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An abelian antipower of order k (or simply an abelian
k-antipower) is a concatenation of k consecutive words of
the same length having pairwise distinct Parikh vectors. This
definition generalizes to the abelian setting the notion of a
k-antipower, as introduced in Fici et al. (2018) [7], that is
a concatenation of k pairwise distinct words of the same
length. We aim to study whether a word contains abelian
k-antipowers for arbitrarily large k. Š. Holub proved that
all paperfolding words contain abelian powers of every order
(Holub, 2013 [8]). We show that they also contain abelian
antipowers of every order.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Many of the classical definitions in combinatorics on words (e.g., period, power, factor
complexity, etc.) have a counterpart in the abelian setting, though they may not enjoy
the same properties.
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Recall that the Parikh vector P (w) of a word w over a finite ordered alphabet
A = {a1, a2, . . . , a|A|} is the vector whose i-th component is equal to the number of oc-
currences of the letter ai in w, 1 ≤ i ≤ |A|. For example, the Parikh vector of w = abbca

over A = {a, b, c} is P (w) = (2, 2, 1). This notion is at the basis of the abelian combina-
torics on words, where two words are considered equivalent if and only if they have the
same Parikh vector.

For example, the classical notion of factor complexity (the function that counts the
number of distinct factors of length n of a word, for every n) can be generalized by
considering the so-called abelian factor complexity (or abelian complexity for short),
that is the function that counts the number of distinct Parikh vectors of factors of
length n, for every n.

Morse and Hedlund [10] proved that an infinite word is aperiodic if and only if its factor
complexity is unbounded. This characterization does not have an analogue in the case of
the abelian complexity, as there exist aperiodic words with bounded abelian complexity.
For example, the well-known Thue-Morse word has abelian complexity bounded by 3,
yet it is aperiodic.

Richomme et al. [11] proved that if a word has bounded abelian complexity,
then it contains abelian powers of every order — an abelian power of order k is
a concatenation of k words having the same Parikh vector. However, this is not a
characterization of words with bounded abelian complexity. Indeed, Štěpán Holub [8]
proved that all paperfolding words contain abelian powers of every order, and paper-
folding words have unbounded abelian complexity (a property that by the way follows
from the main result of this paper). The class of paperfolding words therefore con-
stitutes an interesting example, as they are uniformly recurrent (every factor appears
infinitely often and with bounded gaps) aperiodic words with linear factor complex-
ity.

In a recent paper [7], the first and the third author, together with Antonio Restivo
and Luca Zamboni, introduced the notion of an antipower. An antipower of order k, or
simply a k-antipower, is a concatenation of k consecutive pairwise distinct words of the
same length. E.g., aabaaabbbaba is a 4–antipower.

In [7], it is proved that the existence of powers of every order or antipowers of every
order is an unavoidable regularity for infinite words:

Theorem 1. [7] Every infinite word contains powers of every order or antipowers of every

order.

Note that in the previous statement there is no hypothesis on the alphabet size.
Actually, in [7] a stronger result is proved (of which we omit the statement here for

the sake of simplicity) from which it follows that every aperiodic uniformly recurrent
word must contain antipowers of every order.

In this paper, we extend the notion of an antipower to the abelian setting.
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Definition 1. An abelian antipower of order k, or simply an abelian k-antipower, is a
concatenation of k consecutive words of the same length having pairwise distinct Parikh
vectors.

For example, aabaaabbbabb is an abelian 4–antipower. Notice that an abelian
k-antipower is a k-antipower but the converse does not necessarily hold (which is dual
to the fact that a k–power is an abelian k–power but the converse does not necessarily
hold).

We think that an analogue of Theorem 1 may still hold in the case of abelian an-
tipowers, but unfortunately the proof of Theorem 1 does not generalize to the abelian
setting.

Problem 1. Does every infinite word contain abelian powers of every order or abelian
antipowers of every order?

Clearly, if a word has bounded abelian complexity, then it cannot contain abelian
antipowers of every order. However, a word can avoid large abelian antipowers even if
its abelian complexity is unbounded. Indeed, in [7], an example is shown of an aperiodic
recurrent word avoiding 6-antipowers (and therefore avoiding abelian 6-antipowers), and
from the construction it can be easily verified that the abelian complexity of this word
is unbounded.

A similar situation can be illustrated with the well-known Sierpiǹski word. Recall that
the Sierpiǹski word (also known as Cantor word) s is the fixed point starting with a of
the substitution

σ : a → aba

b → bbb

so that the word s begins as follows:

ababbbababbbbbbbbbababbbabab27a · · ·

Therefore, s can be obtained as the limit, for n → ∞, of the sequence of words (sn)n≥0

defined by: s0 = a, sn+1 = snb3n

sn for n ≥ 1. Notice that for every n one has |sn| = 3n.
We show that the abelian complexity of s is unbounded.

Theorem 2. The Sierpiǹski word s does not contain 11–antipowers, hence it does not

contain abelian 11–antipowers.

An infinite word can contain both abelian powers of every order and abelian antipow-
ers of every order. This is the case, for example, of any word with full factor complexity.
However, finding a class of uniformly recurrent words with linear factor complexity satis-
fying this property seems a more difficult task. Indeed, most of the well-known examples
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(Thue-Morse, Sturmian words, etc.) have bounded abelian complexity, hence they can-
not contain abelian antipowers of every order — whereas, by the aforementioned result
of Richomme et al. [11], they contain abelian powers of every order. Building upon the
framework that Štěpán Holub developed to prove that all paperfolding words contain
abelian powers of every order [8], we prove in the next section that all paperfolding words
contain also abelian antipowers of every order.

2. Sierpiǹski word

Blanchet-Sadri, Fox and Rampersad [2] characterized the asymptotic behavior of the
abelian complexity of words that are fixed points of a morphism. In the following propo-
sition, we give the precise bounds of the abelian complexity of the Sierpiǹski word.

Proposition 3. The abelian complexity a(n) of the Sierpiǹski word verifies a(n) =
Θ(nlog3 2).

Proof. The Sierpiǹski word s is prefix normal with respect to the letter a (see [6,3] for
the definition of prefix normal word), that is, for each length n, no factor of s of length
n contains more occurrences of the letter a than the prefix of length n. Since s contains
arbitrarily long blocks of bs, the number of distinct Parikh vectors of factors of s of a
given length n is given by 1 plus the number of as in the prefix of length n. It is easy to
see that the values of n for which the proportion of a’s is maximal in a prefix of length n

are of the form n = 3k, while those for which the proportion of a’s is minimal are of the
form n = 2 · 3k, and in both cases the prefix of length n contains 2k as. With a standard
algebraic manipulation, this gives

nlog3 2/2log3 2 ≤ a(n) ≤ nlog3 2. ✷

Proof of Theorem 2. Suppose that s contains an 11–antipower u = u1u2 · · · u11, of length
11m. Let us then consider the first occurrence of u in s. Let n be the smallest integer
such that u occurs in sn+1b3n+1

but not in snb3n

.
Let us first suppose that no ui is equal to bm for some i. Then u1 · · · u10 is a factor of

sn+1 = snb3n

sn, so 10m < 3n+1 hence m < 3n−1. Then, by minimality of n, there are
only two possible cases: either u1 starts before the block b3n

, or u1 starts in the block
b3n

and ends in sn.
In the first case, by minimality of n, u ends after the block b3n

, and since no ui equals
bm, we get 2m > 3n, which is in contradiction with m < 3n−1.

If u1 starts in the block b3n

and ends in sn, u2 · · · u10 is a factor of sn = sn−1b3n−1

sn−1

and so 9m < 3n hence m < 3n−2. By minimality of n, u11 ends after the block b3n−1

.
Again, since no ui equals bm, we get 2m > 3n−1, which is in contradiction with m < 3n−2.

Let us then suppose that u11 = bm, so that u1 · · · u9 is a factor of sn+1. The same
reasoning as before holds, since (9m < 3n+1) ⇒ (m < 3n−1) and (8m < 3n) ⇒ (2m <
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3n−1). If u1 = bm, u2 · · · u10 is a factor of sn with no ui = bm and we can again apply
the same reasoning.

Finally, suppose that ui = bm with i 6= 1 and i 6= 11. Hence, u1 · · · u10 is a factor of
sn+1 = snb3n

sn, and 10m < 3n+1. If u1 starts before the block b3n

(and u ends after
by minimality of n), we get 3m > 3n since otherwise u would contain two blocks bm,
and this contradicts 10m < 3n+1. If u1 does not start before the block b3n

, then by
minimality of n it starts in this block, so u2 · · · u10 is a factor of sn = sn−1b3n−1

sn−1

which ends after the block b3n−1

, again by minimality of n. This shows that 9m < 3n,
and at the same time 3m > 3n−1, which produces a contradiction. ✷

3. Paperfolding words

In what follows, we recall the combinatorial framework for dealing with paperfolding
words introduced in [8], although we use the alphabet {0, 1} instead of {1, −1}.

A paperfolding word is the sequence of ridges and valleys obtained by unfolding a
sheet of paper which has been folded infinitely many times. At each step, one can fold
the paper in two different ways, thus generating uncountably many sequences. It is
known that all the paperfolding words are uniformly recurrent and have the same factor
complexity c(n), and that c(n) = 4n for n ≥ 7 [1]. Madill and Rampersad [9] studied
the abelian complexity of the regular paperfolding word and proved that it is a 2-regular
sequence. The regular paperfolding word

p = 00100110001101100010011100110110 · · ·

is the paperfolding word obtained by folding at each step in the same way. It can be
defined as a Toeplitz word (see [4] for a definition of Toeplitz words) as follows: Consider
the infinite periodic word γ = (0?1?)ω, defined over the alphabet {0, 1} ∪ {?}. Then
define p0 = γ and, for every n > 0, pn as the word obtained from pn−1 by replacing the
symbols ? with the letters of γ. So,

p0 = 0?1?0?1?0?1?0?1?0?1?0?1?0?1? · · · ,

p1 = 001?011?001?011?001?011?001? · · · ,

p2 = 0010011?0011011?0010011?0011 · · · ,

p3 = 001001100011011?001001110011 · · · ,

etc. Thus, p = limn→∞ pn, and hence p does not contain occurrences of the symbol ?.
More generally, one can define a paperfolding word f by considering the two infinite

periodic words γ = (0?1?)ω and γ̄ = (1?0?)ω. Then, let b = b0b1 · · · be an infinite
word over {−1, 1}, called the sequence of instructions. Define (γn)n≥0 where, for every
n, γn = γ if bn = 1 or γn = γ̄ if bn = −1. The paperfolding word f associated with b

is the limit of the sequence of words fn defined by f0 = γ0 and, for every n > 0, fn is
obtained from fn−1 by replacing the symbols ? with the letters of γn.
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Recall that every positive integer i can be uniquely written as i = 2k(2j + 1), where
k is called the order of i (a.k.a. the 2-adic valuation of i), and (2j + 1) is called the odd

part of i. One can verify that the previous definition of f is equivalent to the following:
for every i = 1, 2, . . . define wi = (−1)jbk, where i = 2k(2j + 1). Then fi = 0 if wi = 1

and fi = 1 if wi = −1. This is equivalent to

fi = 1 iff i ≡ 2k(2 + bk) mod 2k+2.

Remark 1. The regular paperfolding word corresponds to the sequence of instructions
b = 1ω.

Definition 2. Let f be a paperfolding word. An occurrence of a letter in f at position i is
said to be of order k if the letter at position i is ? in fk−1 and different from ? in fk. We
consider the letters occurring in f0 as of order 0.

Hence, in a paperfolding word f associated with the sequence b = b0b1 · · · , the 1’s of
order 0 appear at positions 2 + b0 + 4t, t ≥ 0, the 1’s of order 1 appear at positions
2(2+b1 +4t), t ≥ 0, and, in general, the 1’s of order k appear at positions 2k(2+bk +4t),
t ≥ 0.

Let f = f1f2 · · · be a paperfolding word associated with the sequence b = b0b1 · · · . A
factor of f of length n starting at position ℓ + 1, denoted by f[ℓ + 1, . . . , ℓ + n], contains a
number of 1’s that is given by the sum, for all k ≥ 0, of the 1’s of order k in the interval
[ℓ + 1, ℓ + n]. For each k, since the 1’s of order k are at distance 2k+2 one from another,
the number of occurrences of 1’s of order k in f[ℓ + 1, . . . , ℓ + n] is given by

⌊

n − ℓ

2k+2

⌋

+ εk,bk
(ℓ, n),

where εk,bk
(ℓ, n) ∈ {0, 1} depends on the sequence b (in fact, bk determines the positions

of the occurrences of the 1’s of order k in f). We set

∆(ℓ, n) =
∑

k≥0

εk,bk
(ℓ, n)

the number of “extra” 1’s in f[ℓ + 1, . . . , ℓ + n].
For example, in the prefix p[1, 14] of length 14 of the regular paperfolding word, we

know that there are at least 3 = ⌊ 14
4 ⌋ 1’s of order 0, 1 = ⌊ 14

8 ⌋ of order 1 and 0 = ⌊ 14
16 ⌋

of order 2. In the interval [1, 14] there are three 1’s of order 0 (at positions 3, 7 and 11),
two 1’s of order 1 (at positions 6 and 14), and one 1 of order 2 (at position 12), so we
have in p[1, 14] no extra 1 of order 0, i.e., ε0,1(0, 14) = 0, one extra 1 of order 1, i.e.,
ε1,1(0, 14) = 1 and one extra 1 of order 2, i.e., ε2,1(0, 14) = 1, so that ∆(0, 14) = 2.

We set

Ek,bk
(ℓ, d, m) = (εk,bk

(ℓ, ℓ + d), . . . , εk,bk
(ℓ + (m − 1)d, ℓ + md))
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and

∆(ℓ, d, m) =
∑

k≥0

Ek,bk
(ℓ, d, m) = (∆(ℓ, ℓ + d), . . . , ∆(ℓ + (m − 1)d, ℓ + md)) .

The factor of f of length dm starting at position ℓ+1 is an abelian m-power if and only
if the components of the vector ∆(ℓ, d, m) are all equal, while it is an abelian m-antipower
if and only if the components of the vector ∆(ℓ, d, m) are pairwise distinct.

The next result (Lemma 4 of [8]) will be the fundamental ingredient for the construc-
tion of abelian antipowers in paperfolding words.

Lemma 4 (Additivity Lemma). Let ℓ, ℓ′ ≥ 0 and m, d, d′ ≥ 1 be integers with ℓ′ and d′

both even. Let r be such that 2r > ℓ + md, and for each k ≥ 0 the following implication

holds: if Ek,1(ℓ′, d′, m) 6= Ek,−1(ℓ′, d′, m) then bk = bk+r.

Then

∆(ℓ, d, m) + ∆(ℓ′, d′, m) = ∆(ℓ + 2rℓ′, d + 2rd′, m).

Using the Additivity Lemma, Holub [8] proved that all paperfolding words contain
abelian powers of every order. We will use the Additivity Lemma to prove that all
paperfolding words contain abelian antipowers of every order. We start with the regular
paperfolding word, then we extend the argument to all paperfolding words.

3.1. Regular paperfolding word

Let

Φ : {0, 1}2 → {x, y, z}

00 7→ x

01 7→ y

10 7→ y

11 7→ z

be the morphism that identifies words of length 2 over the alphabet {0, 1} that are
abelian equivalent. We have the following lemma:

Lemma 5. Let n ≥ 3 be an integer. Let p = p[ℓ + 1, . . . , ℓ + 2n] = u1v1 · · · u2n−1v2n−1 be

a factor of p of length 2n. Then, no q < 2n−1 exists such that

Φ(p) = Φ(u1v1) · · · Φ(u2n−1v2n−1) = Φ(uq+1vq+1) · · · Φ(u2n−1v2n−1)Φ(u1v1) · · · Φ(uqvq).

(1)

Proof. First, notice that if q′ is the smallest solution of (1), then q′|2n−1. Indeed, writing
wi = Φ(uivi), we have
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w1 · · · w2n−1 = w1 · · · wq′wq′+1 · · · w2n−1

= wq′+1 · · · w2n−1w1 · · · wq′ ,

and since two words commute if and only if they are powers of the same word, there
exists a word z and positive integers s and t such that

w1 · · · wq′ = zs and wq′+1 · · · w2n−1 = zt.

This gives |z| · (s + t) = 2n−1 and |z| · s = q′. By the minimality of q′, we have that s = 1

and so |z| = q′ divides 2n−1. Thus, q′ = 2j for some integer j < n.
By the Toeplitz construction of p, we immediately have that

u1v1 · · · u2n−1v2n−1 = av1av2av3a · · · av2n−1

or

u1v1 · · · u2n−1v2n−1 = u1au2au3au4a · · · u2n−1a

with a ∈ {0, 1} and a = 1 − a.
Suppose q′ 6= 1 and q′ 6= 2n−1. Since q′ is even, we have that Φ(uivi) = Φ(ui+q′vi+q′)

implies uivi = ui+q′vi+q′ . But this cannot be the case, since two consecutive letters of
order j occur in p at distance 2j+1. Since j ≤ n − 2, we have 2j+2 ≤ 2n, so the factor p

contains at least two consecutive letters of order j. Suppose that the first of such letters
is ui; then ui+q′ is at distance 2q′ = 2j+1, so ui+q′ 6= ui, against the hypothesis that q′

is a solution of (1).
Thus, we must have q′ = 1 or q′ = 2n−1. Since n ≥ 3, p[ℓ + 1, . . . , ℓ + 2n] contains

two consecutive letters of order 1. Let us first suppose that vi is a 1 of order 1, ui is a
1 of order 0 and vi+2 is a 0 of order 1. Then, Φ(uivi) = Φ(11) 6= Φ(10) = Φ(ui+2vi+2).
The other cases would give 10ui+1vi+111 with vi a 0 of order 1 and vi+2 a 1 of order 1,
00ui+1vi+101 and 00ui+1vi+101 respectively in the case ui is a 0 of order 0. Similarly, we
get 10ui+1vi+100 and 00ui+1vi+110 if ui is a 1 of order 1 and ui+2 a 0 of order 1 or vice
versa, and vi a 0 of order 0. The cases with vi a 1 of order 0 are symmetric. Every case
leads to Φ(uivi) 6= Φ(ui+2vi+2). This implies q′ 6= 1 and so q′ = 2n−1. By minimality of
q′, the only solution of (1) is q = 2n−1. ✷

Theorem 6. The regular paperfolding word contains abelian m-antipowers for every

m ≥ 2.

Proof. The proof is mainly based on the Additivity Lemma. Let m ≥ 2 be fixed. To prove
the result it is sufficient to find a vector ∆(s, d, m) having pairwise distinct components.
Let k be an integer such that 2k ≥ m. Consider the first factor of length 2k+2 − 1

containing a 1 of order k in the middle; our factor is then of the form
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w1w′

with |w| = |w′| = 2k+1 − 1. Since for every positive integers i, k′, s, we have
pi of order k′ ⇒ pi+2k′+s of order k′ and

pi of order k′ ⇒ pi+2k′+2 = pi 6= pi+2k′+1

we get:

pi of order k′ ⇒ pi+2k′+2+s = pi 6= pi+2k′+1 (2)

then, up to applying a translation, we can suppose w = w′. In fact, since |w1| = 2k+1,
the equality is true for every letter of order smaller than k by (2). Now, take the smallest
order r > k of a letter 0 in w or w′. It is the only letter of this order in our factor since
two letters of order r are distant of 2r+1 > |w1w′|. If we consider the factor translated by
2r+1, by (2) the letters of order smaller than r are the same and the letter we considered
becomes a 1. Since the length of w1w′ is 2k+2 − 1 and the distance between two letters
of order higher than k is at least 2k+1, the factor w1w′ contains exactly two letters of
order higher than k. Hence, in at most 2 steps we get w1w with every letter of order
greater than k being a 1. Writing ℓ + 1 the starting position of an occurrence in p of the
factor w1w, we set ℓ′ = ℓ if ℓ is even or ℓ′ = ℓ + 1 otherwise. Consider the vectors

∆(ℓ′, 2, 2k), ∆(ℓ′ + 2, 2, 2k), ∆(ℓ′ + 4, 2, 2k), ∆(ℓ′ + 6, 2, 2k), . . . , ∆(ℓ′ + 2k+1 − 2, 2, 2k).

We claim that these vectors are pairwise distinct. By contradiction, if ∆(ℓ′ + 2p, 2, 2k) =

∆(ℓ′ + 2q, 2, 2k) for some p, q with p ≤ q, then we have that

Φ(pℓ′+2p+1 · · · pℓ′+2p+2k+1) = Φ(pℓ′+2q+1 · · · pℓ′+2q+2k+1). (3)

Since the factor we are considering is w1w, we have pℓ′+2p+1 · · · pℓ′+2q = pℓ′+2p+1+2k+1 · · ·

pℓ′+2q+2k+1 and so

Φ(pℓ′+2q+1 · · · pℓ′+2q+2k+1) = Φ(pℓ′+2q+1 · · · pℓ′+2p+2k+1pℓ′+2p+1 · · · pℓ′+2q)

but this and (3) contradicts Lemma 5.
Finally, as the vectors are different, we use the Additivity Lemma to obtain a vector

whose components are pairwise distinct: applying n times the Additivity Lemma on
∆(ℓ′ + 2p, 2, 2k) one can obtain n∆(ℓ′ + 2p, 2, 2k). It then suffices to take a sequence of
integers α0, . . . , α2k−1 increasing enough to have

Σ2k−1
i=0 αi∆(s′ + 2i, 2, 2k),

a vector whose components are pairwise distinct. Indeed, labelling aj the j-th component
of this vector and xi,j the j-th component of ∆(s′ + 2i, 2, 2k), we have
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aj = aj′ ⇔ Σ2k−1
i=0 αixi,j = Σ2k−1

i=0 αixi,j′ ⇔ Σ2k−1
i=0 αi(xi,j − xi,j′) = 0.

By “increasing enough”, we precisely mean αr > Σr−1
i=0 αi sup

0≤q,q′≤2k−1

(xi,q − xi,q′), so that

by decreasing induction we have that for every i, with 0 ≤ i ≤ 2k −1, one has xi,j = xi,j′ .
In particular, this gives ∆(ℓ′ + 2j, 2, 2k) = ∆(ℓ′ + 2j′, 2, 2k), which implies j = j′. Hence,
all the components are pairwise distinct and the proof is complete. ✷

3.2. All paperfolding words

To generalize the result above to all paperfolding words, one has to take care of the
condition bi = bi+r in the Additivity Lemma.

Lemma 5 can be modified so that the translation is not by 2 but by 2u, for any u > 1.
Let

φ : {0, 1}2u

→ N

a1 · · · a2u 7→ |{i | ai = 1}|

be the morphism that identifies words of length 2u over {0, 1} that are abelian equivalent.
Then we have the following lemma, analogous to Lemma 5:

Lemma 7. Let n ≥ u + 3 be an integer and let f be a paperfolding word. Every factor f =

f [ℓ + 1, ℓ + 2n] = a1,1a1,2 · · · a2n−1,2u−1a2n−1,2u of f of length 2n satisfies the following

property: If q is such that

φ(f) = φ(a1,1 · · · a1,2u) · · · φ(a2n−1,1 · · · a2n−1,2u) =

φ(aq+1,1 · · · aq+1,2u) · · · φ(a2n−1,1 · · · a2n−1,2u)φ(a1,1 · · · a1,2u) · · · φ(aq,1 · · · aq,2u),

then q = 2n−1.

Proof. The proof of Lemma 5 mainly applies here; we only need to change the part
where we use the Toeplitz construction to justify j = n − 1. Here, in each 2u-tuple one
can find one letter of order u − 1 and one letter of higher order. Using (2), we then see
that φ(ai,1 · · · ai,2u) is totally determined by the letter of order u − 1 and the letter of
higher order in ai,1 · · · ai,2u . Applying again (2) to the letter of order u − 1, we can apply
exactly the same reasoning as in the proof of Lemma 5 (in a sense, our new φ is the
previous one modulo the letters of order smaller than u − 1). ✷

Now, we can prove the main theorem:

Theorem 8. Every paperfolding word f contains abelian m-antipowers for every m ≥ 2.

Proof. Let k be an integer such that 2k ≥ m. As before, we will prove that f contains
abelian 2k-antipowers, hence it will contain abelian m-antipowers. Since the alphabet
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{0, 1} is finite, there must exist a factor bu−1 · · · bu+k+4 of b that occurs infinitely often.
As before, let us start with the first block of length 2u+k+2 − 1 containing a 1 of order
u + k in the middle; our block is then

w1w′

with |w| = |w′| = 2u+k+1 − 1. As before, in at most two steps, we can have w = w′, and
the maximum order of a letter appearing in this factor is u + k + 4. Again, writing ℓ the
starting position of an occurrence of this factor, we set ℓ′ = ℓ if ℓ is even or ℓ′ = ℓ + 1

otherwise. Consider the vectors

∆(ℓ′, 2u, 2k), ∆(ℓ′ + 2u, 2u, 2k), ∆(ℓ′ + 2u+1, 2u, 2k), . . . , ∆(ℓ′ + 2u+k+1 − 2u, 2u, 2k).

Here again, these vectors are pairwise distinct: if ∆(ℓ′ +2up, 2u, 2k) = ∆(ℓ′ +2uq, 2u, 2k),
we have that

φ(pℓ′+2up+1 · · · pℓ′+2u(p+2k)) = φ(pℓ′+2uq+1 · · · pℓ′+2u(q+2k))

and this contradicts Lemma 7 because, here again, w = w′ and so

pℓ′+2up+1 · · · pℓ′+2uq = pℓ′+2u(p+2k)+1 · · · pℓ′+2u(q+2k).

Moreover, εi,−1(ℓ′ + 2up, 2u, 2k) 6= εi,1(ℓ′ + 2up, 2u, 2k) ⇒ u − 1 ≤ i ≤ u + k + 4,
using (2) and the fact that no letter of order higher than u + k + 4 appears in the factor
w1w. So, choosing r such that 2r > ℓ′ + 2u+k+1 − 2u + 2u+k and bu−1 · · · bu+k+4 =

br+u−1 · · · br+u+k+4, we can apply the Additivity Lemma and, as for the regular paper-
folding word, construct an abelian 2k-antipower that occurs as a factor in f. ✷

Remark 2. From Theorem 8 it follows immediately that every paperfolding word has
unbounded abelian complexity.

In [5] Cassaigne et al. proved that every infinite word w with bounded abelian complex-
ity aw(n) contains abelian powers of every order. In fact, one can see that the following
hypothesis on w is sufficient:

∃N, ∀m, ∃v ∈ Fact(w), |v| = m and av(n) ≤ N, (4)

that is, the abelian complexity is bounded on arbitrarily long factors of w. Since every
paperfolding word is uniformly recurrent, by Remark 2 we have that (4) cannot hold true
for paperfolding words. Hence, (4) is not a necessary condition to have abelian powers
of every order.
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