|Ni |

j=1

(⃒
⃒CNi,j

⃒
⃒+ Weij + 2

)
+
(
Ksimproved(i) + degree(i)

)

⃒
⃒Nj
⃒
⃒+ 1

⎤

⎥
⎥
⎥
⎦

(5)   
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node A is as follows: [2–5,8], corresponding to nodes C, F, B, D, E, G, I, 
and J, respectively. Given that the first three elements (nodes C, F, and 
B) possess degree values exceeding their respective positions in the 
array, we commence the calculation of the H-index from the fourth 
element, node D, which has a degree of 3. This approach underscores the 
complementary nature of the H-index and K-shell metrics in evaluating 
the significance of nodes within a network. 

CellScore(D) = 3+

(

3×

[
8

100
+ 0.44+

4
8

])

= 6.06  

CellScore(E) = 3+

(

3×

[
8

100
+0.44+

5
8

])

= 6.43  

CellScore(G) = 2+

(

2×

[
8

100
+ 0.44+

6
8

])

= 4.54 

So, the improved H-index of node A is equal to 5. For node C, the 
sorted array of neighbor degrees is as follows: [1,3,4,8], corresponding 
to nodes A, B, D, K, L, M, N, and O, respectively. Similar to node A, since 
the first three elements (nodes A, B, and D), obviously have degree 
values greater than the index of their position, the H-index is calculated 
from the fourth cell, node K with degree 1. 

CellScore(K) = 1+

(

1×

[
8

100
+ 0.44+

4
8

])

= 2.02 

Since 2.02 is not greater than the position index 4, so the H-index of 
node C will be 3. The calculation of the improved H-index for nodes A 
and C clearly demonstrates its complementary role to the K-shell metric 
in evaluating the importance of nodes within a network. Despite pos
sessing identical improved K-shell scores of 4.32, nodes A and C exhibit 
distinct H-index values: 5 for node A and 3 for node C. This differenti
ation highlights the ability of the improved H-index to capture nuances 
in node influence that may not be evident from the K-shell score alone. 
The sum of the improved K-shell score and H-index score further un
derscores this distinction, with node A receiving a higher combined 
score (9.32) compared to node C (7.32). As illustrated in Fig. 3, node A 
indeed exhibits greater potential for propagating labels due to its con
nections with influential neighbors. This observation further supports 
the complementary role of the H-index in assessing node importance and 
enhancing the accuracy of label propagation algorithms.  

• Total importance: 

In real life, in addition to the personal importance of a person, the 
importance of a person also comes from its friends [48]. For this end, the 
total importance of a node consists of personal dominance and neigh
bors’ importance which can be calculated via Eq. (6). So, there is a high 
possibility for a person with high dominance score to affect others with 
less importance. In this relation, neighbors with degree 1 are not 
considered, since they do not have any impact on any of the nodes. 

ImportanceTotal(i) = Dominance(i)+
∑|Ni |

j=1

Dominance(j)
Dominanceaverage

×
⃒
⃒CNi,j

⃒
⃒ (6)  

Where ImportanceTotal(i) indicates the total importance of node i based 
on personal importance and neighbors’ importance of node i. 
Dominance(i) and Dominance(j) respectively represent the dominance of 
nodes i and j. 

⃒
⃒CNi,j

⃒
⃒ demonstrates the number of common neighbors 

between two nodes i and j. Dominanceaverage is the average of dominance 
of neighbors of node i. Unlike the other methos which adopt a threshold 
as a coefficient to regulate the participation degree of neighbors, in this 
method the degree of involvement of each neighbor is depended on the 
portion of importance it takes among the neighbors. By adopting this 
technique only neighbors which share common neighbors with node i, 
will have influence on it. After calculating Eq. (6), nodes are sorted 

descending which defines the order of the node selection in the next 
steps. 

3.1.2. Node attraction step 
A prevalent challenge encountered in community detection is the 

“cold start” problem, characterized by an initial lack of knowledge 
regarding the underlying community structure. In this scenario, algo
rithms commence with each node assigned to its own separate com
munity, devoid of any prior information. This necessitates a greater 
computational effort to identify true community labels, thereby hin
dering convergence. To mitigate this issue, an initial step is recom
mended that aims to establish the fundamental community structure 
based on principles observed in real-world networks. This approach le
verages natural patterns of community formation to provide a more 
informed starting point for the community detection process. This step 
ensures that no new labels are generated in the next steps, which pre
serves the current state of the communities and avoids the creation of 
erroneous labels. In the following steps, the algorithm expands the 
communities by selecting the most suitable label for each node. Initially, 
each node identifies its most closely connected neighbor by considering 
both the number of shared neighbors and the edge weight between 
them, calculated using Eq. (7). 

MSN(i) = argmaxj∈Ni

⃒
⃒CNi,j

⃒
⃒+Weij (7)  

Where MSN(i) represents the most similar neighbor of node i, Ni shows 
the list of neighbors of node i. 

⃒
⃒CNi,j

⃒
⃒ demonstrates number of shared 

neighbors and Weij shows the edge weight between nodes i and j, 
respectively. A neighbor node with the highest obtained score from Eq. 
(7) is selected as the most similar or most intimate neighbor of node i. 
Nodes are then grouped with their most similar direct neighbor without 
considering the position of nodes and without any defined order. 

The label assignment process operates by comparing the total 
importance of node i with its most similar neighbor, denoted as M. If the 
total importance of node i is lower than that of node M, node i is assigned 
the label of node M. Otherwise the algorithm proceeds to identify the 
most similar neighbor of node M, designated as W. In the scenario where 
nodes W and i are identical, the label of node i is assigned to both node M 
and node i. If nodes W and i differ, the algorithm evaluates two condi
tions: If node i exhibits a higher total importance than node i, nodes i, M, 
and W are assigned the label of node i. Conversely, if node W possesses a 
greater total importance, the label of node W is assigned to all three 
nodes. Fig. 4 illustrates two consecutive operation of the node attraction 
step, in which each node chooses the label of its most similar neighbor 
and then updates its own label accordingly. The weights of the edges 
between adjacent nodes are indicated on the edges. 

In Fig. 4(a), nodes 1, 2, 3, 8, and 9 are assigned with the label of their 
most similar neighbor, node 4. Initially, the label of node 1 is assigned to 
node 5, because it has one common neighbor with node 1 and one with 
node 4, but the edge weight between nodes 1 and 5 is higher than the 

Fig. 4. The procedure of node attraction step. (a) Each node selects the label of 
its most similar neighbor. (b) Updating the allocation of labels. 
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edge weight between node 4 and node 5. Similarly, the label of node 2 is 
assigned to node 10, because it has a higher edge weight with node 2 
than with node 4. Initially, nodes 5 and 10 are depicted with distinct 
label colors. Following the adjustment of the label allocation order, as 
illustrated in Fig. 4(b), the nodes are assigned with their correct labels. 
Since the labels of nodes 1 and 2 are changed to 4, nodes 5 and 10 also 
update their labels to 4. At the end of the algorithm, node 7 receives the 
label of node 4 and node 6 receives the label of node 5. 

3.1.3. Fast label selection step 
Community formation is heavily influenced by the sequence of 

nodes. The previous step facilitates the fast label selection step, as it 
avoids the cold start state and enables the nodes to select the appropriate 
label with more confidence. The suggested approach is neither purely 
based on label diffusion nor purely based on label propagation. It is not 
in label diffusion-based methods since no labels are diffused, and it is not 
label propagation-based, as no label is propagated. In this step, based on 
the previous knowledge, nodes only select the label of the existing 
communities around them. This step is performed for nodes with 
is_dense_flag equal to zero. After executing this step once, is_dense_flag is 
changed to 1 for a portion of nodes which are located in dense parts. By 
adopting this technique, a significant time is saved by avoiding of 
checking dense nodes which it is unlikely that their label will change. 
This step operates based on the order of the list of nodes sorted by their 
total importance. 

The label selection process depends on the communities around the 
target node. If the target node has only one distinct community in its 
neighborhood, this implies that the node is an important node which is 
located in a dense region, or it is a node with low degree such as 2, 3, 4, 
and etc. that is completely surrendered. In this case, the target node is 
excluded and maintained to update its label in the final label selection 
step. In both scenarios, fully surrendered nodes update their label only 
one time based on the label of the most similar neighbor. It is worth 
noting that executing this step with a maximum of two iterations is 
sufficient. There may be a situation where a node may belong to multiple 
communities due to its position at the boundary of different groups or 
due to the erroneous partitioning of a single community into several 
subgroups, resulting in a dense node being influenced by multiple 
communities. Since the previous steps have successfully diffused the 
labels of the influential nodes throughout the network, the label fre
quency is used to determine the community membership of the node. If 
the 90 % of the most frequent label has a greater value than the second 
most frequent label, the label of the community with maximum fre
quency is allocated to the selected node and its is_dense_flag is set to 1. If 
none of the aforementioned conditions are satisfied, the final condition, 
label influence, is evaluated via Eq. (10). For each of the surrounding 
communities of the target node, the sum of the importance values of the 
nodes in that community (Eq. (8)) and the weighted similarity (Eq. (9)) 
between them and the target node are computed: 

Importance(i,Cx)
=

∑|Ni |

j∈Ni ,j∈Cx

ImportanceTotal(j) (8)  

WeightedSimilarity(i,Cx)
=

∑|Ni |

j∈Ni ,j∈Cx

⃒
⃒Ni ∩ Nj

⃒
⃒× Weij

1 + |Ns − Nh|
(9)  

CommunityInfluenceCx
=
(

Importance(i,Cx)
× FreqCx

× ImportanceTotal(i)
)

+WeightedSimilarity(i,Cx)

(10)  

Where nodes i and node j are two nodes connected to each other, Ni and 
Nj representing their respective sets of neighboring nodes. 
Importance(i,Cx)

indicates the influence of the community Cx on node i 
and the total importance for neighbor node j in community Cx is indi

cated by ImportanceTotal(j). In Eq. (9), WeightedSimilarity(i,Cx)
denotes the 

importance of the community Cx based on similarity score of two 
neighbor nodes i and j and the weight (strength) of the links connecting 
them to node i. 

⃒
⃒Ni ∩ Nj

⃒
⃒ and Weij show the number of shared nodes and 

the edge weight between node i and node j, respectively. For node i and j, 
if |Ni| ≥

⃒
⃒Nj
⃒
⃒, Ns refers to Nj and Nh refers to Ni. However, if |Ni| <

⃒
⃒Nj
⃒
⃒, Ns 

is set with Ni and Nh is set with Nj. To the best of our knowledge, no one 
has used such diverse combination of metrics to evaluate the score of the 
communities around a node from different aspects. According to Eq. 
(10), the influence of a community is evaluated based on the importance 
of nodes, as well as the frequency of label of the community. Besides 
these metrics, the importance of the origin of the label is added. To the 
best of our knowledge, no previous work has used the importance of the 
origin of the label. After applying Eq. (10) to all of the communities 
around node i, finally the community with the maximum score allocates 
its label to node i. 

3.1.4. Final label selection 
Although the previous steps adopt various metrics to maximize the 

accuracy of the algorithm, some wrong label assignments are inevitable. 
The final label selection phase is a fast process that ensures that each 
node receives the most suitable label. Since the previous steps have 
already assigned appropriate labels to the nodes, there is no need to 
adopt complex computations in this step. Consequently, any node with a 
degree exceeding one will adjust its label to correspond with the label of 
the neighbor possessing the largest quantity of mutually connected 
nodes among the neighbors. If multiple neighbors have the same number 
of similarities, then the first one is selected. 

3.1.5. Fast merge step 
Generally, the purpose of merge steps in community detection is to 

combine weak communities that are likely to be part of a strong com
munity but have been erroneously separated by the algorithm. A novel 
and efficient approach is proposed to merge small communities in a fast 
manner. In contrast to methods that rely on the time-consuming 
modularity criterion, which neglects the relationship and similarity 
between communities, the method suggested for merging communities 
streamlines the process by focusing solely on negotiations between key 
community members, eliminating unnecessary steps. The merging steps 
are motivated by the real-world phenomenon of two governments, na
tions, or empires that seek to merge with each other. They usually 
attempt to be neighbors first, and then form a larger group by inte
grating into one entity. Moreover, instead of the rulers communicating 
directly, they often send an ambassador or a representative to negotiate 
on their behalf. The ambassador with the highest score and the ruler 
with the most influence assimilates the smaller government with 
themselves. When two ambassadors of two nations agree to merge, it 
implies that the other members are also in agreement. Based on this 
observation, the community merging step is designed to merge com
munities at once, which avoids the need for the algorithm to check each 
node individually. The suggested merging method proceeds as follows: 

Communities with size less than the average size of the communities 
are supposed as small communities. The origin of the label of a com
munity is considered as the ruler of that community. Each ruler then 
choses an ambassador among its neighbors based on three metrics which 
are adopted via Eq. (11). The neighbor with highest obtained score from 
Eq. (12), is selected as the ambassador of that nation or group. 

NAS(j) =
∑|Nj|

k=1

⃒
⃒CNj,k

⃒
⃒+

∑|Nj|

k=1
Wejk + degree(j) (11)  

NA(Ci) = argmaxj∈Ni
NAS(j) (12)  

Where NAS(j) shows the nation ambassador score of node j, 
⃒
⃒Nj
⃒
⃒ repre

sents the number of neighbors of node j, 
⃒
⃒CNj,k

⃒
⃒ and Wejk demonstrate the 
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number of common neighbors and the weight of the edge between nodes 
j and k, respectively. Finally, degree(j) is used to show the degree of node 
j. In Eq. (12), NA(Ci) indicates the ambassador of nation Ci. As it is 
apparent from Eq. (11), an efficient combination of metrics is adopted to 
select a node which is superior from diverse aspects. An ambassador 
should have high number of common interests with its neighbors and the 
strength of this ties should be high. Also, this node should have more 
connections than other nodes, which all of them are gathered in Eq. (11). 
Then, a neighbor node k of ambassador node j with different label and 
highest total importance is selected. If the total importance of the ruler 
of the selected community is greater than the ruler of the target com
munity Ci, and they share common nodes with each other, then two 
communities have the sufficient conditions to be merged with each 
other. Despite of its simplicity, the merge method is significantly capable 
and fast. 

3.1.6. Label assignment to degree 1 nodes 
After finishing the execution of the aforementioned steps, finally, for 

all nodes with a degree of 1, the algorithm chooses the label of the single 
node adjacent to them. The exclusion of nodes with degree 1 during the 
entire algorithm execution does not affect the accuracy, but rather 
significantly decreases the runtime and avoids the need for checking 
them in each iteration. 

3.2. Computational complexity analysis of LMFLS algorithm 

LMFLS is structured around six main key steps: calculating node 
importance, node attraction step, fast label selection, final label selec
tion, merge step, and finally label assignment step for nodes with degree 
1. At the beginning of the algorithm, only K-shell decomposition is 
executed for all nodes. The computational cost of the initial iteration of 
the K-shell decomposition algorithm is expressed as O(n + m), with n 
denoting the number of nodes and m representing the number of edges 
in the graph. Following the removal of n1 nodes with a degree of 1, the 
network comprises nʹ = n − n1 nodes, which continue to be involved in 
the subsequent phases of the algorithm. Computing degree centrality of 
nodes is performed in O(nʹ). The execution of the improved H-index on 
the nʹ nodes, characterized by an average degree of k, exhibits a time 
complexity of O(ń × klogk). The similarity of nʹ nodes is computed in 

O

(

nʹk2

2

)

. Also, the computational cost of calculating total node impor

tance is equal to O(nʹk). Sorting nʹ nodes requires O(nʹlognʹ) time 
complexity. The node attraction step, involving the selection of the most 
similar neighbor for each of the nʹ nodes, exhibits a time complexity of 
O(nʹk). The execution of the fast label selection step with one iteration 
for nʹ is completed in O(nʹk). The final label selection step is executed 
with O(nʹk) time complexity. The time required to determine the number 
of members of communities within the merge step is O(ń ). Represen
tative nodes for small communities with ns members are identified in 
O(sns) < O(nʹ). The merge step exhibits an overall time complexity of 
O(nʹ + sns), which is asymptotically equivalent to O(nʹ). This is the 
reason why the proposed merge step is fast and efficient. Labeling all 
nodes with a degree of 1 is completed with a time complexity of O(n1). 
Therefore, the LMFLS algorithm’s overall time complexity is O(n+ m). 

3.3. Example 

To enhance the understanding of the LMFLS algorithm, a detailed 
example based on the Bottlenose Dolphin community in Doubtful Sound 
[50] is provided. The Dolphins network is made up of 62 interconnected 
individuals, linked by 159 relationships, forming two distinct groups. 
Table 1, shows an example of the data structure adopted for imple
menting the LMFLS algorithm. Since the Dolphins dataset is unweighted, 
each edge between two adjacent nodes is initially assigned with weight 
1. 

According to the algorithm, after computing K-shell step, nodes with 
degree 1 are excluded. Table 2, shows the list of nodes and their score 
obtained from calculating degree centrality, improved K-shell, improved 
H-index, node dominance, and finally total node importance which are 
calculated from Eqs. (1), (2), (4), (5), and (6) repetitively. 

In the next step, each node selects the most similar neighbor ac
cording to Eq. (7). The resulting pairs of nodes are presented in Table 3. 
MSN and NMSN stand for the most similar neighbor of the target node 
and the most similar neighbor of the most similar neighbor of the target 
node, respectively. 

According to Table 3, since ImportanceTotal(15) ≥ ImportanceTotal(34)
and NMSN of node 34 is node 15 itself, both of the nodes are assigned 
with the label of node 15. As another example, node 2 is selected as the 
target node. Node 55 is the most similar neighbor of node 2. Since 
ImportanceTotal(2) ≥ ImportanceTotal(55), then the most similar neighbor 
of node 55 should be checked. Because 
ImportanceTotal(58) ≥ ImportanceTotal(2), then Label (2) ← 58, Label (55) 
← 58, and Label (58) ← 58. The updated network is shown in Fig. 5. 
According to Fig. 5, after the execution of the node attraction step, 6 
communities are formed. The green community is detected with a high 
accuracy. It is worth noting that communities labeled as “Red”, “Pur
ple”, “Blue”, “Dark Blue”, and “Orange” are, in fact, one community. 
However, due to their dense connections with nodes around them, they 
are initially divided into several communities and the next steps of the 
algorithm will correct them. At the next, the label selection step is 
performed. Table 4 highlights nodes situated in areas of high connec
tivity within the graph based on label assignment of previous step and 
is_dense_flag of these nodes is equal to 1. The Dominant label column 
displays the label of the community that is the most frequently observed 
around the target node. The origin of each community is shown along 
with the color of the community. The origin of each community is shown 

Table 1 
The data structure adopted for implementation of the LMFLS algorithm. The 
keys indicate ID of nods and the value for each key is a list containing ID of 
neighbors and the edge weight between neighbor and the key node.  

Key Value 

1 List (11: [1], 15: [1], 16: [1], 41: [1], 43: [1], 48: [1]) 
2 List (18: [1], 20: [1], 27: [1], …,37: [1], 42: [1], 55: [1]) 
3 List (11: [1], 43: [1], 45: [1], 62: [1]) 
⋯ ⋯ 
62 List (3: [1], 38: [1], 54: [1])  

Table 2 
A sample of order of nodes in Dolphins dataset and their obtained score. DC 
stands for degree centrality.  

Node ID DC K-shell H-index Dominance Total importance 

15 0.196 7.18 10 172.03 221.32 
52 0.163 6.98 6 183.31 215.32 
46 0.180 7.08 10 142.23 182.73 
38 0.180 7.08 10 137.84 175.04 
34 0.163 6.98 9 134.68 174.29 
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
56 0.032 2.06 2 5.60 5.60  

Table 3 
An example of selected target nodes and their most similar neighbor along with 
the most similar neighbor of the most similar neighbor of the target node.  

Target node MSN NMSN 

15 34 15 
52 46 52 
46 52 46 
38 15 34 
34 15 34 
⋯ ⋯ ⋯ 
2 55 58 
56 52 46  
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along with the color of the community. 
As it is listed in the Table 4, nodes 58, 18, 39, etc. are nodes which are 

surrendered with one type of label, and nodes such as 15, 52, 46, 38, 34, 
and others are associated with more than one type of community. 

Fig. 6 presents the new updated state of the network. By performing 
one iteration of the label selection part of the algorithm, nodes such as 
31, 9, 48, 11, 3, 4, 62, 50, 47, and 54 selected a new community (Red 
community). Only node 43, despite changing its is_dense_flag to 1, has 
not properly updated its label. The black-colored star demonstrates the 
nodes with is_dense_flag equal to one. According to the results, only nodes 
48, 9, 31, 11, 50, and 40 are not flagged as dense. If the fast label se
lection step is executed with two iterations, only nodes 31 and 40 would 
not be flagged as not dense. This indicates that nodes 31 and 40 are 
precisely in boundary sections. Table 5 shows the procedure of label 
selection for nodes 48, 9, 31, 11, 50, 40. Community influence is 
calculated via Eq. (10). The equation is designed optimally to check 
communities from different aspects, as there are considerable differ
ences between scores. As a result, there is no need to perform a tie-break 
step. The final label selection is executed to correct some slight mistakes 
and to join isolated communities to their neighbor communities. Only 
node 43 is updated in this step, since other nodes are correctly assigned 
with the label of the communities around them. Table 6 shows an 

example of the procedure for assigning the label of the similar and 
closest neighbor. The updated network is visualized in Fig. 7. 

According to the Table 6, node 43 has the highest common neighbors 
with node 11 and the label of node 11 which is 15 (Red community), is 
assigned to node 43. According to the results, the Red labeled, Purple 
labeled, and Green labeled communities have 24, 12, and 17 members, 
respectively. The mean community size before the merge operation is 
17.66. Since the Green and Purple communities have a size <17.66, they 
are regarded as small communities. Table 7 shows the information of 
small communities such as the ruler and the ambassador of the com
munity, and the community with which the small community is merged. 
Based on the information presented in Table 7, the ruler of the Purple 
community is node 52 and node 46 is the ambassador of this community. 
Among its neighbors, node 38 with the highest total node importance of 
175, is selected. 

Since node 38 has a different label than node 46, and since the total 
importance of the ruler of the Purple community is less than the total 
importance of the ruler of the Red community, and nodes 52 and 15 
share common neighbors 25 and 51, then both Purple and Red 

Fig. 5. Updated state of the Dolphins network after performing node attrac
tion step. 

Table 4 
A sample list of nodes which are located in dense re
gions in Dolphins network. The first number in each of 
the parenthesis indicates the origin of that community 
and the second number shows the frequency of that 
community around the target node.  

Node ID Dominant label 

58 58 
18 58 
39 15 
14 58 
45 15 
15 (15,10), (52,2) →  

15 
52 (52,7), (15,1) →  

52 
46 (52,9), (15,2) →  

52 
38 (15,7), (52,3) →  

15 
34 (15,8), (52,1) →  

15    

Fig. 6. Performing 1 iteration of fast label selection step. Nodes such as 31, 9, 
48, 11, 3, etc. have selected the label of red community and only node 43 is 
remained isolated. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 5 
Selecting the most appropriate label for nodes which are not flagged as dense.  

Node ID Community influence Selected community 

48 (15, 118159), (43, 20671) 15 
9 (52, 145568), (15, 214122) 15 
31 (58, 16982), (15, 41248), (43,3152) 15 
11 (15, 38255), (43, 8342), (52,31489) 15 
50 (15, 5990), (50, 55) 15 
40 (14, 9634), (58, 21219) 58  

Table 6 
An example of the procedure of selecting the label of most similar neighbor. The 
first number in each of the parenthesis indicates the neighbor of target node and 
the second value shows the number of common neighbors between target node 
and its neighbor.  

Node (Neighbor Id, Number of common neighbors) Selected label 

43 List [(1,2), (3,1), (11,3), (31,1), (48,3), (51,0)] Label(11) → 15 
31 List [(8,1), (20,1), (29,1), (43,1), (48,2)] Label(48) → 15 
29 List [(2,0), (9,1), (21,2), (31,1), (48,2)] Label(21) → 15 
9 List [(4,1), (21,1), (29,1), (38,1), (46,2), (60,2)] Label(46) → 52 
⋯ ⋯ ⋯  
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communities are integrated with each other. The Green community, due 
to the fact that the important neighbor of ambassador is node 18, which 
has the same label as node 14, does not have the sufficient condition to 
be merged with other communities. Fig. 8 shows the updated network. 
Finally, label assignment to nodes with degree 1 is performed. The final 
state of the network with two communities with detection accuracy 100 
% is visualized in Fig. 9. 

4. Experiments 

A thorough evaluation of the proposed LMFLS algorithm is con
ducted in this section, comparing its performance with other leading and 
novel algorithms across a diverse range of real-world and synthetic 
networks of varying sizes. Python version 3.7, is used for implementa
tion of the LMFLS algorithm. The experiments employ Python imple
mentations of several community detection algorithms: Louvain [26], 
FluidC [38], CNM [28], LPA [13], Infomap [5], and Leiden [25]. We use 
CFCD2, considered the most accurate version [35], from among four 
variations of the CFCD algorithm. Results for RTLCD and CDME algo
rithms are sourced from [19,37], respectively. A comprehensive over
view of the algorithms and their original implementations can be found 
in [51]. The LSMD [24], NIBLPA [14], and LPA-Intimacy [15] are pro
grammed in MATLAB 2017 and python implementation of the GCN al
gorithm [31] is adopted. The experiments were carried out on a 
computer system with a Core i5 processor (3.70 GHz), 12 GB of RAM, 
and using Python version 3.7 on Windows 10. 

4.1. Real-world networks 

A comparison of algorithm performance was conducted using 17 
real-world networks. Table 8 summarizes the details of the real-world 
datasets, where N denotes the number of nodes, M the number of 

Fig. 7. The updated network after performing final label selections step on the 
network presented in Fig. 7. 

Table 7 
Information about the selected small communities. Each community has a nu
merical identifier which is regarded as the origin of that community which has 
the highest importance. SNA indicates the selected neighbor of the ambassador.  

Community ID Ruler Ambassador SNA Merged 

Purple (52) 52 46 (score:56) 38 (  

Red community) 
Green (58)   58 14 (score:44) 18 

Fig. 8. The updated network after completing the fast merge step. The Red and 
Purple communities are merged with each other. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 9. The final state of Dolphins network with two detected communities 
with 100 % detection accuracy. 

Table 8 
Properties of real-world datasets.  

Dataset N M C 

Zachary’s Karate Club 34 78 2 
Dolphins 62 159 2 
U.S Political Books 105 441 3 
Football 115 613 12 
Net-science 1589 2742 – 
Power Grid 4941 6594 – 
CA-GRQC 5242 14,490 – 
Collaboration 8361 15,751 – 
CA-HEPTH 9877 25,985 – 
PGP 10,680 24,316 – 
Condmat-2003 31,163 120,029 – 
Condmat-2005 40,421 175,691 – 
DBLP 317,080 1,049,866 13,477 
Amazon 334,863 925,872 75,149 
YouTube 1,134,890 2,987,624 8385 
Orkut 3,072,441 117,185,083 6,288,363 
LiveJournal 3,997,962 34,681,189 287,512  

H. Li et al.                                                                                                                                                                                                                                        



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 115126

12

edges, and C the number of communities. A comprehensive description 
of the real-world datasets is accessible through the SNAP project [52]. 

4.2. Synthetic networks 

The LFR1 benchmark [53] is employed as a synthetic dataset 
generator, utilizing a range of parameters to create networks with spe
cific characteristics. The mixing parameter (μ) significantly influences 
the interconnectedness of nodes within the model. As its value ap
proaches 1, the network becomes increasingly densely connected, 
making it considerably harder to distinguish distinct communities. The 
LFR benchmark’s configuration is detailed in Table 9, while Table 10 
presents the characteristics of the generated datasets. 

4.3. Evaluation metrics 

This paper employs three widely used metrics, namely Normalized 
Mutual Information (NMI), F-measure, and Modularity (Q), to assess the 
detection accuracy of examine methods. When ground-truth of networks 
is accessible, the NMI metric serves as a widely accepted standard for 
measuring the precision of identified communities [54]. The accuracy of 
the detected communities is evaluated by comparing them to the real 
communities, thus assessing the degree of similarity between the two 
sets. The NMI score can be adopted via Eq. (13). 

NMI(X,Y) =
− 2
∑CX

i=1

∑CY

j=1
Cijlog

(
CijN
CiCj

)

∑CX

i=1
Cilog

(
Ci
N

)

+
∑CY

j=1
Cjlog

(
Cj
N

) (13)  

Where X demonstrates the real communities and Y is a group of nodes 
identified by the algorithm. CX represents the number of communities in 
the ground-truth and CY is the number of discovered communities and N 
is the number of nodes. C denotes the confusion matrix where the rows 
are the real communities and columns are the detected communities. Cij 

represents the number of common nodes between the real community i 
in set X with the detected community j in set Y. Ci shows the sum of the 
row i in the matrix Cij and Cj shows the sum of the column j in the matrix 
Cij. 

The F-measure, a widely employed metric in evaluating ground-truth 
datasets, offers a comprehensive assessment of accuracy by harmonizing 
precision and recall [35]. In the context of community detection, the F- 

measure is calculated according to Eq. (14). A value closer to 1 indicates 
a higher degree of accuracy, signifying the method’s effectiveness in 
identifying communities with precision. 

Precision =
|CD ∩ CR|

|CD|
(14)  

Recall =
|CD ∩ CR|

|CR|
(15)  

F − measure =
2 × precision × recall

precision + recall
(16)  

Where CD indicates the detected communities and CR represents the real 
communities based on the ground-truth information. However, when 
ground truth is absent, the modularity measure [28] serves as a prom
inent metric to gauge the effectiveness of community detection algo
rithms in identifying dense and well-structured communities which is 
calculated by Eq. (17). 

Q =
1

2m
∑

a,b

Aab −
dega × degb

2m
× δ(ca, cb) (17)  

Where, a and b represent two distinct nodes within the network, while m 
shows the total number of connections (edges) present. The adjacency 
matrix A is used to determine the existence of an edge between nodes a 
and b, where Aab equals 1 if such a connection exists and 0 otherwise. 
The degrees of nodes a and b, denoted by dega and degb, respectively, 
represent the number of connections each node has. Furthermore, ca and 
cb represent the labels assigned to nodes a and b, respectively. The 
Kronecker delta, symbolized as δ(ca, cb), is a function that evaluates to 1 
if both nodes a and b share the same label and 0 if they have different 
labels. 

4.4. Experimental results on real-world datasets 

This empirical study encompasses a comprehensive range of com
munity detection algorithms, encompassing distinct categories such as 
label propagation, label diffusion, modularity optimization, core node 
expansion, and random walk-based approaches. The primary objective 
is to provide a comprehensive comparative analysis across different 
methods. The NMI results for LPA, FluidC, and Louvain on the Live
Journal dataset are adopted from [37]. 

Most of the compared algorithms were unable to execute Orkut and 
LiveJournal datasets due to time-complexity issues and lack of sufficient 
RAM (due to adopting graph data structure in their implementation). 
However, among the diverse methods evaluated, only the LMFLS, LBLD, 
and LSMD algorithms successfully completed execution on these data
sets. This success can be attributed to their utilization of a neighboring 
list structure and their efficient time complexity during execution. 

The LMFLS algorithm was executed with a maximum of two itera
tions for both the fast label selection and the final label selection steps. 
While these represent the maximum iteration limits, in most instances, 
the LMFLS algorithm converged and terminated within a single 
iteration. 

Given that FluidC necessitates prior knowledge of the number of 
communities, the actual number of communities, as presented in 
Table 8, was utilized as the parameter K for this algorithm. It is 
important to note that the datasets used in this study do not provide 
weights for edges. Therefore, the weights are considered to be 1. How
ever, since the drug and disease networks, which are conducted as an 
application of the LMFLS in the next section, are weighted networks, the 
LMFLS is designed in such a way to support the weight of edges. 

4.4.1. NMI evaluation on real-world datasets 
Table 11 presents results obtained for different algorithms evaluated 

with NMI. Furthermore, to enhance the visibility of the community 

Table 9 
Parameters of the LFR benchmark.  

Parameters Description 

N Number of nodes 
Min K Minimum degree of nodes 
Max K Maximum degree of nodes 
μ Mixing parameter 
Min c Number of nodes within the smallest community 
Max c Number of nodes within the biggest community 
γ Node degree distribution exponent 
β Community size distribution exponent  

Table 10 
Properties of the generated LFR networks.  

Network N Min K Max K Min C Max C γ β μ 

LFR1 50,000 5 15 10 50 2 1 0.1–0.8 
LFR2 100,000 7 20 10 100 2 1 0.1–0.8 
LFR3 200,000 5 20 20 100 2 1 0.1–0.8 
LFR4 500,000 10 25 20 200 2 1 0.1–0.8  

1 Lancichinetti–Fortunato–Radicchi 
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detection results of the LMFLS algorithm, Fig. 10 presents a visualization 
of the communities identified in Karate, Dolphins, Polbooks, and Foot
ball datasets, achieving NMI scores of 1, 1, 0.60, and 0.90, respectively. 
As it is implied from Table 11, the proposed LMFLS has obtained the 
highest NMI score in 5 out of 9 datasets. The LMFLS algorithm, applied 
to both Karate and Dolphins networks, demonstrated perfect community 
identification. This is evidenced by an NMI score of 1, indicating an 
exact match between the algorithm’s detected communities and the 
ground truth. The LMFLS algorithm achieved the third highest accuracy 
with an NMI of 0.90 in Football network, which is only 0.03 lower than 
the highest result obtained by the LSMD algorithm. It should be noted 
that LSMD employs several controlling conditions, such as edge clus
tering coefficient and nodes’ influence on each other when assigning 
labels. In contrast, LMFLS, despite its simple yet accurate and robust 
nature, was able to achieve an NMI of 0.90 and very close to the NMI of 
the LBLD. 

The results indicate that the LMFLS algorithm exhibits superior 
performance in large-scale networks such as DBLP, Amazon, Live
Journal, and Orkut, achieving competitive results compared to other 
methods like LBLD. Furthermore, achieving NMI score equal to 0.94 and 
0.665 in LiveJournal and Orkut datasets, respectively, is an obvious 
evidence of efficiency of the LMFLS algorithm on large networks. Be
sides this, the highest NMI scores in Amazon and LiveJournal belongs to 
the LMFLS. In DBLP dataset, LMFLS has obtained the second-best NMI 
only with 0.004 difference from the highest result. While the FluidC 
algorithm exhibits acceptable results, its applicability to real-world 
network community detection is hindered by its inherent limitations. 
FluidC struggles to identify communities organically, relying instead on 
a pre-defined number of communities. 

This dependence on a predetermined value, which is often unknown 
in real-world scenarios, restricts its effectiveness in practical applica
tions. Leiden and Louvain algorithms despite of achieving highest 
modularity results in most of the datasets listed in Table 13, were not 
successful in obtaining higher NMI results than the LMFLS. The pro
posed LMFLS algorithm provides stable results on different executions 
with the same number of iterations, whereas Louvain, Leiden, LPA, 
Infomap, GCN, NIBLPA, and so forth can obtain unstable results on 
different executions. The LBLD algorithm employs robust and accurate 
techniques to identify rough cores and uses an efficient balanced label 
diffusion approach, resulting in high accuracy in large datasets such as: 
Amazon, YouTube, Orkut, and LiveJournal. Despite its simple design 
compared to the LBLD, the LMFLS is capable of achieving competitive 
results with the LBLD algorithm in most of the experiments. 

4.4.2. F-measure evaluation on real-world datasets 
To evaluate the accuracy score of each method, the F-measure is 

computed for each identified community. Subsequently, the average F- 
measure score is computed for each dataset. Table 12 presents a 
comprehensive summary of F-measure results, specifically for the al
gorithms under consideration on ground-truth networks. The LMFLS 
algorithm was completely successful in identifying communities with 
100 % accuracy in Karate and Dolphins datasets, resulting in an F- 
measure of 1. In the Karate network, after that node attraction step of the 
LMFLS was executed, an NMI of 1 was obtained, indicating the accuracy 
of the node attraction step. 

It was observed that after performing node attraction and one iter
ation of the fast label selection steps, a significant proportion of nodes 
were assigned with their final labels, and the next steps were executed to 
reorganize and improve the results. Table 11 shows that the CFCD2 al
gorithm has a lower NMI than the LMFLS and LBLD algorithms (with a 
difference of 0.09) in the Polbooks dataset. Interestingly, Table 12 re
veals a significantly higher F-measure for the CFCD2 algorithm 
compared to both LMFLS and LBLD algorithms. However, it’s important 
to acknowledge that the implementation of CFCD2 is not publicly 
available, and the results presented are based on data from the original 
publication. Consequently, a degree of uncertainty might exist in the Ta
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reported CFCD2 results. This is because a strong F-measure typically 
corresponds to a high NMI score. 

Based on the observed results, it is evident that the LMFLS and LBLD 
algorithms achieved the highest score of NMI and F-measure within the 
Polbooks network compared to all other methods investigated. The re
sults of the CFCD2 algorithm in the DBLP dataset reveal a contradiction. 
CFCD2 obtained an NMI of 0.26, which is considerably weak, whereas 
LMFLS obtained an NMI of 0.746. This indicates that LMFLS was more 
successful in discovering partitions that are more similar to the real 
communities than the CFCD2 algorithm. Despite the weak NMI, CFCD2 
obtained the highest F-measure (F-measure = 0.67), which is not 
entirely reliable, since there is a 0.46 difference between NMI and F- 
measure. If an algorithm obtains NMI = 0.26, it means that there is a 
0.74 dissimilarity between the detected communities and the real 
communities. 

Furthermore, in the Amazon dataset, the CFCD2 method exhibits a 
noteworthy performance, attaining an NMI score of 0.72 and an F- 
measure score of 0.94. Therefore, it can be said that the best result of F- 
measure in the DBLP is achieved by LMFLS and LBLD algorithms. LMFLS 
is also significantly efficient on large networks used in experiments such 
as: Amazon, Orkut, and LiveJournal, achieving highest F-measure 
among the other methods indicating that the detected communities by 
LMFLS are much closer to the real communities than those detected by 
other methods. It is noteworthy that, despite achieving acceptable NMI 
scores in the DBLP, Amazon, and YouTube datasets, the Leiden and 
Louvain methods exhibit significantly lower F-measure scores in these 
datasets. The challenges stem from the inherent characteristics of Leiden 
and Louvain algorithms, which exhibit an excessive inclination toward 
community amalgamation, compounded by the absence of reliable 
metrics for discerning meaningful community boundaries. Table 13 

Fig. 10. Visualization of the detected communities by LMFLS algorithm in Karate, Dolphins, Polbooks, and Football networks.  

Table 12 
F-measure results obtained from real-world ground-truth datasets (highest values on each row are bolded).  

Datasets CNM Infomap LPA NIBLPA LPA- 
Intimacy 

GCN LCDR FluidC CFCD2 ECES(s 
= 1) 

RTLCD Louvain Leiden LSMD LBLD LMFLS 

Karate 0.81 0.87 0.42 0.39 1 0.95 1 1 0.97 0.55 1 0.84 0.81 1 1 1 
Dolphins 0.49 0.62 0.62 0.39 0.43 0.29 1 0.97 0.88 0.39 0.73 0.61 0.64 1 1 1 
Polbooks 0.55 0.45 0.48 0.53 0.61 0.38 0.66 0.59 0.76 0.51 0.66 0.54 0.61 0.70 0.68 0.68 
Football 0.57 0.85 0.86 0.47 0.68 0.76 0.90 0.82 0.87 0.63 0.60 0.87 0.87 0.91 0.916 0.91 
DBLP 0.18 0.19 0.43 0.40 0.45 0.44 0.57 0.48 0.67 0.33 0.37 0.15 0.15 0.49 0.65 0.654 
Amazon 0.38 0.01 0.76 0.66 0.71 0.80 0.90 0.72 0.94 0.37 0.74 0.20 0.27 0.84 0.90 0.94 
YouTube – 0.16 – – – 0.11 0.21 0.41 0.32 – – 0.10 0.10 0.13 0.61 0.559 
Orkut – – – – – – – – – – – – – 0.19 0.66 0.67 
LiveJournal – – – – – – – – – – – – – 0.89 0.94 0.94  
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reveals that the Leiden algorithm has erroneously identified 208, 382, 
and 4039 communities for the DBLP, Amazon, and YouTube datasets 
respectively. These findings represent a significant deviation from the 
actual community structure, indicating a substantial misidentification of 
community boundaries. As evident from Tables 11, 12, and 13, the 
LMFLS and LBLD algorithms are two methods that are more successful in 
obtaining high accuracy. 

4.4.3. Modularity evaluation on real-world datasets 
Table 13 contains a comprehensive evaluation of the algorithms’ 

performance across 17 real-world networks, utilizing modularity as the 
primary assessment metric. The table denotes the modularity value (Q) 
and the corresponding number of detected communities (C) for each 
dataset. Although obtaining dense communities is the goal of commu
nity detection, it is crucial to acknowledge that a high modularity value, 
while indicative of a well-structured community, does not unequivocally 
guarantee the algorithm’s efficiency and accuracy. As an instance, as 
indicated by Table 11 and Table 12, the LMFLS algorithm in the Karate 
dataset has accurately identified two communities with 100 % accuracy 
and a modularity of 0.3715. Conversely, while Leiden achieved the 
highest modularity score of 0.42, it concurrently exhibited a significant 
misidentification of community boundaries, raising concerns about the 
accuracy of its results despite its high modularity value. 

Based on the established ground-truth of the Karate dataset, the 
actual modularity score is determined to be 0.3715. Furthermore, the 
LMFLS algorithm has identified two communities out of two commu
nities with the lowest modularity in Dolphins network. However, it has 
achieved 100 % detection accuracy with NMI = 1. This outcome sig
nifies that the proposed LMFLS algorithm has effectively identified the 
true underlying community structure and accurately assigned members 
to their respective communities. Therefore, the modularity value 
attained by the LMFLS algorithm precisely matches the true modularity 
of the Dolphins dataset, as established by the ground-truth, indicating a 
perfect alignment between the algorithm’s output and the actual com
munity structure. In contrast, Infomap and Leiden have detected five 
communities with modularity 0.53 and 0.527, respectively, instead of 
the actual modularity of 0.378. Leiden algorithm has detected five 
communities in the Dolphins dataset, while the actual number of com
munities is two. Leiden has identified small but dense communities, 
which has resulted in a higher modularity score than LMFLS. A 
comprehensive analysis of Table 13 reveals that the Leiden algorithm 
consistently achieves the highest modularity values among its counter
parts. However, this superior performance in modularity is unfortu
nately accompanied by a less than satisfactory accuracy in community 
detection, highlighting a trade-off between these two critical metrics. 

Furthermore, when examining the Polbooks dataset, the LSMD 
method exhibits the lowest modularity score but achieves the second- 
highest F-measure, suggesting a greater proficiency in uncovering the 
authentic community structure of the Polbooks network. The LMFLS 
algorithm demonstrates a marginal difference of 0.01 in modularity 
compared to LSMD, indicating that the modularity attained by the 
LMFLS algorithm closely approximates the true modularity of the Pol
books dataset. In contrast, the Leiden and Louvain algorithms have 
detected four and five dense communities, respectively, with a modu
larity score much higher than the actual one. 

A thorough examination of the ground-truth datasets presented in 
Tables 8, 11, and 12 substantiates the validity of our claim. In the DBLP 
dataset, the Leiden algorithm identifies a mere 208 communities, 
signifying the poorest performance among all compared methods, 
despite its attainment of the highest modularity score. This observation 
highlights a critical discrepancy between modularity and the actual 
representation of community structure, underscoring the limitations of 
relying solely on modularity as an evaluation metric. The same condi
tions can be observed in the Amazon dataset. In the Amazon dataset, 
both Leiden and Louvain have the highest modularity scores, but their F- 
measure is significantly lower than the LMFLS and other methods. Ta
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Adding to the aforementioned observations, Infomap incorrectly detects 
a mere 13 communities for Amazon, a stark contrast to the true number 
of 75,149 communities, despite its modularity score being relatively 
close to LMFLS. This discrepancy underscores the importance of 
considering both modularity and community identification accuracy. 

Throughout the experiments, the LMFLS, LBLD, and LSMD algo
rithms exhibited remarkable alignment with the actual modularity of 
networks with ground-truth, indicating their effectiveness in accurately 
capturing the underlying community structures. The LMFLS algorithm 
demonstrably exhibits superior stability compared to alternative 
methods. While other algorithms, including LPA, NIBLPA, LPA- 
Intimacy, GCN, Louvain, and Leiden, exhibit variability in community 
detection outcomes across different executions, the LMFLS algorithm 
consistently yields identical results for a given number of iterations, 
ensuring predictable and reliable community structure identification. It 
is understandable that LMFLS might not achieve a higher modularity 
score than algorithms like CNM, Louvain, and Leiden, as these algo
rithms explicitly optimize for modularity. In addition, LMFLS has ob
tained better modularity than LSMD and LBLD in datasets such as: CA- 
GRQC, DBLP, Amazon, and YouTube. 

4.5. Results of experiments conducted on LFR datasets 

To expand the experiments, four LFR datasets are incorporated 
alongside real-world networks. These LFR datasets were generated with 
varying values of the parameter μ, ranging from 0.1 to 0.8. While most 
algorithms exhibit consistent behavior for small μ values, their accuracy 
may diverge as μ increases. Methods demonstrating greater robustness 
maintain accuracy under these conditions. Analysis of Fig. 11 reveals 
that LMFLS, LBLD, and LSMD consistently yield the highest results. 
Generally, label propagation-based methods achieve second-best scores 
after the aforementioned algorithms. However, these methods exhibit 
reduced robustness, particularly at high values of μ. Notably, LPA- 
Intimacy stands out among label propagation-based approaches, 
demonstrating both higher accuracy and robustness compared to LPA 
and NIBLPA, but unfortunately, its design is not robust enough for high 
values of μ. 

The Infomap algorithm exhibits instability in certain LFR networks. 
The observed behavior stems from the intrinsic stochasticity inherent to 
the Infomap algorithm. Notably, anomalous results were detected in 
both LFR2 and LFR3 network configurations. As depicted in Fig. 11(b) 
and Fig. 11(c), with an initial mixing parameter of 0.1, the Infomap 
algorithm attained an approximate NMI score of 0.79 whereas other 
examined methods obtain higher results than this. In contrast, the 
LMFLS algorithm responds meaningfully to variations in the mixing 
parameter. Even as the mixing parameter increases to 0.6, 0.7, and 0.8, 
LMFLS consistently identifies accurate communities when compared to 
other methods. Conversely, modularity-based methods demonstrate 
suboptimal performance in sparse LFR networks. The prevalence of 
small communities and the resolution limit problem hinder their effec
tiveness. While most algorithms obtain acceptable results in datasets 
with μ ≤ 0.4, only LMFLS, LBLD, LSMD, LPA-Intimacy, and GCN 
maintain high accuracy in networks with relatively low density. Given 
that real-world networks are often sparse rather than heavily dense, 
modularity-based methods also struggle in such scenarios. The GCN 
algorithm’s accuracy is negatively impacted by the increasing fuzziness 
of networks with more inter-community links. This is attributed to the 
algorithm’s inability to effectively label border nodes in such ambiguous 
network structures. The LMFLS algorithm leverages a dual approach: it 
employs precise metrics to assign importance to nodes and executes a 
node attraction step. By strategically grouping nodes around pivotal 
ones, LMFLS effectively constructs accurate communities even within 
fuzzy networks. 

Fig. 11. NMI comparison of algorithms on 4 LFR networks.  
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4.6. Convergence analysis of the LMFLS 

To highlight the superiority of the LMFLS over label propagation- 
based methods, the convergence speed of the LPA-Intimacy and 
NIBLPA algorithms are compared to that of LMFLS. Notably, while 
LMFLS and LBLD converge within the first or second iteration, LPA- 
Intimacy and NIBLPA fail to converge even after ten iterations. LMFLS 
and LBLD exhibit fast convergence, with minimal observed improve
ment beyond the second iteration. In contrast, LPA-Intimacy and 
NIBLPA gradually improve their modularity results with increasing 
repetitions but do not converge. Fig. 12 presents a comparative analysis 
of modularity scores achieved by the proposed LMFLS algorithm, along 
with LBLD, LPA-Intimacy, and NIBLPA, across varying iteration counts 
and network scales (small, medium, and large). Notably, the LMFLS 
algorithm achieves final results after just one iteration in datasets such 
as Karate, Dolphins, Polbooks, and Football. Also, convergence tends to 
commence after the initial iteration. For instance, in the Netscience 
network, the LMFLS algorithm converges following the first iteration, 
with the result obtained in the fourth iteration being identical to that of 
the first. 

The modularity value obtained when executing LMFLS with 1 iter
ation in Condmat_2003 differs from that obtained with 4 iterations by a 
mere 0.003. The LMFLS algorithm exhibited remarkable convergence 
properties even on extensive networks like DBLP and Amazon, achieving 
convergence after a single iteration. Furthermore, the difference in 
modularity between executing LMFLS with one iteration and four iter
ations was negligible, amounting to approximately 0.007. 

4.7. Evaluation of memory usage 

To evaluate the performance of the LMFLS algorithm, two imple
mentations were developed. One implementation employed the 

Fig. 12. Modularity results obtained from execution of LMFLS, LBLD, LPA- 
Intimacy, and NIBLPA with different numbers of iterations on four real- 
world datasets. 

Table 14 
The amount of RAM usage by different data structures (all mentioned values are 
in Megabytes).  

Datasets Proposed structure Graph structure (NetworkX) 

Karate R: 0.26 
T: 0.26 

R: 0.26 
T: 0.26 

Dolphins R: 0.27 
T: 0.27 

R: 0.27 
T: 0.27 

Polbooks R: 0.28 
T: 0.29 

R: 0.37 
T: 0.50 

Football R: 0.31 
T: 0.33 

R: 0.51 
T: 0.54 

Netscience R: 1.3 
T: 1.8 

R: 1.6 
T: 2.8 

Power R: 3.7 
T: 5.4 

R: 4.2 
T: 8.1 

CA-GRQC R: 6.4 
T: 8.1 

R: 7.3 
T: 13.2 

Collaboration R: 7 
T: 10 

R: 10 
T: 17 

CA-HEPTH R: 11 
T: 15 

R: 14 
T: 24 

PGP R: 11 
T: 14 

R: 14 
T: 23 

Condmat-2003 R: 49 
T: 60 

R: 65 
T: 102 

Condmat-2005 R: 69 
T: 84 

R: 94 
T:140 

DBLP R: 421 
T: 517 

R: 645 
T: 906 

Amazon R: 361 
T: 501 

R: 587 
T: 850 

YouTube R: 975 
T: 1535 

R: 1997 
T: 2498 

LiveJournal R: 4990 
T: 8920 

R: N/A 
T: N/A 

Orkut R: 9258 
T:11988 

R: N/A 
T: N/A  
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suggested neighbor list structure, while the other constructed a graph 
using the NetworkX library in Python. Our evaluation focuses on 
memory usage within the constraints of a RAM with 12GB of capacity. 
The results of RAM usage for each of data structures are written in 
Table 14. The parameter R denotes the RAM allocation dedicated to 
dataset ingestion and graph construction, while parameter T represents 
the aggregate RAM consumption of the algorithm in its entirety. Based 
on the results obtained for small-scale datasets, the differential RAM 
usage between the proposed structure and the graph structure is not 
substantial. However, in all scenarios, the proposed structure utilizes 
less RAM space than the graph structure. The primary distinction be
tween these two structures becomes more pronounced in large-scale 
networks. A marked discrepancy in RAM utilization emerged when 
comparing the graph and neighboring list data structures in network 
analysis. The neighboring list structure consistently demonstrated su
perior RAM efficiency, particularly within large-scale datasets. In the 
DBLP and Amazon datasets, constructing a graph required approxi
mately double the RAM space compared to implementing the neigh
boring list structure. This disparity became even more pronounced with 
the YouTube dataset, where graph construction consumed three times 
more RAM than the neighboring list approach during dataset reading. 
The significant RAM demands of the graph structure ultimately hindered 
the analysis of large datasets such as LiveJournal and Orkut. Due to these 
constraints, constructing a graph within the available 12 GB of RAM 
proved infeasible. This analysis highlights the substantial advantages of 
the neighboring list structure in terms of RAM efficiency, particularly 
when handling datasets of considerable size. The neighboring list 
approach allows for the processing of larger networks without exceeding 
practical memory limitations. 

4.8. Evaluation of execution time 

The LMFLS algorithm is proposed with the primary objective of 
finding communities in a short time span, especially on large-scale 
networks. In addition to accuracy, the algorithm is expected to deliver 
high-quality results within a reasonable duration. While some commu
nity detection algorithms may achieve satisfactory accuracy in large- 
scale networks, their execution times often prove prohibitive. To 
address the growing need for efficient community detection, algorithms 
must demonstrate both definitive and consistent results while achieving 
rapid execution speeds. Table 15 provides a comprehensive analysis of 
the execution times for the algorithms evaluated across various datasets. 
A direct comparison between LSMD, NIBLPA, and LPA-Intimacy, 

implemented in MATLAB, and other algorithms would be inaccurate 
due to MATLAB’s performance limitations compared to Python. While 
the Leiden algorithm, implemented through the CDLIB library, utilizes a 
significant portion of C++ and C code, contributing to its faster execu
tion than LMFLS, the comparison remains inherently biased due to the 
underlying programming language differences. 

Analysis of LFR datasets revealed a notable performance disparity 
between LMFLS and the Leiden and Louvain algorithms. While LMFLS 
exhibits consistent execution times across varying μ values for a given 
LFR dataset configuration, its performance is solely influenced by the 
number of nodes, independent of network structure or community 
count. In contrast, Leiden and Louvain demonstrate significant sensi
tivity to resolution and community count within the network, resulting 
in substantial performance fluctuations across different LFR networks 
with varying μ parameters. The observed performance inconsistencies 
between Leiden and Louvain are further exemplified by specific dataset 
analyses. In the LFR4 dataset, for instance, Louvain’s execution time 
varied dramatically with changes in the μ parameter, ranging from 359 s 
(μ = 0.1) to 5107 s (μ = 0.8). Similarly, the Leiden algorithm exhibited 
unexpected behavior when comparing its performance on the Amazon 
network (334,000 nodes, 925,872 edges) and an LFR network with 
fewer nodes and edges (200,000 nodes, 900,000 edges). Despite the LFR 
network’s smaller size, the Leiden algorithm required 18 s for comple
tion, compared to 13 s for the Amazon network. This disparity un
derscores the algorithm’s sensitivity to the minimum and maximum 
node counts within communities. These findings highlight the unpre
dictable nature of Leiden and Louvain algorithms, which are highly 
susceptible to community size variations and lack consistent perfor
mance across diverse networks. 

According to the results presented in Table 15, it is evident that for 
the first four datasets, the execution time is <1 s. Consequently, no 
discernible difference can be observed among the performance of the 
examined methods. Despite the existence of substantial differences be
tween the execution time of the proposed algorithm and other methods, 
this time is so minimal that it is not perceptible when executed on a 
computer. However, as the datasets increase in size, the time difference 
becomes more pronounced. In large datasets, any additional or non- 
optimal operation can cause a significant increase in the execution 
time of the algorithm due to the increased number of nodes. For 
instance, the difference in execution time becomes more apparent 
starting with the Collaboration datasets. Table 15 reveals that LMFLS 
and LBLD consistently exhibited the most efficient execution times 
across all datasets. These algorithms demonstrated remarkable 

Table 15 
Execution times of the examined algorithms on real-world and LFR datasets (All mentioned times are in seconds).   

CNM Infomap LPA NIBLPA LPA-Intimacy GCN Louvain Leiden LSMD LBLD LMFLS (NetworkX) LMFLS 

Karate 0.018 0.009 0.015 0.17 0.19 0.02 0.016 0.011 0.15 0.001 0.004 0.001 
Dolphins 0.018 0.015 0.021 0.23 0.26 0.039 0.018 0.011 0.21 0.002 0.007 0.002 
Polbooks 0.064 0.022 0.076 0.39 0.41 0.09 0.018 0.015 0.34 0.007 0.018 0.005 
Football 0.078 0.026 0.11 0.52 0.53 0.12 0.022 0.015 0.47 0.009 0.029 0.007 
Netscience 0.36 0.19 0.24 2.7 3.2 0.38 0.19 0.07 1.32 0.09 0.1 0.082 
Power 1 1.2 1.7 12.3 14.4 1.9 1.8 0.098 3 0.18 0.37 0.15 
CA-GRQC 14 1.31 2.3 17.2 20.6 4.6 1.73 0.19 4.8 0.30 0.9 0.25 
Collaboration 18 1.72 2.63 25 26 4.9 2.2 0.28 5.25 0.36 0.81 0.32 
CA-HEPTH 68 2.9 4.97 40 45 7.8 3.48 0.4 7.6 0.56 1.2 0.48 
PGP 52 2.3 4.6 33 38 7.6 3.24 0.34 6.3 0.52 1.32 0.46 
Condmat-2003 585 4 15 204 230 33 10 1 23 2 15 2 
Condmat-2005 1043 6 33 298 385 73 15 2 38 3 26 3 
LFR1 311 6 46 984 986 37 51 2 31 3 19 3 
LFR2 4038 14 161 1588 1680 108 112 6 78 10 52 10 
LFR3 19,835 32 1496 1810 1893 121 459 9 94 13 66 13 
DBLP 53,757 46 2824 22,146 21,237 332 212 12 182 20 146 18 
Amazon 18,784 59 2488 23,090 20,120 355 128 13 161 18 116 19 
LFR4 N/A 89 N/A N/A N/A 652 1432 45 523 69 342 64 
YouTube N/A N/A N/A N/A N/A 13,569 498 53 609 311 2970 302 
LiveJournal N/A N/A N/A N/A N/A N/A N/A N/A 7061 1347 N/A 1315 
Orkut N/A N/A N/A N/A N/A N/A N/A N/A 30,292 13,925 N/A 14,228  
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competitive performance, achieving comparable execution times in 
most of the datasets. Notably, LBLD surpassed LMFLS in the Orkut 
dataset, while LMFLS outperformed other algorithms in the DBLP, LFR4, 
YouTube, and LiveJournal datasets. The substantial performance gap 
between LMFLS/LBLD and other methods is evident. While Infomap 
achieved the second-fastest execution times, significant differences in 
execution time persisted between LMFLS and Infomap. It is noteworthy 
that, as documented in [55,56], a significant portion (73 %) of the 
Infomap algorithm is implemented in C++, which could contribute to its 
performance advantage. These findings underscore the exceptional 
performance of LMFLS, particularly when compared to other established 
community detection algorithms. Despite running for an extended 
period of 15 h, the LPA-intimacy, LPA, NIBLPA, and CNM algorithms 
failed to complete their execution on the YouTube dataset, indicating 
significant performance limitations when dealing with this large-scale 
network. 

The LMFLS algorithm exhibited exceptional efficiency in processing 
the LiveJournal dataset, outperforming other methods (excluding LSMD 
and LBLD) which were unable to complete the task. Furthermore, while 
the NetworkX implementation of LMFLS demonstrated slightly slower 
execution times compared to the neighboring list implementation across 
other datasets, this disparity highlights the efficiency of the proposed 
data structure. Despite the near-linear time complexity of most 
compared methods, their ability to handle large-scale networks was 
severely hampered by memory constraints and other performance bot
tlenecks. This underscores the significant impact of data structure design 
on the effectiveness of community detection algorithms, particularly in 
the context of large-scale datasets. 

4.9. Comparison analysis of model design of examined algorithms 

Based on the comprehensive evaluations conducted across a diverse 
range of datasets, it is evident that the primary competition lies between 
the LMFLS and LBLD algorithms. These two methods consistently 
demonstrate superior performance in comparison to alternative 
methods. Notably, LMFLS and LBLD exhibit comparable behavior across 
various evaluation metrics, including NMI, F-measure, modularity, 
convergence speed, execution time, and robustness to variations in the 
mixing parameter within the LFR datasets. To investigate these two 
methods, different aspects are compared: 

Graph representation: The underlying reason for the comparable 
execution time of LMFLS and LBLD lies in their efficient design choices. 
Both algorithms employ a neighboring list representation for network 
implementation instead of constructing a graph, leading to a significant 
reduction in execution time. However, LBLD differs from LMFLS in that 
it does not store edge weights. Notably, the time complexities of both 
algorithms are similar because neither incurs computationally expensive 
operations such as calculating modularity gain, examining all neigh
boring nodes, or performing sorting operations with a time complexity 
of O(nlogn). The time complexity of LBLD is O(nk), while that of LMFLS 
is O(n+ m)), which contributes to their comparable execution times. 
However, it is essential to emphasize that similar time complexities do 
not always translate to identical execution times. In addition to their 
time complexity, LBLD employs an efficient algorithmic design, similar 
to LMFLS. Rather than repeatedly executing the same steps and opera
tions with a large number of repetitions, LBLD utilizes multiple steps 
with only one or two iterations. This efficient balanced label diffusion 
mechanism, followed by an enhanced label propagation step, enables 
LBLD to converge rapidly, akin to LMFLS. Consequently, the fast 
convergence of both algorithms results in their low execution times. 

Model design: LBLD is a method based on label diffusion and en
compasses several steps, including assigning importance to nodes, 
identifying rough cores and diffusing their labels to neighboring nodes, 
implementing balanced label diffusion, performing an improved label 
propagation, and finally employing a merging step. LMFLS, on the other 
hand, consists of steps such as assigning importance to nodes, 

incorporating a node attraction step, employing fast label selection, 
performing final label selection, and utilizing a merging step. A key 
shared characteristic of both methods is their initial phase, where nodes 
are prioritized based on their importance to ensure a consistent order of 
processing, albeit with significant differences. One of the primary rea
sons for LMFLS’s superior performance and accuracy compared to LBLD 
lies in its adoption of a combination of metrics. Specifically, LMFLS le
verages improved K-shell, improved H-index, common neighbors, edge 
weights, and node degrees to assign more accurate and comprehensive 
scores to nodes. This enables LMFLS to rank nodes more effectively, as 
the order of label updates significantly impacts the final accuracy. In 
contrast, LBLD relies on a single metric, which is the sum of an improved 
similarity metric between nodes and their neighbors. This approach may 
have limitations in distinguishing nodes and selecting an accurate order 
of nodes. 

Both LBLD and LMFLS aim to establish initial communities and sta
bilize the fundamental structure of communities to facilitate subsequent 
steps and enhance accuracy. However, their approaches to contracting 
initial communities and stabilizing the structure differ significantly. 
After assigning importance scores to nodes, LBLD selects the top 5 % of 
nodes as rough cores and performs label diffusion to establish initial 
communities around core nodes and stabilize the structure. In contrast, 
LMFLS employs only a node attraction step for constructing initial 
communities and stabilizing the structure. While both methods share the 
same goal, LMFLS exhibits greater efficiency. By performing the node 
attraction step, all nodes receive labels, and the structure of commu
nities is stabilized more effectively. This is because all nodes have labels 
and are clustered around their important and similar neighbors. LBLD, 
on the other hand, selects a limited number of nodes as cores and dif
fuses labels to their surrounding nodes which share common neighbors 
with them. Consequently, not all nodes receive labels, and the structure 
is not fully stabilized for balanced label diffusion, potentially leading to 
inaccuracies. 

Furthermore, since LMFLS assigns labels to all nodes during the node 
attraction step, the subsequent label selection step is performed faster 
and with more confidence. This is because LMFLS has more prior 
knowledge and all nodes surrounding a given node have labels. In 
contrast, LBLD performs balanced label diffusion when not all nodes 
have labels, which contributes to LMFLS’s superior accuracy compared 
to LBLD. Another factor contributing to LMFLS’s faster execution time 
compared to LBLD is the difference in their approaches to label assign
ment. LBLD calculates common neighbors between core nodes and 
surrounding nodes during label diffusion, which can be computationally 
intensive. In contrast, LMFLS employs a more efficient strategy by 
selecting the most similar neighbor in the node attraction step. This 
optimization reduces the computational overhead and contributes to 
LMFLS’s improved execution time. 

Label assignment mechanisms: Moreover, in LBLD’s balanced label 
diffusion step, all nodes are examined in each iteration. In contrast, 
LMFLS employs a more selective approach. Nodes located in dense re
gions and surrounded by a single label type, or nodes where the most 
frequent label is much greater than the second most frequent label, are 
excluded from further iterations. This optimization contributes to 
LMFLS’s superiority in execution and convergence speed compared to 
LBLD. Furthermore, empirical evidence suggests that the combination of 
node attraction, fast label selection, and final label selection steps in 
LMFLS yields better results and faster execution than LBLD’s approach 
of constructing rough cores, diffusing their labels, adopting balanced 
label diffusion, and implementing improved label propagation. 

Another key differentiator lies in LMFLS’s additional layer for label 
refinement (final label selection), whereas LBLD solely relies on 
balanced label diffusion and improved label propagation. A significant 
distinction in label assignment also contributes to LMFLS’s superior 
performance and accurate label selection. In LBLD’s balanced label 
diffusion, only a single metric is employed, namely the influence or 
importance of nodes within each community. LMFLS, on the other hand, 
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leverages a more comprehensive set of metrics, including the sum of 
node importance, weighted similarity, label frequency, and the impor
tance of the label’s origin. This comprehensive approach enables LMFLS 
to effectively calculate the influence of labels. Additionally, LMFLS 
employs more refined strategies in label assignment, such as considering 
the is_dense_flag. These optimizations contribute to the accurate forma
tion of communities by avoiding unnecessary label updates for every 
node, resulting in improved execution time. Furthermore, LMFLS’s more 
stabilized structure of communities and comprehensive metric for label 
evaluation lead to a reduction in label updating variations, facilitating 
faster convergence. It is important to acknowledge that LBLD’s balanced 
label diffusion step remains a highly efficient label assignment tech
nique, enabling LBLD to achieve accurate results and fast convergence. 
However, the comprehensive metric combination and efficient step 
combination employed by LMFLS ultimately provide better performance 
compared to LBLD. 

Other methods employed in the experiments adopt a graph structure, 
which significantly increases RAM usage and hinders the execution 
speed of the algorithms. These methods lack mechanisms to initially 
gather nodes around important nodes and stabilize the initial network 
structure. They commence from a “cold-state” where no nodes have 
labels, leading to increased effort in selecting true labels and performing 
tie-breaking steps in the initial stages. Consequently, their accuracy 
suffers, convergence is delayed, and execution time increases. Moreover, 
these methods lack strategies to avoid unnecessary label updates for 
certain nodes. Instead, they examine all nodes in each iteration, 
contributing to high execution times and slow convergence. 

Additionally, most of the algorithms exhibit higher time complexity 
than LMFLS, or even if their time complexity is comparable, they employ 
time-consuming operations such as calculating modularity gain, veri
fying the labels of all neighbors in each iteration, and executing multiple 
tie-breaking steps. Their node evaluation mechanisms are also weak. For 
instance, NIBLPA, LPA-Intimacy, and LCDR solely rely on K-shell score, 
sum of influence, and inverse sum of node degrees to assign importance 
to nodes, respectively. Their label assignment strategies are equally 
weak, utilizing only a single metric such as the sum of K-shell scores or 
the sum of node importance within a community. LPA and LPA-based 
methods suffer from low accuracy and high execution times due to 
their inefficient label updating strategy, exhaustive node examination in 
each iteration, and delayed convergence. GCN attempts to identify 
border nodes using a single metric and updates border nodes to reduce 
execution time. However, accurately identifying border nodes is chal
lenging, and GCN’s weak metric hinders its accuracy. Additionally, it 
employs a suboptimal fitness function to assign nodes to communities or 
determine border node status. 

Furthermore, community detection can be viewed as a system where 
steps should be harmoniously combined to enhance overall perfor
mance. However, the aforementioned methods merely repeat the same 
operations in multiple iterations without introducing significant im
provements and do not have any strategy to refine mistakes of the pre
vious steps, so iteratively performing same steps with same mistakes, do 

not enhance the performance of the algorithm. In contrast, LMFLS em
ploys diverse steps and distinct layers with a single iteration to leverage 
the benefits of each concept. CNM, Louvain, and Leiden disregard the 
importance, similarity, and relationships between nodes, opting for a 
greedy merging approach. This results in lower accuracy and higher 
execution times due to time-consuming operations such as computing 
modularity for every node and community. LPA is plagued by numerous 
drawbacks, including randomness, disregard for node importance and 
similarity, instability, and a label updating strategy solely based on label 
frequency, which is an unreliable metric. 

Despite having similar or comparable time complexity to algorithms 
like LPA, GCN, LSMD, and LBLD, LMFLS exhibits superior execution 
time. This is attributed to its efficient data structure, optimized design 
that promotes fast convergence, and the absence of time-consuming 
operations. To provide a comprehensive comparison, Table 16 pre
sents the time complexity of the algorithms mentioned in Table 15 
whose execution times were evaluated. This analysis demonstrates that 
even methods with similar time complexity to LMFLS incur higher 
execution times due to the aforementioned issues in their model design. 

4.10. Application of LMFLS algorithm in drug repositioning 

Drug repositioning is an approach for identifying new therapeutic 
applications for existing medications [57]. This approach offers a 
compelling alternative to traditional drug development, which is often 
characterized by lengthy timelines, high research costs, and substantial 
resource requirements. One of the efficient computational methods to 
overcome the limitations of traditional drug discovery, involves 
modeling drug interactions as graphs, utilizing various metrics such as 
shared targets, biological pathways, chemical structures, etc. to capture 
diverse interactions between drugs. However, the initial form of this 
graph merely depicts these interactions without providing actionable 
insights. Community detection algorithms are suggested as efficient 
tools to extract valuable information and facilitate the clustering of 
drugs based their similar patterns. These cohesive communities repre
sent functionally related sets of drugs, revealing hidden patterns within 
the network. By identifying these cross-community connections, the 
approach uncovers hidden associations that might be missed by tradi
tional methods. 

Based on the experimental results presented in preceding sections, it 
has been observed that the LMFLS algorithm exhibits superior accuracy 
and efficiency compared to other algorithms. In an effort to broaden its 
applicability in practical scenarios, this section will focus on the 
implementation of the proposed LMFLS on Drug-Drug network as a case 
study of LMFLS in real-world application. The aim is to identify clusters 
of drugs with analogous functionality, which are utilized to treat similar 
diseases, a process commonly referred to as drug repositioning. To 
conduct a comprehensive examination of various facets of drugs and to 
construct a more inclusive network that encompasses a broad spectrum 
of drug-related information, a multiplex graph structure is proposed. 
This structure will consist of four layers of drug similarity networks 
based on diverse concepts, thereby encapsulating drug similarities from 
multiple perspectives. Multiplex networks, a specific type of multilayer 
network, are characterized by multiple layers of nodes, each layer rep
resenting a unique type of relationship between those nodes [58]. These 
networks can be employed to model complex systems that have multiple 
types of interactions between their components. 

5. Construction of drug networks 

Given that drug relationships can be modeled using different con
cepts, such as sharing similar targets, having similar chemical structures, 
and so forth, they can be represented with multiplex graphs. Moreover, 
the adoption of multiplex graphs and the merging of their layers can 
address the issue of missing information. Finally, the LMFLS algorithm is 
applied to final integrated Drug-Drug network. The procedure for 

Table 16 
Comparison of time complexity of different methods.  

Algorithm Time complexity 

CNM [28] O
(
nlog2n

)

LPA [13] O(m + n)
NIBLPA [14] O(nlog n)
LPA-Intimacy [15] O(nlog n)
GCN [31] O(nk)
Infomap [5] O(n(n + m) )

Louvain [21] O(nlogn )

Leiden [22] O(nlogn )

LSMD [24] O(nk)
LBLD [22] O(nk)
LMFLS O(n + m)
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constructing the multiplex graph for drugs is detailed in the following 
sections.  

1) Drug-Drug network based on Target similarity: The DrugBank 
database [59] serves as the primary knowledge database for 
obtaining comprehensive drug-related information. DrugBank is an 
extensive online resource that provides data on drugs and drug tar
gets, along with other valuable drug-related information. Drugs that 
have received FDA approval are selected as the target drugs for ex
amination. Information such as the drug name, DrugBank ID, drugs’ 
target, and etc. are retrieved from the DrugBank XML file (version 
5.1.10). This section aims to construct a Drug-Drug similarity graph 
according to their shared targets. The underlying premise of this 
approach is that drugs with similar targets tend to exhibit similar 
effects and behavior due to their analogous chemical structures and 
interactions with the body’s proteins. Thus, by identifying drugs that 
share similar targets, it is possible to predict which drugs are likely to 
exhibit similar effects [60]. 

Following the construction of the Drug-Target bipartite network, a 
link prediction algorithm based on Jaccard similarity [61] is applied to 
the network to predict potential new links between drugs and targets. 
BiGraph [62], a Python package for link prediction in bipartite net
works, is utilized for application on various constructed bipartite net
works. A threshold of 0.7 is set for link prediction, meaning that 
predicted links with a weight lower than 0.7 are not added to the 
network. Subsequently, to obtain a Drug-Drug similarity graph accord
ing to target proximity, graph projection is performed with a threshold 
of 0.8. Fig. 13 illustrates the sample procedure of obtaining Drug-Drug 
similarity graph based on target of drugs.  

2) Drug-Drug network based on Chemical structure similarity: The 
chemical similarity principle posits that if two molecules share 
similar structures, they are likely to exhibit similar bioactivities [63]. 
Consequently, the similarity between drugs as chemical information 
is incorporated into computational methods to enhance the accuracy 
of predictions. The Simplified Molecular Input Line Entry System 
(SMILES) is a chemical notation system that utilizes concise ASCII 
strings to represent the structures of chemical species [64]. The 
SMILES codes for drugs are adopted from PubChem database [65]. 
To compare the similarity of two molecules using SMILES code, the 
RDKit module [66] is utilized. Subsequently, the Tanimoto similarity 
coefficient [67] is employed to compare the similarity between the 
two molecules of drugs. The SMILES code of drugs was compared 
pairwise, and drugs exhibiting a chemical similarity >0.8 were 
connected to each other.  

3) Drug-Drug network based on Pathway similarity: Despite lacking 
common targets, drugs can exhibit similar therapeutic effects against 
the same disease. This phenomenon arises from the interconnected 

nature of biological pathways, where different targets often 
contribute to the same pathway, ultimately influencing the disease 
process. This section elucidates the concept of pathway similarity, a 
measure quantifying the overlap in biological pathways affected by 
the molecular targets of pharmaceutical agents. Subsequently, a 
Drug-Drug network is generated based on the similarity of pathways 
associated with the targets of drugs. To establish associations be
tween drug targets and biological pathways, the targets of drugs are 
first extracted from DrugBank. The KEGG database [68] is used to 
download associated pathways of proteins. Prior to constructing the 
Drug-Drug similarity network according to pathway similarity, a link 
prediction operation with a threshold of 0.7 is performed on the 
bipartite network of Protein-Pathway to predict potential new links. 
Then, based on Drug-Target associations and Protein-Pathway as
sociations, a list of Pathways associated with the targets of each drug 
is created. The pathway lists of drugs are then compared pairwise 
using Salton similarity [69], and drugs with a pathway similarity 
>0.8 are connected via an edge. The similarity score between 
pathway sets of drugs is considered as the weight of edge connecting 
two drugs to each other. 

similaritySalton
L1,L2 =

|L1 ∩ L2|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|L1| + |L2|

√ (18)  

Where L1 and L2 are two sets containing pathway information, respec
tively. |L1| and |L2| show the length of two sets L1 and L2. 

4) Drug-Drug network based on Disease similarity: A drug is meticu
lously designed to interact with a specific target protein. If a drug’s 
target is linked to a gene associated with the disease, the drug’s ac
tion can significantly impact disease progression. Drugs that corre
spond to similar diseases exhibit commonality in their functions and 
efficacies within the human body. To achieve this, first a bipartite 
network is constructed comprising Drugs-Targets, linking drugs to 
their respective targets. Subsequently, a link prediction algorithm 
with a threshold of 0.7 is applied to predict potential links that can be 
established between drugs and targets. Next, the Disease Gene 
Network (DisGeNet), which captures Disease-Gene associations [70], 
is leveraged to extract information about disease-related genes. Link 
prediction algorithm is applied to the Disease-Gene bipartite 
network using a threshold of 0.7. Both the Drug-Target and Disease- 
Genes networks are utilized to connect drugs and diseases associated 
with the same genes or targets. Consequently, the new Drug-Disease 
bipartite graph reflects interconnected relationships. Finally, the link 
prediction algorithm with a threshold of 0.7 is applied within the 
bipartite network to predict novel associations between drugs and 
diseases. 

Notably, our approach introduces a novel aspect: at each step, link 
prediction is utilized to generate potential connections between entities 
within the bipartite graph. To the best of our knowledge, while existing 
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Fig. 13. The total procedure of obtaining Drug-Drug similarity network from projecting Drug-Target bipartite network. (a) Shows the associations between drugs and 
targets. (b) Drug-Target bipartite network after performing link prediction. Red-colored lines show the new predicted links between drugs and targets. (c) The final 
Drug-Drug similarity network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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works primarily focus on link prediction as a standalone technique, our 
method takes a more comprehensive approach. To construct the simi
larity network of drugs, the Drugs-Diseases bipartite graph is projected. 
Specifically, a threshold of 0.8 is applied and the weight of this projec
tion represents the strength of the link between two drugs within the 
Drug-Drug network. Fig. 14 visually illustrates an instance of this pro
cedure. In our endeavor to integrate the four layers of the Drug-Drug 
multiplex network into a cohesive whole, an approach centered 
around the average weight of edges is employed. Consider two nodes, A 
and B, connected in different layers. In the final integrated network, the 
weight of the edge between nodes A and B is determined as: 
W1

eAB
+W2

eAB
+W3

eAB
+W4

eAB
4 , where W1

eAB 
indicates the weight of edge between 

nodes A and B in layer 1. Fig. 15 shows the concept of constructing a 4- 
layered multiplex network and obtaining the final Drug-Drug network. 
Next, the LMFLS algorithm is applied to the obtained Drug-Drug 
network, aiming to uncover communities of drugs with similar effi
cacies. Notably, drugs within the same community exhibit similar 
functionality and may be repurposed for similar diseases—a phenome
non known as drug repositioning. 

6. Discussion 

Fig. 17 depicts five instances of drug communities detected by the 
LMFLS algorithm. Given the absence of a consistent ground-truth for 

evaluating result accuracy, as since the objective is to augment new 
drugs to the group of the existing set of known drugs used for treating 
similar diseases, it would not be possible to evaluate results based on an 
exact ground-truth. Instead, to reveal the classification of drugs, the 
Anatomical Therapeutic Chemical (ATC) classification system is 
employed. By using the first level of the ATC codes of drugs as the 
ground-truth, drug classifications can be assessed more accurately. This 
investigation employed a network analysis approach to infer the po
tential therapeutic roles of the drug by examining its proximity to other 
drugs within established therapeutic classifications. Consequently, 
when examining Fig. 17, the majority of drugs sharing the same ATC 
code predominantly belong to the same therapeutic group. Other drugs 
grouped alongside them are considered potential candidates for drug 
repositioning. Fig. 16 depicts the 14 anatomical main groups based on 
the first level of the ATC classification system. 

According to Fig. 17(a), the majority of drugs belong to Antineo
plastic and Immunomodulating Agents. Since three out of six drugs have 
the same ATC code L, this group is labeled as L. Triptorelin, a potent 
GnRH agonist, effectively inhibits testosterone and estrogen synthesis, 
thereby finding utility in the management of advanced prostate cancer 
[71]. Similarly, Leuprolide, another GnRH agonist, plays a significant 
role in the therapeutic management of various conditions including 
endometriosis, uterine fibroids, central precocious puberty in pediatric 
patients, and advanced prostate cancer [72]. Both medications belong to 
the class of GnRH agonists, which exert their therapeutic effects by 
modulating hormonal levels within the body. Degarelix, a gonadotropin- 
releasing hormone (GnRH) receptor antagonist, is employed as a hor
monal therapeutic agent in the management of advanced prostate can
cer. Its mechanism of action involves inhibiting the production of 
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Fig. 14. The total procedure of obtaining Drug-Drug similarity network from projecting Drug-Disease bipartite network. (a) Shows the associations between Drug- 
Target and Disease-Genes. Black-colored and red-colored lines indicate the original and predicted links, respectively (b) Obtained Drug-Disease bipartite network 
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Fig. 15. The procedure of constructing a 4-layered multiplex network of Drug- 
Drug based on Target, SMILES code, Pathway, and Disease similarity metrics 
and merging them to obtain the final Drug-Drug network. 

Fig. 16. 14 anatomical main groups based on first level of the ATC classifica
tion system. 
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testosterone [73]. According to the research explanation and use case, 
Triptorelin, Leuprolide, and Degarelix are prescribed for treatment of 
prostate cancer and for reducing levels of certain hormones in the body. 
These drugs are shown with the same olive color in Fig. 17(a). 

The chemical similarity between Triptorelin and Leuprolide is 0.80, 
indicating that these two drugs are 80 % similar in their chemical 
structures, which proves that they have similar efficacies. Although 
Degarelix has a chemical similarity of 0.48 with Triptorelin, it has a 
similar mechanism of action with Triptorelin. Degarelix, a GnRH 
antagonist, exerts its therapeutic effect by selectively binding to GnRH 
receptors located within the pituitary gland. This binding action effec
tively inhibits the interaction between GnRH and its receptors, thereby 
suppressing the release of luteinizing hormone (LH) and follicle- 
stimulating hormone (FSH). The consequent reduction in LH and FSH 
levels leads to a significant decrease in testosterone production, 
achieving the desired therapeutic outcome. Therefore, Degarelix and 
Triptorelin have similar efficacies and can be suggested as repositioning 
to each other. Besides this, Gonadorelin is a gonadotropin-releasing 
hormone agonist (GnRH agonist) that is used in fertility medicine and 
to treat amenorrhea and hypogonadism [74]. Although Gonadorelin has 
a different ATC code (V with orange color), it is grouped in the same 
community as Triptorelin, Leuprolide, and Degarelix. Triptorelin, Leu
prolide, and Gonadorelin exhibit a commonality in their classification as 
analogues of gonadotropin-releasing hormone (GnRH). Chemical simi
larity between Gonadorelin and Leuprolide and Triptorelin is equal to 
0.84 and 0.83, respectively, which shows that they have very similar 
chemical structures. To better evaluate, the mechanism of action of 

Leuprolide and Gonadorelin is compared: 
Leuprolide, a synthetic GnRH analogue, acts as a GnRH receptor 

agonist, eliciting an initial surge in the release of luteinizing hormone 
(LH) and follicle-stimulating hormone (FSH) from the pituitary gland. 
Similarly, Gonadorelin, a naturally occurring GnRH analogue, stimu
lates the pituitary gland to release LH and FSH, mimicking the physio
logical action of endogenous GnRH. As the comparison implies, 
Leuprolide and Gonadorelin have similar mechanism of action, which is 
regarded as strong evidence of their similarity. Nafarelin is a 
gonadotropin-releasing hormone agonist (GnRH agonist) that is pre
scribed for treatment of endometriosis, Uterine Fibroids, Transgender 
Hormone Therapy, and early puberty [75]. According to the result of 
analysis, Nafarelin is regarded as another repurposing candidate drug 
that is grouped with Triptorelin, Leuprolide, and Degarelix. As per the 
information provided, Nafarelin is classified in Systemic Hormonal 
Preparations, excluding Sex Hormones and Insulins, which is different 
from Antineoplastic and Immunomodulating Agents based on ATC 
codes. When the chemical structure of Nafarelin is compared with 
Triptorelin and Leuprolide based on their SMILES code, it has 0.89 (89 
%) and 0.8 (80 %) similarity with these two drugs, respectively. This 
high similarity between two drugs implies that they have very similar 
chemical structures and despite being classified in two different drug 
categories based on ATC codes, drugs sharing a high degree of chemical 
structure have a very high probability of having similar efficacies and 
mechanisms of action. To investigate the shared targets and mechanism 
of action of Triptorelin and Nafarelin, a comparison is made between the 
two drugs: 

Fig. 17. Examples of discovered drug communities resulting from applying the LMFLS community detection algorithm to Drug-Drug network. Different colors are 
mapped according to the 1st-level of ATC sub-group based on Fig. 16. 
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Triptorelin [76]: Target: Triptorelin is a GnRH agonist, specifically 
targeting the hypothalamic-pituitary-gonadal (HPG) axis. Mechanism of 
Action: Triptorelin’s initial administration induces a transient elevation 
in follicle-stimulating hormone (FSH), luteinizing hormone (LH), 
estradiol, and testosterone levels. This temporary surge may exacerbate 
symptoms in patients with advanced prostate cancer, including bladder 
outlet obstruction, bone pain, and hematuria. However, with sustained 
daily use, triptorelin persistently occupies the GnRH receptors, leading 
to a reversible downregulation of these receptors in the pituitary gland 
and desensitization of the pituitary Gonadotropes. This desensitization 
ultimately renders tissues and functions reliant on gonadal steroids 
inactive. 

Nafarelin [75]: Target: Nafarelin is also a GnRH agonist, acting on 
the GnRH receptor. Mechanism of Action: Nafarelin, upon initial 
administration, stimulates the release of pituitary gonadotropins, 
namely luteinizing hormone (LH) and follicle-stimulating hormone 
(FSH), leading to a transient elevation in gonadal steroidogenesis. 
However, repeated dosing eliminates this stimulatory effect on the pi
tuitary gland. Continuous daily administration of Nafarelin results in a 
reversible downregulation of GnRH receptors within the pituitary gland. 
As a result, both Triptorelin and Nafarelin are synthetic agonists of 
GnRH, affecting the HPG axis. They modulate gonadotropin secretion 
and play essential roles in managing conditions such as advanced 
prostate cancer and endometriosis. Ganirelix, which is grouped along
side Triptorelin, Leuprolide, and Degarelix, shares the same first-level 
ATC code (H) with Nafarelin. Ganirelix acetate is an injectable 
competitive gonadotropin-releasing hormone antagonist [77]. Its pri
mary application lies in assisted reproduction, where it is used to 
regulate ovulation. Ganirelix functions by blocking the action of 
gonadotropin-releasing hormone (GnRH) upon the pituitary gland. In 
context of fertility treatment, Ganirelix plays a crucial role in hormone 
regulation for women undergoing assisted reproductive procedures. As 
it is obvious Ganirelix has similar treatments usage as Triptorelin, Leu
prolide, Degarelix, and Nafarelin. Even they have same mechanism of 
action. Ganirelix is a gonadotropin-releasing hormone antagonist 
(GnRH antagonist) which is identical to Triptorelin, Leuprolide, 
Degarelix, Nafarelin. All of the aforementioned drugs participate in two 
common pathways: G alpha (q) signaling events and Hormone ligand- 
binding receptors. When two drugs share the same pathways based on 
their targets, it signifies that they both interact with similar biological 
pathways within the body. By having common targets, these drugs may 
exert similar effects or influence similar physiological processes. 

As it is apparated, all of the drugs are common in targeting 
Gonadotropin-releasing hormone receptor (GNRHR), despite their dif
ferences in first-level ATC codes. The suggested approach for connecting 
drugs based on 4 different factors and utilizing the accurate detection of 
LMFLS algorithm, was successful to find a group of drugs with similar 
efficacy and mechanism of action with 100 % accuracy, despite of 
having different first-level ATC codes. Ganirelix, along with Triptorelin, 
Leuprolide, Degarelix, and Nafarelin, exhibits similar therapeutic usage. 
Importantly, these drugs share a common mechanism of action. Ganir
elix acts as a gonadotropin-releasing hormone antagonist, akin to Trip
torelin, Leuprolide, Degarelix, and Nafarelin. Based on the analysis 
results, three new drugs from other categories were identified as po
tential repositioning candidates for drugs within the category of Anti
neoplastic and Immunomodulating Agents. 

As another instance, drugs grouped in Fig. 17(b) are analyzed as 
follows: Desipramine, a tricyclic antidepressant, exerts its therapeutic 
effects through inhibition of noradrenaline reuptake. Furthermore, it 
has been established that desipramine possesses analgesic properties, as 
evidenced by studies conducted in both animal models and human 
subjects [78]. Patients suffering from neuropathic pain often present 
with comorbid depression and anxiety, conditions known to be tempo
rally linked to noradrenergic dysfunction within the locus coeruleus 
(LC) as pain transitions into a chronic state. Antidepressants are widely 
recognized as the first-line pharmacotherapeutic approach for 

neuropathic pain, with the LC emerging as a promising target for such 
therapy. Notably, desipramine has demonstrated efficacy in preventing 
or mitigating the noradrenergic impairment induced by neuropathic 
pain [79]. Mianserin is another antidepressant that is used to treat 
depression and anxiety. It is a weak inhibitor of norepinephrine reuptake 
and strongly stimulates the release of norepinephrine [80]. 

Dosulepin, an antidepressant, is typically reserved for patients who 
have not responded to alternative therapies due to its potential toxicity 
[81]. Maprotiline, another antidepressant, finds application in the 
management of depressive illness, bipolar disorder, and anxiety asso
ciated with depression. Its mechanism of action involves inhibiting 
neuronal norepinephrine reuptake and exhibiting some anticholinergic 
activity [82]. Paroxetine, a serotonin reuptake inhibitor, is indicated for 
the treatment of ymajor depressive disorder, panic disorder, social 
phobia, and premenstrual dysphoric disorder. A notable feature of 
paroxetine is its high potency and selectivity in inhibiting serotonin 
reuptake [83]. Clozapine, a second-generation antipsychotic drug, is 
employed in the treatment of treatment-resistant schizophrenia and for 
reducing the risk of suicide in schizophrenic patients [83]. Even though 
in Fig. 17(b), there was not any other drugs from different category of 
drugs than Nervous system, but the proposed method was very suc
cessful to group six drugs (with 100 % accuracy) with same first-level 
ATC code and similar efficacy. Based on the information provided in 
Table 17, all the drugs belong to the neurological drug group, inhibit the 
neuronal noradrenaline reuptake and are prescribed for similar diseases 
such as controlling depression and anxiety. 

7. Conclusion 

The paper proposed a fast local multi-factor node scoring and label 
selection-based algorithm, called LMFLS, with low time complexity and 

Table 17 
The comparison of target and pathway information of drugs in Fig. 17(b).  

Drug Target Pathway 

Desipramine Sodium-dependent serotonin 
transporter, Alpha-2 
adrenergic receptors, 
Histamine H1 receptor, 
Muscarinic acetylcholine 
receptor M1, Muscarinic 
acetylcholine receptor M2, 
Dopamine D2 receptor, … 

Histamine receptors, Serotonin 
receptors, Norepinephrine, 
insulin secretion, 
Neurotransmitter clearance, 
Serotonin clearance from the 
synaptic cleft, Dopamine 
receptors, Carnitine metabolism, 
… 

Mianserin Histamine H1 receptor, 
Sodium-dependent serotonin 
transporter, Sodium- 
dependent dopamine 
transporter, Dopamine D2 
receptor, … 

Histamine receptors, Serotonin 
receptors, Dopamine receptors, 
MECP2 regulates neuronal 
receptors and channels, … 

Dosulepin Histamine H1 receptor, 
Muscarinic acetylcholine 
receptor M1, Sodium- 
dependent noradrenaline 
transporter, Sodium- 
dependent serotonin 
transporter, … 

Histamine receptors, Serotonin 
receptors, Surfactant metabolism, 
Adrenoceptors, Acetylcholine 
regulates insulin secretion, 
Serotonin clearance from the 
synaptic cleft, … 

Maprotiline Sodium-dependent 
noradrenaline transporter, 
Histamine H1 receptor, Alpha- 
1 adrenergic receptors, 
Dopamine D2 receptor, … 

Histamine receptors, Serotonin 
receptors, Surfactant metabolism, 
Adrenoceptors, Acetylcholine 
regulates insulin secretion, … 

Paroxetine Sodium-dependent serotonin 
transporter, Dopamine D2 
receptor, Histamine H1 
receptor, Serotonin Receptors, 
… 

Histamine receptors, Serotonin 
receptors, Neurotransmitter 
receptors and postsynaptic signal 
transmission, Dopamine 
receptors, … 

Clozapine Dopamine D2 receptor, 
Dopamine D1 receptor, 
Histamine H1 receptor, 
Histamine H4 receptor, 
Glutathione S-transferase P, … 

Histamine receptors, Serotonin 
receptors, Surfactant metabolism, 
Adrenoceptors, Dopamine 
receptors, Neutrophil 
degranulation, …  
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fast convergence. The idea of utilizing multiple factors for scoring nodes 
was suggested to overcome drawbacks of previous node scoring tech
niques and to investigate nodes from diverse aspects to better distin
guish them based on their different importance in network. A new 
method of constructing main structure of communities and stabilizing 
them was proposed based on the natural way of forming communities in 
real world. Next, fast label selection was proposed to empower the al
gorithm to assign most appropriate label to nodes based on their local 
information. The implementation of a novel, accelerated merging 
technique facilitated the formation of dense communities. To compre
hensively evaluate the accuracy, convergence speed, and efficiency of 
the proposed LMFLS algorithm, it was subjected to rigorous testing using 
a diverse collection of real-world and synthetic datasets encompassing a 
broad spectrum of node variations. The obtained results unequivocally 
demonstrated the superiority of the LMFLS algorithm in terms of accu
racy, execution time, convergence speed, and efficient RAM utilization. 
Comparative analysis of execution times revealed that the LMFLS al
gorithm consistently outperforms existing methods. This superior per
formance is attributed to its efficient data structure, rapid convergence 
rate, and avoidance of computationally intensive operations. As a real- 
world application, the proposed method was applied on integrated 
Drug-Drug network constructed based on drugs target, pathway, 
chemical structure, and common relation of drugs with diseases. The 
analysis of the discovered drug communities revealed accurate and 
meaningful relations between drugs of one community, and new po
tential and meaningful repositioning candidates for drugs was 
discovered. 

The proposed method exhibits significant potential for paralleliza
tion. This stems from the inherent independence of node score compu
tations, a key component of the algorithm’s execution. Furthermore, the 
exploration of novel node scoring metrics and label selection strategies 
holds the potential to considerably enhance both the accuracy and ef
ficiency of the algorithm. 
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