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1. Introduction

In two recent papers [8,9], A. Caggegi, G. Falcone, and the present author developed 
a theory of additive block designs, in order to extend to a larger setting a property that 
is satisfied by some classic designs in finite geometry.

Essentially, a 2-(v, k, λ) block design (P, B) is additive if, up to isomorphism, P is a 
subset of a commutative group (G, +), and the k elements of any block in B sum up to 
zero (see Definition 1 and Proposition 3 in Section 2).

Some geometric designs, such as the point-flat designs of either an affine geometry 
AG(d, q) over Fq, or a projective geometry PG(d, 2) over F2, are basic examples of ad-
ditive 2-designs. In this case, the group G is somehow intrinsic, as P can be seen as the 
set of elements of the additive group of the vector space Fd

q (respectively, as the set of 
nonzero elements of Fd+1

2 ), and, for k > 2, the sum of the points in each block is zero.
For designs that are defined in a purely combinatorial way, it is not as evident that 

they should have an algebraic representation of this sort. Moreover, whenever such a 
group G exists, a natural question is whether the blocks of the design (P, B) can be 
characterized as the only k-subsets of P whose elements add up to zero in G.

Essentially, a 2-(v, k, λ) block design (P, B) is strongly additive if, up to isomorphism, 
P can be represented a subset of a commutative group (G, +) in such a way that, for 
any k-set {X1, . . . , Xk} ⊆ P,

{X1, . . . , Xk} is a block in B ⇐⇒ X1 + · · · + Xk = 0

(see Definition 4 and Proposition 6 in Section 2 below).
This strong version of additivity is satisfied by some of the main families of additive 

2-designs, that is, symmetric designs [8], affine resolvable designs [9], geometric Steiner 
triple systems [8], Boolean Steiner quadruple systems [15,22], and the other classes of 
additive designs introduced in [15] and [26] (which are strongly additive by construction).

Until very recently, no single example was known of an additive 2-design that was 
not strongly additive. An open problem was posed in 2019 in [9, 3.10] as to whether any 
additive design is also strongly additive.

The main purpose of this paper is to exhibit a resolvable 2-(16, 4, 2) design that 
is additive but not strongly additive. It is a simple design (that is, with no repeated 
blocks) and is a quasidouble of the affine plane of order four in the strongest possible 
sense, in that it decomposes into two disjoint isomorphic copies of AG(2, 4). Moreover, 
it is also the first example of a resolvable additive design that is not affine resolvable, 
nor the point-flat design of some affine geometry AG(d, q) or some projective geometry 
PG(d, 2). Our construction, originally inspired by the main result in [10], is based on the 
idea that F4× F4 can be both seen as a 2-dimensional vector space over F4, as well as a 
4-dimensional vector space over F2.
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It is appropriate to mention that the question of the existence of an additive but not 
strongly additive 2-(v, k, λ) design remains still open for the case λ = 1, that is, for 
Steiner systems.

In the final section of the paper, we extend the construction of the 2-(16, 4, 2) design 
to show that the point-plane design AG2(4, 2) of the affine geometry AG(4, 2) can be 
partitioned as the disjoint union of seven subdesigns, each isomorphic to the affine plane 
of order four, which are obtained as the orbit of AG(2, 4) under a F2-linear endomorphism 
of F4× F4 � F4

2 of order seven. As an application, for each n in {3, 4, 5, 6}, we exhibit a 
resolvable 2-(16, 4, n) design that is additive but not strongly additive, and which can be 
partitioned as the disjoint union of n copies of the affine plane of order four. Moreover, 
by looking at the derived design of AG2(4, 2) at the origin, and by considering also a 
different order-7 endomorphism, we find two (cyclic) non-isomorphic resolutions of the 35
projective lines of PG(3, 2), which provide two solutions to Kirkman’s schoolgirl problem. 
We also show that AG2(4, 2) can be represented as the set of the 16 points of the affine 
hyperplane x1 + x2 + x3 + x4 + x5 = 1 in the 5-dimensional vector space F5

2 , whereas its 
blocks are the 4-subsets of the hyperplane whose elements sum up to zero.

2. Additive and strongly additive designs

In this section we give the definitions of additive and strongly additive design, and, 
together with a few known properties, we present a new characterization of strong addi-
tivity and a characterization of the automorphism group of any strongly additive design. 
For a general treatment of block designs, see for instance [1,11].

Definition 1. ([8, Definition 2.1]) For a t-(v, k, λt) design D = (P, B), one lets (GD, +)
denote the finitely presented commutative group whose generators are the points of P
and whose relations are the equalities X1+ · · ·+Xk = 0, as {X1, . . . , Xk} ranges over the 
blocks in B. The design D is said to be additive if distinct points in P are still distinct 
in the group GD.

If the design D = (P, B) is additive, then one may identify the points of P with the 
corresponding elements of the group GD, and, by construction, the k points in any block 
in B sum up to zero. The group GD is finite for any 2-(v, k, λ) design with k < v [8, 
Theorem 2.2], whereas it can be infinite otherwise, for instance for any 1-design having 
more points than blocks (for example, if P = {a, b, c, d} and B = {{a, b}, {c, d}}, then 
GD is isomorphic to Z2).

Equivalently, the notion of additive design can be given as follows. First, one may 
identify the free commutative group generated by the v points P1, . . . , Pv of P with 
Zv, where P1 = (1, 0, . . . , 0), . . . , Pv = (0, 0, . . . , 1). If b = |B|, and if A is a b × v

incidence matrix for D, then each row of A is precisely the sum in Zv of the k points 
in the corresponding block of D. Hence the additivity of D = (P, B) can be described, 
alternatively, as in the following result.
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Proposition 2. ([8, §2]) Let D = (P, B) be a t-(v, k, λt) design with b = |B| blocks, and 
let A be a b × v incidence matrix for D. If H is the subgroup of Zv generated by the b
rows of A, then GD � Zv/H and, moreover, D is additive if and only if the quotient 
map π : P → Zv/H, π(P ) = P + H, is injective.

Finally, the notion of additivity can be given in yet another equivalent way, which for 
practical purposes is often the most suitable one to establish whether a given design is 
additive.

Proposition 3. ([8, Proposition 2.7]) A block design D = (P, B) is additive if and only if, 
up to isomorphism, P can be represented as a subset of a commutative group (G, +) (not 
necessarily isomorphic to GD) in such a way that the sum of the points in any block in 
B is zero in G.

In [8] and [9] it is shown that symmetric and affine resolvable 2-designs are additive, 
whereas the only additive Steiner triple systems are the geometric STSs, that is, the 
point-line designs of AG(d, 3) and PG(d, 2). In [22, Theorem 3, 2)] it is shown that 
the only additive Steiner quadruple systems are the Boolean ones, that is, the point-
plane designs of the affine geometries AG(d, 2). Also, the so-called 2-(v, k, λ) designs 
over F2, when seen as 2-(2v − 1, 2k − 1, λ) designs, form a notable class of additive 2-
designs [2–4,28], which are, in turn, subdesigns of one of the classes of additive Boolean
2-designs considered in [15]. A similar class of additive 2-(pn, mp, λ) designs, with p an 
odd prime, is described in [26], where the full automorphism group is found, on the basis 
of the results given in [16].

Additive designs have connections with several theories, such as additive combina-
torics [16], representation theory of finite groups [9, Example 3.7], loop theory [13], 
combinatorial algebraic geometry [22], and coding theory [15].

It is worth noting that the quest for new additive designs sometimes produces new 
designs, which, in addition to being additive, happen to be also the first known examples 
of designs with a certain set of parameters. For instance, in [20] an additive 2-(81, 6, 2)
design is given, which is also the first known example of a simple 2-design (that is, with 
no repeated blocks) with these parameters.

Some infinite classes of new additive Steiner 2-designs, whose parameters are not 
those of the point-line designs of AG(d, q), PG(2, q), and PG(d, 2), are constructed in [5]
by means of difference methods of various kinds, and new additive 2-designs have been 
obtained in [6] as a notable application of the method of partial differences. Recently, 
again by difference methods, several new examples of additive Steiner 2-designs have 
been obtained with a much smaller point-set [21], for instance by considering the design 
PG1(d, q) for (d, q) = (3, 3), (4, 3), (3, 4), (3, 5). More generally, it was shown in [7] that 
the point-line design of the projective geometry PG(d, q) is an additive Steiner 2-design 
for any choice of the dimension d > 1 and of the prime power q. Finally, the main result 
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in [3], improving [28], could be the starting point for constructing new designs over F2, 
hence new additive designs of order a power of 2 minus 1.

The algebraic representation of an additive 2-(v, k, λ) design D = (P, B) as a subset 
of the group GD (see Definition 1) is even more significant in the case where the blocks 
in B can be characterized as the only k-subsets of P whose elements sum up to zero in 
GD. This leads to the following definition, which extends to arbitrary additive 2-designs 
a property that holds for symmetric designs [8, Theorem 4.1(ii)] and affine resolvable 
designs [9, Theorem 3.1(ii)].

Definition 4. An additive 2-(v, k, λ) design D = (P, B) is strongly additive if, for any k-set 
{X1, . . . , Xk} ⊆ P ⊆ GD, {X1, . . . , Xk} is a block in B if and only if X1 + · · · + Xk = 0
in the group GD.

Equivalently, in view of the isomorphism GD � Zv/H described above in Proposi-
tion 2, the notion of strong additivity can also be characterized in terms of the incidence 
matrix of D, as follows.

Proposition 5. Let D = (P, B) be an additive 2-(v, k, λ) design with b = |B| blocks, let A
be a b × v incidence matrix for D, and let H be the subgroup of Zv generated by the b
rows of A. Then D is strongly additive if and only if the rows of A are the only elements 
(x1, . . . , xv) of H with the property that xi = 1 for precisely k values of the index i and 
xi = 0 for the remaining v − k values.

Finally, we recall an alternative characterization, which is the analogue of Proposi-
tion 3 above for the notion of strong additivity.

Proposition 6. ([9, Remark 2.2]) A 2-(v, k, λ) design D = (P, B) is strongly additive if and 
only if, up to isomorphism, P can be represented as a subset of a suitable commutative 
group (G, +) (not necessarily isomorphic to GD) in such a way that a k-subset of P is 
a block in B if and only if the sum of its elements is zero in G.

This characterization provides a simpler and more effective way to prove that a given 
design is strongly additive, as in the case of the Steiner quadruple system AG2(4, 2), that 
is, the point-plane design of the affine geometry AG(4, 2), whose blocks are precisely all 
the 4-subsets of G = F4

2 whose elements sum up to zero. For this reason, Proposition 6
was actually presented as the definition of strong additivity in [5, Definition 1.1] and [24], 
where, in the latter case, one also finds an account of additivity for Steiner triple systems. 
On the other hand, this characterization does not make it any easier to ascertain that a 
given design is not strongly additive, as we will further clarify in Remark 7.

The main examples of strongly additive designs are given by symmetric designs [8], 
affine resolvable designs and their complements [9], geometric Steiner triple systems [8], 
Boolean Steiner quadruple systems [15,22], and the 2-designs introduced in [15] and [26]
(which are strongly additive by Proposition 6 above).



6 M. Pavone / Finite Fields and Their Applications 92 (2023) 102277
In the special case where D = (P, B) is a geometric STS, not only D is strongly 
additive, but it also satisfies the additivity condition in the strongest possible sense, 
in that, if P is embedded in a commutative group (G, +) (not necessarily isomorphic 
to GD), in such a way that the sum of the three elements of each block is zero, then, 
conversely, {x, y, z} is a block in B for any 3-subset {x, y, z} of P such that x +y+ z = 0
in G [8,24]. In this respect, for STSs, the group GD does not appear to be any different 
from any other group G, in order to describe and understand the strong additivity of D.

Remark 7. Unlike for Steiner triple systems, the distinguished group GD associated with 
a general strongly additive design D plays a crucial role for the validity of the strong 
additivity. Indeed, there exist strongly additive designs D = (P, B) with the property that 
P can be embedded in a suitable commutative group (G, +) (necessarily not isomorphic 
to GD) in such a way that the family of blocks B is strictly contained in the class of 
the k-subsets of P whose elements sum up to zero in G (such an embedding could be 
called a non-strongly additive embedding of D). This happens, for instance, in the case 
where D = (P, B) is the 2-(11, 5, 2) (symmetric) Hadamard design H11 (equivalently, the 
11-point biplane), whose associated group GD is essentially isomorphic to (the additive 
group of) the 5-dimensional vector space F5

3 [8, Example 2.3], and which can be embedded 
in F3

3 and in F4
3 in such a way that each block is a zero-sum 5-subset of P, but not 

conversely [8, Remark 4.4] (this is actually the case for any embedding in F4
3 [23]). Other 

examples are the affine plane AG(2, p), for any prime p > 3 [9, Remark 3.8], and the 
affine plane of order four AG(2, 4) (see Remarks 11 and 16 in Sections 3 and 4 of the 
present paper).

If a 2-design D = (P, B) is strongly additive, then one can characterize its automor-
phism group in terms of the embedding of D into GD, thereby generalizing [8, Corollary 
4.3] and [9, Corollary 3.4].

Proposition 8. Let D = (P, B) be a strongly additive 2-design, and let P be represented 
as a subset of the group GD. Then Aut(D), the automorphism group of D, is (isomorphic 
to) the group of automorphisms of GD that leave P invariant.

Proof. Let (G, +) be the free commutative group generated by the points of P, and let R
be the subgroup of G generated by the |B| elements of the form 

∑
X∈b

X, as b ranges over 

the blocks in B. Then, by Definition 1, the group GD is the quotient group G/R, and 
the quotient map χ : P −→ GD, defined by χ(X) = X+R, is injective. By construction, ∑
X∈b

χ(X) = 0 for any block b in B.

Let f be an automorphism of D, and let f be the extension of f to an automorphism 
of G. Since the subgroup R of G is invariant under f, the automorphism f induces in 
turn an automorphism F of GD = G/R defined by F (g + R) = f(g) + R for all g in G. 
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Hence F (χ(X)) = F (X + R) = f(X) + R = f(X) + R = χ(f(X)) for all X in P, that 
is, χ(P) is invariant under F .

Conversely, if an automorphism F ∈ Aut(GD) leaves the set χ(P) invariant, then it 
maps a block (in χ(B)), which is a k-set of elements of χ(P) whose sum is zero, onto 
a k-set of elements of χ(P) whose sum is zero, which, by Definition 4, is again a block, 
since D is strongly additive by hypothesis. Hence the restriction of F to χ(P) induces 
an automorphism f ∈ Aut(D), such that F (χ(X)) = χ(f(X)) for all X in P. �

In some special cases, in addition to the property in Proposition 8, GD is essentially 
the additive group of a finite vector space, and the points in P can be coordinatized 
as elements (x1, x2, . . . , xd) of GD in such a way that each block can be described as 
the set of all points in P satisfying a suitable equation a1x1 + a2x2 + · · · + adxd = c. 
This happens, for instance, in the case where D is the above mentioned 11-point biplane 
H11 [8, Example 4.11], or the 3-(12, 6, 2) affine Hadamard design [9, Example 3.6], or 
the Steiner triple system of order 9 [24]. In the latter case, moreover, the design can 
be represented as the set of the nine points of the affine hyperplane x1 + x2 + x3 = 1
in the 3-dimensional vector space F3

3 [8, Remark 3.8(b)]. For all these examples, the 
automorphisms of D can be represented as linear maps on GD, seen as a finite vector 
space. In particular, these examples show how strongly additive designs can be sometimes 
applied to the representation theory of finite groups.

After this overview of the properties of additive and strongly additive designs, the 
main question to ask, which had remained unanswered thus far, is whether the class of 
strongly additive 2-designs is strictly contained in the class of additive 2-designs. Until 
not too long ago, no single example was known of an additive 2-design that was not 
strongly additive. After repeated attempts to settle the question, an open problem was 
finally posed in [9, 3.10] as to whether any additive 2-design is also strongly additive.

The main goal of this paper is to provide explicit examples of additive 2-designs that 
are not strongly additive. The construction of the counterexamples will be the main 
content of the following part of the paper.

3. An example of an additive 2-design that is not strongly additive

Let

F4 = {0, 1, α, α2}

be the (unique) field of order four. As it is well known, F4 is a field of characteristic 2, 
and necessarily 1 + α = α2 and α3 = 1.

The main result of this paper is the construction of a 2-design, with point-set F4×F4, 
that is additive but not strongly additive.

Theorem 9. There exists a (resolvable) 2-(16, 4, 2) design that is additive but not strongly 
additive.
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Let

D1 = (F4 × F4,B1)

be the point-line design of the affine plane AG(2, 4) of order four (sometimes denoted by 
AG2(4)), where B1 is the family of the 20 affine lines in the 2-dimensional vector space 
F4×F4 over F4. By definition, each block in B1 is a translate (or coset) of a 1-dimensional 
subspace, that is, a 4-subset of F4× F4 of the form

{v + tw | t ∈ F4},

with v, w ∈ F4× F4, w �= 0. In particular, it immediately follows that

(∀ b = {v1, v2, v3, v4} ∈ B1) v1 + v2 + v3 + v4 = 0, (1)

since (v + 0w) + (v + 1w) + (v + αw) + (v + α2w) = (1 + α + α2)w = 0 for all v, w in 
F4× F4, w �= 0.

This makes D1 an additive, affine resolvable, 2-(16, 4, 1) design (hence also strongly 
additive by [9, Theorem 3.1]), whose 20 blocks can be collected in five parallel classes as 
follows (where, for short, any element (x, y) of F4× F4 is denoted by xy).

{00, 10, α0, α20} {01, 11, α1, α21} {0α, 1α, αα, α2α} {0α2, 1α2, αα2, α2α2}
{00, 01, 0α, 0α2} {10, 11, 1α, 1α2} {α0, α1, αα, αα2} {α20, α21, α2α, α2α2}
{00, 11, αα, α2α2} {01, 10, αα2, α2α} {0α, 1α2, α0, α21} {0α2, 1α, α1, α20}
{00, α1, α2α, 1α2} {01, α0, α2α2, 1α} {10, α21, αα, 0α2} {11, α20, αα2, 0α}
{00, 1α, αα2, α21} {10, 0α, α2α2, α1} {01, 1α2, αα, α20} {11, 0α2, α2α, α0}.

(2)
We now look for a bijection ϕ : F4 × F4 → F4 × F4 satisfying the two following 

conditions.

(I) ϕ(B1) ∩ B1 = ∅,
(II) (∀ b = {v1, v2, v3, v4} ∈ B1) ϕ(v1) + ϕ(v2) + ϕ(v3) + ϕ(v4) = 0,

where ϕ(B1) denotes the family of all the 4-sets ϕ(b) = {ϕ(v1), ϕ(v2), ϕ(v3), ϕ(v4)}
⊆ F4 × F4, as b = {v1, v2, v3, v4} ranges in B1.

By property (1), condition (II) would be trivially satisfied if ϕ were linear over F4, 
but, if this were the case, then ϕ would induce a permutation of the 20 affine lines in 
B1, whence condition (I) would fail to hold. Hence we make a change of perspective, 
and regard F4 × F4 as a 4-dimensional vector space over F2, with “canonical” basis 
10, α0, 01, 0α. It now suffices to consider the invertible F2-linear map

ϕ : F4 × F4 → F4 × F4
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associated with the matrix

M =

⎛
⎜⎜⎜⎝

1 1 0 0
1 0 1 1
1 0 0 1
1 1 0 1

⎞
⎟⎟⎟⎠ (3)

with respect to the canonical basis. By linearity, and by property (1), the condition (II) 
above is trivially satisfied. Also, it is easy to check that

ϕ(00) = 00 ϕ(01) = α0 ϕ(0α) = αα2 ϕ(0α2) = 0α2

ϕ(10) = α2α2 ϕ(11) = 1α2 ϕ(1α) = 10 ϕ(1α2) = α20
ϕ(α0) = 1α ϕ(α1) = α2α ϕ(αα) = α21 ϕ(αα2) = 11
ϕ(α20) = α1 ϕ(α21) = 01 ϕ(α2α) = 0α ϕ(α2α2) = αα,

(4)

whence one can verify, by inspection, that the condition (I) above is also satisfied. Alter-
natively, since each parallel class in (2) consists of the translates of some line through the 
origin, and since ϕ maps translates to translates by linearity, it actually suffices to verify 
that the five affine lines through the origin in (2), together with their images under ϕ
(see the first column in (5)), form ten distinct 4-subsets of F4 × F4. This also confirms, 
in passing, that ϕ is not linear over F4.

If we now define

ϕ(D1) = (F4 × F4, ϕ(B1)),

then ϕ(D1) is a 2-(16, 4, 1) design and, by construction,

ϕ(D1) � D1 = AG(2, 4)

(on the other hand, AG(2, 4) is the only 2-(16, 4, 1) design, up to isomorphism). In par-
ticular, ϕ(D1) is an (additive) affine resolvable design, whose 20 blocks can be collected 
in five parallel classes as follows.

{00, α2α2, 1α, α1} {α0, 1α2, α2α, 01} {αα2, 10, α21, 0α} {0α2, α20, 11, αα}
{00, α0, αα2, 0α2} {α2α2, 1α2, 10, α20} {1α, α2α, α21, 11} {α1, 01, 0α, αα}
{00, 1α2, α21, αα} {α0, α2α2, 11, 0α} {αα2, α20, 1α, 01} {0α2, 10, α2α, α1}
{00, α2α, 0α, α20} {α0, 1α, αα, 10} {α2α2, 01, α21, 0α2} {1α2, α1, 11, αα2}
{00, 10, 11, 01} {α2α2, αα2, αα, α2α} {α0, α20, α21, α1} {1α2, 0α2, 0α, 1α}.

(5)
We can finally define

D2 = (F4 × F4,B2),

where
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B2 = B1 ∪ ϕ(B1).

By construction, B2 contains precisely 40 distinct blocks, which make D2 a simple 
(that is, with no repeated blocks) resolvable 2-(16, 4, 2) design. Also, because of properties 
(1) and (II) above, D2 is an additive design by [8, Proposition 2.7] (see Proposition 3
above). Note that D2, unlike D1 and ϕ(D1), is resolvable but not affine resolvable, hence 
it is not necessarily strongly additive. According to the terminology in [17,18] (see also 
[1, Remark 2.24(a)]), D2 is a quasidouble (or 2-fold quasimultiple) of the 2-(16, 4, 1)
design, and, in fact, D2 decomposes into two disjoint isomorphic copies of the affine 
plane of order four. Following [19, 4.1], this is the case for the majority of the 325062
non-isomorphic resolvable 2-(16, 4, 2) designs, as only 5001 indecomposable 2-(16, 4, 2)
designs are resolvable but do not contain AG(2, 4) as a subdesign.

We now prove that D2 is not strongly additive. By Definition 4 in Section 2, it suffices 
to compute the group GD2 and show that, when F4 × F4 is identified with the corre-
sponding subset of GD2 , there exists a 4-subset {X1, X2, X3, X4} of F4 × F4 that is not 
a block in B2 and is such that X1 + X2 + X3 + X4 = 0 in GD2 .

Lemma 10. GD2 � (Z/2Z)2 × (Z/4Z)3.

Proof. By definition, GD2 is the finitely presented commutative group whose generators 
are the sixteen elements of F4 × F4 and whose relations are the equalities X1 + X2 +
X3 +X4 = 0, as {X1, X2, X3, X4} ranges over the 40 blocks in B2. As we will now show, 
it actually suffices to consider only 16 blocks in B2. Indeed, let us consider the 16 blocks

{00, 10, 01, 11}
{00, 10, α0, α20}
{00, 01, 0α, 0α2}
{11, α0, 0α, α2α2}
{00, 11, αα, α2α2}
{01, αα, α20, 1α2}
{10, αα, 0α2, α21}
{00, α0, 0α2, αα2}
{00, 0α, α20, α2α}
{11, 1α, α21, α2α}
{11, α1, 1α2, αα2}
{10, 01, αα2, α2α}
{α0, 0α, 1α2, α21}
{10, 11, 1α, 1α2}
{00, α1, 1α2, α2α}
{α0, αα, α1, αα2},

(6)

in this order. If we replace each block {X1, X2, X3, X4} in (6) by the corresponding 
relation X1 +X2 +X3 +X4 = 0, then we get a system of 16 equations, whose unknowns 
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are the 16 elements of F4 × F4, which is easily seen to produce, in the same order as the 
corresponding blocks, the following equalities.

11 = − 00 − 10 − 01
α20 = − 00 − 10 − α0
0α2 = − 00 − 01 − 0α
α2α2 = 00 + 10 + 01 − α0 − 0α
αα = − 00 + α0 + 0α
1α2 = 2 · 00 + 10 − 01 − 0α
α21 = 2 · 00 − 10 + 01 − α0
αα2 = 01 − α0 + 0α
α2α = 10 + α0 − 0α
1α = − 00 + 10 + 0α
α1 = − 00 + 01 + α0
0 = 2 · 10 + 2 · 01
0 = 4 · 00
0 = 4 · 10
0 = 2 · 00 + 2 · 10 + 2 · α0 − 2 · 0α
0 = 4 · α0 .

(7)

It can be easily verified that, because of the previous equalities, each of the rela-
tions corresponding to the remaining 24 blocks in B2 just reduces to the trivial relation 
0 = 0, thereby showing that GD2 is only determined by the relations corresponding to 
the 16 blocks in (6). Also, each of the eleven elements 11, α20, 0α2, α2α2, αα, 1α2, α21, 
αα2, α2α, 1α, α1 is expressed in terms of the five elements 00, 10, 01, α0, 0α. This, to-
gether with the last five equalities in (7), finally shows that GD2 is the finitely presented 
commutative group with generators 00, 10, 01, α0, 0α and relations 4 · 00 = 0, 4 · 10 = 0, 
4 ·α0 = 0, 2 · 10 + 2 · 01 = 0, 2 · 0α = 2 · 00 + 2 · 10 + 2 ·α0. Hence we can conclude that, 
up to isomorphism, GD2 = (Z/2Z)2 × (Z/4Z)3, as claimed. �

Note, in passing, that it can be shown that GD1 � (Z/2Z)2 × (Z/4Z)5 by a similar 
argument.

Proof of Theorem 9. It suffices to show that the 2-(16, 4, 2) design D2 = (F4 ×F4, B2) is 
not strongly additive.

It follows from the proof of Lemma 10 that the generators 00, 10, 01, α0, 0α of GD2

can be represented as elements of (Z/2Z)2 × (Z/4Z)3 as follows.

00 = (0, 0, 0, 0, 1)
10 = (0, 0, 0, 1, 0)
01 = (0, 1, 0, 1, 0)
α0 = (0, 0, 1, 0, 0)
0α = (1, 0, 1, 1, 1).
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Also, because of the first eleven equalities in (7), one gets as well the following repre-
sentation of the remaining eleven points of F4 × F4.

11 = (0, 1, 0, 2, 3)
α20 = (0, 0, 3, 3, 3)
0α2 = (1, 1, 3, 2, 2)
α2α2 = (1, 1, 2, 1, 0)
αα = (1, 0, 2, 1, 0)
1α2 = (1, 1, 3, 3, 1)
α21 = (0, 1, 3, 0, 2)
αα2 = (1, 1, 0, 2, 1)
α2α = (1, 0, 0, 0, 3)
1α = (1, 0, 1, 2, 0)
α1 = (0, 1, 1, 1, 3).

With this identification of F4×F4 with a set of 16 distinct points in GD2 = (Z/2Z)2×
(Z/4Z)3 (which further confirms, by Definition 1 in Section 2, that the design D2 = (F4×
F4, B2) is additive), the four elements of each block in B2 sum up to zero by construction. 
This can also be readily verified by inspection. For instance, {00, α1, 1α, α2α2} is a block 
in ϕ(B1) ⊆ B2, and

00 + α1 + 1α + α2α2 = (0, 0, 0, 0, 1) + (0, 1, 1, 1, 3) + (1, 0, 1, 2, 0) + (1, 1, 2, 1, 0)
= (0, 0, 0, 0, 0).

On the other hand, the 4-set {00, 11, αα2, α2α} is not a block in B2, and

00 + 11 + αα2 + α2α = (0, 0, 0, 0, 1) + (0, 1, 0, 2, 3) + (1, 1, 0, 2, 1) + (1, 0, 0, 0, 3)
= (0, 0, 0, 0, 0)

in GD2 . This finally proves, by Definition 4 in Section 2, that the 2-(16, 4, 2) design 
D2 = (F4 × F4, B2) is not strongly additive.

This completes the proof of the theorem. �
Remark 11. Since the 4-subset {00, 11, αα2, α2α} of F4 × F4 is not a block in B1, but its 
elements sum up to zero in (Z/2Z)2 × (Z/4Z)3, the embedding of D1 = (F4 × F4, B1)
in (Z/2Z)2 × (Z/4Z)3 is a further example of a non-strongly additive embedding of a 
strongly additive design (see Remark 7 in Section 2).

In the following section, by iterating the previous construction, we will exhibit for 
each n in {3, 4, 5, 6} an additive resolvable 2-(16, 4, n) design Dn = (F4 × F4, Bn) that is 
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not strongly additive, and which is defined, as in the case n = 2, as the disjoint union of 
n copies of the affine plane of order four.

4. A decomposition of AG2(4, 2) into seven disjoint copies of the affine plane of order 
four

In this final section of the paper, we consider again the map

ϕ : F4 × F4 → F4 × F4

defined above in Section 3, in order to extend the construction given therein and provide 
further examples of additive 2-designs that are not strongly additive. By doing so, we 
also obtain a remarkable property of the classic geometric design AG2(4, 2).

We first show that, by considering the orbit under ϕ of the family B1 of the 20 affine 
lines of AG(2, 4), the 3-(16, 4, 1) Steiner quadruple system AG2(4, 2), that is, the point-
plane design of the affine geometry AG(4, 2), which is also a 2-(16, 4, 7) design with 140
blocks, decomposes into seven disjoint isomorphic copies of the affine plane of order four. 
In particular, AG2(4, 2) is a 7-fold quasimultiple of AG(2, 4) in the strongest possible 
sense.

Let us first recall that AG2(4, 2) is the block design whose point-set is the 4-
dimensional vector space F4

2 over F2, and whose blocks are all the affine planes in F4
2 , 

that is, equivalently, all the 4-subsets of F4
2 whose elements sum up to zero. In partic-

ular, AG2(4, 2) is strongly additive by Proposition 6 in Section 2. In passing, AG2(4, 2)
coincides with the Boolean design D4 = (F4

2 , B4) considered in [15, Proposition 2.5 and 
Remark 2.1(ii)], where it is also independently shown that the full group of automor-
phisms is (isomorphic to) the group of invertible affine mappings on F4

2 over F2. If we 
consider the standard group isomorphism

F4 � F2 × F2

defined by means of the identifications

0 ≡ (0, 0) 1 ≡ (1, 0) α ≡ (0, 1) α2 ≡ (1, 1), (8)

then AG2(4, 2) can be seen as the design whose point-set is F4×F4, and whose blocks are 
all the 4-subsets of F4×F4 whose elements sum up to 00. In particular, by property (1) in 
Section 3, the affine plane AG(2, 4) of order four, which we denoted by D1 = (F4×F4, B1), 
can be seen, up to isomorphism, as a 2-(16, 4, 1) subdesign of AG2(4, 2).

The crucial property of the matrix M defined in (3) is that, as it can be easily verified,

M7 = I,
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that is, equivalently, ϕ7(v) = v for all v in F4 × F4. We claim that the orbit under 
ϕ of the 20 affine lines in B1 contains precisely 140 distinct 4-subsets of F4 × F4 whose 
elements sum up to 00, which must necessarily coincide with the 140 blocks of AG2(4, 2).

Lemma 12. The 140 blocks of AG2(4, 2), seen as 4-subsets of F4×F4, are the orbit under 
ϕ of the 20 blocks of the affine plane D1 = (F4 × F4, B1) � AG(2, 4).

Proof. Since each plane through the origin in F4 × F4 has precisely four translates (or 
cosets) and, conversely, each affine plane in F4 × F4 is the translate of a unique plane 
through the origin, and since, by linearity, each power of ϕ maps translates to translates, 
it suffices to prove that the orbit under ϕ of the 5 affine lines through 00 in B1 contains 
all the 35 distinct planes through the origin in AG2(4, 2), that is, all the 35 distinct 
4-subsets of F4 × F4 containing 00 and whose elements sum up to 00. Since the orbit 
under ϕ of 00 only contains 00, it finally suffices to show that the orbit under ϕ of the 5
affine lines through 00 in B1, with 00 removed, contains all the 35 distinct 3-subsets of 
F4 ×F4 \ {00} whose elements sum up to 00 (that is, the 35 blocks of the derived design 
of AG2(4, 2) at the origin). In passing, any such ϕ is necessarily F2-linear on F4 × F4 by 
[15, Theorem 3.1].

As shown in (2) in Section 3, the five affine lines through 00 in B1, with 00 removed, 
are the five following 3-subsets of F4 × F4:

{10, α0, α20} {01, 0α, 0α2} {11, αα, α2α2} {α1, α2α, 1α2} {1α, αα2, α21}.

In accordance with table (4) in Section 3, the orbit under ϕ of the previous five triples 
consists of the 35 following 3-subsets of F4 ×F4, where each row is obtained by applying 
ϕ to the preceding row.

{10, α0, α20} {01, 0α, 0α2} {11, αα, α2α2} {α1, α2α, 1α2} {1α, αα2, α21}
{α2α2, 1α, α1} {α0, αα2, 0α2} {1α2, α21, αα} {α2α, 0α, α20} {10, 11, 01}
{αα, 10, α2α} {1α, 11, 0α2} {α20, 01, α21} {0α, αα2, α1} {α2α2, 1α2, α0}
{α21, α2α2, 0α} {10, 1α2, 0α2} {α1, α0, 01} {αα2, 11, α2α} {αα, α20, 1α}
{01, αα, αα2} {α2α2, α20, 0α2} {α2α, 1α, α0} {11, 1α2, 0α} {α21, α1, 10}
{α0, α21, 11} {αα, α1, 0α2} {0α, 10, 1α} {1α2, α20, αα2} {01, α2α, α2α2}
{1α, 01, 1α2} {α21, α2α, 0α2} {αα2, α2α2, 10} {α20, α1, 11} {α0, 0α, αα}.

(9)
These 35 triples are all distinct, and our claim is proved. �

Corollary 13. AG2(4, 2) decomposes into the seven disjoint subdesigns (F4×F4, B1), (F4×
F4, ϕ(B1)), (F4×F4, ϕ2(B1)) , . . ., (F4×F4, ϕ6(B1)), each of which is an isomorphic copy 
of the affine plane of order four.

It is natural to ask whether in general, for every prime power q, AG2(4, q) can be 
partitioned as the disjoint union of q2 + q + 1 subdesigns, each isomorphic to the affine 
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plane of order q2, and whether such isomorphic copies form one orbit under a cyclic group 
of order q2 + q + 1. By applying either of the two inequivalent cyclic regular packings of 
PG(3, q) constructed in [27], we expect that both properties are satisfied whenever q ≡ 2
(mod 3).

We now apply the decomposition of AG2(4, 2) in Corollary 13 to the construction of 
further examples of additive 2-designs that are not strongly additive. By iterating the 
same construction as in Section 3, for each n = 3, 4, 5, 6, 7 we define

Dn = (F4 × F4,Bn),

where

Bn = B1 ∪ ϕ(B1) ∪ ϕ2(B1) ∪ . . . ∪ ϕn−1(B1).

By construction, Dn is an additive resolvable 2-(16, 4, n) design for each n, which can 
be partitioned as the disjoint union of n subdesigns, each isomorphic to the affine plane 
of order four. We claim that Dn is not strongly additive for all n ∈ {3, 4, 5, 6}.

Lemma 14. GDn
� (Z/2Z)4 × Z/4Z for all n = 3, . . . , 7.

Proof. By arguing as in Section 3, one can show that, for each n = 3, . . . , 7, GDn
is 

the finitely presented commutative group with generators 00, 10, 01, α0, 0α and relations 
4 · 00 = 0, 2 · 00 = 2 · 10 = 2 · 01 = 2 · α0 = 2 · 0α, whence, up to isomomorphism, 
GDn

= (Z/2Z)4 × Z/4Z. �
Theorem 15. The additive 2-design Dn = (F4 × F4, Bn) is not strongly additive for all 
n ∈ {3, 4, 5, 6}.

Proof. By the argument in the proof of Lemma 14, the generators 00, 10, 01, α0, 0α of 
GDn

can be represented as elements of (Z/2Z)4 × Z/4Z as follows.

00 = (0, 0, 0, 0 ; 1)
10 = (1, 0, 0, 0 ; 1)
α0 = (0, 1, 0, 0 ; 1)
01 = (0, 0, 1, 0 ; 1)
0α = (0, 0, 0, 1 ; 1).

(10)

Also, because of the first eleven equalities in (7), one gets as well the following repre-
sentation of the remaining eleven points of F4 × F4.
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11 = (1, 0, 1, 0 ; 1)
α20 = (1, 1, 0, 0 ; 1)
0α2 = (0, 0, 1, 1 ; 1)
α2α2 = (1, 1, 1, 1 ; 1)
αα = (0, 1, 0, 1 ; 1)
1α2 = (1, 0, 1, 1 ; 1)
α21 = (1, 1, 1, 0 ; 1)
αα2 = (0, 1, 1, 1 ; 1)
α2α = (1, 1, 0, 1 ; 1)
1α = (1, 0, 0, 1 ; 1)
α1 = (0, 1, 1, 0 ; 1).

(11)

Now the 4-set {1α, αα, α2α2, 0α2} = ϕ6{10, α21, αα, 0α2} is in B7 \ Bn for all n =
3, 4, 5, 6, and

1α + αα + α2α2 + 0α2 = (1, 0, 0, 1 ; 1) + (0, 1, 0, 1 ; 1) + (1, 1, 1, 1 ; 1) + (0, 0, 1, 1 ; 1)
= (0, 0, 0, 0 ; 0)

in GDn
� (Z/2Z)4 × Z/4Z. This proves, by Definition 4 in Section 2, that the additive 

2-(16, 4, n) design Dn is not strongly additive for n = 3, 4, 5, 6.
This completes the proof of the theorem. �

Remark 16. Note that, since the 4-subset {1α, αα, α2α2, 0α2} of F4 × F4 is not a block 
in B1, but its elements sum up to zero in (Z/2Z)4 × Z/4Z, the embedding of D1 =
(F4×F4, B1) in (Z/2Z)4×Z/4Z is a further example of a non-strongly additive embedding 
of a strongly additive design (see Remark 7 in Section 2).

Remark 17. For n = 7, we showed above that

D7 = (F4 × F4,B7) � AG2(4, 2),

and that F4 × F4 can be represented as the set of the sixteen points in (10) and (11) in 
the group GD7 = (Z/2Z)4 × Z/4Z. Note that, interestingly enough, the embedding of 
F4×F4 in (Z/2Z)4×Z/4Z is essentially the identity (up to the irrelevant fifth coordinate, 
always equal to 1, in (10) and (11)). Indeed, if for each x in F4 = {0, 1, α, α2} we denote 
by f(x) the corresponding element in (Z/2Z)2 as in (8), then it can be easily checked 
by inspection that the embedding of F4 × F4 in (Z/2Z)4 × Z/4Z is given precisely by

xy �→ (f(x), f(y) ; 1)

for each xy in F4 ×F4. Being f : F4 → (Z/2Z)2 a group homomorphism, this implies, in 
particular, that, for each 4-subset {X1, X2, X3, X4} of F4 × F4, X1 +X2 +X3 +X4 = 0
in F4 × F4 if and only if X1 + X2 + X3 + X4 = 0 in GD7 = (Z/2Z)4 × Z/4Z. Since, in 
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turn, the former condition is equivalent to saying that {X1, X2, X3, X4} is a block in B7, 
we conclude that D7 is strongly additive by Definition 4 in Section 2, thereby obtaining 
an alternative, direct, proof of the strong additivity of AG2(4, 2).

Remark 18. It is worth noting that AG2(4, 2) has also an interesting representation in 
F5

2 . Indeed, if we recall again that AG2(4, 2) is the 2-(16, 4, 7) design whose point-set is 
F4

2 , and whose blocks are all the 4-subsets of F4
2 whose elements sum up to zero, we may 

define an embedding of AG2(4, 2) in F5
2 by means of the map

(x1, x2, x3, x4) �→ (x1, x2, x3, x4, 1 + x1 + x2 + x3 + x4).

Under this identification, the points of AG2(4, 2) are precisely the 16 points of the 
affine hyperplane of equation

x1 + x2 + x3 + x4 + x5 = 1

in the 5-dimensional vector space F5
2 , and the blocks are the 4-subsets of the hyperplane 

whose elements sum up to zero. Similarly, the affine plane AG(2, 3) can be represented as 
the set of the nine points of the affine hyperplane x1 + x2 + x3 = 1 in the 3-dimensional 
vector space F3

3 (see [8, Remark 3.8(b)] and [24]). More generally, any 2-(pn, k, λ) design 
(Fn

p , B), with p a prime dividing k, can be represented as the set of the pn points of 
the affine hyperplane x1 + x2 + · · · + xn+1 = 1 in the vector space Fn+1

p , in such a 
way that, for any k-subset of the point-set Fn

p , the sum of the k elements is zero in 
Fn
p if and only if the sum of the corresponding points of the hyperplane is zero in 

Fn+1
p . It suffices to consider the embedding of Fn

p in Fn+1
p defined by (x1, . . . , xn) �→

(x1, . . . , xn, 1 + (p − 1)(x1 + · · · + xn)).

Remark 19. As a final application of the above decomposition of AG2(4, 2) (see Corol-
lary 13), we can regard the arrangement of the distinct 35 triples in (9) as a Kirkman 
triple system (KTS) of order 15, that is, as a solution to Kirkman’s schoolgirl problem, 
where the fifteen schoolgirls are represented as the fifteen nonzero elements of F4 × F4.

Note that ϕ induces an order-7 automorphism of the KTS, with one fixed point (that 
is, 0α2) and two orbits of length 7 (a KTS with this property is called 2-rotational). 
A natural question to ask is which of the seven non-isomorphic solutions of Kirkman’s 
problem is isomorphic to the solution presented here in (9).

Proposition 20. The solution of Kirkman’s schoolgirl problem given in (9) is isomorphic 
to the KTS(15) denoted by 1b.

Proof. As we already mentioned earlier, each triple in the arrangement (9) is a 3-subset 
of F4×F4\{00} whose elements sum up to 00. By identifying F4 and F2×F2 as in (8), we 
immediately conclude that the distinct 35 triples in (9) are the 35 lines of the projective 
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geometry PG(3, 2). Now it is well known that the point-line design of PG(3, 2) is the 
underlying Steiner triple system of two non-isomorphic KTS(15)s, commonly denoted by 
1a and 1b (see, for instance, [11, p. 67] and [12, Table 19.6]), where the latter (respectively, 
former) system is the first (resp., second) published solution of Kirkman’s problem, due to 
Cayley (resp., Kirkman). By means of an algorithm introduced in [14] (see also Theorem 
2.4 in [25]), one can easily show that the KTS(15) in (9) is isomorphic to system 1b. The 
details are given in [25, §4, 3)], where, as we did above, we regard the point-line design 
of PG(3, 2) as the derived design of AG2(4, 2) at the origin. �

Similarly, one can show that, if ψ : F4 × F4 → F4 × F4 is the order-7 invertible F2-
linear map defined on the canonical basis by ψ(10) = 0α, ψ(α0) = 10, ψ(01) = α0, 
ψ(0α) = 1α2, then the orbit under ψ of the five affine lines through 00 in B1, with 00
removed, is a KTS(15) isomorphic to system 1a (see again [25, §4, 3)]).
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