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Abstract
This paper proposes a spatial point process model on a linear network to analyse 
cruise passengers’ stop activities. It identifies and models tourists’ stop intensity 
at the destination as a function of their main determinants. For this purpose, we 
consider data collected on cruise passengers through the integration of traditional 
questionnaire-based survey methods and GPS tracking data in two cities, namely 
Palermo (Italy) and Dubrovnik (Croatia). Firstly, the density-based spatial clustering 
of applications with noise algorithm is applied to identify stop locations from GPS 
tracking data. The influence of individual-related variables and itinerary-related 
characteristics is considered within a framework of a Gibbs point process model. 
The proposed model describes spatial stop intensity at the destination, account-
ing for the geometry of the underlying road network, individual-related variables, 
contextual-level information, and the spatial interaction amongst stop points. The 
analysis succeeds in quantifying the influence of both individual-related variables 
and trip-related characteristics on stop intensity. An interaction parameter allows 
for measuring the degree of dependence amongst cruise passengers in stop location 
decisions.
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1  Introduction

Several papers discussed the importance of managing key locations and under-
standing tourist spatial behaviour and its main determinants (Cooper 1981; Russo 
2002; Liu et  al. 2017). At the micro-level, a better knowledge of tourist intra-
destination behaviour is relevant for destination marketing and management 
(Zoltan and McKercher 2015). Increased understanding of most visited places 
and how tourists experience the destination may orient policy actions aimed at 
mitigating overcrowding in certain places, promoting less visited places, and 
enhancing tourist safety and satisfaction (Li et al. 2019). Despite the importance 
of understanding tourist movements within a destination, collecting data on visi-
tors’ mobility are a challenging task (Stopher 2012). Amongst such complexity 
sources, we could identify the vast diversity of routes and attractions available for 
each visitor (Lew and McKercher 2002), which are also influenced by the visitor 
and visit features and the spatial locations of infrastructures, restaurants, accom-
modations (Smallwood et al. 2012). Traditional methods are generally based on 
post-visit questionnaires or trip diaries (East et  al. 2017). However, collecting 
information on mobility through traditional travel diaries can be a complex and 
labour-intensive process that demands considerable time and attention from the 
respondent (Stopher 2012). Moreover, relying on diaries or self-reported routes 
for the analysis of tourist mobility may result in several pitfalls (McKercher 
and Zoltan 2014). These may include instances in which tourists find the effort 
required to complete the diary to be arduous and therefore leave it incomplete or 
omit certain parts. Furthermore, tourists may encounter difficulties in locating the 
site to be marked on the diary or map (Puczkó et al. 2010). To overcome these 
problems, in the last decades, there has been an increase in the number of stud-
ies that used tracking technologies for collating data on intra-destination mobility 
behaviour, especially in tourism research (Shoval et al. 2015). Nowadays, Global 
Positioning System (GPS) technology allows for collecting information on human 
mobility at great temporal and spatial details, without any effort required to recall 
the visited places. Given this vast data, many challenges arise in modelling highly 
detailed spatio-temporal data.

Although various techniques may be implemented to analyse tracking data 
(Atluri et  al. 2018), more research is needed to study stop location points con-
cerning destination-related characteristics and individual-related variables (Grin-
berger and Shoval 2019). Approaches considering the surrounding elements, like 
road networks or locations of attractions, are even more scarce. For instance, 
Smallwood et al. (2012) analysed the movement patterns of visitors travelling on 
the road network in northwestern Australia.

Due to geometrical complexities, analysing individual data observed along a 
network of lines are highly challenging. Moreover, the intrinsic lack of homo-
geneity in a network militates against the traditional methods of spatial statistics 
(Baddeley et al. 2021).

Point processes theory on linear networks has been recently proposed for ana-
lysing events occurring on a network of lines. They were firstly introduced in the 
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spatial context and then extended to the spatio-temporal case, focusing on the 
analysis of first- and second-order summary statistics (Ang et al. 2012; McSwig-
gan et al. 2017; Rakshit et al. 2017, 2019; D’Angelo et al. 2021b, 2022b). Whilst 
most of the literature about point processes on spatio-temporal first-order inten-
sity on networks is concerned with nonparametric estimation (Moradi et al. 2019; 
Moradi and Mateu 2020; Mateu et  al. 2020), only a recent paper by D’Angelo 
et al. (2022) has dealt with parametric intensity specification of inhomogeneous 
first-order intensities on networks. The authors fitted a Gibbs point process model 
with mixed effects for the purely spatial component and a spatio-temporal log-
Gaussian Cox process, adapting both models to the underlying road network. Fur-
thermore, D’Angelo et al. (2022c) have considered the self-exciting behaviour of 
crime point process data, proposing a spatio-temporal Hawkes model adapted to 
linear networks, including a parametric estimation of the background based on 
covariates.

From a methodological perspective, various approaches have been used to model 
intra-destination tourist movements. Identifying stop locations are essential for sum-
marising the information in tracking data since they may indicate touristic areas 
of interest for the individuals. Gong et al. (2015) review the main research results 
on stop location identification. In tourism, stop identification may reveal popular 
places, such as tourist attractions, restaurants, or shopping centres. After identify-
ing attractions, several studies used graph-based methods to analyse tourist move-
ment patterns (Kurashima et al. 2010; Yang et al. 2017; Hu et al. 2019), intending to 
reconstruct the network of the relationships amongst the various attractions. Other 
authors instead focused their attention on trajectory similarity. Shoval et al. (2015), 
for example, used the sequence alignment method to segment tourists according to 
their trajectory similarity. Zheng et al. (2019) propose a combination of the dynamic 
time warping with earth mover distance to compare the trajectories of 56 tourists in 
the Xiamen campus and Petry et al. (2019) provide a comparative approach amongst 
various similarity measures for comparing trajectories. Due to the complexity of 
modelling stop location intensity, most studies undertake descriptive approaches 
based on visual examination of stop location maps. At the same time, a modelling-
based approach may help to reveal essential tourist behaviours.

From an empirical perspective, similar to recent studies (De Cantis et al. 2016; 
Ferrante et al. 2018; Domènech et al. 2020a, 2020b; Navarro-Ruiz et al. 2020; Sho-
val et al. 2020; Casado-Díaz et al. 2021), we focus on cruise tourism segments for 
several reasons. First, the single entry-exit point that characterises cruise visits at the 
destination makes implementing a GPS-based survey feasible. Second, the limited 
duration of the visit allows for a complete picture of cruise passengers’ experience 
at the destination. Third, the cruise tourism segment has mainly been debated due 
to their impact on destinations, determining to overcrowding of places in the face of 
a lower expenditure than traditional tourists (Brida and Zapata 2010; Larsen et al. 
2013). However, the previous studies have not explicitly focused on cruise passen-
gers’ stop activities to the best of our knowledge. Moreover, this paper provides a 
comprehensive picture of individuals’ characteristics, integrating a questionnaire-
based survey and GPS tracking data in Palermo (Italy) and Dubrovnik (Croatia), 
based on the assumption that stop locations reveal critical points of interest of 
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the destination. A Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) (Ester et al. 1996) is used to identify the stop locations from the GPS 
tracking data. The data are analysed using a spatial point process applied to a linear 
network. Specifically, in this paper, we extend the work presented in D’Angelo et al. 
(2022) in two directions: (i) by using the DSCAN algorithm, to identify the stops, 
and (ii) by including external spatial covariates in an application of the Gibbs point 
process model. Note that the Gibbs point process model is fitted on a road network 
represented by the configuration of the streets.

All the analyses are carried out through the statistical software R Core Team 
(2023), and the source codes to reproduce the analysis in the city of Palermo are 
contained in the GitHub repository https://​github.​com/​nicol​ettad​angelo/​gps_​data.

The paper is organised as follows. The data are described in Sect. 2. Section 3 
presents the DBSCAN method employed to identify stop activities at the destina-
tion. In Sects. 4 and 5, we introduce both the theory of spatial point processes on 
linear networks and the Gibbs point process model for the intensity specification. 
Sections 6 and 7 report and discuss the results obtained for the cruise tourism seg-
ment in Palermo and Dubrovnik, respectively. Section 8 concludes this paper and 
indicates future research directions.

2 � Data

Data were collected from two surveys: the first was conducted in the Spring of 2014 
in Palermo (Italy), and the second in the Summer of 2015 in Dubrovnik (Croatia). 
Both surveys were implemented by integrating a questionnaire-based survey and 
GPS tracking devices on cruise passengers disembarking at their destination. Spe-
cifically, 303 cruisers were interviewed in Palermo and 51 in Dubrovnik; in both 
cases, 12 variables were selected for each interviewed cruise passenger, according 
to the literature on visitors’ intra-destination mobility. Data collected in the port 
of Palermo are initially presented in De Cantis et  al. (2016). A description of the 
Dubrovnik survey can be found in Ferrante et al. (2018), together with the complete 
description of the collected variables. An opening and a closing questionnaire were 
administered to collect socio-demographic characteristics and pre-, and post-visit 
information for each cruise passenger interviewed.

In addition, a GPS tracking device was released to each cruise passenger sampled, 
recording their position during the visit to the destination. Therefore, the resulting 
GPS tracking data consist of coordinate points recorded every ten seconds. As an 
example, Fig. 1 shows the GPS track of a sampled cruise passenger (black points) 
and the streets (red lines), with the detail of the stops preference and of the time (in 
minutes) in each stop (identified by the red stars), using Palermo data. Moreover, 
the top numbers in the circles indicate which stop has been first visited, whilst the 
bottom numbers indicate the time spent at each stop. The three stops represent the 
disembarking area, Piazza Pretoria and the Cathedral, the last two being in the list of 
the main attraction of the municipality of Palermo.

Even though the data quality is very high, we can identify some noise points. 
Indeed, when analysing the complete trajectory, a set of pre-processing operations 

https://github.com/nicolettadangelo/gps_data
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on the raw GPS data are necessary to remove outliers and regularise the trajectories 
(see Abbruzzo et al. (2021) for further details). However, in this paper, our main aim 
is to model the stops according to some covariates and the spatial characteristics, 
then consider the outliers as noise points.

The analysis of cruise passengers’ stop activities, based on the integration of the 
questionnaire-based survey and GPS tracking data, prevents some typical data col-
lection problems on tourist mobility. Indeed, traditional methods are generally based 
on post-visit questionnaires or trip diaries, which rely on the accurate recall of the 
places visited and activities made. However, nowadays, GPS technology allows for 
collecting information on human mobility at a very great temporal and spatial detail, 
without any effort required to recall the visited places. In this way, we can evaluate 
the relationships amongst the number of stops obtained from the DBSCAN algo-
rithm (in Sect. 3), and both individual-related variables, collected through the ques-
tionnaire-based survey, and some itinerary-related characteristics, identified from 
the GPS tracking data on the whole itinerary.

2.1 � Covariates

According to the literature on visitors’ intra-destination mobility, a set of covariates 
related to the individual characteristics, information on the itinerary undertaken, and 
the selected tourist attractions are included in the analysis. First, a set of variables 
is available from a questionnaire issued to the cruise passengers: Day of the inter-
view, Age group, Country of origin, Education level (dichotomized in low (High 

Fig. 1   Example of a GPS track (black points) and stops derived from the DBSCAN algorithm (red stars) 
for a cruiser in the municipality of Palermo. The top numbers in the circular indicate which stop has been 
first visited. The circular’s bottom numbers indicate the times spent in minutes at each stop (colour figure 
online)
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school diploma or Bachelor degree) and high (Master or PhD)), First visit (indi-
cating whether the cruise passenger was visiting the city for the first time or not), 
Yearly income (dichotomized in < 40,000 and ≥ 40,000 euro). The question-
naire is issued to only one person per group if the person travels with the family or a 
group of friends.

Regarding the information on the undertaken itinerary, a set of synthetic informa-
tion for the two contexts under analysis was derived from the GPS tracking data and 
considered as potential determinants of stop activity, namely: Total length of tour 
(dichotomized in < 11 and ≥ 11 km), Total time of tour (dichotomized in < 3.5 
and ≥ 3.5 hours), Maximum distance from the port (dichotomized in < 3.5 and ≥ 
3.5 km), Average duration of the stops (in minutes). Specific threshold values for 
some covariates were considered to distinguish between different types of tourists. 
For instance, the maximum distance from the port discriminates between those who 
stayed within the historical centre of the city of Palermo and those who ventured 
outside. As for income, low sample size for some income categories suggested that 
reducing the number of categories to two would be more appropriate. Additionally, 
dichotomising certain covariates can facilitate easier interpretation of the groups 
considered (for example between those undertaking a short tour and those making a 
longer one) and can mitigate some potential problems stemming from measurement 
errors.

Considering the restricted area of the historical centre of Dubrovnik, information 
on the maximum distance from the port was not included in the model selection pro-
cedure, being relatively constant for all the units under analysis.

Finally, a set of dummy variables are also derived by the questionnaire issued 
to cruise passengers, indicating whether the cruise passenger has visited a specific 
touristic attraction. The tourist attractions of the two destinations have been selected 
after comparing the top attractions on popular websites, such as Tripadvisor, Google 
rank, Lonely planet and Skyscanner. These tourist attractions include: the Nor-
man Palace, the Cathedral, Massimo Theatre, La Martorana, the 
Chiaramonte Palace, Quattro Canti, and Ballarò Market in the 
case of Palermo city, and Minceta Tower, Bokar Tower, Stradun of 
Dubrovnik, the Cathedral, Loggia Square, Fountain of Ono-
frio, and The Rector’s Palace and Cultural Historical 
Museum, in the case of Dubrovnik.

3 � The DBSCAN algorithm

The DBSCAN is a density-based algorithm (Ester et al. 1996) designed to identify 
arbitrary-shaped clusters, where the clusters are sets of spatial points that fall within 
a certain distance. Concurrently, the algorithm can identify the noise points, which 
are spatial points not belonging to any cluster. Given D(i) a generic trajectory for a 
unit i, a cluster is defined as a minimum set of spatial points which are sufficiently 
close to each other. The following definitions are given to clarify the concept of 
points sufficiently close to each other.
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Let p = (x, y) be a point in a trajectory D for a generic unit i. The �-neighbour-
hood of a point p is defined by ne�(p) = {q ∈ D ∶ d(p, q) ≤ � ∈ ℝ

+} , where d(⋅, ⋅) 
is a distance function. If the cardinality of an �-neighbourhood of a point p, i.e. 
card (ne�(p)) , is at least greater than a minimum number ( minpts ∈ ℕ ) then p is a 
core point. Moreover, a point p is directly density-reachable from q, with respect 
to � and minpts, if p ∈ ne�(q) and card (ne�(q)) ≥ minpts . Finally, let’s define den-
sity-reachable and density-connected points. A point p is density-reachable from the 
point q with respect to � and minpts if there is a chain p1,… , pl , p1 = q , pl = p 
such that pi+1 is directly density-reachable from pi . A point p is density-connected to 
point q, with respect to � and minpts, if there is a point o such that both p and q are 
density-reachable from o with respect to � and minpts.

A cluster C is a non-empty subset of D satisfying the following requirements:

•	 ∀ p, q ∈ D : if p ∈ C and q is density-reachable from p with respect to � and 
minpts, then, q ∈ C;

•	 ∀ p, q ∈ C : p is density-connected to q with respect to � and minpts.

Let C1,… ,Ck be the clusters of D with respect to � and minpts, then, p ∈ D is a 
noise point if it does not belong to any cluster Ci . The algorithm starts with the first 
point p in the database D, retrieving all the neighbours of a point p concerning � 
and minpts. This procedure will yield a cluster if p is a core point. Otherwise, no 
points will be density-reachable from p, and the DBSCAN algorithm will proceed 
to consider the next point of the database. Centroids summarise the spatial coordi-
nates of each point belonging to a cluster, and the rest are considered as noise. The 
DBSCAN requires choosing two parameters, namely � and minpts, which indicate 
the search radius and minimum number of points in the search radius for identifying 
the location as a cluster. Finally, this algorithm does not consider temporal informa-
tion. For an algorithm extension, which would also incorporate the temporal infor-
mation, see Birant and Kut (2007).

This study uses a value of 20 ( ∼ 3 min) for the minpts tuning parameter and 40 
(meters) for the distance value � . The distance between consecutive points is calcu-
lated as Euclidean since it is approximately the same as the one on the linear net-
work when one considers spatial points measured every few seconds. Note that we 
collect data every ten seconds in the case of Palermo and Dubrovnik.

Figure 1 shows an example of an application for the Palermo cruise passengers’ 
GPS tracks. The DBSCAN reveals three stops in which the cruise passenger has 
spent 8.38 (Stop 1), 18.23 (Stop 2) and 16.23 (Stop 3) minutes. The shortest-path 
distances, which consider the road network, between these stops are around 2300 m, 
(1 → 2) and (2 → 3), and 764 m. On the contrary, the euclidean distances between 
the stops are around 1500 (1 → 2) and 600 (2 → 3) meters, respectively. This simple 
example motivates spatial point processes on a linear network.
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4 � Spatial point processes on a linear network

A point process model assumes that a point pattern x is a realisation of a finite point 
process X in the bounded region D ⊂ ℝ

2 without multiple points. A spatial point 
pattern is an unordered set x = {x1,… , xn} of points xi where n(x) = n denotes the 
number of points, not fixed in advance (Cressie 2015). In this context, N(A) denotes 
the number of points of a set A ∩ X , where A ⊆ D.

We denote a point location in the plane as u , specified by Cartesian coordinates 
u = (u1, u2) without explicitly mentioning the coordinates. The intensity function 
describes the first-order property of the point process and is defined as follows:

where du represents an infinitesimal region containing the point u ∈ D , |du| is the 
area of du , and �[N(du)] is the expected number of events in du . If the intensity 
is constant, the process is called homogeneous. In the case of inhomogeneity, the 
intensity varies within the study area and may depend on the coordinates of points. 
A point process model, assuming independence, is fully described by its conditional 
intensity function (Daley and Vere-Jones 2007). For a comprehensive treatment of 
spatial point processes in Euclidean space, please refer to Baddeley et al. (2015).

In a formal sense, a linear network L = ∪n
i=1

li ⊂ ℝ
2 is typically represented by 

a finite union of line segments in two-dimensional space (Ang et al. 2012). These 
line segments, denoted as li , have positive lengths and together form the linear net-
work L ( L = ∪n

i=1
li ⊂ ℝ

2 ). The endpoints of these line segments are referred to as 
nodes, and the degree of a node corresponds to the number of line segments that 
share that particular node (Okabe and Sugihara 2012). A line segment, li , is defined 
as [ui, vi] = {kui + (1 − k)vi ∶ 0 ≤ k ≤ 1} , where ui and vi represent the endpoints 
of li in two-dimensional space. It is worth noting that the intersection of any two 
line segments, li and lj (where i ≠ j ), can either be empty or consist of an endpoint 
shared by both segments. The total length of all line segments in the linear network 
L is denoted by |L| . When determining the distance between two locations, u and v , 
within the network L, the most commonly used method is the shortest-path distance, 
denoted as dL(u, v) . This distance corresponds to the minimum length amongst all 
possible paths connecting u and v in the network. However, other alternative dis-
tance measures have also been discussed in Rakshit et al. (2017).

Similar to planar point processes, a point process on a linear network L, denoted 
as X, involves a random countable subset of ℝ2 without overlapping points. In prac-
tical scenarios, we observe n > 0 events, x = {x1,… , xn} , of the point process X 
occurring within a linear network L ⊂ ℝ

2 . We use N(L) to represent the number of 
events that take place on L. It is important to note that these events are not limited to 
occurring solely at the nodes of the network. Just like in the planar case, we define 
the intensity function �(⋅) as the point process equivalent of the mean function for a 
real-valued stochastic process. For further information about the statistical proper-
ties of the intensity function, refer to Moradi et al. (2018).

�(u) = lim|du|→0

�[N(du)]

|du| ,
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A point process N on a linear network L is considered homogeneous if it exhib-
its a constant intensity, that is, �(u) = � for all u ∈ L . In general, �(u) is inter-
preted as the expected number of events per unit length of the linear network L in 
the vicinity of u . However, a more realistic and general scenario are the inhomo-
geneous case, where the constant intensity � of the Poisson process is replaced by 
a spatially varying intensity function over the linear network L. Recent research 
on statistical methods for analysing spatial patterns of points on a network of 
lines, such as road accident locations along a road network, has been reviewed by 
Baddeley et al. (2021).

5 � Modelling the spatial stop intensity

In this section, we introduce a modelling approach useful for describing the spa-
tial behaviour of the visitors. The presented methodology is developed through a 
stochastic point process modelling approach on a linear network originally pro-
posed in D’Angelo et al. (2022). Specifically, we incorporate a random subject-
specific effect and employ a parametric model to capture the visitors’ stops, tak-
ing into account both the underlying network structure and the individual tourists’ 
choices. To accomplish this, we adopt the Gibbs point process models with mixed 
effects, as outlined by (Illian and Hendrichsen 2010), adapting the procedure to 
the specific context of linear networks. This flexible procedure enables the incor-
poration of individual information through appropriate random and fixed factors, 
as well as external covariates.

Consider a scenario where there are M visitors on a linear network L, and each 
visitor generates a point pattern of stops represented by x1,… , xM . In this context, 
we make the assumption that each xm (where m = 1,… ,M ) follows a pairwise 
interaction process (Van Lieshout 2000), characterised by a conditional intensity 
(Kallenberg 1984), which is given by:

where the parameter � is a vector of fixed effects and the random effects �m are 
assumed to come from Φ ∼ N(0, �2

�
I) . Then n(xm) is the number of points in xm , that 

is, the number of stops per visitor, b�,�m
(u) and h�,�m

(u, v) are two functions that 
model the intensity and the interaction, respectively.

5.1 � Model estimation through pseudolikelihood

Inference is carried out through the maximisation of the pseudolikelihood over 
the subset A ⊆ L

��,�m
(u;xm) = b�,�m

(u)

n(xm)∏
i=1,xim≠u

h�,�m
(u, xim),
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that is,

where � = (�1,… ,�M).
In order to avoid the computation of integrals in the pseudolikelihood, we 

employ the Berman–Turner device (Baddeley and Turner 2000), which utilises 
a quadrature rule. This approach involves approximating the integral in (1) for 
each m by a finite sum over a set of points umj , where j = 1,… , lm . These points 
include all the data points and allow for a more manageable computation. This 
approach is advantageous as it can be shown that the log-pseudolikelihood is for-
mally equivalent to the log-likelihood of independent weighted Poisson variables, 
i.e.

where wmj is the quadrature weights, ymj =
zmj

wmj

 and

The initial step in fitting the proposed spatial model involves creating a quadrature 
scheme on the linear network. Subsequently, we replicate dummy points for each 
potential mark, which in this case, correspond to the ID of the visitor. These repli-
cated dummy points are generated at the same locations as the data points, but with 
distinct marks. If the original point pattern includes additional external informa-
tion, such as individual covariates, their values remain associated with the generated 
dummy marked points. This is important as it allows for the inclusion of individual-
specific covariates in the model specification, denoted as Z(umj) , which is replicated 
for all the quadrature points. Note that the suggested approach basically requires the 
generation of new dummy points for each level of the marks. Indeed, the procedure 
follows that of simulating a multitype point pattern. For this reason, our proposal 
does not directly extend to the case of individual covariates defined on a continuous 
scale.

Finally, the two sets of dummy points and the data points are superimposed, 
and the quadrature weights and the indicators (2) are computed.

In this paper, we apply the proposed models to these newly generated quadra-
ture points, allowing for the incorporation of random effects and subject-specific 

PLA

(
�,�;x1,… , xM

)
=

M∏
m=1

( ∏
xim∈A

��,�m

(
xim;xm

)
exp

(
− ∫A

��,�m
(u;xm)du

))

(1)

PLA(�,�;x1,… , xM) =

M∏
m=1

( n(xm)∏
i=1

b�,�m
(xim)

n(xm)∏
i≠j

h�,�m

(
xim, xmj

))

× exp

{
− �A

b�,�m
(u)

n(xm)∏
i=1

h�,�m

(
u, xim

)
du

}
,

log PLA

(
�,�;x1,… , xM

)
≈

M∑
m=1

lm∑
j=1

(
ymj log ��,�m

(
umj

)
− ��,�m

(
umj

))
wmj

(2)zmj =

{
1 if umj ∈ {xm1,… , xmn(xm)}

0 if umj ∉ {xm1,… , xmn(xm)}
.
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covariates. We denote the location of these new sets of points as uim . The model 
can be then fitted through the R Core Team (2023) package mgcv (Wood 2017).

For the intensity function b�,�m
(uim) , we assume an additive structure on the 

log-scale, that is:

In detail, we assume that B1(uim) = 1 and B3(uim) is the distance from the nearest 
attraction, computed as the shortest-path distance on the road network of the city. 
(see Fig.  5). This spatial covariate replaces the dummy variables of the model in 
D’Angelo et  al. (2021), which indicated the visited specific touristic attraction by 
the cruise passenger, resulting from the questionnaire issued to the cruise passengers 
when disembarking. For this reason, the dummy variables considered in D’Angelo 
et  al. (2021) could suffer from the participants’ recall bias. This bias is overcome 
by the spatial covariate B3(uim) , which accounts for the spatial displacement of 
the considered touristic attractions by the GPS tracking data. In addition, B2(uim) 
denotes the ID of the visitor, included as a random effect. B4(uim) is a nonparametric 
function for the spatial location uim ∈ L , which might be estimated through kernel, 
splines or other nonparametric techniques. Further external covariates, whose val-
ues are obtained for each point of the quadrature scheme when generating their new 
location as Z(umj) , can be included in the specification of the model.

To describe the interaction function h�,�m
(uim, vim) , we consider:

We propose a smooth interaction function H(⋅, ⋅) , which is assumed to be dependent 
only on the shortest-path distance between any pair of points, i.e. the length of the 
shortest path between the location of the two points on the network.

For two points located on the network, denoted as u and v , we define the interac-
tion function as follows:

where d(u, v) represents the shortest-path distance, and R ≥ 0 defines the radius of 
interaction.

In this particular application, we set the interaction radius to R = 100 m , which 
is considered a reasonable distance threshold that captures potential interactions 
amongst visitors’ choices of stop locations.

b�,�m
(uim) = exp

(
�1B1

(
uim

)
+ �1mB2

(
uim

)
+ �3B3

(
uim

)
+ B4

(
uim

))
.

h�,�m
(uim, vim) = exp(�2H(uim, vim) + �2mH(uim, vim)).

(3)H(u, v) =

⎧
⎪⎨⎪⎩

�
1 −

�
d(u,v)

R

�2
�2

if 0 < d(u, v) ≤ R

0 else

,
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6 � Discussion of results in Palermo city

6.1 � Stop activity identification

The DBSCAN algorithm summarises the information on the GPS tourist tracks 
by counting the number of stops and the time spent at each stop. The application 
of the DBSCAN to the 303 cruise passengers sampled during six days of surveys 

Fig. 2   On the left: Relative frequency distribution of the number of cruisers stops in Palermo. On the 
right: Distribution of the average time spent in each stop, derived from the DBSCAN algorithm

Fig. 3   Boxplots of the number of visitors’ stops in Palermo for the considered categorical covariates
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identified 1809 stops, with an average number of stops per tourist equal to 6, with 
a minimum of 1 and a maximum of 22. The duration of stops ranges from 5 to 
56 min, with a mean of 17 and a median of 15 min. Figure 2 show the relative 
frequency distribution of the cruise passengers’ stops (on the left) and the average 
time spent at each stop (on the right), respectively.

Both distributions are positively skewed; around 11% of the cruise passengers 
make eight stops, and 50% of the sample stops between 7 and 13 times.

6.2 � Determinants of stop number

In Fig. 3, bivariate plots of the number of stops according to the set of considered 
categorical covariates are reported.

As for the exploratory analysis, by looking at the plots in Fig. 3, the number of 
stops generally appears higher as the mobility behaviour, measured by some syn-
thetic characteristics, increases. Namely, the higher the distance from the port, the 
higher the number of stops made. Similar considerations hold for the total duration 
of the tour and the total length of the tour. That is, those who tend to explore more 
the destination also tend to stop more. As for socio-demographic characteristics, 
the degree of association is less clear. Nonetheless, the median value of the stops 
is slightly higher for those with higher education and income levels. On the other 
hand, this value is slightly lower for repeated visitors, compared to those who visit 
the destination for the first time, which then seem to prefer the destination’s attrac-
tions (Wang 2004).

These results are confirmed in D’Angelo et al. (2021), which describes the joint 
effect of the considered variables on the number of stops by fitting a Poisson regres-
sion model, to evaluate the influence of the individual-related variables and itin-
erary-related characteristics on cruise passengers’ stop behaviour, and identify the 
potential determinants of the stop number.

The results obtained from the previous study are rather reasonable. Regarding 
socio-demographic characteristics, both education and income are slightly signifi-
cantly associated with the total stop number. More in detail, the association with the 
income may be explained with the potential expenditure associated with the stop 
activities (Thrane 2012), as well as education may be associated with the visit to 

Fig. 4   Left panel: Values of the variables distance from the nearest touristic attraction in Palermo. Right 
panel: Nonparametric estimate of the intensity of the analysed point process, as a function of the dis-
tance from the nearest touristic attraction 
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museums or other types of attractions (Parola et al. 2014). In terms of the visited 
places, only the Cathedral visit is slightly associated with the total stop number. In 
contrast, the other considered places of interest are not significantly associated with 
the total stop number.

Note that in this paper, we aim at accounting for the spatial displacement of 
points and, therefore, the underlying road network, and we expect that people stop 
more often near well-known touristic attractions. For these reasons, we compute the 
spatial variable distance from the nearest touristic attraction, where the metric used 
was the shortest-path distance on the network from the spatial locations u of the 
known attractions.

The resulting variable comes in the left panel of Fig.  4. Its marginal effect on 
the intensity of the process is assessed by plotting the marginal smoothed intensity 
function. Let �(u) be the intensity of the process under stud and Z(u) the considered 
covariate. Then, assuming �(u) = f (Z(u)) where f is a nonparametric estimate of the 
intensity of the analysed point process, we wonder if the observed intensity depends 
on the spatial covariate. Smooth estimators of f (Z(u)) were proposed by Baddeley 
et al. (2012), and the smoothing procedure we consider is based on fixed-bandwidth 
kernel density estimation. The Poisson confidence bands are also computed.

Looking at the smoothed functions in the right panel of Fig. 4, it is evident that 
the effect of the spatial covariate varies as a function of the scale. In detail, the inten-
sity exponentially decreases moving away from the nearest tourist attraction, whilst 
it becomes pretty constant after 200 ms.

6.3 � Results of the spatial modelling of the stops on the road network

For the present study, for computational reasons, only two days of the survey are 
taken into account, referring to the cruise passengers visiting the city after disem-
barking from the cruise ship. Note that computational times for fitting point process 
models increase with the number of points. In our particular setting, the computa-
tional burden mostly depends on the number of IDs considered as random effects, 
as this, in turn, affects the quadrature scheme and, consequently, the dummy points 
generated. The spatial point pattern consists of 278 stops made by 72 visitors, stop-
ping four times on average during their visit to downtown Palermo city on the 25th 
and 28th April 2014. To properly account for the constrained structure of the space 
support, the road network of the selected area is considered, providing a linear net-
work L with 4473 vertices and 5399 lines. The quadrature scheme used for model 
fitting consists of the analysed 278 data points, representing the visitors’ stops, and 
10,798 dummy points obtained generating the quadrature scheme on the analysed 
network. This leads to a dataset of 797,472 quadrature points, which is equal to the 
number of data points plus the number of dummy points, all replicated for the num-
ber of marks M.

In Fig. 5, the locations of the observed stops (in red) and the main considered 
attractions (in green) are displayed.

The motivation for including the socio-economic characteristics and synthetic 
information on the itinerary undertaken as covariates is threefold: to explain the 
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spatial inhomogeneity, to consider the characteristics of the visit, and to follow the 
literature on intra-destination behaviour.

In particular, starting from the fitted model in D’Angelo et al. (2021), based on 
the AIC values, none of the individual-related variables resulted significant.

Moreover, amongst other destination-related considered characteristics, both the 
geographical configuration of the destination determined by the road network and 
the shortest-path distance of each stop location from the nearest tourist attraction is 
taken into account.

Thus, we model the spatial intensity as follows:

Fig. 5   In red: the spatial point pattern of visitors’ stops in the downtown of Palermo city on the 25th and 
28th April 2014. In green: the location of the tourist attractions (colour figure online)

Table 1   Parameters’ estimates and approximate significance of smooth terms of the Gibbs model (4) for 
the downtown of Palermo city

Estimate Std. error z value Pr(> |z|)

𝜃̂
1
 Intercept − 9.009 0.924 − 9.749 0.000

𝜃̂
2
 Interaction 0.231 0.013 17.696 0.000

𝜃̂
3
 Distance from the nearest 
attraction

− 0.0040 0.001 − 2.849 0.004

edf Ref.df Chi.sq p-value

s(lat,long) 22.312 25.890 143.400 0.000

𝜙̂
1m

 s(id) 0.000 71.000 0.000 0.000
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where: vim =
∑n(xm)

j=1
H(uim, xjm) ; �2 is the fixed effect of the smooth function in Eq. 

(3); �3 is the fixed effect of the distance from the nearest attraction, computed as the 
shortest-path distance on the network from the location of these known attractions; 
�1m is the random effect of the ID; the nonparametric function B4(uim) is estimated 
through thin plate regression splines with a chosen number of 29 knots for our 
analysis.

In Table 1, the estimates of the fixed effects and the summary of the random 
effects of the selected model (4) are reported.

When exp(𝜃̂1) is multiplied by the length of the network, the estimated stops 
for each individual are 14.57, higher than the original average stops. This finding 
is likely due to the sparsity of the original points in some areas of the network.

The positive interaction parameter exp(𝜃̂2) = 1.26 indicates that overall the vis-
itors’ stops attract each other. Therefore, visitors tend to stop in the same spots. 
Furthermore, exp(𝜃̂3) = 0.996 , being less than 1, indicates that moving away from 
any tourist attraction slightly decreases the probability of visitors stopping. From 
the significant random effects, we notice that the intensity varies only amongst 
visitors ( 𝜙̂1m ), contrary to the interaction ( 𝜙̂2m ) which is not significant and 
therefore excluded from the model. The variance for the visitors’ random effect 
is estimated as 0.0003. Overall, this conclusion opens new research perspectives 
on modelling human behaviour and applying ecological theories (Meekan et  al. 
2017). Finally, the inclusion of the smooth term B4(uim) accounting for the spatial 
coordinates improves the fitting of the model significantly.

To make the estimator unbiased, that is, given the expected number of points 
�[∫

L
�(u)d(u)] = n , the intensity obtained by the Equation (4) has been normal-

ised 𝜆̂(u) = n𝜆̂(u)

∫
L
𝜆̂(u)d(u)

 . This is a peculiar problem of models fitted to linear net-
works, as the resulting intensity is interpreted as the number of points per unit 
length of the network (and not per unit area as in typical planar point pattern 
analysis). Therefore, it is often the case that the intensity resulting from a fitted 

(4)log ��,�m
(uim;xm) = �1 + �1mB2(uim) + �2vim + �3Z(uim) + B4(uim)

Fig. 6   Estimated pointwise intensities for Palermo, above the 95th percentile: The bigger the circle, the 
higher the intensity. The intensity has been normalised to obtain the expected number of stops for each 
location. Locations of the tourist attractions are displayed in red (colour figure online)
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model on a linear network does not integrate directly with the number of original 
points in the analysed point pattern. Therefore, Fig. 6 shows the estimated inten-
sity, displaying the expected number of stops for each location of the quadrature 
on the network. To make easier the reading and to highlight the regions where 
visitors are most likely to stop, only the estimated intensities that are higher than 
the 95th percentile are reported.

7 � Discussion of results in Dubrovnik city

7.1 � Stop activity identification

The application of the DBSCAN to the 51 cruise passengers sampled during six 
days of surveys identified 374 stops, with an average number of stops per tour-
ist equal to 7.63, with a minimum of 2 and a maximum of 17. The stop duration 
ranges from 5.73 to 69.38 min, with a mean of 20.36 and a median of 16.46 min.

Fig. 7   On the left: Relative frequency distribution of the number of cruisers stops in Dubrovnik. On the 
right: Distribution of the average time spent in each stop, derived from the DBSCAN algorithm

Fig. 8   Left panel: the spatial point pattern of visitors’ stops in the downtown of Dubrovnik city (in red) 
on the 3rd and 5th September 2015, and the location of the tourist attractions (in green). Right panel: 
Values of the variables distance from the nearest touristic attraction in Dubrovnik (colour figure online)
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Figures show the relative frequency distribution of the cruiser stops (on the 
left) and the average time spent at each stop (on the right). Both distributions are 
positively skewed (Fig. 7).

7.2 � Results of the spatial modelling of stop locations in Dubrovnik

In the case of Dubrovnik, the spatial point pattern consists of 374 stops made by 
49 visitors, stopping seven times on average during their visit in the city down-
town, on 3rd and 5th September 2015. The linear network L comes with 1178 
vertices and 1245 lines. The quadrature scheme used for model fitting consists 
140,434 quadrature points (374 data points and 2492 dummy points).

In the left panel of Fig. 8, the locations of the observed stops (in red) and the 
main considered attractions (in green) are displayed. As for the Italian case, we 
model the spatial intensity as in Eq. (4). Indeed, starting from the full model con-
sidering all the individual-related variables, the best model for the Croatian data 
is the same. The spatial covariate obtained as the shortest-path distance from the 
nearest point of attraction comes in the right panel of Fig. 8.

In Table 2, the estimates of the fixed effects and the summary of the random 
effects of the final selected model are reported.

The model estimates the stops for each individual, which are 6.18. Some 
comments on the main differences with respect to the Palermo spatial intensity 
come as follows. The interaction parameter is estimated as positive also for the 
Dubrovnik data, indicating that also here, stops tend to attract each other. The 
variance for the visitors’ random effect is estimated as 0.275.

As in the case of Palermo, the exponential of the parameter representing the 
distance from the nearest point of attraction is negative, even though very close 
to 1. This suggests that the probability of stopping decreases moving away from 
the points of interest, and this is indeed confirmed by the clusters found in Fig. 8, 
quite close to the considered points of interest. Furthermore, only the random 
effect of the ID of the tourist is significant, whilst the interaction amongst their 
stops is not.

Table 2   Parameters’ estimates and approximate significance of smooth terms of the Gibbs model (4) in 
Dubrovnik

Estimate Std. error z value Pr(> |z|)

𝜃̂
1
 Intercept − 7.773 0.233 − 33.367 0.00

𝜃̂
2
 Interaction 0.031 0.006 4.956 0.000

𝜃̂
3
 Distance from the nearest 
attraction

− 0.002 0.001 − 2.227 0.026

edf Ref.df Chi.sq p-value

s(lat,long) 23.960 26.920 189.530 0.000

𝜙̂
1m

 s(id) 17.050 48.000 27.310 0.005
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Finally, Fig. 9 displays the obtained estimated intensity, showing the expected 
number of stops for each location of the quadrature on the network.

8 � Summary and conclusions

This paper proposes an approach to derive meaningful information on a tourist 
visit at the destination, starting from the Global Positioning System (GPS) track-
ing data and the questionnaire-based information. The complex structure of the 
GPS data requires methods able to synthesise the vast amount of data collected to 
extract relevant information on the visitors’ behaviour. Amongst the various types of 
information which can be derived from the GPS tracking data, in this contribution, 
we focused our attention on stop activities as an essential element for destination 
management, not only because stop locations may highlight business opportunity 
(Adongo et al. 2017), but also because they may indicate crowded places, sustain-
ability issues at attractions and traffic congestion (Chiou and Hsieh 2020).

To identify cruise passengers’ stop activities, a spatial clustering algorithm, the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester 
et  al. 1996), has been applied to the GPS tracking data collected at an individual 
level. Moreover, thanks to the integration of stop activities, socio-demographic char-
acteristics and other itinerary-related information, it was possible to identify some of 
the potential determinants of stop activity at the destination. Determining the num-
ber of stops and analysing their main determinants is fundamental for service man-
agement since the stop locations may identify places where most of the expenditure 
is concentrated (Thrane and Farstad 2012).

Moreover, a novel model has been proposed to analyse the main determinants of 
spatial intensity of cruise passengers’ stop locations during their visit. The proposed 

Fig. 9   Estimated pointwise intensities for Dubrovnik. The bigger the circle, the higher the intensity. The 
intensity has been normalised to obtain the expected number of stops for each location. Locations of the 
tourist attractions are displayed in red (colour figure online)
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model considers the linear network determined by the street configuration of the 
destination under analysis. The results do show that socio-demographic characteris-
tics do not have a significant influence on stop location patterns, and the trip-related 
characteristics are the most influencing factors, including the distance from the main 
attractions and the potential interaction amongst cruise passengers in stop location 
decisions. Thus, attraction locations and interaction amongst cruise passengers seem 
to be the main determinants in stop location patterns. Nonetheless, these results 
could be influenced by the particular segment under study, the cruise passengers, 
characterised by a limited time for visiting the destination and a tendency towards 
group behaviour (Kriwoken and Hardy 2018).

From a methodological perspective, this paper contributes to the analysis and 
synthesis of the GPS tracking data, particularly for the modelling of spatial point 
processes on a linear network. Moreover, the Gibbs point process approach allows 
for analysing interactions amongst points to check whether attraction or repulsive 
relationships exist amongst tourists’ stop location choices. Whilst most of the recent 
literature on this topic is concerned with nonparametric intensity estimation, both 
in space and space-time, our approach contributes to the framework of point pro-
cesses on networks by proposing a parametric model. A drawback of the present 
study is that it does not account for the temporal component. Indeed, an exciting line 
of future research is analysing the spatial point pattern of the individual trajectories 
(Moradi et al. 2018a) marked by time spent in each stop location.

From an applied perspective, improved knowledge of tourists’ spatial behaviour 
has relevant implications for destination management, given that a better knowledge 
of the determinants of spatial intensity of visitors’ stop locations in urban contexts 
may orient destination management policy. Nonetheless, another limitation of our 
study concerns the analysis of stops made by cruise passengers, which may be influ-
enced by various factors that require further investigation. For instance, the decision 
to take organised tours or the behaviour of passengers in groups may be influenced 
by prior information provided before visiting the destination or by the accompany-
ing tour guide. A more detailed investigation of the determinants of stops made by 
cruise passengers is necessary to gain a better understanding of these factors and 
their potential impact on our results. Also, the analysis is here focused on a restricted 
destination area. A wider study area would better account for other potential deter-
minants of the stop activity related to individual trajectories and socio-demographic 
characteristics.
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