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ARTICLE INFO ABSTRACT
Keywords: Precision beekeeping is defined as an apiary management strategy based on monitoring individual bee colonies
Apiary to minimize resource consumption and maximize bee productivity. This subject has met with a growing interest
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Smart technologies
Vector autoregressive model

from researchers in recent years because of its environmental implications. Today, the use of new monitoring
technologies and management systems are facilitating the beekeeper’s task by reducing operating costs and
increasing animal welfare. Few studies in the literature apply forecasting models that could be useful as decision
support to help beekeepers effectively monitor their hives. The Vector Autoregressive Regression (VAR) models
are widely used in economics, but little applications have been performed in precision beekeeping data. The aim
of this study was to apply a Vector Autoregressive Model to study the interrelations among internal factors
(weight, internal temperature, internal relative humidity, sound pressure level) and between internal and
external environmental parameters (external temperature and relative humidity, rain, wind speed, UV index) of
some hives located in three different sites in Sicily (south Italy), monitored by a proper designed smart system.
Time series were studied over the period April - August 2023. The significance recorded in the relationships
between weight of the hive and its internal temperature and weight of the hive and its internal relative humidity,
and the good predictive capacity of the models with respect to internal temperature and internal relative hu-
midity, allowed to build a predictive model to understand when possibly intervene on the hives. Effect and
duration of a system shock on the variables of interest were effectively monitored by the impulse response
function in order to understand the level of the system response.

provide pollination services. This hive movement is very stressful for the

1. Introduction bees and can negatively affect colony strength, i.e., the number of bees
in the hive [3]. Although there are sufficient technical means and in-
Technological innovations and research allowed significant im- dustrial products for the practical execution of PB, the process is slow
provements in terms of both productivity and intra-company manage- due to the differing states of development of three implementation
ment in numerous agricultural sectors. For this purpose, a key role is phases: data collection, data analysis and application [9].
played by Precision Agriculture (PA). Furthermore, thanks to the use of technologies and the application of
Beekeeping has also benefited from the introduction of Precision statistical methods, beekeepers can monitor the hive remotely without
Beekeeping (PB) technologies [1], which focuses on the apiary man- openings and, a.bove all, w.ithout disturbing the colony. o
agement strategy through the individual monitoring of bee colonies Several studies apply this technology, but most of them are limited to
using smart hives. PB sector is expanding to minimize resources and a descriptive analysis of the recorded information, used as a tool for the
maximize bee productivity through smart hives [2-7]. Indeed, the use of beekeeper to know the state of the hive at a specific time [10]. Research
new monitoring technologies and management systems gradually tested has fo.cused more on the.acq.msmon of sensor d.ata and its real-time
and introduced are facilitating the beekeeper’s task by reducing oper- analysis than on the application of robust statistical methods for pre-
ating costs and increasing animal welfare [8]. dictive purposes [9]. Data collected from the hives are mainly used for
Beekeepers are often forced to move their hives between fields to various statistical applications and essentially for the evaluation of

* Corresponding author.
E-mail address: mariangela.vallone@unipa.it (M. Vallone).

https://doi.org/10.1016/j.atech.2024.100676

Received 23 July 2024; Received in revised form 23 October 2024; Accepted 28 November 2024

Available online 29 November 2024

2772-3755/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



F. Bono et al.
Nomenclature
Tint Internal temperature
RHint  Internal relative humidity
SPL Sound pressure level
Text External temperature
RHext  External relative humidity
WS Wind speed
UVl UV index
p50 Median
iqr Interquartile range
sd Standard deviation
min Minimum value
max Maximum value
cv Coefficient of variation
R? Coefficient of determination
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colony is facing a problem. The results showed that the proposed model
could predict temperature values 24 h in advance with a Root Mean
Squared Error (RMSE) of only 0.5 %.

The Vector Autoregressive Regression (VAR) model, widely used in
economics [13], finds little application in the beekeeping sector
research. One of the prerequisites in the application of VAR is to test the
relationships between the variables using the sims causality test (1986).
In short, the Granger causality test [14] demonstrates whether there is a
relationship between the variables of the model [15]. Ziegler et al.
(2022) [16] investigated whether the VAR model can help understand
the interrelation between climate variables and the weight of Apis mel-
lifera hives. The authors demonstrate that it is possible to apply econo-
metric statistical models to apiary data by relating them to climate data
and thus contribute significantly to applied statistics in beekeeping.
Interesting is the research by Robustillo et al. (2022) [8] who compare
various predictive models, namely, vector autoregressive models, VAR
model with dynamic coefficients or time-varying VAR model (tvVAR),
this being a modification which assumes that the coefficients involved in
the response generating process are dynamic, Dynamic Linear Model

Fig. 1. Study areas with indication of the three sites named A (38.0240°N, 12.7855°E), B (38.1076°N, 13.3506°E) and C (37.9736°N, 13.5276°E).

variables that interfere with the swarm behavior [11].

Few studies in the literature apply forecasting models that could be
useful as decision support to help beekeepers effectively monitor their
hives. Braga et al. (2021) [12] predict sudden drops in temperature
inside the hive by using a Long Short-Term Memory (LSTM) algorithm to
predict the internal temperature of the hives. This parameter is vital for
the health of bees; a decrease in temperature may indicate that the

(DLM) and Generalised Additive Model (GAM). The DLM is a particular
case of dynamic regression models, which allows the regression co-
efficients to vary over time. Instead, GAM is a variation of generalised
linear models in which the response variable is given by a sum of smooth
functions of at least some (and possibly all) covariates. To compare the
different models, the authors used data from three sensors installed in
three hives, to predict some internal parameters of the hive such as
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endanger the hive health [8].

The aim of this study is to monitor hives located in three different
and distant apiaries in Sicily (south Italy), in order to investigate the
interrelations among internal factors and between internal and external
environmental parameters using a proper designed smart system,
applying a Vector Autoregressive Model. The ability of the apiary to
rebalance itself after the variation of the internal parameters of the
system is also assessed.

2. Materials and methods
This section describes the characteristics of the experimental sites

under study, the remote smart monitoring system developed by the
authors, the statistical methods applied.

2.1. Study sites and apiary description

Fig. 2. Dadant Blatt type hives during positioning in site C. The study was carried out in Sicily (Italy) by identifying three
different study areas (Fig. 1) characterized by semi-arid climate with
temperature, relative humidity and weight. The tvVAR and VAR models mild winters and long, dry summers.

provided accurate predictions of large weight losses, significant tem-

perature drops, or important changes in relative humidity that could e Site A, located at the Stabile farm in the province of Trapani (mu-

nicipality of Castellamare del Golfo), at an altitude of 197 m a.s.L; it

| |

User interface

v O3
>
(T

<)
| | [\E j |

| Hive equipped with sensors 1 (((( ))))

y; £ C— -

Mobile telephone W Cloud computing
network

Weather station

Fig. 3. Scheme of the system. 1 load cell; 2 internal thermometer, 3 internal hygrometer, 4 microphone, 5 external thermometer, 6 external hygrometer, 7 luminosity
sensor, 8 microcontroller, 9 weather station.

Table 1

Site A. Descriptive statistics of internal and external hive factors before preprocessing.
Hive 1-A Hive 2-A Hive 3-A External factors
stats Weight Tint RHint SPL Weight Tint RHint SPL Weight Tint RHint SPL Text RHext Rain WS UVI

[kg] [°C] [%] [dB] [kg] [°C] [%] [dB] [kgl [°C] [%] [dB] [°Cl [%] [mm] [m/s]

missing 0 0 0 0 60 60 60 60 139 140 140 500 0 0 0 0 0
N 1836 1836 1836 1836 1776 1776 1776 1776 1697 1696 1696 1336 1836 1836 1836 1836 1836
mean 52.6 33.0 83.9 41.1 54.0 31.4 77.9 35.5 53.7 32.9 67.3 38.0 21.5 67.3 0.1 0.5 1.75
pS0 55.8 34.8 86.7 43.6 62.5 35.1 78.7 35.3 60.1 35.0 65.6 37.0 21.3 70.0 0.0 0.5 0.00
iqr 21.7 0.9 11.8 15.2 24.8 6.7 13.9 16.8 26.3 0.8 10.7 15.1 9.3 26.0 0.0 0.6 3.00
sd 11.7 4.4 10.3 9.9 12.1 6.8 11.9 10.7 139 5.1 7.2 9.3 6.4 18.3 0.8 0.4 2.45
min 19.5 12.4 50.5 21.6 34.7 7.1 37.1 12.0 20.6 10.1 44.5 10.7 5.0 11.0 0.0 0.0 0.00
max 70.4 36.5 100.0 61.7 67.3 37.2 100.0 64.0 74.6 37.3 97.3 60.4 41.9 97.0 28.7 2.7 8.00
cv 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.1 0.2 0.3 0.3 12.7 0.8 1.40
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Fig. 4. Site A. Time plot of smoothed series by hives.

is positioned in a hilly agricultural area where olive groves, vine-

yards and little arable land predominate.
e Site B is located at the Department of Agricultural, Food and Forest
Sciences of the University of Palermo at 160 m a.s.l., within the
urban perimeter of the city of Palermo and includes the experimental
fields of the Department, with herbaceous and aromatic plant spe-
cies, and cultivated and ornamental trees, among them Citrus spp.,
Washingtonia filifera, Ailanthus altissima.
Site C, located at the Basile farm in the province of Palermo (mu-
nicipality of Ventimiglia di Sicilia), at an altitude of 550 m a.s.1., it is
characterized by steeply sloping land towards the East and is fur-
rowed by numerous valleys and watersheds, which sometimes
deeply cut into the land. The area is largely occupied by uncultivated
land, while the less steep areas are covered by arable land.

In both sites A and C, on the roadside, Eucalyptus spp. and Ailanthus
altissima are present, too. The analysis of the vegetation involves both
the area where the hives are positioned and the neighbouring area, so
that sufficient nectariferous resources are available for the development
and growth of the colonies.

The entrance to the hives is exposed to the sun from the early hours
of the morning, favouring the start of the flights on the blooms and the
activity inside the hives.

The study was carried out on nine hives, three per site, respectively
named Hivel, Hive2 and Hive3 in each site. The positioning of the
intelligent hives, which are described below, was carried out in
November 2022 in order to set the system before the production season
and to allow the bee communities to adapt. Monitoring began

immediately, while the data reported in this paper range from April 1%
to August 31%, 2023.

In the hives placed in site A, the colony was replaced at the end of
April, due to the heavy decrease in the number of bees recorded at the
end of the winter. In the hives placed in sites A and C the honey super
was placed before April.

2.2. Hive monitoring system

The hives used are of the Dadant Blatt type (Fig. 2) with small porch,
equipped with 10 frames, the most used in Italy; the raised bees are local
crossbreeds of the Apis mellifera sp.

The developed system consisted of a series of sensors connected to a
microcontroller, which acquires the data and periodically sends them to
a server via modem. In particular, the sensors applied to the hive were:

e four load cells, arranged at the base of the hive in correspondence
with the vertices, measuring the weight (Fig. 3 [1]). Load cell made
of stainless steel, hermetically welded IP68, combined error + 0.017
% of capacity, low sensitivity to temperature variation, accuracy
class C3, nominal range of excitation voltage 1 -15 V, rated output 2
mV/V £10 %. The maximum capacity of each load cell was 75 kg,
therefore the overall system was capable of weighing up to 300 kg for
each hive;

internal (Fig. 3 [2 and 3]) and environmental (Fig. 3 [5 and 6])
thermometers and hygrometers based on Sensirion AG’s
(Switzerland) SHT21 sensor, offering high performance, long-term
stability, and ease of integration through the I2C interface for
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Fig. 5. Site B. Time plot of smoothed series by hives.

communication with the microcontroller. Temperature measure-
ment range from -40 °C to 125 °C, relative humidity from 0 % to 100
%. It has a measurement accuracy of + 0.3 °C for temperature and
+2 % for relative humidity. It consumes ~0.15 pA in sleep mode and
~400 pA during measurement. The response time for temperature
measurement varies from 5 to 30 sec depending on the medium,
while it is only 8 sec for humidity measurement;

a digital microphone (Fig. 3 [4]) based on MEMS (Micro--
Electro-Mechanical Systems) technology with an 12S interface, con-
sisting of the GY-SPH0645 12S sensor. The main characteristics of
this sensor are frequency range 20 Hz—20 kHz, SNR (Signal-to-Noise
Ratio) 65 dB, representing a good signal-to-noise ratio, sensitivity 26
dB. Power supply voltage is 1.8 V-3.6 V and consumption is < 1 mA.
It is an omnidirectional microphone capable of capturing sounds
from all directions, useful for ambient sound capture applications;
the digital light sensor TSL2561 measuring ambient light. Its main
features are: I2C communication interface with selectable addresses,
measurement range from 0.1 to 40,000 lux, spectral response
400-700 nm, 16-bit accuracy and resolution, automatic temperature
compensation, automatic sensitivity calibration, selectable low and
high gain, selectable integration time: 13 ms, 101 ms, 402 ms, power
consumption 0.24 mA during measurement and 0.005 mA in sleep
mode, supply voltage: 2.7 V-3.6 V;

the STM32WB microcontroller (Fig. 3 [8]) belongs to a family of
microcontrollers specifically designed for wireless applications by
STMicroelectronics, combining high performance and low-power
connectivity. Based on the ARM Cortex architecture, the STM32WB
integrates both a general-purpose processing core and a dedicated

core for wireless communication management, making it ideal for
IoT applications and smart devices. It features a Dual-core archi-
tecture, including an ARM Cortex-M4 core for application processing
and an ARM Cortex-MO+ core dedicated to wireless connectivity
management, supporting the Thread protocol for [oT mesh network
applications. Flash Memory: Up to 1 MB, RAM: Up to 256 KB of
SRAM, EEPROM: integrated for non-volatile data storage. Periph-
erals and I/0: GPIO, 12-bit ADC for analog signal acquisition, DAC
for analog signal generation, advanced timers for PWM, event cap-
ture, and timing functions. Communication Interfaces: UART, SPI,
12C, CAN, USB, and others. Power Saving Modes: Various low-power
modes, including sleep, stop, and standby. Optimized for
battery-powered applications, with very low operating current;

weather station (Fig. 3 [9]). The meteorological station EcoWitt
WH6006 recorded the main weather-climatic parameters: tempera-
ture (°C), relative humidity (%), rainfall (mm), solar radiation (lux,
fcorw/ mz), wind direction and speed (mph, km / h, m / s). The
weather station was located in each study site. It consists of an
external sensor body and a receiving unit with an external solar
panel. The sensor body reads the values detected by the sensors and
sends them to the receiving unit. It includes a battery of integrated
sensors: thermo-hygrometer / rain gauge / anemometer / wind di-
rection sensor, light and UV sensor, integrated solar panel, alkaline
batteries, RF module (433 MHz) data transmission. The receiving
unit acquires the data sent by the external sensor body via the radio
frequency module. Data is saved as a CSV file on the SD card and
transmitted to the public weather server: www.wunderground.com
via 2G/3G WCDMA/GSM network. The weather conditions can be
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Fig. 6. Site C. Time plot of smoothed series by hives.

remotely monitored and data downloaded in .xIsx format. This unit
consists of RF module (433 MHz) for data reception, support for data
storage on SD memory card, 2G/3G GSM module with SIM card for
sending data to the server, rechargeable lithium battery.

The microcontroller collected the acquired data, sending them to a
cloud every 15 min via a multiband GSM modem (2G, 3G and 4G); in
addition to archiving the data, it allowed for initial processing and its
graphical representation. The graphs can be viewed by accessing a
specifically created web interface where the trend of temperatures (in-
ternal and external), relative humidity, weight and noise level is visible
[7]. The system was powered by solar energy.

2.3. Statistical analysis

Time series are observations that extend over time. The natural
tendency of many phenomena to evolve in a more or less regular way
leads to consider that the data detected at a given instant t is more
similar to that detected at instant t—1 rather than at distant times; it is
said that the time series has a “memory of itself”. This characteristic is
indicated as persistence, and it is the characteristic that differentiates
time series samples from cross-section ones. In some situations, as in the
case of this study, the presence of multiple time series requires tools to
study the interrelationships and/or detect the cause-effect results be-
tween the detected series. When literature does not provide with a
behavioural model for the analysis of a multivariate phenomenon and
there are factors that can be both cause and effect of other variables
observed over time, the VAR can help to understand the interactions and

cause-effect relationships existing between time series.

The statistical methods used in this paper are distinguished by pre-
processing phase and data analysis phase. The whole data set was ob-
tained by downloading data from the above described hive monitoring
system, i.e. weight, internal and external temperature (Tint and Text),
internal and external relative humidity (RHint and RHext), Sound
Pressure Level (SPL), rain, Wind Speed (WS) and UV Index (UVI).

2.3.1. Data pre-processing

As descriptive statistics mean, median, minimum, maximum, stan-
dard deviation, coefficient of variation, interquartile range were
calculated.

The second order exponential smoothing model [17] was considered
to reduce hourly fluctuation and to identify long-term trends underlying
structure of the time series and filling missing data. A second order
exponential smoothing method is suitable when data have no clear trend
and seasonal pattern. Based on this method, the optimal smoothing
parameter was obtained by minimizing the in-sample sum-of-squared
forecast errors. Missing values were filled in using the one-step-ahead
predictions from the previous period. Missing values at the beginning
and ending of series were not considered in the smoothing and were
excluded from the sample.

After smoothing, missing values at the beginning or at the ending of
time series were estimated using the predictive mean matching impu-
tation methods (PMM). The PMM [18-20] combines the standard linear
regression and the nearest-neighbour imputation approaches and is
preferable to linear regression when the normality of the underlying
model is suspect. It is a partially parametric method that matches the
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Table 4

VAR coefficient estimation.

Site A Site B Site C
dInWeight H1 H2 H3 H1 H2 H3 H1 H2 H3
R? =0.77 R? =085 R? =043 R? =0.79 R? =0.77 R? =0.80 R? =0.63 R? =0.53 R? =0.87

011 0.7383 1.0306 0.6658 1.0066 0.9819 1.0133 0.9153 0.7830 1.1390
012 -0.0034 -0.2563 -0.0539 -0.1781 -0.1372 -0.1542 -0.2011 -0.2288 -0.2306
613 -0.0001 -0.0001 -0.0002 -0.0008 -0.0001 0.0001 -0.0004 0.0004 -0.0002
014 0.0000 0.0001 0.0002 0.0000 0.0000 -0.0001 0.0003 -0.0005 0.0000
015 -0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 -0.0002 0.0000
016 0.0002 0.0000 0.0001 0.0001 0.0000 -0.0001 0.0001 0.0001 0.0000
017 0.0008 0.0014 -0.0001 -0.0010 0.0030 0.0002 -0.0006 0.0010 0.0271
018 -0.0006 -0.0010 0.0000 0.0018 -0.0027 -0.0001 0.0005 -0.0009 -0.0248
m 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000
712 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0002 -0.0003
713 0.0067 0.0112 0.0002 -0.0021 -0.0007 -0.0013 0.0004 0.0157 -0.0001
A 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000
dTint R?> =051 R?> =0.55 R?> =056 R?> =0.48 R?> =0.49 R? =0.24 R?> =0.54 R? =0.26 R? = 0.64
011 4.9223 -9.2953 -4.0144 -33.3783 -25.9667 1.2561 -2.9814 1.5322 -2.3728
012 -2.9163 4.3462 4.0411 27.3805 20.1303 0.9382 2.6290 -0.6589 11.0708
013 0.7515 0.6854 0.8571 0.6862 0.5385 0.2611 0.8273 0.3800 0.9097
014 -0.2004 -0.0768 -0.2543 -0.2006 -0.0091 -0.0776 -0.2191 -0.1128 -0.2863
015 -0.0304 -0.0014 0.0291 0.0200 0.0305 -0.0258 0.0101 0.0320 0.0123
016 0.0686 0.0623 0.0128 -0.0226 0.0392 0.0166 0.0207 -0.0293 0.0311
017 0.8573 1.0218 0.1128 -0.6472 1.0167 0.0384 -0.0462 0.2095 -29.5414
018 -0.8206 -1.2235 -0.1372 0.5763 -1.3144 -0.0452 0.0660 -0.2416 28.7137
m 0.0815 0.1199 0.0537 0.0415 0.0792 0.0096 0.0274 0.0219 -0.0118
712 -0.0057 -0.0159 -0.0036 -0.0067 -0.0078 0.0450 -0.0019 -0.0023 -0.3549
13 -0.0309 -0.4300 0.2342 0.2791 1.3090 1.5781 0.7012 0.4319 0.1001
A 0.0035 0.0072 0.0049 0.0001 -0.0040 0.0011 0.0006 -0.0013 -0.0129
dRHint R? =0.60 R? = 0.64 R? =077 R? =0.48 R? =0.39 R? =0.63 R? =0.48 R? =051 R? =0.32
011 1.1481 73.8487 -1.8483 -23.0716 42.5569 -4.4167 -3.6250 11.0514 69.6513
012 -6.6139 -58.8643 0.0466 21.8207 -40.2443 6.8005 -5.0545 -11.3902 -79.0441
013 -0.3001 -0.4467 -0.0083 -0.0354 -0.1660 -0.1840 0.0896 0.4670 -0.2650
014 -0.1069 -0.0803 0.0203 0.3454 0.0653 0.1021 -0.1806 0.5164 0.0726
015 0.7763 0.6769 1.2092 0.8330 0.6455 0.9948 0.7994 0.7328 0.5280
016 -0.2639 -0.2232 -0.5159 -0.3213 -0.2260 -0.3955 -0.2385 -0.2314 -0.1862
617 0.3509 1.1580 -0.0540 -3.4604 2.9940 -0.0588 0.9395 0.1899 89.7098
018 -0.9437 -1.1305 0.0252 3.5814 -3.0486 0.0564 -0.9769 -0.2009 -89.5655
m 0.1250 0.0826 0.0209 0.0159 0.0504 0.0188 0.0659 0.0858 0.0378
1o 0.0419 0.0888 0.0159 0.0306 0.0610 0.0231 0.0049 0.0302 -5.8329
713 0.2859 -0.0550 -1.8776 -0.1748 0.8244 -0.8053 3.8350 1.1167 0.1295
a 0.0200 0.0031 -0.0007 0.0035 -0.0005 0.0006 0.0008 -0.0044 -0.0024
dSpL R?> =0.83 R? =0.92 R? =0.07 R?> =091 R? =0.89 R? =0.80 R? =0.95 R?> =0.93 R? =0.99
011 -0.6528 -2.7359 0.3430 -0.6187 -0.7502 -4.4120 0.2174 -0.4412 0.0080
012 2.4336 2.8545 0.4438 0.4285 0.9268 7.3961 -0.2965 -0.5184 -0.0243
013 0.0127 0.0103 -0.0036 0.0044 0.0069 -0.0127 -0.0021 0.0329 0.0003
014 0.0079 -0.0008 0.0145 0.0037 0.0033 0.0361 0.0046 0.0320 0.0004
015 0.0043 -0.0017 0.0110 0.0005 0.0009 -0.0253 0.0004 0.0035 0.0001
016 0.0034 0.0015 -0.0208 -0.0012 -0.0013 0.0282 -0.0009 -0.0037 -0.0001
617 1.0139 1.1178 -0.0958 0.6443 1.0363 1.0910 1.1358 1.0530 1.1906
O -0.1575 -0.1859 0.2231 0.3197 -0.1092 -0.2336 -0.1686 -0.0968 -0.1959
m -0.0018 0.0027 -0.0114 -0.0001 0.0010 -0.0010 -0.0004 0.0018 0.0002
1o -0.0014 -0.0014 -0.0028 0.0003 -0.0003 0.0032 -0.0005 -0.0005 0.0000
713 0.1721 -0.1714 -0.4119 0.0217 0.0635 0.4181 0.0283 -0.1627 0.0065
a 0.0009 -0.0005 0.0039 -0.0002 -0.0006 -0.0029 -0.0005 -0.0009 -0.0001

missing value to the observed value with the closest predicted mean (or
linear prediction).

For each missing value in each variable in the general vector X, 5
imputations were taken into consideration. A set of neighbours (possible
donors) were considered to calculate the linear prediction based on
nearest-neighbour imputation approaches. The number of nearest
neighbours regulates the trade-off between the bias and the variance of
the point estimators in repeated sampling. In this paper 6 nearest
neighbours seemed to be appropriate (12 h).

After data preprocessing, the Vector Autoregressive models (VAR)
were considered.

2.3.2. Processing of data VAR model

The VAR models are multiequation models based on time series data,
containing an equation for each variable, and each variable depends on
past values of itself and past values of the other variables, this means
that all the variables are endogenous [21].

VAR is a multivariate extension of AR (AutoRegressive) models but
capturing the historical patterns of each variable and its relationship to
the others.

The general VAR model with K variables, can be written as linear
function of p of their own lags, p lags of the other K-1 endogenous
variables and f lags of the additional M exogenous variables x. In gen-
eral, a p-order VAR model, VAR(p), can be written as:
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Fig. 7. Sites A, B, C. Percentage of variation on Impulse function for Tint (Y axis); X-axis represents 2 h period.

Ve=V+Ay, 1 +... +AY, , +Boxe + BiXe 1 + ... + BXer +uit
€ {—o0, oo} @

Where y, = (ylt ,th> is K x 1 random vector of variables of the
system,;
A1,Ay, ... A, are K x K matrices of parameters;

X = (X1t ,xMt)’ isa M x 1 vector of M exogenous variable at time
G

By, B1,B,,...,B; are the K x M matrices of coefficients;

v is K x 1 vector of intercepts and u, is the white noise disturbance
with: expected mean E(u;) = 0; covariance matrix E(u,u’s) = X if t=s,
and E(u.us) = 0 if t # s. This means that u, and ug are uncorrelated that
it is the same to say: as y, is an autoregressive (AR) process it is assumed
that the forecast errors for different periods are uncorrelated. This last
assumption indicates that all useful information in the past y,’s is used in
the forecasts so that there are no systematic forecast errors.

The number of equations depends on the number of the endogenous
variables k, whereas p and f in (1) represent the lags of the endogenous
and exogenous variables of the model. In our model the exogenous
variables are observed at time t and no lagged effects have been
considered, therefore s=0.

The parameters matrix A;,As, ..., A, serves to study the dependence
between endogenous variables and measure the dynamic effect between
the K variables and the variable itself, By and the variance matrix X,
measures the contemporary effects.

Estimating the parameters in a VAR requires that the variables in y,
andy, , are covariance stationary, meaning that their first two moments
(Cross-Correlation Functions (CCFj;(p)) and Auto-Correlation Functions
(ACF;(p)), Section 2.3.3) exist and are time invariant.

In general VAR(p) is stationary if all the eigenvalues of the coefficient
matrix of the estimated VAR(p) have modulus less than 1. The Dick-
ey-Fuller unit-root test (1979) [22] was considered to test the stability
condition of the time series. The test statistic is rejected if a < 5 %.

If the series is stationary, the times up to the second order of the
process are t-independent.

2.3.3. Covariance, variance, cross-correlation and autocorrelation function

The cross-covariance function of lag p for the generic time series y; ,
Yji—p> can be written as

Ry(p) = Cov(Yic: Yjcp) )

varying i and j described as a K x K matrix of lag p.
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For i=j, R;(p) is the autocovariance function of y;; for i# j, R;(p) is
the cross-covariance function between y;, and y;,.

If R;j(p) = O for all p, the series are stationary and the function does
not depend on t.

For p=0, R;(0) represents the matrix of contemporary covariances
between y;; and y;,.

And, R;;(0) is the variance of y;

The cross-correlation function CCF;(p)) can be defined as the cor-
relation between one series at time t (y;) and another series j at time t-p

(yj,t,p) and it is a function of the time t and lag p:
R;(p)
[Rii(0)R;(0)]

CCFy(p) = 3)

Nl

So, if i=j, CCF;(p) became the ACF;(p) is the autocorrelation function of
Yis; for i # j, CCFy(p) is the cross-correlation function between y;, and
Yj:- And in the same way, CCFji(p) is the cross-correlation function be-
tween yj, and yi;.

If CCF;(p) = O for all p, the series are stationary, and the function
does not depend on t.

To choose the order p of the VAR model different approaches can be
used. In this work the Akaike Information Criterion (AIC) and the
Lagrange-multiplier test [23] of the differenced time series were
considered. To check the adequacy of the estimated VAR model we
check the stationarity of the pairwise Cross-Correlation Functions (3) of

10

the time series.

2.3.4. Granger-causality

To test whether a time series offers a useful information in fore-
casting another time series, the Granger causality test is used. When a
VAR model is identified because stationary, the Granger causality test
helps us to identify if one variable helps to predict each other’s. Granger
causality test does not provide insight about the true causal relationship
between two variables but about the forecasting ability.

A variable X is said to Granger-Cause (GC) a variable Y, if given the
past values of Y, past values of X are useful for predicting Y.

The null hypothesis for Granger-causality test is:

Hjp : X GC Y = 0 against

H :XGCY>O0.

If X GC Y and Y GC X, the process (X, Y') is called a feedback system or
instantaneous causality [21].

2.3.5. Impulse response function

Significantly, Granger-cause variables were analyzed through the
Impulse Response Function (IRF) that allows us to trace out the time
path of variables in our models to a one unit increase of another in the
system.

Let Y, the MA (Moving Average) representation of the VAR model:
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It can be interpreted as the response of the i-th variable to the j-th shock
after n periods.

Since the vector ¢ represents the gap between Y, and its expected
value conditional on the information set I;_1, ¢ is often simply referred
to as the “one-step forecast error”. More formally, we might think of our
forecast error vector as a function of movements in behavioural re-
lationships, which we call structural shocks, so we might write:

& = Bu,

)

If B was known, we could reconstruct the history of structural shocks
(through u, = B~'¢,), but above all we could calculate the structural
impulse responses: by putting together Egs. (5) and (7) we have:

A(L)Y, = By, 6)

Y, = [A(L)) "By, = Bu, + C1Buy 1 + CoBuy o + .. 9)

11

So
oy

()th,n

IRF(i,j,n) = (Cn'B)ij (10)

The impulse response to the structural shock would allow us to assess
how observable quantities respond over time (in our case the endoge-
nous variables Tint, RHint, SPL) with respect to a shock that impacts on a
behavioural relationship (relationship between behaviour of the bees
and variables within the hives), and for this reason it is called “struc-
tural”. Given two variables Y;,, Y, IRF responds to the question: what is
the effect of one unit shock in Yy, Y5?

Moreover, the scenario analysis of the effect of a shock to the system
with the impulse response functions can help gain insight into how long
the effect of a shock will last.

In general, to calculate the impulse functions, the variables should be
ordered from the least to the most reactive. In our work there is a certain
arbitrariness in choosing the ordering of the variables because we do not
know which is the most reactive in the system, so we decided to consider
the following order of the variables RHint, SPL, Tint, Weight.

To ensure the stability condition, transformation in first difference
was applied to all the variables considered. For the weight series,
transformation in difference of logarithm of weight was applied.

Finally, prediction in the test set were considered to test the pre-
diction capability of the model, p-value < 0.05 was considered
significant.

All the statistical analyses were carried out with Stata 16.1 statistic
software (StataCorp LLC, College Station, Texas 77845 USA).
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Fig. 10. Forecasts VAR models, Hivel, Hive2 and Hive3, site B.

3. Results and discussion
3.1. Data monitoring and post processing results

The descriptive statistics of the monitored parameters before pro-
cessing, both internal and external factors, are reported in Tables 1, 2
and 3 respectively for the three sites A, B and C. The line “missing” re-
ports the number of missing data that have not been detected due to
problems of different nature independent of the human factor (sensor
malfunction, interruption of data transmission, etc.).

After performing data smoothing and imputation of the missing
values for all the internal parameters, the complete data sets for weight,
internal temperature, internal RH, SPL were represented in the
following Figs. 4 (site A), 5 (Site B) and 6 (Site C).

Insite A (Fig. 4), in April the weight slightly decreased in all the three
hives, probably due to a slow development of the families linked to both
the colony status at the end of the winter period and to the external
temperature, which ranged between 5 and 22 °C. Indeed, during the cold
season bees rarely go out to forage, consuming the reserves inside the
hive, and causing a consequent weight decrease of the colony by 30-80 g
per day [24]. Ochoa et al. (2019) [10] argue that exposure to low
temperatures during operculate reproductive states induces high mor-
tality and shortening in worker longevity. When the weather tempera-
ture was higher than 25 °C, the temperature distribution in the beehive
was relatively uniform [24]. In the following months, i.e. starting from
May until July, an increase in weight was recorded in all the three hives,
respectively 21 kg for Hivel, 25 kg for Hive2 and 28 kg for Hive3. Af-
terwards, the weight of each hive decreases until the end of August.

12

Furthermore, sudden changes in weight have been recorded due to
operator interventions such as, for example, the removal of real cells,
placing of pollen traps or the usual bee colony monitoring. Due to the
same reasons, an irregular trend was recorded in April also for internal
temperature and humidity. Internal temperature during April was low,
due to the heavy decrease in the number of bees recorded at the end of
winter, while, from May on, internal temperatures stabilize at 35 °C,
remaining constant until the end of the observed period. In Hive2 an
internal temperature decrease was noticed in mid-May, probably due to
a technical problem in data recording.

Also internal Relative Humidity shows high variability in April
(ranging from 40 % to 100 %), while it had a more homogeneous trend
starting from the second half of May, although the three hives, from
June on, show similar trend, with ranges of 78-100 %, 65-92 % and
58-72 % in 1, 2 and 3, respectively. A decrease in RH in all the three
hives was recorded from the second half of June, probably due to the
temperature and humidity regulation activity of bees inside the hive
[25].

SPL shows a trend similar to weight, with lower and variable levels in
April, higher and more stable levels in May and June, and a decrease in
July-August, particularly evident in hives 2 and 3.

In site B (Fig. 5), in which honey super were not used, the weight of
the three hives was similar in the first period (about 35 kg), although
Hivel had only 7 frames. While until the end of June all hives show an
increasing weight, although the maximum weight was recorded in a
different period. Hivel started to increase in June, after the number of
frames was increased to 10 (first decade of May), reaching its maximum
weight in July; Hive2 had a peak in May, followed by a decrease,
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Fig. 11. Forecasts VAR models, Hivel, Hive2 and Hive3, site C.

probably due to a swarming. Finally, Hive3 was almost constant until
June, afterwards increasing its weight during July. Starting from July,
all the hives showed a decrease in weight, mainly due to intense pre-
dation by Vespa orientalis.

Internal relative humidity was quite different in the three hives
during April, when Hivel, containing 7 frames, shows a lower RHint
(about 40 %) compared to hives 2 and 3 (60-70 %). In the following
months, the three hives show a similar RHint trend, except for Hive2, in
which an appreciable decrease recorded in the second half of July could
be linked to swarming. It has been observed that changes in the internal
RH and temperature can be linked to sound and used as predictor for
swarming of the bees [25]. On the other hand, the appreciable decrease
in these two parameters in the Hive2 seems to be a consequence of
swarming, as a lower number of bees in the colony are not able to
guarantee a constant RHint and Tint.

Internal temperature is almost constant from May on, apart from
Hive2 (see above) and a decrease in values recorded in Hive3 from
middle August.

SPL shows a quite different trend in the three hives, with values al-
ways lower in Hive3 compared to hives 1 and 2.

In site C (Fig. 6), the hives 1 and 2 showed a similar trend for almost
all parameters, while Hive3, from July on, shows anomalous values for
all parameters. In the entire period considered, Hivel records 11 kg
increase in weight and Hive2 shows 10 kg. Furthermore, constant in-
ternal temperature values of 32-35 °C are observed for the entire period.
A constant temperature of 35 °C inside the hive demonstrated that,
during the test period, no critical issues occurred regarding the
swarming or escape of the bees [26,5]. In Hive3, weight decreases from
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the second half of June, as RH, and large variability of the internal
temperature is recorded, which can be traced back to possible problems
within the hive or the recording system. SPLshows a decreasing trend in
the three hives.

3.2. VAR model, parameter estimations and forecasts

The system takes into consideration the endogenous variables
Weight/Tint/RHint/SPL. In particular, in this study the two-lag VAR
model (VAR(2)), with 4 endogenous variables (Tint, Weight, RHint and
SPL) and 3 exogenous variables (UVI, RHext, WS) was considered. The
exogenous variables were not lagged.

To make the time series stationary, some transformations were per-
formed on the original series, described below. Weight was considered
as the difference of the logarithms in two consecutive periods t and t-1,
and therefore represents approximately the percentage variation of the
weight between time t and time t-1'. With dInWeight, the differences of
the logarithms of the weight from time t-1 to time t. are indicated.

All other endogenous (Tint, RHint, SPL) and exogenous (UVI, RHext,
WS) variables were considered as first differences, thus representing an
absolute change from time t-1 to time t. With dTint, dRHint, dSPL, dUVI
and dWS we indicate the transformed variables and therefore the ab-
solute variation of each variable between the two periods. The suffix d in
front of the variables indicates that the differences of the historical series

1 ight, — Weight,

as InWeight, — InWeight, ; is approximately equal to (¥ Weight o) when

the variations are small.
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have been considered.

The parameter dText was not considered as its high and significant
correlation with RHext. Moreover, the external factor Rain did not show
significance in all the considered models. Then, in accordance with the
principle of parsimony, we excluded it from the estimated VAR models.

The pairwise Cross-Correlation Functions (CCF), Auto-Correlation
Functions (ACF) (not shown) and [22] unit-root test were used to test
the non-stationarity of the time series. The Lagrange-multiplier test [23]
of the differenced time series lead us to identify the lag order of the VAR
model for the relative percentage variation of Weight (dlnWeight), the
absolute variation in Internal Temperature (dTint), the absolute varia-
tion in Internal Relative Humidity (dRHint), the absolute variation in
Sound (dSPL).

Data was split into a training set (from April 1% to July 31%") and a test
set (from August 1% to August 31%") to verify the forecast capacity of the
model.

The following VAR model was estimated for the four endogenous
variables in each site and hive:

dinWeight, = a + 61, dInWeight,_, + 61,dInWeigh,_, + 0,5dTint,_,

+ 014dTin,_, + 60,sdRhint,_; + 6,¢dRhint,_, + 6,,dSPL,_;
4 619dSPL,_5 + (7,;dUVI, + 7,,dRHext, + 7,,dWS,)

11
dTint, = a + 6y, dinWeight,_, + 61,dInWeigh, » + 615dTint,
+ 014dTin,_, + 0;5dRhint,_; + 6;sdRhint, 5 + 0;,dSPL;_;
+ 615dSPL,_5 + (74, AUV, + 7,,dRHext, + 7,,dWS,) (12)

dRhint, = a + 6, dinWeight, , + 01,dInWeight, » + 615dTint, ,
+ 614dTin,_, + 0;5dRhint,_; + 6;sdRhint,_» + 6;,dSPL;_;
+ 015dSPL,_5+(y,,dUVI, + 7,,dRHext, + 7,,dWS,

13)
dgl?Lt = a + 6y1dInWeight, ; + 612dInWeigh,_» + 613dTint, ;
+ 6}14dTin[,2 + Hlsthintt,l + Hlsthintt,z + 617dSPLt,1
+ 01gdSPL,_5+(7,;dUVI, + y,,dRHext, + 7,,dWS, (14)

In (11) 6y; indicates the effect of the past percentage growth rate of
the weight (between t-2 and t-1) on the current percentage growth rate
(between t-1 and t), considering that both variables (dependent and
independent) are expressed in terms of the difference of the logarithms.
Similarly, 6, expresses the effect on the current percentage growth rate
of Weight of a two-period lagged (lag 2) percentage change in Weight. In
the different models of the VAR system, 6;; and 6;, generally represent,
respectively, the effect of the recent percentage growth rate of Weight
and of the most distant percentage growth rate (of lag 2) on the per-
centage growth rate at time t (if the model is 11) or on the absolute
change at time t (in models 12-14) of Tint, RHint and SPL. 6;3 measures
the percent variation that Weight undergoes (in model 11) in response to
a unit change in temperature recorded in the previous period, and so on.

The estimated VAR models provided very different levels of signifi-
cance in some cases (Table 4). For the response variable Weight
(expressed in terms of differences of logarithms) it was observed a
minimum R? value equal to 0.43 for Hive3 in site A up to a value of 0.87
for Hive3 in site C. With reference to dTint, R? goes from 0.24 in Hive3 of
site B to a maximum value of 0.64 in Hive3 of site C. RHint shows R?
values varying from 0.32 for Hive3 of site C to 0.77 for Hive3 in site A.
Finally, dSPL shows R? values ranging from 0.07 for Hive3 in site A to
0.99 for Hive3 in site C. The high variability of R? values in the different
sites and Hives suggests that uncontrollable factors have influenced the
data collected, therefore it was considered to give more emphasis to the
results with R? > 0.5. Table 4 presents in bold the parameters found to
be significant and grey colored the models with R? > 0.5.
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The VAR models estimates are linked to the information set consid-
ered which is a subset of the factors that influence the system; there
would be unobservable and non-controllable factors that can influence
the endogenous variables. Furthermore, relative to the same informa-
tion set, there may be relationships that are established for time periods
less than two hours; therefore, relationships that are found to be non-
Granger-causal, would be causal for example if the observation had
been made at one hour or half an hour.

The percentage growth rate weight in site A, was approximately 0.74
% in Hivel and more than 1.03 % in Hive2, in Hive3 the estimated
model for Weight shows R? < 0.5. Since the parameters 011 and 0;, are
the effect (11-14) of a variable expressed as difference of logarithms on a
difference of logarithms, it is commented as the percentage variation
produced on the response variable for a 1 % variation of the independent
variable. In the model for Weight, we note that a 1 % growth rate of the
weight in the previous period produces a growth of about 0.74 % in the
current period (Hivel, site A). In general, all the models show that a
positive growth rate in the previous period has a positive effect on the
current period, while a positive growth rate in a more distant period (at
the time lag of two previous periods) reduces the current growth rate.
Therefore, the effects of positive variations that are more distant in time
(for example 6;5 or 614) act on the system as adjustment variables.
Furthermore, in the sites where there is a higher growth compared to the
previous period, the adjustment or correction effect is higher (site A,
Hive2, site B Hivel and Hive2). The most important information pro-
vided in the Weight model is the percent increase rate of weight
compared to previous periods, while the variations of the other
explanatory variables (dTint, dRHint dSPL and dUVI) do not seem to
have significant effects on the percentage change in weight; only the
coefficient of WS (y;3), in H2 site A and H2 site C, shows a positive and
significant effect on the current weight change. Considering that coef-
ficient y,3 measures the effect of WS variation of 1 m/s on the percentage
growth rate of weight, it is possible to say that a WS variation of 1 m/s
produces a percent increase in weight equal to 1.1 % in Hive2 site A and
1.6 % in Hive2 site C, while it has a negligible negative effect (equal to
-0.002 %) in in Hivel site B. We recall that the effects of the exogenous
variables are contemporary effects.

Continuing to observe the results of the model for Weight, it is noted
that site B shows the highest percentage growth rates (respectively 1.01
% in Hivel, 0.98 % in Hive2 and 1.01 % in Hive3 for the 1 % growth
recorded in the previous period). The percentage growth rates of more
distant periods (t-2) also have an adjustment effect reducing the current
growth by a percentage rate between approximately 0.14 % and 0.18 %.

Regarding internal temperature (Tint), in almost all the hives with R?
> 0.5, it seems that in the 4 hours of observation the bees are able to
regulate the temperature through a feedback with SPL. In other words,
Tint influences SPL, which in turn influences Tint. RHint shows feedback
with Tint and Weight dynamic effects for some sites and hives, but the
external factors (UVI and RHext) are decisive in all the hives.

In the model for Tint the delayed effects of the variation in Tint itself
(613, 614) are significant at all sites and hives; the coefficient 6,4 shows a
corrective effect opposite to #13. As regards the effects of the other
lagged variables on dTint, it is noted that a 1 % increase in weight
produces a reduction in the temperature variation of approximately 4.01
°C in Hive3 of site A, while more distant percent weight variations have
a corrective effect on temperature (+4.04) adjusting the equilibrium of
the system. In the hives with R? > 0.5, the UVI coefficient y,; was found
to be significant with positive effects: a unit change in UVI causes a
change in temperature ranging from 0.03 for Hivel in site C to 0.12 for
Hive2 in site A. Internal hive temperature is the primary indicator of a
colony’s health. The ability of a colony to thermoregulate is influenced
by the subspecies and, within this, by the genetic diversity of the colony
[27]. Bees maintain a temperature of 34 + 1.5 °C near the brood [28].
The RH coefficient y;, has a negative effect on Tint (except for H3 in site
B). On the other hand, the relationship between wind speed and internal
temperature in site B is significantly positive. (coefficient y3).
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The model for RHint shows significant effects of the Weight co-
efficients 017 and 6,,, in Hive2 site A and Hive2 site C, of Tint with
613 and 014 in Hivel site A, in Hivel and Hive2 site B, and Hive2 and
Hive3 site C), of RHint (¢15 and 616) in all sites and hives, whereas the
effect of SPL (617 and /or 6:g) is significant in Hive 2 site A. In all sites
and hives, the simultaneous effects of UVI and RHext were significant
(711 and y;,), showing and increase of RHint variation for a unit incre-
ment in the variation of UVI and RHext. WS shows a significant and
negative effect only for Hive3 site B: an increase in WS unit variation
produces a reduction of 0.81 in the absolute variation of RHint. Similarly
to temperature, RH is a useful parameter for predicting swarming, as it
has been observed that this event is preceded by a decrease in RH due
probably to ventilations, consisting in a a rapid flitting of bee wings
[29].

The model for SPL shows significant effects of weight (Hivel and
Hive2 site A; Hive2 site B), of Tint (Hivel and Hive2 site A; Hivel and
Hive2 site B; Hive2 and Hive3 site C), of the recent effects of RHint (in
Hivel site A and Hive3 site C), of the delayed ones for RHint (Hivel and
Hive3 site B; Hive2 site C). The model also shows the SPL itself lagged
effects showing some stability of the current absolute variations with the
lagged ones in the more recent periods, and a compensating effect of the
more distant variable in time. Among the external variables, RHext has a
significant effect, even in size, with the highest value in Hive3 site B
where a unit variation increase of RHext produces an increase in the
variation of SPL equal to 0.42.

Having considered the same model allows us to verify if the system
behaves in the same way at different sites. In all the estimated VARs, the
Eigenvalues of the coefficients matrix of the models are strictly less than
one, so, based on [21] and [30], the model shows stability.

The Granger-causality may not tell us the complete story about the
interactions between the variables of a system, therefore Impulse-
Response Functions (IRFs) observation can be useful. After fitting a
VAR, IRFs show how the process reacts to a single shock at time t
providing important information about how the shock propagates
throughout the system, and what effect it has over time. The under-
standing of the dynamic response of a system to a small shock is of
considerable interest in the field of beekeeping.

Based on the models for which resulted R® > 0.5, the IRFs plots are
reported below (Fig. 7).

In other words, we look at the reaction of the system to a shock of
each variable and see how long it takes for the system to settle back to its
original functioning, based on the estimated VAR model.

In the three hives of site A, it is noted that an increase equal to 1 % in
the standard deviation of SPL leads to an increase in Tint after 2 h. After
4 h the maximum increase in temperature is reached, then it begins to
reduce after approximately 10 h but the system, here represented by the
bees, takes about 14 h (t = 7) to realize that the temperature has dropped
too much under the equilibrium level and it has to increase again to
return to the equilibrium state (Fig. 7). It is worth remembering that Tint
and SPL were found to be simultaneous, therefore they influence each
other in the same period. The same behavior is observed for Hive 2 of
site B, while in reference to Hive 3 of site C an opposite behavior is
observed (consider the anomaly found in hive 3 of site C).

We can also note how in site B a shock equal to one of the standard
deviation of RHint produces an increase of about 1 % of Tint in Hivel
and of about 6 % in Hive2. In both hives it takes about 4 h for the system
to start activating to reduce the internal temperature but, while in Hivel
after 10 h the temperature drops below the equilibrium level and re-
quires another 10 h to bring the system to the initial equilibrium state, in
Hive2 the system returns to its initial equilibrium after 18-20 h. A shock
in SPL has a discordant effect in the two hives, while in Hivel it produces
a significant reduction in temperature, in Hive2 the shock in SPL pro-
duces a slight increase in internal temperature but after about 4 h the
system tries to return to its initial equilibrium by reducing the internal
temperature. In both hives, weight shocks produce an immediate
reduction in Tint, the system restores its usual dynamics after
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approximately 1 day.

In site C, the two hives where R? was>0.5 show, as the other sites,
shocks in RHint have an immediate effect on Tint going from over 3 %
(Hivel) to over 6 % (Hive3).

Tint impulse on RHint (Fig. 8) has a different effect in site A than the
others. Here a simultaneous reduction of RHint is observed in Hivel and
Hive2 (about 40 % in 4 h). The opposite trend is observed in sites B and
C, where a 1 % variation of the standard deviation of Tint produces an
increase of RHint that goes from about 10 % in Hivel site B to over 15 %
in Hive2 site C. SPL produces a significant effect on RHint only in Hivel
and Hive2 site A, and Hivel site B, with non-univocal behavior.

Figs. 9,10 and 11 show the forecast in the test set for the three hives
in sites A, B and C using the fitted VAR model in the test period.

Fig. 9 shows that the model predicts well all the changes in the in-
ternal factors. The graph also shows how quickly the predictions from
the one-lag model of the differenced series in the test set, settle down to
their mean values. We can see that forecast work good in RHint Tint, SPL
and Weight. It can be noting a little overestimation for Weight (in Hivel
and Hive2) likely because in the last month, used for forecast, produc-
tion was decreasing, and the training of the model was done when
production had an increasing trend.

In site B (Fig. 10) we observed predictions near observed values of
the variables. SPL is those with the highest error in particular in Hivel
and Hive2, it captures mean but not cycle.

In site C, the SPL had in the test set, the worst prediction in Hive3.
Forecast in the differenced SPL in Hive3 are close to the true values (in
red) when forecast is short term but tend to be biased the longer the
forecasting period is. Although RHint and Tint have predictions that
converge on average, they have a larger error between observed values
and predicted values related to detection problems in the system in the
last month (Fig. 6) of the difference series for Hive3.

4. Conclusions

In this paper we identified the interrelationships between internal
and external factors of the hive in three different sites, measured by a
proper designed smart system. While the relationships with external
factors (UVI, RHext, WS) measure the contemporary effects on endog-
enous variables, the internal factors allow us to measure the dynamic
relationships. The data collected by the monitoring system of internal
parameters of the hives allowed us to estimate the VAR models in the
field of precision beekeeping. The significance recorded in the re-
lationships between Weight and Tint and Weight and RHint and the
good predictive capacity of the models considered with respect to Tint
and RHint, allow us to build a predictive model about the hive
behaviour.

Not all the external parameters showed a significant effect on pro-
duction. In particular, neither the parameter UVI nor the external rela-
tive humidity had significant effects on the weight of the hives, while
wind speed had a positive effect in terms of weight on the hives placed in
the windiest sites. UVI showed, in almost all cases, a positive correlation
with internal temperature. Conversely, external relative humidity
showed negative correlation with internal hive temperature. However,
in one of the sites studied, the relationship between wind speed and
internal temperature was significantly positive. Regarding the effect of
the external parameters on relative humidity inside the hive, the study
highlighted significant positive effects in almost all the hives considered.

The correlations found between internal parameters and external
parameters to the hive confirm the expected signs.

The impulse plots allowed us to monitor the effect and duration of a
system shock on the variables of interest (Tint and RHint) and this could
help us understand the level of the system response.

Time series over longer periods would significantly improve the
predictive capacity of the model, allowing effective monitoring of the
health conditions of the hive. The observations collected in the next
years may be of help in increasing the explanatory power of the model.
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