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• A new ASM1 + N2O mathematical 
model was proposed and applied to a 
full-scale WWTP. 

• Mathematical model was calibrated and 
validated by using extensive data. 

• The model application was performed to 
optimise plant operation. 

• Scenario analysis on dissolved oxygen 
and sludge recirculation (RAS) ratio 
done. 

• Best operation scenario observed at a 
DO of 1.5 mg/L and RAS ratio of 0.5.  
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A B S T R A C T   

Greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs) can affect climate change and must 
be measured and reduced. Mathematical modelling is an attractive solution to get a tool for GHG mitigation. 
However, although many efforts have been made to create reliable tools that can simulate “sustainable” full-scale 
WWTP operation, these studies are not considered complete enough to include GHG emissions and energy 
consumption of biological processes under long-term dynamic conditions. In this study, activated sludge model 
no. 1 (ASM1) was modified to model nitrous oxide (N2O) emissions with a plant-wide modelling approach. The 
model is novel compared to the state of the art since it includes three steps denitrification, all N2O production 
pathways and its stripping in an ASM1. The model has been calibrated and validated through long-term water 
quality and short-term N2O emissions data collected from Corleone (Italy) WWTP. Different dissolved oxygen 
(DO) concentrations and return sludge (RAS) ratios were tested with dynamic simulations to optimise the full- 
scale WWTP. The scenarios have been compared synergistically with effluent quality, direct GHG emissions, 
and energy footprint by the water-energy‑carbon coupling index (WECCI). This modelling study is novel as it 
fully covers long-term calibration/validation of the model with N2O measurements and tests the dynamic 
optimisation. Decision-makers and operators can use this new model to optimise GHG emissions and treatment 
costs.  
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1. Introduction 

Greenhouse gas (GHG) emissions from wastewater treatment plants 
(WWTPs) (i.e., nitrous oxide (N2O), methane (CH4), and carbon dioxide 
(CO2)) can contribute to climate change increase (Mannina et al., 2016). 
GHG emissions are classified as direct (related to biological processes) 
and indirect emissions (related to fossil fuel and electricity consump
tion) (Daelman et al., 2013). Direct CO2 emissions from biogenic pro
cesses are not counted in emitted GHG from WWTPS, only CO2 gas 
emissions associated with fossil fuel and electricity consumption count 
as indirect GHG emissions (IPCC, 2022). CH4 is released in headworks in 
WWTPs and anaerobic sludge treatment units (GWRC, 2011). N2O has 
the highest global warming potential with 273 times CO2 among other 
GHGs from WWTPs (IPCC, 2022). Therefore, special attention has been 
given to mitigating N2O emissions from WWTPs (Lee et al., 2022). N2O 
production pathways in biological nutrient removal systems are asso
ciated with biological nitrogen removal. Although N2O gas is a 
mandatory intermediate in the denitrification process, it may not have 
been stripped from the liquid to gas phase directly in anoxic reactors due 
to the relatively high solubility of N2O gas (GWRC, 2011). N2O gas is an 
intermediate product in the nitrification reaction of autotrophic nitri
fying bacteria, especially ammonia-oxidising bacteria (AOB). In addi
tion, denitrification of AOBs involved in nitrification in activated sludge 
has a significant impact on N2O production (Kim et al., 2010; Law et al., 
2011; Kampschreur et al., 2009; Wunderlin et al., 2012). Although N2O 
production increases with low dissolved oxygen (DO) during nitrifica
tion, aerobic conditions contribute to higher N2O emissions due to 
stripping (Massara et al., 2017). Aeration is also the largest energy- 
consuming unit in WWTPs (Rosso et al., 2008), related to indirect 
emissions from WWTPs. Low carbon‑nitrogen (C/N) ratios during het
erotrophic denitrification and high nitrite (NO2

− ) during both nitrifica
tion and denitrification are two other factors increasing N2O emissions 
from WWTPs (Mannina et al., 2017a, b). Additionally, the dynamicity of 
WWTPs, such as changes in anoxic/aerobic zones and influent charac
terisation (NH4

+ concentration), increases N2O production (Vasilaki 
et al., 2019). 

N2O emission from WWTPs can be modelled by empirical models, 
simplistic mass balance models, and dynamic mechanistic models 
(Mannina et al., 2019; Ni and Yuan, 2015). Dynamic mechanistic models 
that consider operational parameters effect on N2O production predict 
emissions with higher accuracy. Therefore, dynamic mechanistic models 
are more helpful in developing emission mitigation strategies (Massara 
et al., 2017). Ni et al. (2013) developed a mathematical model for N2O 
production by AOB and four-step heterotrophic denitrification. They 
calibrated and validated the model using two months of data from two 
WWTPs, measuring N2O emissions from bioreactor surfaces. 

DO concentration in the aerobic zone, sludge retention time (SRT), 

and return sludge ratio are the most critical operation parameters 
affecting N2O emissions (Thakur and Medhi, 2019). Indeed, the effect 
and optimisation of these operational parameters to reduce N2O accu
mulation have been tested by N2O production models (Blomberg et al., 
2018; Massara et al., 2018; Mannina et al., 2019; Zaborowska et al., 
2019; Abulimiti et al., 2022). Blomberg et al. (2018) added N2O pro
duction by AOBs to activated sludge model no. 3 (ASM3) and calibrated/ 
validated their model with 17 days of dynamic data of a full-scale 
WWTP. They pointed out the importance of N2O stripping models on 
emission estimations. Massara et al. (2018) proposed activated sludge 
model no. 2d (ASM2d) modification to estimate N2O emissions from 
biological nitrogen and phosphorus removing WWTPs. Although Mas
sara and co-workers showed the effect of variations of influent NH4

+ and 
changing DO concentration on N2O emissions, they did not confirm the 
emissions by measured data. Mannina et al. (2019) used plant-wide 
steady-state modelling to test the SRT, IR, and oxygen transfer effi
ciency (OTE) effect on the direct and indirect emissions from a full-scale 
WWTP. However, they did not validate the proposed model. Zabor
owska et al. (2019) calibrated and validated a ASM2d + N2O model 
dynamically with full-scale including N2O measurements from a full- 
scale WWTP. They also tested different DO concentrations and IR ra
tios to mitigate N2O emissions. However, Zaborowska et al. (2019) 
tested the model for 96 h of full-scale WWTP data. They analysed DO 
concentration and IR ratio effect on the carbon footprint (CF) of bio
reactors under steady-state simulations, thus overlooking the impact of 
the dynamicity of WWTPs on N2O production. Abulimiti et al. (2022) 
showed the importance of aeration control for balancing N2O emissions 
and energy savings of WWTPs. They modified the Sumo4N model with 
N2O production and tested their model with long-term data (1 year) 
collected from a full-scale WWTP (without N2O measurements) and 
conducted sensitivity analysis before model calibration. Maktabifard 
et al. (2022) assessed the ASM3 + N2O model, developed initially by 
Blomberg et al. (2018), and the ASM2d + N2O model, originally 
developed by Zaborowska et al. (2019), on a distinct full-scale WWTP 
(12-days of calibration and 5-days of validation data) not previously 
used for validation by the original authors. They demonstrated that the 
AOB denitrification contribution to N2O emissions is negligible. Solís 
et al. (2022) made alterations to the ASM2d-N2O model initially pro
posed by Massara et al. (2018), taking into account the hydraulic con
ditions of the reactor. They used 3-day data from a full-scale WWTP to 
calibrate their modified model. 

From the literature discussion presented above, one can observe that 
despite several efforts that have been made so far in view of setting-up 
reliable modelling tools able to support the “sustainable” full-scale 
WWTPs operation, as far as authors are aware, none of the existing 
include the GHG emissions, energy consumption and biological pro
cesses description under long-term dynamic conditions to ultimately 

Fig. 1. Corleone WWTP layout in GPS-X.  
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highlight the trade-off between effluent quality, energy consumption, 
and GHG emissions in a full-scale WWTP. 

In this study, activated sludge model no. 1 (ASM1) was modified to 
model GHG (N2O) emissions with a plant-wide modelling approach. The 
model aims to estimate the effluent quality and direct and indirect 
emissions of a full-scale WWTP. The model was calibrated and validated 
via long-term water quality and short-term N2O emission data from 
Corleone's WWTP (Mannina et al., 2021a, b). Optimisation scenarios 
with different DO concentrations and return sludge ratios were tested 
with dynamic simulations to optimise full-scale WWTP. Optimisation 
scenarios were compared, seeking a trade-off between effluent quality, 
energy consumption, and GHG emissions defined as the water-ener
gy‑carbon nexus (Ni et al., 2023). This new model can be used as a tool 
by decision-makers for designing new water reuse projects and operators 
for optimising treatment costs. 

2. Material and methods 

2.1. Characteristics of Corleone WWTP 

The Corleone (Italy) WWTP has a typical Conventional Activated 
Sludge (CAS) process with a pre-treatment stage (sieving and degritting) 
and an average flow rate of 140 m3/h (Mannina et al., 2022) (Fig. 1). 
The wastewater is fed to the aeration tank from equalisation with 
pumps. The aeration tank has fine bubble diffusers at the bottom. 
Concentrated sludge at the bottom of the settler is recirculated to the 
aeration tank. Waste sludge collected from the bottom of settlers is 
stabilised in an aerobic digester before discharge. The aerobic digester is 
aerated mechanically for 6 h a day. The effluent from settlers is dis
infected by chlorine before discharge. The plant's hydraulic retention 
time (HRT) is 6–7 h. Flow rates of the influent wastewater, flow from the 
equalisation tank to the aeration tank, and return sludge from settlers to 
the aeration tank are measured by flowmeters. 

2.2. Model development 

2.2.1. Sampling campaigns 
Long and short (24-h sampling) term sampling campaigns have been 

conducted in Corleone WWTP (Table 1) (Cosenza et al., 2023). The long- 
term monitoring campaign lasted for 64 days by collecting samples two 
times per week. Samples were collected from the influent of the aeration 
tank at 8 am and from the effluent at 4 pm (after one HRT has passed). 
Mixed liquor-suspended solid (MLSS) samples from the aeration tank 
were collected at 12 am. The flowrates of influent and return sludge 
were collected from flowmeters measured every minute in the Corleone 
WWTP. The influent flowrate and wastewater characterisation are given 
in Table 6. Auto samplers have collected samples from influent and 
effluent of Corleone WWTP for three different hourly sampling cam
paigns. The hourly sampling campaign collected N2O samples from 
liquid and gas phases. Gas samples were collected using a hood (cross 
sectional area: 1.0 m × 0.9 m) placed on the surface of the aeration tank 
according to the method given in the literature (Caniani et al., 2019). An 
anemometer measured The gas flow rate every 30 s for the first 5 min 
and every minute for the last 5 min (Extech, USA). Then, gas samples 
were collected in Tedlar (Sensidyne, USA) gas bags using an air pump. 
The gas flow rate and the N2O concentration measured in gas samples 
were multiplied to calculate nitrous oxide flux (Mannina et al., 2017a, 
b). N2O concentration in the liquid was also measured by a micro-sensor 
(Unisense Environment A/S, Denmark). Liquid and gas samples were 
collected every hour for 6 h. 

2.2.2. Biological model 
N2O emissions from biological treatment were added to ASM1 

(Henze et al., 2000) by modifying N2O emissions models provided by 
Hiatt and Grady (2008), Lu et al. (2018), and Zaborowska et al. (2019). 
The comparison of the ASM1 + N2O model provided in this study with 
previous modelling studies is given in Table 2. Compared with previous 
literature, the model proposed here has the novelty of including all the 

Table 1 
Sampling campaigns.  

Sampling campaign Duration Data collection frequency Influent Effluent Aeration reactor 

Long term campaign 60 days 2 per week TSS 
COD 
BOD5 

TN 
NH4-N 

TSS 
COD 
BOD5 

TN 
NH4-N 
NO3-N 
NO2-N 

TSS 
Hourly sampling campaign− 1 One day for each sampling campaign 10:00–16:00, hourly TSS 

N2O liquid 
N2O gas 

Hourly sampling campaign-2 
Hourly sampling campaign-3  

Table 2 
ASM1 + N2O model comparison with previous modelling studies.   

Hiatt and Grady (2008) Lu et al. (2018) Mannina et al. (2017a, b) Mannina et al. (2018) Zaborowska et al. (2019) ASM1 + N2O 
(This study)  

Base model 
ASM1 ✓ ✓ ✓   ✓ 
ASM2d    ✓ ✓   

Denitrification model 
4-step 

SNO3→SNO2→SNO→SN2O→SN2 

✓   ✓   

3-step 
SNO3→SNO2→SN2O→SN2  

✓   ✓ ✓  

N2O production pathways 
Heterotrophic denitrification ✓ ✓ ✓ ✓ ✓ ✓ 
AOB denitritation  ✓  ✓ ✓ ✓ 
Ammonium oxidation by AOB  ✓ ✓ ✓ ✓ ✓ 
N2O stripping model   ✓ ✓ ✓ ✓  
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pathways producing N2O, the N2O stripping model and the 3-step 
denitrification in an ASM1 model. The existing ASM1 models able to 
describe the N2O processes production do not include the stripping 
model Lu et al. (2018) and consider a simplified (2-step) denitrification 
process (Mannina et al., 2017a, b). The existing models providing a 
detailed description of the denitrification process and including all N2O 
pathways (including the stripping model) are ASM2d based (Mannina 
et al., 2018; Zaborowska et al., 2019). 

State variables, stoichiometric and kinetic model parameters are 
given in Table 3. The new model ASM1 + N2O consists of 18 state 
variables and 19 processes. 

ASM1 processes of ammonification of soluble organic nitrogen, 
aerobic hydrolysis, and hydrolysis of organic nitrogen remained un
changed. Ammonia switching function was added to the aerobic growth 
of heterotrophs as in ASM no 3 (Henze et al., 2000). Furthermore, since 
ammonia oxidising bacteria (AOB) are attributed to N2O production, 
autotrophic biomass in ASM1 has been divided into: (i) AOB and (ii) 
nitrite-oxidising bacteria (NOB) (Hiatt and Grady, 2008). So, the new 
ASM1 + N2O model consists of heterotrophic, ammonia-oxidising, and 
nitrite-oxidising biomass. 

Fig. 2 summarises the growth and decay processes of biomass 
included in the ASM1 + N2O model. Heterotrophic growth under anoxic 
conditions (denitrification was modelled in 3-steps (Lu et al., 2018): 
(Process 2 (P2)) from nitrate (SNO3) to nitrite (SNO2), (Process 3 (P3)) 
from SNO2 to nitrous oxide (SN2O), and (Process 4 (P4)) from SN2O to 
nitrogen gas (SN2). The 3-step double-pathway N2O model by AOB was 
implemented to ASM1 according to Lu et al. (2018): (Process 5 (P5)) 
ammonium (SNH) oxidation to SN2O (hydroxylamine oxidation), (Process 
6 (P6)) SNH oxidation to SNO2 (nitritation), and (Process 11 (P11)) SNO2 
reduction to SN2O (AOB denitrification) (SNH is the electron donor). 
Anoxic hydrolysis is also divided into three processes each has a 
different electron (e− ) acceptor (P14, P15, and P16). The transition from 
dissolved N2O gas to the was modelled by the N2O stripping model given 
by Schulthess and Gujer (1996) for both anoxic and aerobic conditions. 
However, a stripping reduction factor was defined for aerobic stripping 
(ηST) to reflect the non-ideality of the stripping model (Massara et al., 
2018). Alkalinity (SALK) was added as a component to check the conti
nuity of the model and was verified as proposed by Hauduc et al. (2010). 
The model matrix is given in Table 5. 

2.2.3. Model application and calibration 
Model application and calibration steps are given in Fig. 3. Corleone 

WWTP layout (Fig. 1) was implemented in GPS-X simulation software 
7.0 (Hydromantis). The model has been constructed by using the Model 

Table 3 
ASM1 + N2O state variables, stoichiometric and kinetic model parameters.   

Symbol Definition Unit 

State variables SI Soluble undegradable organic g COD/ 
m3 

SS Soluble degradable organic g COD/ 
m3 

XI Particulate undegradable organic 
from the influent 

g COD/ 
m3 

XS Particulate degradable organic g COD/ 
m3 

XH Heterotrophic bacteria g COD/ 
m3 

XAOB Ammonia oxidising bacteria (AOB) g COD/ 
m3 

XNOB Nitrite oxidising bacteria (NOB) g COD/ 
m3 

XP Particulate undegradable 
endogenous products 

g COD/ 
m3 

SO Dissolved oxygen g COD/ 
m3 

SNO3 Nitrate g N/m3 

SNO2 Nitrite g N/m3 

SN2O Nitrous oxide gas (dissolved) g N/m3 

CN2O Nitrous oxide gas (stripped) g N/m3 

SNH Ammonia g N/m3 

XND Particulate organic nitrogen g N/m3 

SND Soluble organic nitrogen g N/m3 

SN2 Nitrogen gas g N/m3 

SALK Alkalinity mol 
HCO3

− /m3 

Stoichiometry YH Heterotrophic yield g COD/ 
gCOD 

YAOB AOB yield g COD/ 
gCOD 

YNOB NOB yield g COD/ 
gCOD 

iXB N content of active biomass g N/g 
COD 

iSS N content of SS g N/g 
COD 

iXS N content of XS g N/g 
COD 

iXP N content of endogenous/inert 
mass 

g N/g 
COD 

fP Fraction of biomass leading to 
particulate products 

g COD/g 
COD 

Kinetic model 
parameters 

μH Heterotrophic maximum specific 
growth rate 

1/d 

KS Readily biodegradable substrate 
half saturation coefficient 

g COD/ 
m3 

KOH Oxygen half saturation coefficient 
for growth 

g O2/m3 

KNHH Ammonia half saturation 
coefficient for heterotrophic 
growth 

g N/m3 

ηg1 Anoxic growth factor (P2) – 
KNO3 Nitrate half saturation coefficient 

for growth 
g N/m3 

ηg2 Anoxic growth factor (P3) – 
KNO2 Nitrite half saturation coefficient 

for growth 
g N/m3 

ηg3 Anoxic growth factor (P4) – 
KN2O Nitrous oxide half saturation 

coefficient for growth 
g N/m3 

bH Heterotrophic decay rate 1/d 
μAOB AOB maximum specific growth rate 1/d 
η1AOB Ammonium oxidation pathway 

factor 
– 

KOAOB Oxygen half saturation coefficient 
for AOB growth 

g O2/m3 

KNHAOB Ammonia half saturation 
coefficient for AOB growth 

g N/m3 

η2AOB AOB denitrification pathway factor – 
KNO2AOB Nitrite half saturation coefficient 

for AOB 
g N/m3  

Table 3 (continued )  

Symbol Definition Unit 

bAOB AOB decay rate 1/d 
μNOB NOB maximum specific growth rate 1/d 
KNO2NOB Nitrite half saturation coefficient 

for NOB 
g N/m3 

KONOB Oxygen half-saturation coefficient 
for NOB growth 

g O2/m3 

bNOB NOB decay rate 1/d 
ka Ammonification rate m3/g 

COD/d 
kH Maximum specific hydrolysis rate 1/d 
KOHYD Oxygen half saturation coefficient 

for hydrolysis 
g O2/m3 

ηh Anoxic hydrolysis factor – 
KNO3HYD Nitrate half saturation coefficient 

for hydrolysis 
g N/m3 

KNO2HYD Nitrite half saturation coefficient 
for hydrolysis 

g N/m3 

KN2OHYD Nitrous oxide half saturation 
coefficient for hydrolysis 

g N/m3 

ηST Stripping reduction factor for 
aerobic tank 

–  
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Developer tool in GPS-X. The carbon‑nitrogen-industrial (cnip) library 
was selected including XAOB, XNOB, SNO3, SNO2, SN2O, and CN2O state 
variables. The representative model outputs and calibration sequence 
were defined, then the range of model parameters was determined ac
cording to the literature. Model calibration was done using Corleone 
WWTP's dynamic 30-day data and validated different 30-day data of 
Corleone WWTP. Calibration was done by Optimizer Tool in GPS-X by 
selecting maximum likelihood as an objective function (Mannina and 
Cosenza, 2015). N2O concentration in the liquid and gas phases was 
calibrated according to the hourly sampling campaign. Direct GHG 
emissions were calculated by multiplying gas N2O concentration and air 
flow rates measured during the hourly sampling campaign. The energy 
consumption of pumps and blower were defined in GPS-X. 

The model's goodness-of-fit was expressed in the normalised mean of 
absolute errors (NMAE) (Eq. (1)) and normalised root of mean squared 
errors (NRMSE) (Eq. (2)). Where yo and ys are observed and simulated 
model outputs, respectively. yo,mean the mean value of the observed 
model outputs (Table 4). 

NMAE =
1
n
∑n

i=1|yo − ys|

yo,mean
(1)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

(yo − ys)
2

n

√

yo,mean
(2)  

2.2.4. WWTP influent model 
Influent concentrations measured in hourly and long-term sampling 

campaigns were used to create minutely dynamic wastewater charac
terisation in Fourier series according to the literature (Mannina et al., 
2011). More precisely, the parameters of a truncated Fourier series were 
first calibrated starting from discrete hourly measured data. Then, the 
long-term measured data were adopted to generate the dynamic influent 
series for 64 days simulations. Specifically, each long-term discrete data 
was adopted to generate the daily average trend by using a linear rela
tionship to avoid discontinuities according to (Mannina et al., 2011). 
Then, knowing the average daily patter for each state variable and the 
long-term data the calibrated Fourier series was extended to the 64 days. 
The average daily flowrate and characterisation of the influent waste
water monitored for the long term is given in Table 6. 

2.2.5. Optimisation scenarios 
Operational parameters of DO concentration in the aeration tank and 

the return sludge flowrate to influent wastewater flowrate (RAS) ratio 
were tested in nine different operation scenarios. Scenarios were run 

Fig. 2. Growth, decay, and N2O producing processes: P1: Aerobic growth of heterotrophs; P2: Anoxic growth of heterotrophs (SNO3➔SNO2); P3: Anoxic growth of 
heterotrophs (SNO2➔SN2O); P4: Anoxic growth of heterotrophs (SN2O➔SN2); P5: Ammonium oxidation; P6: Aerobic growth of AOBs (Nitritation); P7: Aerobic growth 
of NOBs; P8: Decay of heterotrophs; P9: Decay of AOBs; P10: Decay of NOBs; P11: AOB Denitrification. 
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with 60 days of data collected in a long-term sampling period. The 
baseline scenario (S0) reflects the existing situation of the Corleone 
WWTP (DO = 2 mg/L and RAS = 66 % of influent flow rate). Table 7 
summarises nine operational scenarios tested with the dynamic simu
lation of the calibrated ASM1 + N2O model. 

Operation scenarios were compared using an index considering 
water (effluent quality), N2O emissions, and energy consumption. Ni 
et al. (2023) provided the water-energy‑carbon coupling index (WECCI) 
as a tool that combines different dimensional measures into one index 
for multi-objective trade-offs. In WECCI, water quality is measured by 
grey water footprint (GWF), defined as freshwater required to absorb 
pollutant loads according to receiving water body standards (Arjen 
et al., 2012). Energy footprint (ENF) is estimated by the overall energy 
consumption of WWTPs. Finally, CF is estimated according to the 
Greenhouse Gas Protocol, which calculates direct emissions (scope 1), 
indirect emissions from the purchase of electricity (scope 2), and indi
rect emissions from chemical consumption (scope 2) (World Resource 
Institute, 2014). In this paper, the WECCI calculation given by Ni et al. 
(2023) has been modified:  

• Water quality is measured by the effluent quality index (EQI) instead 
of GWF.  

• Only direct GHG emissions from wastewater treatment have been 
counted for CF.  

• Calibrated ASM1 + N2O model of the WWTP estimated direct 
emissions (N2O emissions).  

• ENF was calculated based on the electricity consumption of the 
WWTP. 

The EQI is a simple tool used in benchmark studies to compare the 
treatment performance of WWTPs based on pollutant load in the effluent 
(Copp, 2002). On the other hand, GWF calculations are based on the 
discharge limit and the pollutant absorption capacity of the receiving 
water body, thus requiring information about the receiving body and the 
standards that WWTP must comply with. GPS-X calculates EQI by Eq. (3) 
given in Copp (2002). Q is the instantaneous flowrate (m3/d), n is the 

number of compounds, wi is the weight factor of the compound, Si(t) is 
the instantaneous concentration of the compound. The selected com
pounds for EQI (kg pollutant/day) estimation are TSS, COD, BOD5, and 
TN and the weight factors are 2, 1, 2, and 20, respectively. 

EQI = Q(t)
∑n

i=1
wi • Si(t) (3) 

Only direct GHG emissions from WWTP have been counted for CF 
because for a WWTP that only purchases electricity and does not pro
duce it internally from biogas, the ENF and scope 2 of CF represent the 
electricity consumption of the WWTP and are thus counted twice in the 
WECCI. To prevent this, electricity consumption was taken into account 
in ENF, while direct emissions were counted in CF. ENF (kWh/m3) was 
calculated by dividing energy consumption (kWh/d) by influent flow
rate (m3/d) Ni et al. (2023). CF was calculated by dividing N2O emission 
(g/d) by influent wastewater flowrate (m3/d). N2O emission (g/d) was 
calculated by multiplying N2O concentration (g/m3) in the gas form and 
airflow to the aeration tank (m3/d). Afterward, EQI, CF, and ENF were 
subjected to normalisation using Eq. (4) (Ni et al., 2023), so the range is 
between 0 and 1. A' is the normalised EQI, CF, or ENF. Max(A) and Min 
(A) are the maximum and minimum values of the EQI, CF, or ENF. The 
WECCI was then computed by summing up the normalised EQI, CF, and 
ENF values. 

A′ =
max(A) − A

max(A) − min (A)
(4)  

3. Results and discussion 

3.1. WWTP influent model 

Corleone WWTP's measured influent characterisation data during 
hourly sampling campaigns were used to estimate the Fourier series 
parameters. The parameters were adjusted to minimise the sum of 
squared errors. The generated long-term input time series are given in 
Fig. 4. 

Fig. 3. Model application and calibration steps.  
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3.2. Model calibration 

MLSS and COD, NH4-N, NO2-N, and NO3-N in the effluent were 
selected as representative model outputs and calibrated in this order. For 
MLSS calibration, WAS flow rates were arranged, then heterotrophic 
yield (YH) was optimised. Heterotrophic maximum specific growth rate 
(μH) biomass kinetic coefficients were optimised for effluent COD con
centration. For effluent NH4-N, DO concentration in the aeration tank 
was arranged. Then AOB's maximum specific growth rate (μAOB) and 
ammonia half saturation coefficient for AOB growth (KNHAOB) were 
optimised according to effluent NH4-N concentration. For NO3-N, NOB's 
maximum specific growth rate (μNOB), oxygen half saturation coefficient 
for NOB and heterotrophic growth (KONOB and KOH, respectively), and 
anoxic growth factors of heterotrophs (ηg1, ηg2, and ηg3) were optimised. 
For N2O concentrations in liquid and in the gas phase in the aerobic 
reactor, the ammonium oxidation pathway factor (η1AOB) and AOB 
denitrification pathway factor (η2AOB) were optimised. 

Table 8 shows calibrated ASM1 + N2O kinetic parameters to fit COD, 
NH4-N, NO3-N, and NO2-N concentrations in the effluent of Corleone 
WWTP. Heterotrophic biomass activity had to be lowered to the effluent 
COD concentration with the measured data by increasing the decay rate 
(bH). The average NH4-N concentration in the effluent was 3.9 ± 2.4 
mg/L, indicating that nitrification was not completed most of the time. 
Thus, AOBs activity was reduced by arranging the maximum specific 

growth rate (μAOB) and oxygen half saturation coefficient for growth 
(KOAOB) as 0.55 1/d and 0.9 g O2/m3, respectively. The average NO2-N 
and NO3-N concentrations were 0.1 ± 0.09 mg/L and 8.3 ± 4.4 mg/L, 
suggesting that NO2-N was not accumulated but converted to NO3-N by 
NOBs. Therefore, NOBs' maximum growth rate (μNOB) was increased to 
1.32 1/d. N2O stripping from liquid to air had to be decreased so the 
stripping reduction factor for the aerobic tank (ηST) was arranged as 0.2. 

Fig. 5 shows calibration and validation simulation results in com
parison to measured data in the effluent of Corleone WWTP. It can be 
seen that the model correctly describes the trend of COD in the effluent. 
NH4-N concentrations in the effluent are given in Fig. 5 (b) and (f) for 
calibration and validation period, respectively. It was assumed that high 
NH4-N concentrations in the effluent indicated the low dissolved oxygen 
concentrations in the aeration tank that limits nitrification. When DO 
concentration is low, heterotrophic denitrification activity increases. 
For instance, between 0 and 8 days, the influent NH4-N concentration 
was 16 ± 3.9 mg/L in average, in the effluent, NH4-N concentrations 
were over 4 mg/L and NO3-N concentrations were below 6 mg/L. This 
indicates heterotrophic denitrification. So, especially when DO con
centration was below 1 mg/L, heterotrophic activity affected NO2-N and 
NO3-N concentrations in the effluent due to heterotrophic denitrifica
tion. Therefore, kinetic parameters were arranged to fit the trade-off 
between effluent COD and oxidised nitrogen concentrations. 

During the calibration period, the NMAE for COD, NH4-N, NO2-N, 

Table 4 
ASM1 + N2O processes and rate equations.  

Code Process Rate equation 

P1 Aerobic growth of heterotrophs μH •

(
SS

KS + SS

)

•

(
SO

KOH + SO

)

•

(
SNH

KNHH + SNH

)

• XH 

P2 Anoxic growth of heterotrophs (SNO3➔SNO2) μH • ηg1 •

(
SS

KS + SS

)

•

(
KOH

KOH + SO

)

•

(
SNO3

KNO3 + SNO3

)

•

(
SNH

KNHH + SNH

)

• XH 

P3 Anoxic growth of heterotrophs (SNO2➔SN2O) μH • ηg2 •

(
SS

KS + SS

)

•

(
KOH

KOH + SO

)

•

(
SNO2

KNO2 + SNO2

)

•

(
SNH

KNHH + SNH

)

• XH 

P4 Anoxic growth of heterotrophs (SN2O➔SN2) μH • ηg3 •

(
SS

KS + SS

)

•

(
KOH

KOH + SO

)

•

(
SN2O

KN2O + SN2O

)

•

(
SNH

KNHH + SNH

)

• XH 

P5 Ammonium oxidation μAOB • η1AOB •

(
SO

KOAOB + SO

)

•

(
SNH

KNHAOB + SNH

)

• XAOB 

P6 Aerobic growth of AOBs (Nitritation) μAOB •

(
SO

KOAOB + SO

)

•

(
SNH

KNHAOB + SNH

)

• XAOB 

P7 Aerobic growth of NOBs μNOB •

(
SNO2

KNO2NOB + SNO2

)

•

(
SO

KONOB + SO

)

• XNOB 

P8 Decay of heterotrophs bH • XH 

P9 Decay of AOBs bAOB • XAOB 

P10 Decay of NOBs bNOB • XNOB 

P11 AOB Denitrification μAOB • η2AOB •

(
KOAOB

KOAOB + SO

)

•

(
SNH

KNHAOB + SNH

)

•

(
SNO2

KNO2AOB + SNO2

)

• XAOB 

P12 Ammonification of soluble organic nitrogen ka • SND • XH 

P13 Aerobic hydrolysis 

kH •

⎛

⎜
⎜
⎝

XS

XH

KX +
XS

XH

⎞

⎟
⎟
⎠ •

(
SO

KOHYD + SO

)

• XH 

P14 Anoxic hydrolysis (SNO3 is the e− acceptor) 

kH • ηh •

⎛

⎜
⎜
⎝

XS

XH

KX +
XS

XH

⎞

⎟
⎟
⎠ •

(
KOHYD

KOHYD + SO

)

•

(
SNO3

KNO3HYD + SNO3

)

• XH 

P15 Anoxic hydrolysis (SNO2 is the e− acceptor) 

kH • ηh •

⎛

⎜
⎜
⎝

XS

XH

KX +
XS

XH

⎞

⎟
⎟
⎠ •

(
KOHYD

KOHYD + SO

)

•

(
SNO2

KNO2HYD + SNO2

)

• XH 

P16 Anoxic hydrolysis (SN2O is the e− acceptor) 

kH • ηh •

⎛

⎜
⎜
⎝

XS

XH

KX +
XS

XH

⎞

⎟
⎟
⎠ •

(
KOHYD

KOHYD + SO

)

•

(
SN2O

KN2OHYD + SN2O

)

• XH 

P17 Hydrolysis of organic nitrogen 

kH •

⎛

⎜
⎜
⎝

XS

XH

KX +
XS

XH

⎞

⎟
⎟
⎠ •

(
SO

KOHYD + SO

)

• XH •

(
XND

XS

)

P18 Anoxic SN2O stripping 
KlaN2OAN*

(

SN2O −

(
cN2OAIR

HN2O

))

P19 Aerobic SN2O stripping 

HN2O • SN2O •

(

1 − e
−

(
KlaN2O

HN2O
×

V
QA

)
)

•

(
QA
V

)

• ηST   
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and NO3-N were 0.25, 0.28, 0.71, and 0.38, respectively. In the vali
dation period, the NMAE values for the same parameters were 0.21, 
0.39, 0.39, and 0.54, respectively. In the calibration period, the NRMSE 
values for COD, NH4-N, NO2-N, and NO3-N were 0.26, 0.34, 0.87, and 
0.51, respectively. In the subsequent validation period, these NRMSE 
values for the same model outputs were 0.22, 0.49, 0.53, and 0.67. 
Lower NMAE and NRMSE values indicate better model performance and 
a closer fit between simulated and observed data. The model exhibited 
the highest accuracy when predicting effluent COD concentration and 
the worst performance when estimating effluent NO2-N concentration 
(Fig. 6). 

Table 5 
ASM1 + N2O model stoichiometric matrix. 

Table 6 
Influent characterisation.   

Daily flowrate 
(m3/d) 

COD 
(mg/L) 

BOD5 

(mg/L) 
TN 
(mg/L) 

NH4-N 
(mg/L) 

Average  2674  219  85  26.4  24.1 
Standard 

deviation  
484  76  49  4.9  4.7 

Minimum  1589  109  18  18.2  16.0 
Maximum  3271  383  184  33.0  30.3 
Number of 

data  
64  17  17  17  17  

Table 7 
Operation scenarios.   

The RAS ratio is set 
to 0.5 

The RAS ratio is set 
to 0.75 

The RAS ratio is 
set to 1 

DO is set to 1 
mg/L 

S1 S2 S3 

DO is set to 1.5 
mg/L 

S4 S5 S6 

DO is set to 2 
mg/L 

S7 S8 S9  

Table 8 
Calibrated model parameters.  

Symbol Unit ASM1 Hiatt and 
Grady 
(2008) 

Lu et al. 
(2018) 

Zaborowska 
et al. (2019) 

This 
study 

YH g COD/gCOD 0.67 0.6 0.6 0.63  0.706 
YAOB g COD/gCOD – 0.18 0.18 0.15  0.15 
YNOB g COD/gCOD – 0.06 0.06 0.06  0.06 
iXB g N/g COD 0.086 0.086 0.07 0.04  0.086 
iSS g N/g COD – – – –  0.03 
iXS g N/g COD – – – –  0.04 
iXP g N/g COD 0.06 0.06 0.06 0.02  0.06 
fP g COD/g COD 0.08 0.08 0.08 0.1  0.08 
μH 1/d 6 6.25 6.25 3  2.906 
KS g COD/m3 20 20 20 –  20 
KOH g O2/m3 0.2 0.1 0.1 0.3  0.375 
KNHH g N/m3 – – 0.05 0.02  0.02 
ηg1 – 0.8 0.8 0.03 0.8  0.561 
KNO3 g N/m3 0.5 0.2 0.2 0.5  0.2 
ηg2 – – 0.28 0.16 0.6  0.16 
KNO2 g N/m3 – 0.2 0.2 0.5  0.2 
ηg3 – – – 0.35 0.25  0.173 
KN2O g N/m3 – 0.05 0.05 0.035  0.05 
bH 1/d 0.62 0.408 0.408 0.4  0.8 
μAOB 1/d – 0.78 0.78 1.1  0.561 
η1AOB – – – 0.8 0.2  0.4 
KOAOB g O2/m3 – 0.6 0.6 0.5  0.9 
KNHAOB g N/m3 – 0.1 1 1.2  1.212 
η2AOB – – – 0.074 0.07  0.07 
KNO2AOB g N/m3 – – 8 8  8 
bAOB 1/d – 0.096 0.096 0.15  0.15 
μNOB 1/d – 0.78 0.78 1  1.32 
KNO2NOB g N/m3 – – 0.5 0.5  0.5 
KONOB g O2/m3 – 1.2 0.68 0.68  0.666 
bNOB 1/d – 0.096 0.096 0.06  0.06 
ka m3/g COD/d 0.08 0.1608 0.08 –  0.08 
kH 1/d 3 2.208 3 2.5  3 
KOHYD g O2/m3 0.2 0.1 – 0.2  0.2 
ηh – 0.4 – 0.4 0.4  0.4 
KNO3HYD g N/m3 0.5 – – 0.5  0.5 
KNO2HYD g N/m3 – – – 0.5  0.5 
KN2OHYD g N/m3 – – – 0.5  0.5 
ηST – – – – –  0.2  
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3.3. Scenarios 

The average EQI of Corleone WWTP was 471 kg/day. The specific 
EQI, ENF, and CF were 0.176 kg/m3, 0.147 kWh/m3, and 0.814 mg/m3, 
respectively. The direct GHG emissions from Corleone WWTP were 
calculated as 0.58 kg CO2 eq/d while indirect GHG emissions were 0.27 
kg CO2 eq/d. Direct emissions were responsible for 68 % of the total 
GHG emissions from Corleone WWTP. For a nutrient removing activated 
sludge system (such as A2O), Zaborowska et al. (2019) found this ratio as 
between 51 and 80 %. 

The specific EQI, ENF, and CF per m3 of wastewater for each scenario 
are given in Table 9. The minimum EQI of 0.138 kg/m3 was achieved 
when DO was 2 mg/L and RAS was 0.75. Compared to the baseline 
scenario (DO of 2 mg/L and RAS ratio of 0.66), a 21 % of decrease was 
achieved in EQI. This is because in the scenario run in the model the DO 
concentration was kept at 2 mg/L with 0.5 mg/L of off-set value, but in 
the baseline scenario (actual situation in the WWTP) the DO concen
tration was manually regulated by the operator through adjustments to 
the aeration rate in the reactor. As a result, it appears that the automatic 
DO control led to an improvement in effluent quality. Compared to the 
baseline scenario, the CF was decreased to 0.546 mg/m3 (33%) when 
DO was 1 mg/L and RAS ratio was 0.5. Because both direct and indirect 
N2O emissions were decreased (32 % and 7 %, respectively) with 
decreased DO concentration and RAS ratio. Similarly, the lowest ENF 
(0.137 kWh/m3) was observed when DO was 1 mg/L and RAS ratio was 
0.5. This 7 % decrease in ENF was contributed to the energy savings due 
to lowered aeration and pumping energy consumptions compared to the 
baseline scenario. 

Different DO concentration and RAS ratios were simulated to 
compare their effects on WECCI, including EQI, CF, and ENF. Fig. 7 
summarises nine scenarios. From Fig. 7 (a), it can be seen that DO 

concentration is very effective on EQI. Indeed, the lowest normalised 
EQI was observed when the DO concentration was 1 mg/L and increased 
with increasing DO concentration. Because increase in DO concentration 
increases the oxidation of organics and nitrification, thus better quality 
is observed in the effluent. It is worth noting that the RAS ratio is more 
effective on the EQI at lower DO concentrations. When DO was 1 mg/L, 
the increase in RAS ratio from 0.5 to 1 decreased normalised EQI from 
0.15 to 0. On the other hand, the same increase in RAS ratio decreased 
normalised EQI from 1 to 0.99 when DO concentration was 2 mg/L. 
Therefore, the best operation scenario for the highest normalised EQI is 
a DO concentration of 2 mg/L and an RAS ratio of 0.75. 

Fig. 7 (b) shows how normalised CF is affected by changes in DO 
concentration and RAS ratio. The best scenario for the highest normal
ised CF was observed at a DO concentration of 1 mg/L and RAS ratio of 
0.5. Since CF is related to N2O emissions from the aeration tank, the 
scenario with the lowest aeration gave the best result since it has the 
least stripping N2O from the liquid. Therefore, DO concentration is more 
effective on the CF than the RAS ratio. Under the RAS ratio of 0.75, an 
increase in DO concentration from 1 mg/L to 2 mg/L caused a decrease 
in normalised CF from 0.9 to 0.06. On the other hand, at a DO con
centration of 1.5 mg/L, the increase in RAS ratio from 0.5 to 1 decreased 
normalised CF from 0.75 to 0.53. Zaborowska et al. (2019) also tested 
DO concentration and RAS ratio effect on CF from bioreactors and found 
the optimum condition as 1.3 g/L of DO concentration and 0.73 of RAS 
ratio considering N2O emissions and energy consumption from activated 
sludge system with pre-denitrification (A2O). Fig. 7 (c) shows the nor
malised ENF change with changing DO concentration and RAS ratio. 
Since DO concentration and RAS ratio are related to energy consumption 
of the plant, both operational conditions were effective on ENF. Indeed, 
the best normalised ENF was observed when DO concentration and RAS 
ratio were the lowest, 1 mg/L and 0.5, respectively. 

Table 9 
EQI, CF, and ENF values per m3 of wastewater for each scenario.   

EQI (kg/m3) CF (mg/m3) ENF (kWh/m3) 

RAS ratio RAS ratio RAS ratio 

0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 

DO 1 mg/L  0.193  0.199  0.203  0.546  0.556  0.557  0.137  0.142  0.147 
1.5 mg/L  0.151  0.152  0.153  0.571  0.587  0.593  0.145  0.150  0.156 
2 mg/L  0.139  0.138  0.139  0.622  0.640  0.646  0.151  0.157  0.163  

Fig. 4. Measured and generated according to Fourier series influent characterisation of Corleone WWTP: (a) COD, (b) BOD5, (c) TN, (d) NH4-N.  
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Fig. 5. Results of calibration (a-d) and validation (e-h) of the model.  
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Fig. 6. Simulated N2O concentrations in liquid and gas for calibration (a) and validation (b) periods in comparison to hourly sampling campaigns 1 (c), 2 (d), and 
3 (e). 
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4. Conclusions 

ASM1 was modified to model N2O emissions with a plant-wide 
modelling approach, and Corleone WWTP (Italy) with aeration and 
sedimentation units was used as a case study. The major results are 
summarised below: 

• The new ASM1 + N2O model includes processes related to hetero
trophic, ammonia-oxidising, and nitrite-oxidising biomass and N2O 
stripping from liquid phase to gas phase.  

• The model was calibrated and validated for different sets of 30-day 
data and hourly sampling data was used to calibrate N2O in liquid 
and gas.  

• Nine different DO concentration and RAS ratio scenarios were 
simulated dynamically to compare EQI, CF, and ENF synergistically 
by WECCI.  

• The direct and indirect GHG emissions of Corleone WWTP (related 
with baseline scenario for which DO = 2 mg/L and RAS = 0.66 were 
estimated as 0.58 kg CO2eq/d and 0.27 kg CO2eq/d, respectively.  

• It was found that DO concentration is more effective on EQI and 
direct emissions than the RAS ratio.  

• The best operation scenario was observed at a DO concentration of 
1.5 mg/L and RAS ratio of 0.5 for Corleone WWTP; these value differ 
from the baseline scenario conditions (DO = 2 mg/L and RAS =
0.66). 

Fig. 7. Comparison of normalised EQI, normalised CF, normalised ENF, and WECII estimated with different RAS ratio and DO concentration 
WECCI is the sum of normalised EQI, normalised CF, and normalised ENF (Fig. 7 (d)). The best WECCI was chosen as the optimum scenario when the DO con
centration is 1.5 mg/L and the RAS ratio is 0.5 mg/L. On the other hand, the lowest WECCI (the worst scenario) belonged to operational conditions in which the DO 
concentration is 2 mg/L and the RAS ratio is 1. The WECCI is a measure of the efficiency of WWTPs in terms of effluent quality, energy consumption, and carbon 
footprint. The scenario analyses revealed that effluent quality and carbon footprint exhibited comparable patterns, but there was a trade-off between these two 
factors and the energy footprint. It suggests that, efforts to improve effluent quality may coincide with reductions in the carbon footprint. However, improving 
effluent quality and reducing the carbon footprint objectives can conflict with the goal of minimising energy consumption (Monteiro et al., 2022). Because energy- 
intensive processes, such as aeration, are necessary to achieve high-effluent quality (Fig. 7 (a)). Therefore, finding the right balance becomes imperative. In 
addressing this trade-off, technological innovation becomes a key driver. The development and adoption of energy-efficient treatment technologies, advanced process 
control systems, and renewable energy sources can help WWTPs strike a more favourable balance. Overall, the study emphasised the complexity of optimisation of 
WWTP and the importance of considering multiple factors. Therefore, to optimise WWTPs, a comprehensive analysis should be conducted, taking into account 
different aspects. This holistic approach is essential for ensuring that WWTPs meet environmental standards, operate efficiently, and contribute to a sustain
able future. 
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