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Abstract 9 
 10 

Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral 11 

cardiovascular system (heart) during affective elicitation in the healthy, however questions related to the directionality of this 12 

functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions 13 

during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal 14 

influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardio-vagal 15 

dynamics estimated from inhomogeneous point-process models of the heartbeat, and high-density electroencephalogram (EEG) 16 

dynamics in 22 healthy subjects who underwent pleasant/unpleasant affective elicitation by watching pictures from the 17 

International Affective Picture System database. Particularly, we calculated the GC indexes between the EEG spectrogram in the 18 

canonical θ, α, β and γ bands, and both the instantaneous mean heart rate and its continuous parasympathetic modulations (i.e., the 19 

instantaneous HF power). Thus, we looked for significant statistical differences among GC values estimated during resting state, 20 

neutral elicitation, and pleasant/unpleasant arousing elicitation. As compared with resting state, coupling strength increases 21 

significantly in the left hemisphere during positive stimuli, and in the right hemisphere during negative stimuli. Our results further 22 

reveal a correlation between emotional valence and lateralization of the dynamical information transfer going from-brain-to-heart, 23 

mainly localized in the prefrontal, somatosensory, and posterior cortices, and of the information transfer from-heart-to-brain, 24 

mainly reflected into the fronto-parietal cortex oscillations in the γ band (30−45Hz). 25 
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I. INTRODUCTION 37 
 38 

A long-lasting scientific debate about the physiological origin of emotions is currently open: are emotions elicited by 39 

peripheral stimuli and responses (i.e., unconscious reactions mediated by the autonomic nervous system (ANS)) or are they 40 

ultimately created within specific brain areas (i.e., from an entirely cognitive process) (16)? 41 

The dynamic physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) 42 

have been gaining relevant attention from the scientific community in the last decade. The nature of these interactions is deeply 43 

connected to the switching mechanisms between healthy and pathological states, as well as between stress, emotions, and other 44 

homeostatic regulations. As a matter of fact, emotional processing and regulation are known to significantly alter peripheral 45 

physiological responses mediated by the ANS (15, 19), although this vagally-mediated regulation deeply involves also the 46 

limbic system and the prefrontal cortex (16, 32, 46, 72). Here, we start from the hypothesis that both brain and heart have a 47 

crucial role in the dynamical regulation and processing of emotions, studying the causal links between these physiological 48 

systems probed in the healthy by means of high-resolution electroencephalography (EEG) and heart rate variability (HRV). Our 49 

hypothesis relies on recent evidences demonstrating that the emotional response takes root in the dynamical interplay between 50 

the brain and heart (17, 19, 32, 78, 80). 51 

Anatomically, the heart has extensive efferent and afferent neural connections with the brain that may be thought as 52 

constituting the physiological foundation of a “brain-heart” emotional pathway (17). Cardiac dynamics result from the 53 

synergistic action of the two ANS branches, the sympathetic and parasympathetic (vagus) nervous systems, whose regulation 54 

involves complex cortical, subcortical, and medullary signaling (55). To this extent, HRV time series directly result from the 55 

balancing effect of sympathovagal activity on cardiovascular control (58). From HRV signal processing in the frequency 56 

domain, the power spectral density within the 0.15-0.4 Hz range (the so-called high-frequency, HF, band) is known to be 57 

mediated by parasympathetic nerve activity (33, 58), whereas the power in the 0.04−0.15 Hz range (i.e., low-frequency, LF, 58 

band) is thought to result from both parasympathetic and sympathetic activity (64). 59 

From the brain side, the insular cortex, which controls the parasympathetic and the sympathetic tones (73), plays also a 60 

prominent role in emotional processing, as documented by numerous functional neuroimaging and neuropsychological 61 

investigations (37, 41). Specifically, the anterior insular cortex, which is part of the limbic system, is increasingly studied for its 62 

role in emotional awareness (18, 84). Not surprisingly, patients with insular damage after a stroke exhibit cardiovascular 63 

instability and are prone to autonomic alterations and even sudden cardiovascular death (53, 54). Furthermore, the medial 64 

prefrontal cortex, besides contributing to several cognitive functions, is involved in the regulation of cardiovascular functions 65 

(14). Importantly, strong emotion and mental stress, which significantly affect the activity of the prefrontal cortex, are 66 



recognized as playing a significant role in severe cardiac arrhythmias (71). On the other side, cardiac afferent inputs 67 

significantly influence the activity of brain areas that are involved in perceptual and cognitive processing, as well as in an 68 

emotional experience, e.g., the thalamus, hypothalamus, and amygdala (12, 27, 47). Note that, exemplarily, neural activity in the 69 

amygdala are synchronized with the cardiac cycle (29). 70 

Recently, we have analyzed brain-heart interactions during visual emotion elicitation in healthy subjects using the maximal 71 

information coefficient throughout different levels of arousal at different levels of valence (78). Note that, following the 72 

Circumplex Model of Affect (CMA) (57), a specific emotion can be seen as a result from the combination of a valence level, 73 

identified by the perceptual degree of pleasantness or unpleasantness, and arousal level, identified by the perceptual degree of 74 

intensity. Although successful in the characterization of the information shared by heart and brain during emotional perception, 75 

our previous endeavor (78) left the question open about how information is transferred dynamically along the two directions of 76 

the brain-heart axis. 77 

To fill this gap, in this study we employ Granger Causality (GC) to characterize cortical influences on heartbeat dynamics, and 78 

vice-versa, during visual emotional perception in healthy subjects. GC is a very popular and well-principled tool for assessing 79 

directional interactions from time series data (10, 31, 56). We show experimental results on GC for the directional brain-heart 80 

interplay during visual emotional perception using data gathered from twenty-two healthy subjects who were emotionally 81 

elicited through passive viewing of standardized pictures from the International Affective Picture System (IAPS) (42) database. 82 

These images have been widely employed in recent scientific studies and are fully characterized in terms of valence and arousal 83 

levels (42). Our physiological inference is mainly focused on the functional interplay between cortical and parasympathetic 84 

dynamics. To this extent, vagal activity is derived from a spectral analysis of HRV series given a time-frequency analysis of 85 

respiratory dynamics (58).  86 

Preliminary findings of this research were recently reported in (23). Methodological details, as well as extensive Results, and 87 

Discussion and Conclusions follow below. 88 

 89 
II. MATERIALS AND METHODS 90 

II.A. Acquisition set-up and experimental protocol 91 

The experimental paradigm has been extensively described in (76, 78, 79). A brief summary is reported below. 92 

Participants: Twenty-two healthy volunteers (11 females) aged from 21 to 24 were recruited at the University of Pisa. All 93 

subjects were asked to fill out a Patient Health QuestionnaireTM (PHQ-9), which is a self-administered questionnaire for the 94 

diagnosis of mental health disorders, e.g., depression. Subjects who obtained a score below a threshold of 5 were enrolled in the 95 



experiment (39). The study was approved by the local ethical committee, and an informed consent was signed by all volunteers. 96 

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national 97 

research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This 98 

protocol was approved by the Ethical Committee of the University of Pisa-Pisa University Hospital, Pisa (Italy). 99 

Stimuli: The experimental protocol uses the IAPS database (42) relying on CMA theory (57) for the emotional 100 

characterization. The IAPS database is a large collection of images, which are standardized with a specific affective rating 101 

expressed in terms of arousal and valence. We selected five groups of images along the arousal dimension (A1, A2, A3, A4, and 102 

A5) comprising pleasant and unpleasant elicitations of several valence degrees. To this extent, we can distinguish neutral (N), 103 

arousing positive (ARP), and arousing negative (ARN) elicitations in addition to a resting state (R). 104 

Procedure: The aforementioned sequence of IAPS images was projected onto a PC screen. The slide-show comprised 9 105 

sessions of 20 images each. The images were clustered according to their arousal scores into 4 groups. A1 (Mean (M) = 3.58, 106 

Standard Deviation (SD) = .30), A2 (M = 4.60, SD = .31), A3 (M = 5.55, SD = .28), A4 (M = 6.50, SD = .33). Each arousal 107 

group included 10 pictures with positive valence (i.e. pleasant) and 10 pictures with negative valence (i.e., unpleasant), and 108 

was alternated between two neutral sessions (N, comprised of 6 pictures each, with M= 2.81, SD=.24). Every picture was 109 

shown for 10s. 110 

Data acquisition: Throughout the experimental sessions, brain signals were acquired through the Geodesic EEG Systems 300 111 

from the Electrical Geodesics, Inc. The Geodesic net included 128 electrodes and had the advantages to be easy to use and 112 

comfortable. The mastoid signal average was used as a reference. The ECG was recorded using a BIOPAC MP150 113 

physiological acquisition system through Ag/AgCl surface electrodes positioned on the participant’s chest in a modified lead II 114 

configuration. In addition, a second input channel of the BIOPAC MP150 system was used to record the respiration activity 115 

through a thoracic piezoresistive band. All signals were digitized at 500 Hz. The experiment was performed in strictly 116 

controlled conditions. The room was illuminated by a white neon lighting, with a power of 50 lumens, equally distributed. 117 

Subjects were asked to sit on a comfortable chair at a fixed distance of 70 cm from the screen configured with maximum 118 

brightness. 119 

II.B. EEG processing 120 

The EEG data processing was mostly performed using the MATLAB toolbox, EEGLAB (21). 121 

The pre-processing included the four following steps: data filtering, head/body movement artifact detection and removal, eye 122 

blink artifact detection and removal and interpolation of corrupted channels. 123 

1) Data filtering: A 6th-order Butterworth infinite impulse response bandpass filter with cut-off frequencies of 1-45 Hz was 124 



applied on the raw EEG signals to reduce the out-of-band noise. 125 

2) Head/body detection and removal: An algorithm for the detection of artifact due to head and/or body movements was 126 

implemented (78). First, the EEG signals were divided into 4s-epochs. Then, the distribution of epoch amplitudes was computed 127 

and the epochs above the 95th percentile threshold was excluded from the following analyses. This automatic process was 128 

further validated by a visual inspection. 129 

3) Eye artifacts detection and removal: Independent component analysis (ICA) was applied to EEG signals to separate 130 

neural activity from blink artifacts. ICA is a common method for solving the blind source separation problem which imposes a 131 

statistical independence to the output pairs. The Independent component containing ocular artifacts were discarded after a visual 132 

inspection (35). Eye-artifact-free EEG signals were obtained by projecting selected non-artifactual ICA components back (35). 133 

4) Interpolation of corrupted channels: Corrupted channels can be defined (21) as EEG signals with several unexpected 134 

events and presence of high-frequency noise. In order to detect the EEG-corrupted channels, we built a 3D-space whose axes 135 

were the second, the third, and the forth central moments. The good EEG channels were commonly clustered together, whereas 136 

the corrupted ones drifted apart in different directions according to their artefactual nature (77). Therefore, in the 3D space, we 137 

computed the channel central moment distribution and we measured the distance of each channel from the distribution centroid. 138 

The channels exceeding a threshold value by twice the interquartile range for at least one dimension were replaced with 139 

interpolated data. Moreover, in this case the process was further validated by a visual inspection. 140 

5) Spectral Analysis: Spectral analysis was performed estimating the power spectral density (PSD) of each channel by 141 

means of the Welch’s method. Specifically, the squared magnitude of the fast Fourier transform was averaged across moving 142 

and 75%-overlapping time windows of 4 seconds. The overlap of 75% was chosen to decrease the PSD variance. After the PSD 143 

estimation, the power spectra were computed within the classical frequency bandwidths of θ [4−8 Hz), α [8−14 Hz), β [14−32 144 

Hz) and γ (≥ 32 Hz) (77). 145 

II.C. Instantaneous Heart Rate Variability Processing 146 

The ECG signal was analyzed off-line to extract the RR intervals. Erroneous and ectopic beats were corrected by a 147 

previously developed algorithm, based on the point-process modeling (77). Starting from the RR interval series, instantaneous 148 

cardiovascular dynamics with a 5ms resolution was estimated through point-process modeling (see details in (75, 77)). An 149 

inverse-Gaussian probability density function is associated with each heartbeat event (i.e., R-peaks from the ECG). Each of 150 

these functions is parametrized in its shape parameter and mean value, which is modeled as a linear combination of the past 151 

RR intervals. A local maximum likelihood method (78) was used to calculate the model parameter within a sliding window of 152 

W = 70s, obtaining time-varying estimates every 5ms. The model goodness-of-fit is based on the Kolmogorov-Smirnov (KS) 153 



test and associated KS statistics (see details in (78)). Autocorrelation plots were considered to test the independence of the 154 

model-transformed intervals (78). The instantaneous mean RR interval and the HF power spectrum estimated by point-process 155 

modeling, subsampled synchronously with the EEG power time series, were taken as realizations of from-heart dynamics η onto 156 

the brain. 157 

II.D. Time-frequency analysis of respiratory dynamics 158 

The respiratory signal was processed to identify the fundamental respiratory frequency over time. Specifically, a time-159 

frequency analysis was performed by applying the short-time-Fourier-transform to the respiration signal recorded throughout 160 

the experiment. We used a sliding Hamming window with a length of 1 minute, to allow for necessary frequency resolution, 161 

and 90 % of overlap, to smooth the time-frequency representation. 162 

II.E. Granger Causality Analysis 163 

The values of EEG spectral power computed in the four canonical bands (θ, α, β, and γ) were obtained with a temporal 164 

spacing of one second. Therefore, to synchronize cardiovascular and brain time series, the instantaneous series of mean HRV 165 

and HF spectral power were averaged within non-overlapped time windows of one second. The time series obtained in this way 166 

were considered separately for each of the four experimental conditions (R, N, ARP, ARN). Then, taking only the blocks of data 167 

belonging to the same condition, each series was detrended using a zero-phase high-pass filter with .015 Hz cut-off frequency, 168 

and normalized to zero-mean and unit variance. 169 

The four EEG power time series calculated for each electrode, in each experimental condition (R, N, ARP, ARN) were 170 

considered as a realization of a 4-dimensional stochastic process descriptive of the brain dynamics, 𝚽  𝜃, 𝛼, 𝛽, 𝛾 . The 171 

heartbeat dynamics measured in synchrony with the brain dynamics were described by means of a scalar stochastic process 172 

η, obtained taking alternatively the time series of mean HRV (ηµ) or the time series of the HF power (ηHF); these 173 

alternative choices of the cardiac process were made to allow interpreting its dynamics either as an index of the overall 174 

HRV (ηµ), or as an index of vagal modulation (ηHF). 175 

Then, Granger causality (GC) analysis was performed considering the M -dimensional stochastic process 𝐗 𝑋 , … , 𝑋 = 176 

𝚽, 𝜂  (here, M = 5). Assuming the scalar process Xj as the target and the (possibly vector) process 𝐗i as the driver  177 

(i, j ∈{1,…,M}, i ≠ j ), GC quantifies, within a linear prediction framework, the amount of information transferred from 178 

Xi to Xj intended as the extent to which the knowledge of the past states of the driver, 𝐗 , 𝐗 , , 𝐗 , , … , improves 179 

the prediction of the present state of the target, Xj,t, above and beyond the extent to which Xj,t is predicted by its own past 180 

states, 𝑋 , 𝑋 , , 𝑋 , , … . This definition is quantified using two nested linear prediction models, the first 181 



performing the regression of 𝑋 ,  on 𝑋 ,  and the second performing the regression of 𝑋 ,  on 𝐗 , , 𝐗 , .These two 182 

regressions yield the prediction errors 𝑊 | ,  and 𝑊 | , whose variances 𝜎 |  and 𝜎 |  are combined to yield a Granger 183 

Causality Index (GCI) from 𝐗i to Xj as (3): 184 

𝐹 → log |

|
        (1) 185 

In this study, GCI was computed from the state-space representation of the process X (3). Compared with the classical 186 

vector autoregressive (VAR) description of full and restricted models, the state-space description has the advantage of 187 

providing a closed-form representation of the sub-models that result when the driver is omitted. This allows computing 188 

multiple prediction error variances without repeating model identification, and ultimately results in a dramatic reduction of the 189 

estimation bias. Details on computation of the partial variances from the parameters of a state-space model can be found in (4, 190 

25). 191 

The GC analysis described above was repeated two times considering either ηµ or ηHF as the cardiovascular process η = X5, 192 

together with 𝚽  𝜃, 𝛼, 𝛽, 𝛾 𝑋 , … , 𝑋  as the brain process. Practical estimation of GC was performed first 193 

identifying the VAR model fitting the brain and cardiovascular time series measured for each condition and each of the 128 194 

EEG channels, and then passing the estimated VAR parameters to state-space analysis. VAR identification was performed 195 

through the standard least squares method, drawing the observations of the present and past values of the five processes from 196 

the data blocks relevant to the analyzed condition. The number of past samples used in the identification (VAR model order) 197 

was set according to the Akaike Information Criterion. The estimated VAR model parameters were exploited in the state-198 

space framework to compute all the prediction error variances needed for the computation of GCI. Specifically, Eq. 1 was 199 

used to compute the information transferred jointly from all brain processes to the cardiovascular system (𝐹 → ), and the 200 

information transferred from the heart process to each assigned brain process (𝐹 → ), where y and x correspond to one 201 

of the two cardiovascular measures (µ and HF), and to one of the four EEG bandwidths (θ, α, β, or γ), respectively. Moreover, 202 

the statistical significance of each GC measure was assessed by using the traditional Fisher F-test, under the null hypothesis of 203 

absence of GC (10). For each subject, each GC was detected as statistically significant if the F statistic was greater than the 204 

critical value from a Fisher distribution computed for a significance level of .05. 205 

II.F. Statistical Comparisons between the four different experimental conditions (R, N, ARN, ARP) 206 

For both brain-to-heart and heart-to-brain interactions, we assessed the significant statistical differences among the four 207 

different experimental conditions (R, N, ARN, ARP). Specifically, for each of the six pairs of experimental conditions, the 208 

given measure of information transfer was compared using a Wilcoxon signed-rank test with Bonferroni correction for multiple 209 



comparisons. A p-value lower than 0.05 was considered as statistically significant. 210 

II.G. Statistical assessment of the lateralization effect 211 

To evaluate the tendency of a brain hemisphere to be specialized for affective afferent/efferent brain-heart interplay, we tested 212 

whether the proportions of significant electrodes, resulted from the pairwise comparisons among R, N, ARN, ARP, were 213 

statistically different between the right and left hemisphere using chi-squared tests. 214 

III. EXPERIMENTAL RESULTS 215 
 216 

On average, the length of the sets of data analyzed in the various conditions were 485 sec during R, 247 sec during N, 273 sec 217 

during ARN, and 270 sec during ARP. Of note, we tested for possible interactions for all different durations of the time 218 

series, finding no significant interactions. The average VAR model order selected by the AIC criterion is 4.6, 3.6, 4.0 and 219 

3.9 during R, N, ARN, and ARP, respectively. 220 

As detailed in (78), all EEG recordings show more than 90% of artifact-free epochs. No subjects were discarded and, 221 

therefore, the results described in this section come from data gathered from all 22 volunteers. The optimal model order for 222 

point-process models of heartbeat dynamics was found to be p = 7, with KS distances never above .051 (78). 223 



 224 

Fig. 1. Topographic maps in the first-row panel show Granger Causality values from EEG power spectrum computed in all frequency band to 225 

instantaneous heart rate dynamics (𝐹 → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing 226 

elicitation with negative valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects 227 

showing a significant GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a 228 

graphical representation of post-hoc statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. 229 

Color scale shows p-values corrected for multiple comparisons. 230 
 231 

Results from the time-frequency analysis of breathing dynamics are shown below. The respiratory frequency is bounded within the 232 

HF band (0.15-0.4 Hz) throughout whole experimental sessions including resting and emotional elicitation conditions, are shown 233 

in Fig 2. Therefore, it is possible to consider the HF power of HRV as a reliable marker of parasympathetic activity (2, 45, 50). 234 



 235 

Fig. 2. Black lines and gray areas indicate median and MAD values among subjects of the smoothed respiratory time-frequency representation. 236 

Horizontal dashed lines mark the lower and upper bounds of the HRV-HF power spectrum. 237 
 238 

III.A.  Brain-to-heart directional coupling 239 

Figure 1 and 2 show, for each experimental condition, topographic maps of the brain-to-heart GCI averaged across subjects 240 

(maps A-D), along with p-values resulting from the F-test (maps I-IV) and statistical comparison of GCI distributions between 241 

each pair of conditions (maps a-f). Considering the mean heartbeat dynamics as the cardiac process (Figure 1), therefore 242 

considering brain-to-heart dynamics through both sympathetic and parasympathetic nervous systems, a significant increase of 243 

the information transfer was found during emotional elicitation (Figure 1.B, 1.C, 1.D) with respect to the resting state 244 

(Figure1.A). Moreover, a valence-dependent lateralization effect of the information transfer can also be observed (Figure 1.b, 245 

1.c). Particularly, the positive stimulation induces a significantly higher information transfer from the left-brain hemisphere to 246 

the heart, with a specific involvement of the somatosensory (as highlighted by the circle in the Figure 1.D), parietal, occipital, 247 

and prefrontal cortices. On the other hand, negative stimuli induce higher information transfer from the prefrontal and 248 

somatosensory right regions (as highlighted by the circle in the Figure 1.C), whereas in the parietal and occipital areas the GCI 249 

increases in both the left and right hemisphere. 250 



 251 

Fig. 3. Topographic maps in the first-row panel show Granger Causality values from EEG power spectrum computed in all frequency band to HRV power 252 

spectrum computed in HF band (F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing 253 

elicitation with negative valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects 254 

showing a significant GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a 255 

graphical representation of post-hoc statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. 256 

Color scale shows p-values corrected for multiple comparisons. 257 

 258 

Although only around 33% of subjects shows significant GCI these hemisphere-specific GCI increases are statistically 259 

significant with respect to the resting state, as shown by the p-values topographic maps comparing R sessions with ARP and 260 

ARN sessions. Moreover, the chi-squared test between the proportions of significant electrodes in the right and left hemisphere, 261 

confirms the evidence of the lateralization effect already observed through visual inspection. In fact, the proportion of 262 

significant areas in the left hemisphere was significantly higher than those in the right one, when comparing “R vs ARP” 263 

sessions, with a p-value of 8.96ꞏ10-10 as seen in Table I. 264 



 265 

Fig. 4. Topographic maps in the first-row panel show Granger Causality values from instantaneous heart rate to EEG power spectrum computed in θ 266 

band (F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with negative 267 

valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant 268 

GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of 269 

post-hoc statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-270 

values corrected for multiple comparisons. 271 

 272 

Considering the HF power dynamics as the cardiac process (Figure 2), therefore considering from-brain-to-heart dynamics 273 

through parasympathetic nervous system exclusively, a significant increase in GCI during neutral and arousing stimuli (Figure 274 

2.B, 2.C, 2.D) with respect to the resting state (Figure 2.A) was found. GC analysis shows that a neutral visual stimulation 275 

induces a significant information transfer from the right hemisphere to the parasympathetic system (Figure 2.a), whereas the 276 

information transfer for positive (negative) stimuli originates from the frontal and prefrontal mid-line (right-posterior) areas (see 277 

Figure 2.a, and 2.b). Results from the F-tests indicate significant GCIs in over 50% of the subjects (up to 70%) in the majority 278 

of brain regions (Figure 2.I–2.IV). Furthermore, the significant increase of GCI in the right hemisphere, during negative and 279 

neutral elicitation with respect to the rest, is statistically higher than in the left one, as shown by the chi-squared test concerning 280 

the comparisons between “R vs ARN” and “R vs N” (see Table I). 281 



 282 

Fig. 5. Topographic maps in the first-row panel show Granger Causality values from HRV power spectrum computed in HF band to EEG power spectrum 283 

computed in θ band F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with 284 

negative valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant 285 

GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc 286 

statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for 287 

multiple comparisons. 288 
 289 

TABLE I 290 
 291 

P-VALUES FROM CHI-SQUARED STATISTICS TO TEST THE SIGNIFICANCE OF THE DIFFERENCES BETWEEN THE TWO HEMISPHERES FOR EACH 292 
BRAIN-TO-HEART COMPARISON 293 

 294 

Brain-to-Heart R vs N R vs ARN R vs ARP N vs ARN N vs ARP ARN vs ARP 

Φ → ηµ 0.637 0.174 8.96e-10 1.000 1.000 0.986 

Φ → ηHF 1.00e-15 1.06e-04 0.758 0.979 0.314 1.000 

 295 
 296 

 297 

 298 
III.B. Heart-to-Brain directional coupling 299 

Considering the afferent coupling from heart to brain, Figures 3-10 show, for each experimental condition, topographic maps 300 

of GCI values averaged among all subjects (maps A-D), and p-value topographic maps resulting from the F-test (maps I-IV) 301 

and the multiple statistical comparisons between each pair of the four experimental conditions (maps a-f). Specifically, 302 

Figures 3-9 refer to the ηµ→Φθ,α,β,γ transfer, whereas Figures 4-10 to ηHF→ Φθ,α,β,γ transfer.  303 



 304 

Fig. 6. Topographic maps in the first-row panel show Granger Causality values from instantaneous heart rate to EEG power spectrum computed in α 305 

band (𝐹 → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with negative 306 

valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant 307 

GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of 308 

post-hoc statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values 309 

corrected for multiple comparisons. 310 

 311 

Considering the mean heartbeat dynamics and the EEG lowest frequency bands (i.e., θ and α) no significant variations among 312 

arousal, neutral, and resting sessions are found in the afferent transfer (Figure 3 Figure 5). However, taking into account brain 313 

oscillations in the β band (Figure 7), a lateralization effect of the information transfer during the positive emotional elicitation 314 

with respect to the resting state is evident in the left frontal and somatosensory areas (see Figure 7.c). This is also supported by 315 

the statistical results of the chi-squared test in Table II, which shows a significant variation between the two hemispheres in the 316 

R vs ARP comparison. In the γ band (Figure 9), similarly to the brain-to-heart analysis, we found a valence-dependent 317 

lateralization of information transfer, even though in a less marked way, as shown by p-value topographic maps related to the 318 

“R vs. ARN”, and “R vs. ARP” comparisons (Figure 9.b and 9.c, respectively). In fact, statistical results (Table II) suggest that, 319 

comparing with resting state sessions, sympathetic and parasympathetic driven information is transferred prevalently to the left 320 

hemisphere cortex in case of positive arousing elicitation (Figure 9.c, and to the right hemisphere cortex in case of negative 321 

arousing elicitation (Figure 9.b). In addition, note that in the 𝐹 → case, the percentage of subjects showing a significant GCI 322 



(F-statistics <.05) during the positive elicitation was constantly over 50% (see Figure 9.IV). 323 

 324 

Fig. 7. Topographic maps in the first-row panel show Granger Causality values from HRV power spectrum computed in HF band to EEG power spectrum 325 

computed in α band (F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with negative 326 

valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant GCI 327 

according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc 328 

statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for 329 

multiple comparisons. 330 

 331 
Concerning the parasympathetic-driven information transfer to the brain, significant changes are associated with neutral vs. 332 

positive visual elicitation (Figure 4 and 6). Specifically, in the θ and α bands, comparing positive and neutral stimuli, a 333 

significant decrease of the GC values computed in the right hemisphere was found during the positive stimuli with respect to the 334 

neutral stimuli (see Figure 4.e and 6.e, respectively). Moreover, considering the α band, the “N vs ARP” comparison revealed 335 

also a significant difference between the two hemispheres as see in Table II. This lateralization effect related to the positive 336 

stimulation in the right hemisphere is lost in the β (Figure 8) and γ bands (Figure 10), although in the latter band there is a 337 

significant decrease of the information transfer between vagal dynamics and the brain involving the parietal cortices area 338 

(Figure 10.e). 339 



 340 

Fig. 8. Topographic maps in the first-row panel show Granger Causality values from instantaneous heart rate to EEG power spectrum computed in β band 341 

(𝐹 → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with negative valence; ARP: 342 

Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant GCI according to the F-343 

test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc statistical results. The six 344 

maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for multiple comparisons. 345 

 346 
IV. DISCUSSION AND CONCLUSION 347 

 348 
The aim of this study was to assess functional, directional brain-heart interactions during visual emotional elicitation in healthy 349 

subjects. Specifically, the instantaneous mean RR interval (µ) and the instantaneous HF power estimated from a point-process 350 

modeling are taken as realizations of heartbeat dynamics, whereas brain dynamics are estimated through EEG power spectra. The 351 

use of HRV as a gold-standard sign of ANS control is especially justified for the present study by its extensive use and 352 

effectiveness in previous research in affective computing (see (11, 16, 33, 38, 58) and references therein for reviews). Likewise, 353 

EEG and evoked related potentials recordings have been extensively employed to investigate brain dynamics during emotional 354 

processing and regulation (11, 48, 65), with a particular focus on the so-called brain asymmetry and the lateralization theory 355 

during emotional processing (9, 20, 52). 356 



 357 
Fig. 9. Topographic maps in the first-row panel show Granger Causality values from HRV power spectrum computed in HF band to EEG power spectrum 358 

computed in β band (F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with 359 

negative valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant 360 

GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc 361 

statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for 362 

multiple comparisons. 363 

 364 
TABLE II 365 

 366 
P-VALUES FROM CHI-SQUARED STATISTICS TO TEST THE SIGNIFICANCE OF THE DIFFERENCES BETWEEN THE TWO HEMISPHERES FOR EACH 367 

HEART-TO-BRAIN COMPARISON 368 
 369 

Heart-to-Brain R vs N R vs ARN R vs ARP N vs ARN N vs ARP ARN vs ARP 

ηµ → Φθ 0.314 0.526 0.302 1 1 1 

ηµ → Φα 0.302 1 0.314 1 1 0.063 

ηµ → Φβ 1 1 0.012 1 0.302 1 

ηµ → Φγ 0.302 0.032 0.061 0.314 1 1 
 370 

ηHF → Φθ 0.314 1 1 0.268 0.205 1 

ηHF → Φα 0.07 1 1 0.314 3.15E-04 1 

ηHF → Φβ 0.556 1 1 1 0.314 1 

ηHF → Φγ 0.314 1 0.314 1 0.105 1 

 371 



 372 

373 
  374 

Fig. 10. Topographic maps in the first-row panel show Granger Causality values from instantaneous heart rate to EEG power spectrum computed in γ band 375 

(𝐹 → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with negative valence; ARP: 376 

Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant GCI according to the F-377 

test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc statistical results. The six 378 

maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for multiple comparisons. 379 

 380 

To the best of our knowledge, this is the first study that investigates the dynamic causal interactions between the brain and 381 

heart and attempts to estimate their coupling using a directional multivariate model to understand emotional regulation processes. 382 

We focused on GC to properly measure interactions between time series of the EEG oscillatory activity and instantaneous 383 

heartbeat dynamics, also inferring on the functional causality from-brain-to-heart and from-heart-to-brain. Importantly, GC 384 

implements a statistical, predictive notion of causality whereby fluctuations in one system (e.g., the brain) precede and help 385 

predicting subsequent fluctuations in the second system (e.g., heart). As multivariate GC input setting, we considered high-386 

resolution (i.e., 128 channels) EEG oscillations for each of the four canonical bands: θ (4-8 Hz), α (8-14 Hz), β (14-32 Hz), and γ 387 

(32-45 Hz), as well as instantaneous heartbeat and vagal estimates from point-process models. The latter choice is justified by 388 

three main observations: i) this modeling has been successfully applied for effective emotion recognition (76); ii) it is possible to 389 

obtain cardiovascular estimates of sympathovagal tone with any resolution in time, without the need for preliminary 390 



interpolation of the unevenly sampled RR interval series (76); iii) proper model goodness of fit measures can be studied to 391 

demonstrate that the derived estimates actually fit the individual cardiac series (76). 392 

 393 

Fig. 11. Topographic maps in the first-row panel show Granger Causality values from HRV power spectrum computed in HF band to EEG power spectrum 394 

computed in γ band (F → ). The four maps correspond to the four experimental conditions (R: rest; N: Neutral elicitation; ARN: Arousing elicitation with 395 

negative valence; ARP: Arousing elicitation with positive valence). In the second row, topographic maps represent percentage of subjects showing a significant 396 

GCI according to the F-test results for each electrode and experimental condition. In the third row, topographic maps give a graphical representation of post-hoc 397 

statistical results. The six maps correspond to the six pairwise comparisons among the four experimental conditions. Color scale shows p-values corrected for 398 

multiple comparisons. 399 

 400 
Twenty-two healthy subjects were shown standardized affective pictures taken from the IAPS database. We selected five 401 

different groups of images according to their arousal levels (N, AR1, AR2, AR3, AR4). Each group is comprised of two different 402 

valence levels. Note that in the proposed methodological approach not only we consider all possible valence-dependent brain- 403 

heart couplings regardless of the arousal level, but also account for the subject-specific time-varying coupling in a directional 404 

fashion. In addition, we estimated the parasympathetic nervous system dynamics through the instantaneous HF power spectrum 405 

derived from the point-process model. This allowed us to study the dynamics of the causal information transfer between the 406 

central neural activity and the parasympathetic system during emotional elicitation. 407 

Our findings demonstrate that the functional causal coupling between brain and heartbeat dynamics during emotional 408 

elicitation is characterized by a significant valence-dependent lateralization with respect to resting states. Specifically, during a 409 



positive visual elicitation information is transferred from the left-brain hemisphere to the heart, whereas during negative 410 

elicitation GC increases in the right prefrontal region. The valence-dependent lateralization is also evident considering the from-411 

heart-to-brain path probed for high/frequency EEG rhythms (i.e., β and γ bands). In fact, positive elicitations determine an 412 

increased transfer of information from the heart to the left-frontal and somatosensory regions. In addition, considering EEG 413 

oscillations in the γ band, the information transfer between rest and negative elicitation is directed toward the somatosensory 414 

and occipital right cortices. Moreover, according to the F-test performed for all the brainΦ-heartη/ heartη-brainΦ GC values, the 415 

predictive information is statistically significant in up to 70% of the subjects. This demonstrates a large inter-subject variability 416 

that commonly characterizes physiological responses to emotional elicitation. However, it is worthwhile noting that the brain 417 

regions where the statistical comparison between R, N, ARN, and ARP is statistically significant also show a high percentage of 418 

subjects with significant GCI (≥ 50% (24)). 419 

Of note, the current literature reports controversial theories and experimental results on lateralization as correlated with the 420 

perception of emotional valence. There is a substantial body of work claiming evidence of an overall right-lateralization of 421 

emotional processing, subsumed by the so-called Right-Hemisphere model (1, 9, 60, 63). Although evidences for the right- 422 

hemisphere hypothesis are numerous, many studies describe hemispheric differences as a function of positive versus negative 423 

emotions (22, 68, 82). As a matter of fact, there are evidences supporting the hypothesis of an increased EEG activity over the 424 

left hemisphere associated with positive affective processing as compared to the right hemisphere, which is, instead, thought to 425 

be involved in negative emotional processing (67, 74). Conversely, other findings show relatively higher power for negative 426 

valence over the left temporal region as compared to the right and a general lateralization shift towards the right hemisphere for 427 

positive valence (51). 428 

There is ample evidence that efferent innervation of the heart is lateralized in the peripheral part of the autonomic system 429 

with right-sided and left-sided autonomic pathways influencing cardiac activity in an asymmetric manner (43, 62, 69, 70). The 430 

SA node is predominantly and more efficiently controlled by sympathetic and parasympathetic fibers running on the right side. 431 

Considering this lateralization of autonomic cardiac control at the peripheral level, and since most of the autonomic pathways 432 

descending from brain stem areas take an ipsilateral route, several studies have suggested an analogous mode or organization at 433 

the level of the central nervous system (30, 40, 49). Indeed, it is not surprising to find that brain stem regions immediately 434 

involved in autonomic regulation of cardiac activity, such as hypothalamic or medullary areas, seem to be lateralized in the 435 

same manner as the peripheral pathways. On the other side, also in this case the scientific literature is not always coherent. 436 

Other findings indicate indeed that the control of autonomic cardiac activity at the level of the cerebral cortex seems to be 437 

characterized by a division of responsibility between both hemispheres, i.e., sympathetic activity is mainly controlled by the 438 



right hemisphere and parasympathetic activity is under the left hemisphere’s main control (83). 439 

Here, we report that visual emotional stimulation determines a transfer of information from the right brain hemisphere to 440 

vagal nerve related activity when the stimulation is neutral, and from the posterior right area when the stimulation is unpleasant. 441 

On the contrary, during positive elicitation the action of the medial prefrontal and frontal cortex prevails. The lateralization 442 

effect is more evident in the afferent connection from the parasympathetic system to the brain. The comparison between a 443 

positive arousing state with a neutral one where the parasympathetic tone is dominant shows a significant increase in the right 444 

hemisphere in this latter condition. Therefore, we confirm the relevance of the right hemisphere in the sympathovagal activity, 445 

but we also highlight the importance of the hedonic tract of the emotional elicitation. Of note, our considerations were not 446 

limited to visual inspection but were supported by the chi-squared test, which statistically evaluates the differences between the 447 

two hemispheres. Our findings support the so-called Dual-System Models of emotions (52). Contrary to the Right-Hemisphere 448 

hypothesis that states a dominant role for the right hemisphere in emotional processing (1, 8, 9, 60), Dual-System theories 449 

suggest that positive and negative emotions are implemented by neural systems that are at least partially separable (20, 36, 59). 450 

Indeed, although in the current literature there are several different theories, perhaps one of the most influential is the valence 451 

asymmetry model (20). 452 

As a study limitation, we mention that data from valence elicitation sessions comprised stimuli across different degrees of 453 

arousal (from 1 to 10, according to IAPS scale (78)); as a consequence, the reported results “mix” different arousing levels 454 

administrated with constant valence, and, therefore, might be obtained through non-optimal VAR model parameter estimation 455 

because of possible non-stationarities of the input data. Moreover, we mention that self-assessment scores of elicited IAPS 456 

images after the experiment were not taken into account in this study. We rely, in fact, on the standardization of the IAPS 457 

images, which is performed on a very large number of healthy subjects (42), ensuring highly consistent results in terms of 458 

valence and arousal ratings. Moreover, it is worthwhile noting that GC may not underlie anatomical connections between 459 

cardiovascular system and brain, but it measures the ability to predict the future values of a time series using prior values of 460 

another. What can be measured (and what cannot) by statistical measures such as Granger causality has been matter of intense 461 

debate in the recent literature (see, e.g., (5, 28, 34, 66)). As pointed in a recent discussion (5), the design and purpose of GC is 462 

to measure “the effect” that physical mechanisms (i.e., physiological mechanisms) have on the time series which are measured 463 

as output of two observed dynamical systems (in our case, organ systems). Through its underlying statistical notion (i.e., 464 

quantifying the reduction in the prediction error when the causal mechanism is taken into account, as compared to when it is 465 

ignored), GC quantifies the directed influence (or “causal information transfer”) from one system to another intended purely 466 

from a statistical, data-driven perspective. As such, GC measures of the causal effect produced by an underlying mechanism 467 



yield estimates of the “functional connectivity” between systems, as opposed to physiology-driven parametric models such as 468 

dynamic causal modeling which attempt to find the optimal mechanistic description explaining the observed data in terms of 469 

“effective connectivity” (66). It is worth noting that neither “functional” nor “effective” connectivity representations necessarily 470 

map univocally onto the underlying anatomical (structural) connectivity. Therefore, GC is necessarily limited if one tries to 471 

elicit the exact specific (afferent or efferent) physiological mechanisms which give rise to an observed phenomenon (like an 472 

emotion in our case). Nevertheless, if properly computed from multivariate linear processes, GC is a clear and unambiguous 473 

measure of causal effect, and can thus be interpreted to detect correlated dynamics between two systems (here, brain and 474 

cardiovascular system) where temporal precedence serves to disambiguate cause and effect (here, to set directed statistical 475 

influences between central neural effects manifested in the EEG rhythms and “peripheral” effects manifested in the ANS 476 

dynamic control of heart rate). 477 

As part of our inference is related to the quantification of functional brain-heart coupling through vagal dynamics, we 478 

demonstrated that the respiratory frequency is bounded within the HF band (0.14-0.40 Hz) throughout the emotional elicitation. 479 

Moreover, no significant changes in such a breathing frequency were observed between sessions. Therefore, it is possible to 480 

conclude that our estimate of HF power is indeed a reliable marker of parasympathetic activity (2), being related to respiration 481 

dynamics through the phenomenon of respiratory sinus arrhythmia (2, 45, 50). Moreover, since breathing is under direct cortical 482 

control (44), the variability observed in the EEG series may be modulated by cardio-respiratory changes that contribute to brain-483 

heart interactions. Thus, respiratory activity is likely to be one of the physiological factors explaining the altered information 484 

transfer between heart and brain dynamics that we have observed during a visual emotional processing. From this viewpoint, 485 

our estimates of causal brain-heart interplay during emotional elicitation should be interpreted as a quantification of the 486 

functional coupling between parasympathetic and cortical dynamics, which might be primarily influenced by breathing. Other 487 

influences from hormonal and, in general, biological variables involved in the complex process of bodily regulation of 488 

emotional arousal cannot be excluded as well. 489 

Furthermore, at a speculation level, our results suggest that emotional processing is mainly linked to a bidirectional 490 

information transfer between the heart and brain areas belonging to the so-called central autonomic network (CAN (6, 13, 61, 491 

81), which includes brainstem nuclei, and a number of forebrain regions including the cingulate cortex, insula, medial prefrontal 492 

cortex, thalamus, amygdala, and hypothalamus (see (7) for details). However, since our study concerns cortical dynamics 493 

estimated through EEG, it is not possible to speculate on the specific CAN sub-regions activity involved in the brain-heart 494 

communication during emotional experience. As the sympathetic and parasympathetic autonomic branches interact at the level 495 

of the atrial sinus node to concurrently regulate heart rate and, consequently, blood pressure and respiration dynamics (6,13), we 496 



hypothesize that from-heart-to-brain information transfer results from a multivariate, complex interaction between baroreflex-497 

mediated cardio-respiratory nonlinear dynamics. 498 

 499 
V. PERSPECTIVES 500 

 501 
Findings of this study pave the path towards the understanding of the so-called “origin” of emotions as well as the 502 

neurophysiological path of emotional processing, which are being debated from the methodological and neuroscientific 503 

viewpoints. The proposed approach may be adapted to process neuroimaging data collected along with ANS markers, maybe 504 

extending the methodological estimates to the complex/nonlinear domain of heartbeat dynamics. Given the peculiar role of 505 

vagal and cortical dynamics in attentional significance of emotions (3, 17, 19, 32, 78), further investigations may include other 506 

measures of information storage (e.g., self-entropy) (26). Furthermore, these findings may constitute a reference evidence for 507 

the understanding of physio-pathological mechanisms in case of psychiatric/mental disorders, including e.g. depression and 508 

bipolar disorder. 509 
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