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Abstract. We consider a model of coupled oscillators which can be seen as a gain and loss system. In the attempt to quantize
the system, we propose a new definition of multiplication between distributions, and we check that this definition can be
adopted when checking the biorthonormality of the eigenstates of the Hamiltonian H of the system, and of its adjoint H†.
In the analysis carried out here, the role of weak pseudo-bosonic ladder operators is relevant.
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1. Introduction

Since many decades, simple electronic circuits have been used in connection with classical and, more
recently, quantum mechanics, since they can provide concrete devices where some physical effect can be
observed, or modeled. A well-known example of such a map between electronics and classical mechanics
is given by any RLC-circuit (RLCc), which is dynamically equivalent to a damped harmonic oscillator
(DHO). This is because the time evolution of the charge in an RLCc, i.e., a circuit with an inductance, a
resistance, and a capacitor in series, is driven by exactly the same equation of motion of that of a DHO,
with the dissipative effect of the resistance replaced by the friction, see, e.g., [1,2] and references therein.
In [3–6], among others, a quantum version of the DHO, and therefore of the RLCc, has been considered
both for a purely mathematical interest and in view of possible applications. In particular, due to its
particularly simple form, a deep comprehension of the DHO/RLCc is surely a first step toward a better
understanding of the correct quantization procedure for generic dissipative systems, see [7,8], which are
so relevant in several physical contexts.

A similar interest is at the basis of other papers connected with related problems, [9–11]: in all these
papers, electronic circuits are analyzed, either in connection with PT-quantum mechanics and exceptional
points, [12], or because they produce interesting results when one tries to quantize the system, not only for
the physical consequences of this quantization, but also because of its many mathematical consequences.

For instance, some interesting mathematics appears when quantizing a DHO, and diagonalizing its
Bateman Hamiltonian, [13], by means of ladder operators. In particular, in [14,15] the authors claimed
they could construct two biorthonormal bases of square integrable eigenfunctions for the Hamiltonian of
the DHO. However, as shown in [16,17], this claim was wrong, since in particular the vacua of the lowering
operators needed in their construction are not square integrable functions, but Dirac delta distributions.
Hence, distributions are more relevant than functions in this context. And, in fact, this was not the first
appearance of distributions, and of the Dirac delta in particular, in the analysis of some physical system.
For instance, they are the main object of research when dealing rigorously with quantum fields, [18].
More recently, distributions have proved to be the natural tool to use when looking for the (generalized)
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eigenstates of certain Hamiltonians, mostly connected with what we have called weak pseudo-bosons, see,
e.g., [19–21] for a recent monograph on this and related topics.

In this paper, we show how an extended version of the Bateman Lagrangian can be introduced and
studied, and the role that distributions play in this analysis. More in detail, we start replacing the
original pairs of uncoupled oscillators described by Bateman with different pairs of possibly interacting
oscillators, one of which is still damped (hence, is a loss system), while the other is amplified (so that
it can be interpreted as a gain system). The Bateman system can be recovered as a special case of our
settings. The main physical result of our analysis is that we will able to quantize the system and to find
the eigenvalues and the eigenvectors of its related Hamiltonian H. However, these eigenvectors turn out
not to be functions. Indeed, they are distributions and, as such, they require some extra mathematical
care to be properly considered, also in view of their relations with the eigenvectors of H†, the adjoint
of H. In particular, biorthonormality of these two families of eigenvectors1 should be defined, since no
ordinary scalar product can be naturally introduced in our analysis. This aspect is discussed in many
concrete situations in the literature, [12,21], but mostly in a Hilbert space settings. Here, Hilbert spaces
are not enough. For this reason, to analyze biorthonormality of these vectors, we need to consider a new
concept of scalar product, which extends the usual one in L2(R). This is possibly the most interesting
(mathematical) result of this paper. This definition will be applied to our specific system, and indeed,
a kind of biorthonormality will be deduced. Surprisingly enough, the notion of Abel summation will be
quite relevant in this analysis.

The paper is organized as follows: in Sect. 2, we will review some previous results on the DHO, to
introduce the notation and to stress some essential aspects of what was already discussed in the literature.
Also, this preliminary analysis is useful since the extended system considered in this paper reduces to that,
after a suitable change of variables. In Sect. 3, we introduce our gain-loss linear circuit, and we show how to
introduce ladder operators in its description. As already stated, this forces us to deal with distributions.
This motivates our analysis in Sect. 4, where we propose a new definition of multiplication between
distributions, and we deduce some of its properties. In Sect. 5, we then show how this multiplication can
be used in the analysis of our specific gain–loss system. Section 6 contains our conclusions. To keep the
paper self-contained, we list a series of definitions and properties of pseudo-bosonic ladder operators in
“Appendix A,” while in “Appendix B” we prove some useful identities used in Sect. 5. Also, “Appendix
C” contains some technical results useful for us.

2. Preliminaries

We devote this section to a brief review of what was discussed in [16,17]. This is relevant in view of what
follows, since we will show that the system introduced in Sect. 3 can be rewritten as the one we are going
to consider here.

The classical equation for the DHO is mẍ+γẋ+kx = 0, in which m, γ and k are the physical positive
quantities of the oscillator: the mass, the friction coefficient, and the spring constant.2 The Bateman
Lagrangian, [13], is

L0 = mẋẏ +
γ

2
(xẏ − ẋy) − kxy, (2.1)

1We should recall that, in the presence of nonself-adjoint operators, orthonormality of eigenstates is usually replaced
by biorthogonality of the eigenstates of the physically relevant operator (e.g., the Hamiltonian H), and those of its adjoint
(e.g., H†), [12,21].

2They are in one-to-one correspondence with the inductance L, the resistance R, and the inverse capacity C−1 of a
RLCc.
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which, other than the previous equation, produces also mÿ − γẏ + ky = 0, the differential equation
associated with the virtual AHO, see also [24]. The conjugate momenta are

px =
∂L0

∂ẋ
= mẏ − γ

2
y, py =

∂L0

∂ẏ
= mẋ +

γ

2
y,

and the corresponding classical Hamiltonian is

H0 = pxẋ + py ẏ − L0 =
1
m

pxpy +
γ

2m
(ypy − xpx) +

(
k − γ2

4m

)
xy. (2.2)

By introducing the new variables x1 and x2 through

x =
1√
2
(x1 + x2), y =

1√
2
(x1 − x2), (2.3)

L0 and H0 can be written as follows:

L0 =
m

2
(ẋ2

1 − ẋ2
2) +

γ

2
(x2ẋ1 − x1ẋ2) − k

2
(x2

1 − x2
2)

and

H0 =
1

2m

(
p1 − γ

2
x2

)2

− 1
2m

(
p2 − γ

2
x1

)2

+
k

2
(x2

1 − x2
2),

where p1 = ∂L0
∂ẋ1

= mẋ1 + γ
2 x2 and p2 = ∂L0

∂ẋ2
= mẋ2 − γ

2 x1. By putting ω2 = k
m − γ2

4m2 , we can rewrite
H0 as follows:

H0 =
(

1
2m

p2
1 +

1
2
mω2x2

1

)
−

(
1

2m
p2
2 +

1
2
mω2x2

2

)
− γ

2m
(p1x2 + p2x1). (2.4)

We will here only consider ω2 > 0. The case ω2 ≤ 0 has been briefly considered in [16].
Following [14], we impose the following canonical quantization rules between xj and pk: [xj , pk] =

iδj,k11, working in unit � = 1. Here 11 is the identity operator. This is equivalent to the choice in [24].
Ladder operators can now be easily introduced:

ak =
√

mω

2
xk + i

√
1

2mω
pk, (2.5)

k = 1, 2. These are bosonic operators since they satisfy the canonical commutation rules: [aj , a
†
k] =

δj,k11. Furthermore, they are densely defined on any Schwartz test function. In particular, [aj , a
†
k]ϕ(x) =

δj,kϕ(x), for all ϕ(x) ∈ S(R). It might be useful to recall that S(R) is the set of all C∞ functions which
decrease, together with their derivatives, faster than any inverse power of x, [22]:

S(R) =
{

g(x) ∈ C∞ : lim
|x|, ∞

|x|kg(l)(x) = 0 ∀k, l ∈ N0

}
,

where N0 = N ∪ {0}.
In terms of these operators, the quantum version of the Hamiltonian H0 in (2.4) can be written as

H0 = ω
(
a†
1a1 − a†

2a2

)
+

iγ

2m

(
a1a2 − a†

1a
†
2

)
. (2.6)

Following again [14], we introduce the operators:

A1 =
1√
2
(a1 − a†

2), A2 =
1√
2
(−a†

1 + a2), (2.7)

as well as

B1 =
1√
2
(a†

1 + a2), B2 =
1√
2
(a1 + a†

2). (2.8)
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They satisfy the following requirements:

[Aj , Bk]ϕ(x) = δj,kϕ(x), (2.9)

∀ϕ(x) ∈ S(R). We observe that Bj �= A†
j , j = 1, 2. Moreover, A1 = −A†

2 and B1 = B†
2. It might be useful

to stress that the map in (2.7)–(2.8) is reversible, since aj and a†
j can be recovered out of Aj and Bj .

In [21,23], operators of this kind, named pseudo-bosonic, were analyzed in detail, producing several
interesting results mainly connected with their nature of ladder operators.

In terms of these operators, H0 can now be written as follows:

H0 = ω (B1A1 − B2A2) +
iγ

2m
(B1A1 + B2A2 + 11) , (2.10)

which only depends on the pseudo-bosonic number operators Nj = BjAj , [23]. This is exactly the same
Hamiltonian found in [14], and it is equivalent to that given in [5,24] and in many other papers on this
subject. In [16], we proved the following theorem, stating that the pseudo-bosonic lowering operators A1,
A2, B†

1 and B†
2 do not admit square integrable vacua.

Proposition 1. There is no nonzero function ϕ00(x1, x2) satisfying

A1ϕ00(x1, x2) = A2ϕ00(x1, x2) = 0.

Also, there is no nonzero function ψ00(x1, x2) satisfying

B†
1ψ00(x1, x2) = B†

2ψ00(x1, x2) = 0.

We refer to [16,17] for further results on this problems. In particular, it was shown that the vacua of
Aj and B†

j , j = 1, 2, are, respectively, ϕ00(x1, x2) = αδ(x1 − x2) and ψ00(x1, x2) = βδ(x1 + x2): they are
not functions, but distributions. α and β are some sort of normalization constants. Here we just want
to stress that, in these latter papers, our analysis stopped at this level because our interest was mainly
focused in proving that it was not possible to find square-integrable eigenfunctions of H0, contrarily to
what claimed in [14,15]. What is more interesting for us, now, is the possibility to answer the following
questions:

• Is it possible to replace the pair DHO-AHO with some more general system sharing similar proper-
ties, and a similar quantization procedure?

• Is it possible to construct a set of biorthonormal-like distributions out of ϕ00(x1, x2) and ψ00(x1, x2)
using the pseudo-bosonic raising operators as described in “Appendix A”?

We will see that both these questions can be successfully considered, and in particular, the second
question will force us to introduce an interesting mathematical tool, which can be used to define a class
of multiplications between distributions.

3. Our system

In this section, we will consider the first question raised above, proposing a simple classical Lagrangian
which generalizes the one in (2.1), and which describes, in view of its interpretation as a gain-loss system,
two coupled DHO-AHO. The idea is very simple: we just add to L0 in (2.1) another term, L1, which is
again quadratic in the variables x and y. With a proper choice of L1, and of the parameters of the system,
we will be able to describe a new pair of coupled oscillators and to quantize the system in a similar way
as we discussed in Sect. 2, facing with similar problems.

Let us consider

L1 = A(mẋ2 − kx2) + B(mẏ2 − ky2) (3.1)
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and

L = L0 + L1 = mẋẏ +
γ

2
(xẏ − ẋy) − kxy + A(mẋ2 − kx2) + B(mẏ2 − ky2). (3.2)

Here A and B are constants whose values will be constrained later.

Remark. The Lagrangian in (3.2) is a particular case of a more general choice L = L0 + L1, with
L1 = f(y, ẏ) + g(x, ẋ). Not surprisingly, also in this general case, if we write the Hamiltonian H =
pxẋ + py ẏ − L, and we compute its time derivative, we get Ḣ = 0, which can be interpreted as some kind
of energy conservation for the coupled system.

From L in (3.2), we get the following set of coupled differential equations:{
mẍ + γẋ + kx = −2B (mÿ + ky)
mÿ − γẏ + ky = −2A (mẍ + kx) ,

(3.3)

which can also be rewritten, after some minor manipulations, as{
m′ẍ + γẋ + k′x = −2Bγẏ
m′ÿ − γẏ + k′y = 2Aγẋ,

(3.4)

where m′ = m(1 − 4AB) and k′ = k(1 − 4AB), which are both positive if AB < 1
4 . It is now possible to

rewrite L in a form which is quite close to L0 in (2.1), with a change of variable (x, y) → (X1, Y1):{
x = αxX1 + βxY1,
y = αyX1 + βyY1,

(3.5)

where αx, αy, βx and βy must satisfy the condition αxβy − βxαy �= 0, in order to have an invertible
transformation. From now on, we take

αx = − αy

2A

(
1 − √

1 − 4AB
)

, βx = − βy

2A

(
1 +

√
1 − 4AB

)
, (3.6)

so that αxβy − βxαy = αyβy

A

√
1 − 4AB, which is different from zero if αy, βy �= 0, under our constraint

on AB. After some manipulation, we get that

L = m1Ẋ1Ẏ1 +
γ1

2
(X1Ẏ1 − Ẋ1Y1) − k1X1Y1, (3.7)

where we have introduced

m1 =
mαyβy

A
(4AB − 1), k1 =

kαyβy

A
(4AB − 1), γ1 =

γαyβy

A

√
1 − 4AB. (3.8)

Recalling that 4AB − 1 < 0, it is clear that k1,m1 > 0 only if αyβy

A < 0, which is what we will assume
from now on. However, under this condition, it follows that γ1 = −|γ1| < 0. We rewrite L in (3.7) as

L = m1Ẋ1Ẏ1 +
|γ1|
2

(Y1Ẋ1 − Ẏ1X1) − k1X1Y1. (3.9)

This Lagrangian describes again a coupled DHO-AHO as the original one in (2.1), where Y1 is the
coordinate of the DHO (Y1 � x), while X1 is that of the AHO (X1 � y). Hence, we can repeat the same
steps as in Sect. 2, and in particular quantize the system and diagonalize the Hamiltonian in terms of
pseudo-bosonic operators. Formula (2.3) is replaced here by

Y1 =
1√
2
(x1 + x2), X1 =

1√
2
(x1 − x2).

Then, introducing p1 and p2 as before, pj = ∂L
∂ẋj

, we get p1 = m1ẋ1 + |γ1|
2 x2 and p2 = m1ẋ2 − |γ1|

2 x1,
and the classical Hamiltonian H0 in (2.4) should be replaced now by

H =
(

1
2m1

p2
1 +

1
2
m1ω

2
1x2

1

)
−

(
1

2m1
p2
2 +

1
2
m1ω

2
1x2

2

)
− |γ1|

2m1
(p1x2 + p2x1), (3.10)
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where ω2
1 = k1

m1
− |γ1|2

4m2
1

= k
m − γ2

4m2(1−4AB) , which we assume here to be positive.
Next we quantize the system, requiring that [xj , pk] = iδj,k11, and we introduce the bosonic operators

ak =
√

mω

2
xk + i

√
1

2mω
pk, (3.11)

k = 1, 2, and their combinations

A1 =
1√
2
(a1 − a†

2), A2 =
1√
2
(−a†

1 + a2), B1 =
1√
2
(a†

1 + a2), B2 =
1√
2
(a1 + a†

2). (3.12)

These operators satisfy, see (2.9), the commutation rule

[Aj , Bk]ϕ(x) = δj,kϕ(x), (3.13)

∀ϕ(x) ∈ S(R), as well as the other properties stated in Sect. 2. An essential consequence is that H is
diagonal in these operators,

H = ω1 (B1A1 − B2A2) +
i|γ1|
2m1

(B1A1 + B2A2 + 11) , (3.14)

and Proposition 1 applies. In particular, the vacua of Aj and B†
j , j = 1, 2, are, respectively, ϕ00(x1, x2) =

αδ(x1 − x2) and ψ00(x1, x2) = βδ(x1 + x2).
Going back to our first question at the end of Sect. 2, we have seen here that it is indeed possible to

construct more general systems3 which, after a certain change of variables, turn out not to be different
from the pair of oscillators described by the Bateman Lagrangian. Next, because of the role the distri-
butions play in our analysis, we consider a mathematical interlude on a possible definition of a class of
multiplications between distributions. We should maybe stress that, in fact, the content of Sect. 4 is (in
our opinion) the most relevant mathematical result of this paper.

4. Multiplication of distributions

In [22], a possible way to introduce a multiplication between distributions was discussed. It is based
on the simple fact that the scalar product between two good functions f(x) and g(x), for instance,
f(x), g(x) ∈ S(R), can be written in terms of a convolution between f(x) and g̃(x) = g(−x): 〈f, g〉 =
(f ∗ g̃)(0). Hence, it is natural to define the scalar product between two elements F (x), G(x) ∈ S ′(R) as
the following convolution:

〈F,G〉 = (F ∗ G̃)(0), (4.1)

whenever this convolution exists, which is not always true. Notice that, in order to compute 〈F,G〉,
it is first necessary to compute (F ∗ G̃)[f ], f(x) ∈ S(R), and this can be done by using the equality
(F ∗ G̃)[f ] = 〈F,G∗f〉 which, again, is not always well defined. It is maybe useful to stress that (F ∗ G̃)[f ]
represents here the action of (F ∗ G̃)(x) on the function f(x).

This approach has been used in some concrete situations in recent years, mainly to check if the
generalized eigenstates of some non self-adjoint operator Ĥ are biorthonormal (with respect to this
generalized product) to those of Ĥ†. Some results in this direction can be found in [19–21].

However, this approach does not seem to be flexible enough to cover also the situation discussed in this
paper, i.e., to deal with the set of weak eigenvectors of the Hamiltonian of the system in Sect. 3. This is
because, among other difficulties, it is very hard to take care properly of the domains of various operators
involved in this analysis, but also because it is quite complicated to perform explicit computations even

3Of course, L in (3.2) returns the original system in Sect. 2 if A = B = 0. Otherwise, the two oscillators are coupled,
which was not the case for L0 in (2.1).
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in simple cases. For this reason, we introduce now a different multiplication between distributions, and
we analyze some of its properties. In Sect. 5, we will show how this new definition works for our gain-loss
system. To be general, we work here with L2(Rd), d ≥ 1. First of all, we introduce an orthonormal, total,
set of vectors in L2(Rd):

Fe = {en(x) ∈ S(Rd), n = (n1, n2, . . . , nd)}, (4.2)

where each nj = 0, 1, 2, 3, . . .. For instance, if d = 1, the set Fe could be the set of the eigenstates of the
quantum harmonic oscillator. If d ≥ 2, Fe can be constructed as tensor product of these 1-d functions,
and so on. Due to the nature of Fe, for all f(x), g(x) ∈ L2(Rd), we have that

〈f, g〉 =
∑

n

〈f, en〉〈en, g〉 =
∑

n

f [en] g[en] =
∑

n

f [en] g[en],

if we further assume that each en(x) is real, for simplicity. We are using the following notation:

h[c] =
∫
Rd

h(x) c(x) dx = 〈h, c〉. (4.3)

In the Parceval identity above, the particular choice of Fe is not relevant, as far as f(x), g(x) ∈ L2(Rd).
Now, the fact that en(x) ∈ S(Rd) implies that, for all K(x) ∈ S ′(Rd), the set of tempered distributions,
[22], the following quantity is well defined:

K[en] = 〈K, en〉. (4.4)

What might exist, or not, is the following sum

〈F,G〉e =
∑

n

F [en]G[en], (4.5)

where F (x), G(x) ∈ S ′(Rd). This suggests the following:

Definition 2. Two tempered distributions F (x), G(x) ∈ S ′(Rd) are Fe-multiplicable if the series in (4.5)
converges.

What we have discussed before implies that all the square integrable functions are mutually Fe-
multiplicable, and the result is independent of the specific choice of Fe. This means that Definition
2 makes sense on a large set of tempered distributions, all those defined by ordinary square-integrable
functions. Moreover, at least for these functions, (4.5) and (4.1) coincide. We will show in the next section
that 〈F,G〉e is also well defined in other cases. However, for generic elements of S ′(R), it is not granted
a priori that 〈F,G〉e is independent of the choice of Fe.

The following results are natural extensions of the properties of any ordinary scalar product to 〈., .〉e.
Result 
1: If F (x), G(x) ∈ S ′(Rd) are such that 〈F,G〉e exists, then also 〈G,F 〉e exists and

〈F,G〉e = 〈G,F 〉e. (4.6)

Indeed, we have, recalling that the series in (4.5) converges,

〈F,G〉e =
∑

n

〈F, en〉 〈en, G〉 =
∑

n

〈G, en〉〈en, F 〉 = 〈G,F 〉e,

which in particular implies that 〈G,F 〉e exists, too.
Result 
2: If F (x), G(x), L(x) ∈ S ′(Rd) are such that 〈F,G〉e and 〈F,L〉e exist, then also 〈F, αG+βL〉e

exists, for all α, β ∈ C, and

〈F, αG + βL〉e = α 〈F,G〉e + β〈F,L〉e. (4.7)

Then the Fe-multiplication is linear in the second variable. The proof is trivial and will not be given here.
Of course, the Fe-multiplication is anti-linear in the first variable.
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Result 
3: If F (x) ∈ S ′(Rd) is such that 〈F, F 〉e exists, then 〈F, F 〉e ≥ 0. In particular, if 〈F, F 〉e = 0,
then F [f ] = 0 for all f(x) ∈ Le, the linear span of the en(x)’s.

In fact, from (4.5) we have

〈F, F 〉e =
∑

n

|F [en]|2,

which is never negative. Moreover, 〈F, F 〉e = 0 if and only if F [en] = 0 for all n, which, because of the
linearity of F , implies our claim.

Remark. It is not possible to conclude that F = 0, even if 〈F, F 〉e = 0. The reason is that, to conclude that
F = 0, we should check that F [g] = 0 for all g(x) ∈ S(Rd). Now, since S(Rd) ⊂ L2(Rd), it is clear that
g(x) = ‖.‖ − lim{Nk},∞

∑N
n=0〈en, g〉 en(x), where N = (N1, N2, . . . , Nd), with Nj < ∞, 0 = (0, 0, . . . , 0),

and the convergence is in the norm of L2(Rd). But this convergence does not imply that the same sequence
converges in the topology τS of S(Rd). Hence, the continuity of F is not sufficient to conclude that

F [g] = lim F

[
N∑

n=0

〈en, g〉 en(x)

]
= 0.

It might be interesting to observe that for square-integrable functions f(x) and g(x) the adjoint of any
bounded operator X satisfies the equality 〈X†f, g〉e = 〈f,Xg〉e. This is a consequence of the analogous
relation for 〈., .〉 and of the identity 〈f, g〉 = 〈f, g〉e, true ∀f(x), g(x) ∈ L2(Rd). However, this is no longer
granted for F (x), G(x) ∈ S ′(Rd). In fact, even if F and G are Fe-multiplicable, and if X†F,XG ∈ S ′(Rd),
there is no general reason for 〈X†F,G〉e and 〈F,XG〉e to exist, and to be equal. This is, in our opinion,
one of the many points of the Fe multiplication which deserves a deeper investigation. Another relevant
aspect of this multiplication concerns the optimal choice of Fe, if any. We will comment on this particular
aspect later on.

5. Orthogonality of eigenstates

In Sect. 3, we have deduced the vacua of the pseudo-bosonic lowering operators Aj and B†
j . We will now

use the standard pseudo-bosonic strategy, in its weak form, see [19–21], to construct a set of distributions
which are the (generalized) eigenstates of H in (3.14) and of its adjoint. In what follows, we will use what
we have discussed in Sect. 4, focusing on the case d = 2.

In analogy with (A.2), after finding the vacua, the second step in our construction consists in using
the raising pseudo-bosonic operators to construct, out of the vacua, two families of vectors. In particular,
we put

ϕn1,n2(x1, x2) =
1√

n1!n2!
Bn1

1 Bn2
2 ϕ0,0(x1, x2), (5.1)

and

ψn1,n2(x1, x2) =
1√

n1!n2!
(A†

1)
n1(A†

2)
n2ψ0,0(x1, x2), (5.2)

where n1, n2 = 0, 1, 2, 3, . . .. As in Sect. 4, we will often use the notation n = (n1, n2) and x = (x1, x2).
These vectors are, clearly, not square-integrable functions. Indeed, they are tempered distributions, as it
is already clear from their expressions for n = (0, 0). Because of formulas (3.11), (3.12), and the fact that
pk = −i ∂

∂xk
, k = 1, 2, it follows that ϕn1,n2(x1, x2) and ψn1,n2(x1, x2) are deduced from the vacua by

acting on them with weak derivatives and multiplication operators, all operations mapping S ′(R2) into
itself. This implies that the two sets Fϕ = {ϕn(x), n1, n2 ≥ 0} and Fψ = {ψn(x), n1, n2 ≥ 0} are both
sets of tempered distributions: ϕn(x), ψn(x) ∈ S ′(R2), ∀n. We would like to check now if, and in which
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sense, we can recover for these vectors the analogous of formula (A.4). In other words, we would like to
understand if (and again, in which sense) Fϕ and Fψ are biorthonormal families of vectors.
Remark. It is not hard to check that (4.1) can be used to define an extended scalar product between
ϕ0(x) and ψ0(x), and to check that 〈ϕ0, ψ0〉 = 1. However, this same definition does not allow any simple
computation of the other scalar products 〈ϕn, ψm〉, in general, and this is the main reason why we prefer
to adopt here the definition of the Fe-multiplication proposed in Sect. 4, see Definition 2. This analysis has
an important side effect, since it will allow us to check on a rather concrete situation that the definition
of 〈., .〉e works also outside L2(Rd). Hence, 〈., .〉e can really be seen as an extension of the ordinary scal
product in L2(Rd).

Let Ge = {en(x), n ≥ 0} be the usual orthonormal basis of eigenfunctions of the harmonic oscillator,

H̃0 =
p2

2m1
+

1
2

m1ω
2
1x2,

where m1 and ω1 are those introduced in Sect. 3. It is well known that en(x) ∈ S(R) for all n ≥ 0. Then,
we consider

en(x) = en1(x1)en2(x2), (5.3)

and Fe = {en}. This is an orthonormal basis of L2(R2) of functions, all belonging to S(R2). Further, and
very important, various vectors of this basis obey ladder equalities when considered together with the
bosonic operators aj and a†

j in (3.11). For instance,

a†
1en =

√
n1 + 1 en1+1,n2 , a2en =

√
n2 en1,n2−1,

(or a2en = 0 if n2 = 0), and so on.
From now on, we will use this particular basis to define 〈., .〉e as in (4.5). The reason is simple: our

raising operators A†
j and Bj can be written, see (3.12), in terms of aj and a†

j , and their action on each
en(x) in (5.3) is simple.4 Our main effort is to check that 〈ψk, ϕl〉e makes sense, and that it is equal
to δk,l. This would imply that our multiplication in (4.5) is useful, defined on a large set, and that the
families Fϕ and Fψ are biorthonormal (with respect to this extended scalar product).

To prove this claim, we need to compute

〈ψk, ϕl〉e =
∑

n

ψk[en]ϕl[en], (5.4)

using (4.5). A general proof of the existence of this quantity is not easy. On the other hand, a direct
check of the facts that 〈ψk, ϕl〉e exists and that it is equal to δk,l, it is not hard, if we restrict to few (low)
values of k and l. To do so, it is convenient to check first the following equalities:{

ϕ0[en] = αδn1,n2 , ϕ0,1[en] = α
√

2n2δn1,n2−1,

ϕ1,0[en] = α
√

2(n2 + 1)δn1,n2+1, ϕ1[en] = α(1 + 2n2)δn1,n2 ,
(5.5)

and {
ψ0[en] = β(−1)n2δn1,n2 , ψ0,1[en] = β(−1)n2+1

√
2n2 δn1,n2−1,

ψ1,0[en] = β(−1)n2
√

2(n2 + 1)δn1,n2+1, ψ1[en] = β(−1)n2+1(1 + 2n2)δn1,n2 .
(5.6)

The proof of (some of) these identities is given in “Appendix B.”
We can now use (5.5) and (5.6) to check few of the orthonormality results needed to conclude that

Fϕ and Fψ are Fe-biorthonormal. In particular, it is easy to check that all the vectors ψk and ϕl are
Fe-orthogonal if k �= l, and k, l = (j1, j2), for all j1, j2 = 0, 1. For instance, we have

〈ψ1,0, ϕ0〉e =
∑

n

ψ1,0[en]ϕ0[en] = βα
∑

n

(−1)n2
√

2(n2 + 1)δn1,n2+1δn1,n2 = 0,

4It is clear that for different physical system our choice of Fe could be different from the one here.
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clearly. Similarly, we have

〈ψ1, ϕ1,0〉e =
∑

n

ψ1[en]ϕ1,0[en] = βα
∑

n

(−1)n2+1(1 + 2n2)δn1,n2

√
2(n2 + 1)δn1,n2+1 = 0,

too, and so on. Much more interesting is the proof that, when k = l, 〈ψk, ϕl〉e = 1, even in these few
simple cases. Using the results in (5.5) and (5.6), we can get the following identities:⎧⎨

⎩
〈ψ0, ϕ0〉e = βα

∑
k(−1)k,

〈ψ1,0, ϕ1,0〉e = 〈ψ0,1, ϕ0,1〉e = 2βα
∑

k(−1)k(k + 1),
〈ψ1, ϕ1〉e = −βα

∑
k(−1)k(2k + 1)2.

(5.7)

None of these series converges in ordinary sense. However, they are all Abel-convergent. In fact, since

A −
∑

k

(−1)k =
1
2
, A −

∑
k

(−1)kk = −1
4
, A −

∑
k

(−1)kk2 = 0,

if we take αβ = 2, we conclude that

〈ψ0, ϕ0〉e = 〈ψ1,0, ϕ1,0〉e = 〈ψ0,1, ϕ0,1〉e = 〈ψ1, ϕ1〉e = 1.

Of course, what we have explicitly checked here is not a general result. In other words, this is just an
indication that, see (5.4), 〈ψk, ϕl〉e exists and is equal to δk,l. This is what we will discuss next.

5.1. From few to many

Our aim now is trying to generalize, as much as possible, formulas in (5.7) so to check that Fϕ and Fψ

are indeed Fe-biorthonormal. However, as we will see, the existence of 〈ψk, ϕl〉e will be, for us, a working
assumption, motivated by the results we have deduced previously. We hope to be able to produce a
general proof of this existence in a close future. It is quite likely that the difficulty in proving this result
is connected with the fact that various series above are not convergent in the usual sense, but only Abel-
convergent. For this reason, we believe that the preliminary analysis proposed here and before is relevant
and useful for a deeper understanding of the situation.

We start proving that, calling Nj = BjAj and N†
j its adjoint, the following weak eigenvalue equations

are satisfied:

〈Φ, Njϕl〉 = lj〈Φ, ϕl〉, 〈Φ, N†
j ψl〉 = lj〈Φ, ψl〉, (5.8)

for all l ∈ N
2
0, for all Φ(x1, x2) ∈ S(R2), and for j = 1, 2.

Using the definition of N1 = B1A1 in terms of multiplication and derivative operators, see (3.11) and
(3.12), and using the fact that Φ(x1, x2) ∈ S(R2) and that S(R2) is stable under the action of various
operators involved in the game, we have

〈Φ, N1ϕn〉 = 〈N†
1Φ, ϕn〉 =

1√
n1!

〈N†
1Φ, Bn1

1 ϕ0,n2〉 =
1√
n1!

〈B†
1

n1
N†

1Φ, ϕ0,n2〉.

Now, since Φ(x1, x2) ∈ S(R2), which is stable, we can safely rewrite

B†
1

n1
N†

1Φ =
([

B†
1

n1
, N†

1

]
+ N†

1B†
1

n1
)

Φ =
(
n1B

†
1

n1
+ N†

1B†
1

n1
)

Φ,

where the last equality can be proved by induction on n1. Hence, using again the definition of the weak
derivative, we have

1√
n1!

〈B†
1

n1
N†

1Φ, ϕ0,n2〉 =
1√
n1!

〈(n1B
†
1

n1
+ N†

1B†
1

n1
)Φ, ϕ0,n2〉 = n1〈Φ, ϕn〉,

since, in particular, 〈N†
1B†

1

n1
Φ, ϕ0,n2〉 = 〈B†

1

n1
Φ, N1ϕ0,n2〉 = 0. The other equalities in (5.8) can be

proved in a similar way.
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This result has interesting consequences like those given in the rest of this section.

Proposition 3. Assume that, for some k and l, 〈ψk, ϕl〉e exists. Then, 〈ψk, Njϕl〉e and 〈N†
j ψk, ϕl〉e, j =

1, 2, also exist and

〈ψk, Njϕl〉e = lj〈ψk, ϕl〉e, 〈N†
j ψk, ϕl〉e = kj〈ψk, ϕl〉e. (5.9)

Proof. By definition, we have, for instance,

〈ψk, N1ϕl〉e =
∑

n

ψk[en] (N1ϕl)[en].

But, since en(x) ∈ S(R2), we can use (5.8) and we get (N1ϕl)[en] = 〈en, N1ϕl〉 = l1〈en, ϕl〉. Hence,

〈ψk, Njϕl〉e = l1
∑

n

ψk[en]ϕl[en] = l1〈ψk, ϕl〉e,

as we had to prove. The other equalities in (5.9) can be proved in a similar way. �

We have already commented that, in general, taken F and G in S ′(R2), and a given operator X,
even if X†F,XG ∈ S ′(R2), there is no general reason for 〈X†F,G〉e and 〈F,XG〉e to exist, and to have
〈X†F,G〉e = 〈F,XG〉e. However, this may happen in some particular cases. In fact, we can check that

〈N†
j ψk, ϕl〉e = 〈ψk, Njϕl〉e (5.10)

∀k, l, j = 1, 2. The proof of this equality is rather technical and is given in “Appendix C.” Now it is clear
that, as in the standard, Hilbert space, settings, the following result holds:

Proposition 4. If k �= l then

〈ψk, ϕl〉e = 0. (5.11)

Proof. The proof is identical to the usual one, using the (nontrivial, here) identities in (5.9) and (5.10).
�

Summarizing, what we get here is a strong indication that the results deduced before, using (5.5) and
(5.6), can be generalized and that the sets Fϕ and Fψ are indeed two Fe-biorthonormal sets of tempered
distributions, and are made of weak eigenstates of the number operators Nj and N†

j and, therefore, of
weak eigenstates of the Hamiltonian H in (3.14) and of H†. In our analysis, we were somehow forced to
introduce a new, potentially interesting, multiplication between distributions.

6. Conclusions

There are several open points in the analysis proposed in this paper. First of all, we believe that the
idea of Fe-multiplication of distributions may have interesting consequences and applications. Also, their
properties should be analyzed in more details than those considered here. We hope to consider this aspect
of our analysis soon.

There are also other aspects of the system considered here which should be clarified: if on the one
side we were able to compute explicitly some of the scalar products 〈ψk, ϕl〉e, showing that, as expected,
they are zero or one, we have no general argument showing that 〈ψk, ϕl〉e does exist for all k and l. Still,
under the hypothesis that this exists, we were able to deduce several interesting results, including the
biorthogonality of the vectors ψk and ϕl. However, the nature of Fϕ and Fψ as possible bases (of some
kind, see [23]) is also still to be understood.

Another interesting aspect is the role of the Abel summation appearing in several computations. This
creates more questions: Is this related to the physical system? How?
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Finally, on a more physical side, the Lagrangian considered in (3.1) and (3.2) is just a particular
possible choice among many possibilities. What does it change if we consider a different L1? Which kind
of physics can we describe? And what is the role of distributions, if any, for general dissipative systems?

We hope to be able to answer some of these questions soon.
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Appendix A: A microreview on pseudo-bosons

Let H be a given Hilbert space with scalar product 〈., .〉 and related norm ‖.‖.
Let a and b be two operators on H, with domains D(a) and D(b) respectively, a† and b† their adjoint,

and let D be a dense subspace of H such that a�D ⊆ D and b�D ⊆ D, where with x� we indicate x or x†.
Of course, D ⊆ D(a�) and D ⊆ D(b�).

Definition 5. The operators (a, b) are D-pseudo bosonic if, for all f ∈ D, we have

a b f − b a f = f. (A.1)

When CCR are replaced by (A.1), it is necessary to impose some reasonable conditions which are
verified in explicit models. In particular, our starting assumptions are the following:

Assumption D-pb 1.—there exists a nonzero ϕ0 ∈ D such that a ϕ0 = 0.
Assumption D-pb 2.—there exists a nonzero Ψ0 ∈ D such that b† Ψ0 = 0.

http://creativecommons.org/licenses/by/4.0/
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It is obvious that since D is stable under the action of the operators introduced above, ϕ0 ∈ D∞(b) :=
∩k≥0D(bk) and Ψ0 ∈ D∞(a†), so that the vectors

ϕn :=
1√
n!

bnϕ0, Ψn :=
1√
n!

a†n
Ψ0, (A.2)

n ≥ 0, can be defined and they all belong to D. Then, they also belong to the domains of a�, b� and N �,
where N = ba. We see that, from a practical point of view, D is the natural space to work with and, in
this sense, it is even more relevant than H. Let’s put FΨ = {Ψn, n ≥ 0} and Fϕ = {ϕn, n ≥ 0}. It is
simple to deduce the following lowering and raising relations:⎧⎪⎪⎨

⎪⎪⎩

b ϕn =
√

n + 1ϕn+1, n ≥ 0,
a ϕ0 = 0, aϕn =

√
n ϕn−1, n ≥ 1,

a†Ψn =
√

n + 1Ψn+1, n ≥ 0,
b†Ψ0 = 0, b†Ψn =

√
n Ψn−1, n ≥ 1,

(A.3)

as well as the eigenvalue equations Nϕn = nϕn and N†Ψn = nΨn, n ≥ 0. In particular, as a consequence
of these last two equations, if we choose the normalization of ϕ0 and Ψ0 in such a way 〈ϕ0,Ψ0〉 = 1, we
deduce that

〈ϕn,Ψm〉 = δn,m, (A.4)

for all n,m ≥ 0. Hence, FΨ and Fϕ are biorthogonal.
The analogy with ordinary bosons suggests us to consider the following:
Assumption D-pb 3.—Fϕ is a basis for H.
This is equivalent to requiring that FΨ is a basis for H as well. However, several physical models show

that Fϕ is not a basis for H, but it is still complete in H. This suggests to adopt the following weaker
version of Assumption D-pb 3, [23]:

Assumption D-pbw 3.—For some subspace G dense in H, Fϕ and FΨ are G-quasi bases.
This means that, for all f and g in G,

〈f, g〉 =
∑
n≥0

〈f, ϕn〉〈Ψn, g〉 =
∑
n≥0

〈f,Ψn〉〈ϕn, g〉, (A.5)

which can be seen as a weak form of the resolution of the identity, restricted to G.
We refer to [21,23] for more details.

Appendix B: On formulas (5.5) and (5.6)

Let us compute first ϕ0[en]. Since ϕ00(x1, x2) = αδ(x1 − x2), from (5.3) we get

ϕ0[en] = α

∫
R2

dx1 dx2δ(x1 − x2)en1(x1)en2(x2) = α

∫
R

dx1en1(x1)en2(x1) = αδn1,n2 ,

due to the orthonormality of the en(x)’s. Similarly, recalling that en(−x) = (−1)nen(x), we have

ψ0[en] = β

∫
R2

dx1 dx2δ(x1 + x2)en1(x1)en2(x2) = β

∫
R

dx1 en1(x1)en2(−x1) =

= β(−1)n2

∫
R

dx1 en1(x1)en2(x1) = β(−1)n2δn1,n2 .
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Next we compute ϕ0,1[en] = 〈en, ϕ0,1〉 = 〈en, B2ϕ0〉 = 〈B†
2en, ϕ0〉, where the last equality follows from

the definition of the weak derivative of distributions. Now,

B†
2en =

1√
2
(a†

1 + a2)en =
1√
2

(√
n1 + 1en1+1,n2 +

√
n2en1,n2−1

)
,

the last term being zero if n2 = 0. Then, in view of what deduced before, we have ϕ0[en1+1,n2 ] = αδn1+1,n2

and ϕ0[en1,n2−1] = αδn1,n2−1, so that ϕ0,1[en] = α
√

2n2δn1,n2−1 follows. We conclude this appendix by
proving the identity ϕ1[en] = α(1 + 2n2)δn1,n2 . Similar computations can be repeated to check all the
other identities in (5.5) and (5.6).

We have

ϕ1[en] = 〈en, ϕ1〉 = 〈en, B1B2ϕ0〉 = 〈B†
2B

†
1en, ϕ0〉 =

=
1
2
〈
(
a†
1a1 + a†

1a
†
2 + a1a2 + a2a

†
2

)
en, ϕ0〉 =

=
1
2

(
n1ϕ0[en] +

√
(n1 + 1)(n2 + 1)ϕ0[en + 1] +

√
n1n2ϕ0[en − 1] + (1 + n2)ϕ0[en]

)
=

=
α

2
δn1,n2

(
n1 +

√
(n1 + 1)(n2 + 1) +

√
n1n2 + (1 + n2)

)
,

from which our result in (5.5) follows. Notice that we have used here the notation n±1 = (n1 ±1, n2 ±2)
and used three times the identity ϕ0[en] = αδn1,n2 proved before.

Appendix C: On the identity in (5.10)

We start rewriting

〈ψk, N1ϕl〉e =
∑

n

ψk[en] (N1ϕl)[en]. (A.6)

We have seen in Proposition 4 that (N1ϕl)[en] = l1ϕl[en]. Here we need to rewrite it in a different form,
noticing first that (N1ϕl)[en] = ϕl[N

†
1en]. Next, using (3.12), it is possible to compute N†

1en and to check
that

ϕl[N
†
1en] =

1
2

(
(n1 − n2 − 1)ϕl[en] +

√
(n1 + 1)(n2 + 1) ϕl[en+1] − √

n1n2 ϕl[en−1]
)

.

which, using (A.6), returns

〈ψk, N1ϕl〉e =
1
2

∑
n

ψk[en]
(
(n1 − n2 − 1)ϕl[en]

+
√

(n1 + 1)(n2 + 1) ϕl[en+1] − √
n1n2 ϕl[en−1]

)
.

It is clear that the series converge since the left-hand side in (A.6) exists, because of (5.9) and of our
working assumptions. In a similar way, we have

〈N†
1ψk, ϕl〉e =

∑
n

ψk[N1en]ϕl[en],

and computing N1en, we get

ψk[N1en] =
1
2

(
(n1 − n2 − 1)ψk[en] −

√
(n1 + 1)(n2 + 1) ψk[en+1] +

√
n1n2 ψk[en−1]

)
,
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so that

〈N†
1ψk, ϕl〉e =

=
1
2

∑
n

(
(n1 − n2 − 1)ψk[en] −

√
(n1 + 1)(n2 + 1) ψk[en+1] +

√
n1n2 ψk[en−1]

)
ϕl[en].

Now the fact that 〈ψk, N1ϕl〉e = 〈N†
1ψk, ϕl〉e follows from a direct comparisons of the two results deduced

here (with some change of variable).
The others identities can be proved in a similar way.
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